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SPECTRALITY OF MORAN MEASURES WITH FOUR-ELEMENT
DIGIT SETS

MIN-WEI TANG AND FENG-LI YIN *

Abstract. Let δE = 1
#E

∑
a∈E δa denote the uniformly discrete probability mea-

sure on a finite set E. We prove that the infinite convolution (Moran measure)

μb,{Dk} = δb−1D1
∗ δb−2D2

∗ · · ·
admits an orthonormal basis of exponential provided that {Dk}∞k=1 is a uniformly
bounded sequence of 4-digit spectral sets, b = 2l+1q with q > 1 an odd integer, and
l sufficiently large (depends on Dk). We also give some examples to illustrate the
result.

1. Introduction

Let μ be a compactly supported Borel probability measure on R
d. μ is called a

spectral measure if there exists a countable set Λ ⊂ R
d such that E(Λ) :=

{
e2πi<λ,x> :

λ ∈ Λ
}
forms an orthonormal basis for L2(μ). In this case, Λ is called a spectrum of

μ and (μ,Λ) is called a spectral pair. If the normalized Lebesgue measure restricting

on a Borel set Ω is a spectral measure, then Ω is called a spectral set. The study

of spectral measures was first initiated by B.Fuglede in 1974 [8], who conjectured

that Ω ⊂ R
d is a spectral set if and only if Ω is a translational tile. The conjecture

has been studied by many authors, e.g., Iosevich, Jorgensen, Kolountzakis, Laba,

Lagarias, Matolcsi, Pedersen, Tao, Wang and many others ([17–23,27,28,30,34]), and

it had baffled experts for 30 years until Tao [34] constructed the first counterexample,

a spectral set which is not a tile on R
d, d ≥ 5. The example and technique were refined

later to disprove the conjecture in both directions on R
d for d ≥ 3. It is still open

in dimensions d = 1 and d = 2. Despite the counterexamples, the exact relationship

between spectral measures and tiling is still mysterious.

For non-atomic singular measures, a class of spectral measures was first found

by Jorgensen and Pedersen (i.e., the 1/q-Cantor measure where q is even) [19], and

Strichartz supplemented their result with a simplified proof [31]. The result was
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further extended to other singular measures, and brought in a lot of interesting de-

velopments in the topic. There are two classes which have been studied in literature.

I. Self-similar/Self-affine measure

Let {fi(x)}ni=1 be an iterated function system (IFS) [9], that is, all fi(x) are contrac-

tive in R
d. Then it determines a unique nonempty compact set T , called an attractor,

and a Borel probability measure μ supported on T satisfying

T =
n⋃

i=1

fi(T ), μ(·) =
n∑

i=1

piμ ◦ f−1
i (·),

where {pi}ni=1 is a probability weight, that is, pi > 0 and
∑n

i=1 pi = 1. Moreover, if the

IFS {fi(x)}ni=1 are similarity transformations, then the Borel probability measure μ

is called a self-similar measure and T a self-similar set. In the same way the measure

μ generated by the IFS {fi(x)}ni=1 of affine transformations is called a self-affine

measure.

There is a considerable number of articles on the spectrality of self-similar /self-

affine measures and the construction of their spectrums [4–7, 14, 16, 24, 29, 33]. In

particular, Fu, He and Lau [10] studied the spectrality of a self-similar measure μ4,D
with equal weight probability generated by {fd(x) = 4−1(x+d)}d∈D and obtained the

following theorem.

Theorem 1.1. Let D ⊂ Z
+ be a digit set with #D = 4(#D is the cardinality of D)

and gcd(D) = 1. The following are equivalent

(i) μ4,D is a spectral measure;

(ii) T is a tile;

(iii) D = {0, a, 2tl, a + 2tl′} ,where a, t, l, l′ are odd integers. In this case μ4,D is the

normalized Lebesgue measure on T .

The digit set D can be expressed as D = ({0, 1} (mod 2)+2t{0, 2}) (mod 22(t+1)),

a modulo product-form studied in detail in [25, 26] in connection with the tilings.

Definition 1.2. The set D = {0, a, 2tl, a + 2tl′} with gcd(D) = 1 called a 4-digit

spectral set, where a, t, l, l′ are odd integers.

II. Moran measure

Let {bk}∞k=1 be a sequence of integer numbers with all bk ≥ 2 and let {Dk}∞k=1 be a

sequence of digit sets with 0 ∈ Dk ⊂ N for each k ≥ 1. We call the function system

{fk,d(x) = b−1
k (x+ d) : d ∈ Dk}∞k=1 a Moran IFS, which is a generalization of an IFS.

If sup{x : x ∈ b−1
k Dk, k ≥ 1} < ∞, then associated to the Moran IFS, there exists a
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Borel probability measure with compact support defined by the convolution

μ{bk},{Dk} = δb−1
1 D1

∗ δ(b1b2)−1D2
∗ · · · ,

where δrE = 1
#E

∑
a∈E δra and δra is the Dirac measure at ra, the sign ∗ means the

convolution and the convergence is in the weak sense. In this case μ{bk},{Dk} is called

a Moran measure, and its support is the Moran set

T ({bk}, {Dk}) =
{ ∞∑

k=1

(b1b2 · · · bk)−1dk : dk ∈ Dk, k ≥ 1

}
:=

∞∑
k=1

(b1b2 · · · bk)−1Dk.

To simplify notations, we write μb,{Dk} = μ{bk},{Dk} if all bk are equal to b.

In fact, the Moran measure is a non-self-similar extension of the Cantor measure

through the infinite convolution. Moran sets and Moran measures appear frequently

in dynamic systems, multifractal analysis and geometry number theory (see [12])

etc. Until now, there are only a few results on the spectrality of Moran measures

[1–3,11, 15].

Obverse that δb−1D is a spectral measure if and only if there exists a set C such that

N− 1
2 [e−2πib−1dc]d∈D,c∈C

is a unitary matrix, where N is the cardinality of D and also C. In the case that

D, C ⊂ Z, we call (b−1D, C) a compatible pair, or just say (b,D) is admissible for

short.

To study the spectrality of the Moran measure μ{bk},{Dk}, the natural assumption

is that all (bk,Dk) are admissible. However, this assumption is not sufficient for the

Moran measure being a spectral measure (see Example 5.2 [3]). In [3], An, He and

Lau proved that the Moran measure μb,{Dk} = δb−1D1
∗δb−2D2

∗· · · is a spectral measure

provided that there is a common C ⊂ Z
+ such that all the (b−1Dk, C) are compatible

pairs and C + C ⊂ {0, 1, 2, · · · , b− 1}. Without the condition of common compatible

pairs, An, He and Li [2] proved that μb,{Dk} = δb−1D1
∗δb−2D2

∗· · · is a spectral measure

provided that b = 2l+1q is an integer so that l > L if q = 1 , and l ≥ L if q > 1 is odd

where Dk = {ak, bk} and L is the maximal integer number such that 2L|(ak − bk) for

some k ≥ 1.

Motivated by their ideas and results, in this paper, we focus on the Moran measure

μb,{Dk} = δb−1D1
∗ δb−2D2

∗ · · · with #Dk = 4. We always assume that {Dk}∞k=1 are

uniformly bounded and Dk are 4-digit spectral sets of the form {0, ak, 2tk lk, ak+2tk l′k}
and denote tmax = maxk≥1 tk.

Our main result is the following theorem.
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Theorem 1.3. Let b = 2l+1q with q > 1 an odd integer, and let {Dk}∞k=1 be a

uniformly bounded sequence of 4-digit spectral sets. Then the Moran measure μb,{Dk}
is a spectral measure if l ≥ tmax.

The main idea of proof is to use Strichartz’s technique of finite approximation [32],

and is similar to the one used in the proof of Theorem 1.3 in [3]. The crucial part in

the finite approximation is to analyze the set of zeros of the Fourier transform μb,{Dk},
and to construct a candidate spectrum (see (3.9)) for Dk.

The case digit sets with three elements has been studied in [11, 13, 35], and for

the prime case, some difficulty on determining the zeros, and one side of the Fuglede

problem “self-similar spectral set implies tile” is still not known.

The paper is organized as follows. In Section 2, we introduce preliminary results. In

Section 3, we prove Theorem 1.3 and give some examples to illustrate our conclusion.

2. Preliminaries

Let μ be a probability measure with compact support on R. The Fourier transform

of μ is defined as usual,

μ̂(ξ) =

∫
e−2πiξxdμ(x).

It is clear that a set Λ such that E(Λ) is an orthonormal family for L2(μ) if and only

if

(Λ− Λ)\{0} ⊂ Z(μ̂),

where Z(f) := {ξ : f(ξ) = 0} is the set of the roots of f . In this case, we just call

the set Λ an orthonormal set of μ for convenience. Without loss of generality, we will

assume that 0 is in the orthonormal set Λ, and thus Λ ⊂ Λ − Λ. Firstly, we recall

the fundamental criterion for spectral measures [19], which is a directed application

of Parseval’s identity.

Proposition 2.1. Let μ be a Borel probability measure with compact support and let

QΛ(ξ) =
∑

λ∈Λ |μ̂(ξ + λ)|2 for Λ ⊂ R. Then

(i) Λ is an orthonormal set of μ if and only if QΛ(ξ) ≤ 1 for ξ ∈ R;

(ii) Λ is a spectrum of μ if and only if QΛ(ξ) ≡ 1 for ξ ∈ R.

Moreover, if Λ is an orthonormal set, then QΛ(z) is an entire function.

Next, we give some results that are needed to prove Theorem1.3. The following

properties of compatible pairs can be found in [19] or to be checked directly.
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Proposition 2.2. Let D, C ⊂ Z and let b ≥ 2 be an integer such that (b−1D, C) is a

compatible pair. Then

(i) b−1C is a spectrum of the measure δD;

(ii) the elements in D are in different cosets of Z/bZ;

(iii) (b−1D + c, C + a) for a, c ∈ R and (b−1D,−C) are compatible pairs;

(iv) suppose that C̃ ⊂ Z such that C̃ ≡ C (mod b), then (b−1D, C̃) is a compatible pair;

(v) if all (b−1Dk, Ck) are compatible pairs, then (b−1D1+ · · ·+b−kDk, C1+ · · ·+bk−1Ck)
is a compatible pair for each k > 1.

Remark. By (iii) of Proposition 2.2, we will always assume 0 ∈ D.

We give two lemmas that Fu, He and Lau [10] used in the characterization of a

4-digit set D = {0, a, b, c} to be spectral (Theorem1.1).

Lemma 2.3. Z(δ̂D) is a nonempty set if and only if two of a, b, c are odd and one is

even. Without loss of generality, we assume a < c and a, c are odd , b is even. The

elements of Z(δ̂D) are

2Z+ 1

2gcd(a, c− b)

⋃ 2Z+ 1

2gcd(c, b− a)

⋃ 2Z+ 1

2gcd(b, c− a)
.

Lemma 2.4. δD is a spectral measure if D = {0, a, 2tl, a + 2tl′} where a, t, l, l′ are
odd integers. In such case, it admits a spectrum C = 1

2t+1{0, 1, 2t, 1 + 2t}.

For any integer b > 1 and finite digit set C ⊂ Z, we define

(2.1) T (b, C) :=
{ ∞∑

k=1

ckb
−k : ck ∈ C

}
:=

∞∑
k=1

b−kC.

It is a compact set generated by the iterated function system {fc = b−1(x+ c)}c∈C [9].

For any x ∈ T (b, C), x can be expressed (not uniquely in general) as

x =
∞∑
k=1

ckb
−k, ∀ck ∈ C.

We say that x has an infinite expansion in T (b, C) if there are infinitely many nonzero

ck
,s, and eventually periodic expansion if the sequence {ck}∞k=1 is eventually periodic.

In this case, we say a period of {ck}k=l+1 is also a period of x. The following lemma

can be found in [2].

Lemma 2.5. Let C be a digit set in Z and let b > 1 be an integer. Then x ∈ T (b, C)
is rational if and only if x has an eventually periodic expansion in T (b, C).
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3. Proof of Theorem 1.3

Recall that {Dk}∞k=1 is a uniformly bounded sequence of 4-digit spectral sets. Then

tmax := maxk≥1 tk < ∞ and there are only finitely many distinct Dk
,s. We rearrange

these distinct Dk
,s as Dε1 ,Dε2 , · · · ,DεN , and let E = {Dε1 , · · · ,DεN}. Clearly,

(3.1) μ̂b,{Dk}(ξ) =
∞∏
k=1

MDk
(b−kξ), μ̂b,Dεn

(ξ) =
∞∏
k=1

MDεn
(b−kξ),

whereMDk
(ξ) = δ̂Dk

(ξ) = 1
#Dk

Σa∈Dk
e−2πiaξ. Therefore we have Z(MDk

) ⊆ ⋃N
n=1 Z(MDεn

)

and Z(μ̂b,Dk
) ⊆ ⋃N

n=1 Z(μ̂b,Dεn
). To simplify notations, we write

(3.2) ZqE :=
N⋃

n=1

Z(MqDεn
), Zb,qE :=

N⋃
n=1

Z(μ̂b,qDεn
)

where qDεn = {qx : x ∈ Dεn}, it follows from (3.1) that

(3.3) Zb,qE =
∞⋃
k=1

bkZqE .

Let l ≥ tmax be fixed, and let b = 2l+1q where q > 1 is an odd integer, Lemma 2.4

implies that qCk = q{0, 2l−tk , 2l, 2l+2l−tk} is an integral spectrum of δb−1Dk
. According

to Proposition 2.1, Λ is a spectrum of μb,{Dk} if and only if 1
q
Λ is a spectrum of

μb,q{Dk}. In the rest of the section, we consider μb,q{Dk} instead of μb,{Dk}. Since all

1 ≤ tk ≤ tmax ≤ l, we have

(3.4)
∞⋃
k=1

Ck ⊂ G := {0, 1, 2, · · · , 2l + 2l−1}.

Lemma 3.1. With the above notations, each element in T (b,±G) has a unique ex-

pansion.

Proof. Suppose that x in T (b,±G) has two different expansions, then

x =
∞∑
k=1

ckb
−k =

∞∑
k=1

c′kb
−k, ck, c

′
k ∈ ±G.

Without loss of generality, we assume that c1 �= c′1. Since q > 1 and

| ck − c′k |≤ 2(2l + 2l−1) ≤ b− 2, ∀k ≥ 1,

then we have

| c1 − c′1 |=
∞∑
k=2

| ck − c′k | b−k+1 ≤
∞∑
k=1

(b− 2)b−k < 1,
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which contradicts the assumption. Hence, the result follows. �

Lemma 3.2. Suppose x ∈ ZqE
⋂

b−1T (b,±G), then x has an infinite expansion.

Proof. Suppose that x0 in ZqE
⋂

b−1T (b,±G) has finite expansion. Then there is a

Dk = {0, ak, 2tk lk, a + 2tk l′k} such that x0 in Z(MqDk
)
⋂
b−1T (b,±G) has finite ex-

pansion. To simplify notations, we write Dk = {0, a, 2tl, a + 2tl′} . In this case,

let

p1 = gcd(a, a+ 2t(l′ − l)), p2 = gcd(a+ 2tl′, 2tl − a) and p3 = gcd(l, l′).

It is easy to see that pi ∈ 2Z + 1 and gcd(pi, pj) = 1 for i �= j. By Lemma 2.3, we

know that

Z(MqDk
) =

2Z+ 1

2p1q

⋃ 2Z+ 1

2p2q

⋃ 2Z+ 1

2t+1p3q
.

We prove that this assumption is impossible by considering the following three

cases:

Case 1. There is an integer u such that

2u+ 1

2p1q
=

1

bi

n∑
j=1

cj
bj

=
1

bi+n
(cn + · · ·+ bn−1c1),

where i ≥ 1, cj ∈ ±G and c1, cn �= 0. The above identity can be rewritten as

(3.5) (2u+ 1)bi+n = 2p1q(cn + bcn−1 + b2cn−2 + · · ·+ bn−1c1).

When cn is odd , then 1 ≤ cn < 2l + 2l−1. The above identity is equivalent to

(2u+ 1)2(l+1)(i+n)qi+n−1 = 2p1(±cn + 2M)

for some integer M . It is impossible because the power of 2 on the two sides can not

be the same.

When cn is even, then 1 < cn ≤ 2l + 2l−1. (3.5) is equivalent to

(2u+ 1)2(l+1)(i+n)qi+n−1 = 2p12
in(±1 + 2M)

for some integer M , where 1 ≤ in ≤ l. Similarly, the identity is impossible.

Case 2. There is an integer u such that

2u+ 1

2p2q
=

1

bi

n∑
j=1

cj
bj

=
1

bi+n
(cn + · · ·+ bn−1c1).

Similar to Case 1, it is impossible.
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Case 3. There is an integer u such that

2u+ 1

2t+1p3q
=

1

bi

n∑
j=1

cj
bj

=
1

bi+n
(cn + · · ·+ bn−1c1),

where i ≥ 1, cj ∈ ±G and c1, cn �= 0. The above identity can be rewritten as

(3.6) (2u+ 1)bi+n = 2t+1p3q(cn + bcn−1 + b2cn−2 + · · ·+ bn−1c1).

When cn is odd, then 1 ≤ cn < 2l + 2l−1. (3.6) is equivalent to

(2u+ 1)2(l+1)(i+n)qi+n = p3q2
t+1(±cn + 2M)

for some integer M . It is impossible because the power of 2 on the two sides can not

be the same.

When cn is even, then 1 < cn ≤ 2l + 2l−1. (3.6) is equivalent to

(2u+ 1)2(l+1)(i+n)qi+n−1 = p32
t+12in(±1 + 2M)

for some integer M , where 1 ≤ in ≤ l, 1 ≤ t ≤ l. Similarly, the identity is impossible.

�

We define

Gp,b = G + bG + · · ·+ bp−1G − bpG − · · · − b2p−1G.
By (2.1), we know that

Tp,b := T (b2p,Gp,b) =
∞∑
k=1

b−2pkGp,b.

It is easy to see that

Tp,b ⊂ T (b,±G).

Lemma 3.3. There exists p0 so that μ̂b,qDεn
(ξ) has no roots on Tp,b for any 1 ≤ n ≤ N

and p ≥ p0. Consequently, there exists c, η > 0 depending on p such that
N∏

n=1

∣∣μ̂b,qDεn
(ξ)

∣∣2 ≥ c > 0, ξ ∈ (Tp,b)η.

Where (E)η = {y : d(y, E) ≤ η}.

Proof. Note that

(3.7) Tp,b =
∞∑
k=0

1

b2pk
(−G

b
− · · · − G

bp
+

G
bp+1

+ · · ·+ G
b2p

).

By Lemma 3.1 and Lemma 3.2, there exists a unique infinite expansion for each

x ∈ Ω := ZqE
⋂

b−1T (b,±G). Since ZqE is a subset of rational number(by Lemma2.3),

the expansion of x is eventually periodic by Lemma 2.5 and its minimal period Px
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is divided by 2p according to the equation (3.7). Since
∏N

n=1 μ̂b,qDεn(ξ) is an entire

function, there are at most finitely many elements in Ω. Choose p0 so that 2p0 >

maxx∈Ω Px. Next we claim that

(3.8) Φ := ZqE
⋂ 2p⋃

i=1

b−iTp,b = φ, for p ≥ p0.

As b−iTp,b ⊆ b−1T (b,±G) for 1 ≤ i ≤ 2p, then Φ ⊆ Ω. If there exists x ∈ Φ, we have

Px ≥ 2p ≥ 2p0. But all Px are less than 2p0 for x ∈ Ω, which yields a contradiction

and thus the claim follows.

Suppose that the first assertion of the lemma is false. Recall that

Zb,qE :=
N⋃

n=1

Z(μ̂b,qDεn) and Zb,qE =
∞⋃
k=1

bkZqE .

Then there exist k ≥ 1 so that bkZqE
⋂

Tp,b �= φ. Observing that b−2pnTp,b ⊆ Tp,b

for n ≥ 1, we have ZqE
⋂

b−jTp,b �= φ for some 1 ≤ j ≤ 2p, which contradicts (3.8).

Hence the first assertion follows. The last inequality is immediate by compactness of

Tp,b. �

We define D̃k =
∑2p

i=1 b
2p−iqDi+2p(k−1) for k ≥ 1 and denote

μm = δb−2p ˜D1
∗ δb−4p ˜D2

∗ · · · ∗ δb−2pm ˜Dm
.

Now we construct a set

Λm(p, b) =

2pm∑
k=1

(−1)τ(k)bk−1Ck,

where Ck = {0, 2l−tk , 2l, 2l + 2l−tk} is a spectrum of δb−1qDk
, τ is a periodic function

on Z with period 2p and takes values 0 for 1 ≤ k ≤ p , and 1 for p + 1 ≤ k ≤ 2p. It

is not difficult to check that

b−2pmΛm(p, b) ⊆ Tp,b.

Let

(3.9) Λ(p, b) =
∞⋃

m=1

Λm(p, b).

Lemma 3.4. With the above notations, Λm(p, b) is a spectrum of the measure μm

and Λ(p, b) is an orthogonal set of μb,{qDk}.
9



Proof. Since all (b−1qDk, Ck) are compatible pairs, so is (
∑2pm

k=1 b
−kqDk,Λm(p, b)) by

Proposition 2.2. Hence Λm(p, b) is a spectrum of the measure μm. Since

Λ1(p, b) ⊆ Λ2(p, b) ⊆ · · · ⊆ Λm(p, b) ⊆ Λm+1(p, b) ⊆ · · · ,
and

Z(μ̂b,{qDk}) =
∞⋃

m=1

Z(μ̂m).

the second assertion follows. �

Now, Theorem1.3 is rewritten as the following theorem.

Theorem 3.5. Let b = 2l+1q be an integer with q > 1 an odd number, and let {Dk}∞k=1

be a uniformly bounded sequence of 4-digit spectral sets. Suppose l ≥ tmax, then the

Moran measure μb,{qDk} is a spectral measure with a spectrum Λ(p, b) for p ≥ p0 where

p0 is given in Lemma 3.3.

Proof. By Lemma 3.4, Λm(p, b) is a spectrum of the measure μm and Λ(p, b) is an

orthogonal set of μb,{qDk}. According to Proposition 2.1, we have

(3.10) Qm(ξ) =
∑
λ∈Λm

|μ̂m(ξ + λ)|2 ≡ 1 and QΛ(ξ) =
∑
λ∈Λ

∣∣μ̂b,{qDk}(ξ + λ)
∣∣2 ≤ 1.

Since Λm increases to Λ, and μm converges to μb,{qDk} weakly, we will use the domi-

nated convergence theorem to justify QΛ(ξ) ≡ 1. Define

fm(λ) =

{∣∣μ̂m(ξ + λ)
∣∣2, if λ ∈ Λm;

0, otherwise,

and

f(λ) =

{∣∣μ̂b,{qDk}(ξ + λ)
∣∣2, if λ ∈ Λ;

0, otherwise.

Then limn→∞ fm(λ) = f(λ) for λ ∈ Λ. By (3.10) we have
∑

λ∈Λ
∣∣μ̂b,{qDk}(ξ + λ)

∣∣2 =∑
λ∈Λ f(λ) ≤ 1 for any ξ ∈ R. Now we construct a dominated function by means of

f(λ). For any λ ∈ Λm, we have b−2pmλ ∈ Tp,b and

f(λ) = |μ̂b,{qDk}(ξ + λ)|2 =
∞∏
k=1

∣∣MqDk
(b−k(ξ + λ))

∣∣2 = ∞∏
k=1

∣∣∣M
˜Dk
(b−2pk(ξ + λ))

∣∣∣2
= |μ̂m(ξ + λ)|2

∞∏
k=1

∣∣∣M
˜Dk+m

(b−2pk(b−2pmξ + b−2pmλ))
∣∣∣2

= fm(λ)
∞∏
k=1

∣∣MqDk+2pm
(b−k(b−2pmξ + b−2pmλ))

∣∣2
≥ fm(λ)

N∏
n=1

∣∣μ̂b,qDεn
(b−2pmξ + b−2pmλ)

∣∣2 .
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When ξ ∈ (0, 1) and b−2pm < η, where η is given in Lemma 3.3, we have f(λ) ≥ cfm(λ)

for λ ∈ Λm. Hence, c−1f is a dominated function and so QΛ(ξ) ≡ 1 for ξ ∈ (0, 1).

The assertion follows by Proposition 2.1. �

As an illustration of Theorem1.3, we give the following example.

Example 3.6. Let {0, ak, bk, ck} be a sequence of digit sets that is uniformly bounded,

ak = 1, bk = 2+4mk, ck = 3+4mk for k ≥ 1, and b = 4q for some odd number q > 1,

mk be positive integers with bounded M . Then the Moran measure μ4q,{0,ak,bk,ck} is

a spectral measure.

Proof. In this example, l = 1 and tmax = 1, By Theorem 1.3, the assertion follows. �

Clearly, the condition q > 1 in Theorem 1.3 is not necessary. The following example

will illustrate this fact.

Example 3.7. Let D1 = {0, 1, 6, 7} and Dk = {0, 1, 2, 3} for k ≥ 2. Then the Moran

measure μ4,{Dk} is a spectral measure.

Proof. It is easy to check that (1
4
D1, C) is compatible pair, where C = {0, 1, 2, 3}.

Observe that

μ4,{Dk}(·) = δ4−1D1
(·) ∗ δ4−2D2

(·) ∗ · · ·
= δ4−1D1

(·) ∗ L|[0,1](4·)
where L|[0,1] is the Lebesgue measure restricted on the interval [0, 1], then μ4,{Dk} is

a spectral measure (see Theorem 5.3 [16]). �
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