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1. Introduction

The free boundary problem of one-dimensional heat-conductive compressible Navier—Stokes equations
reads as follows:
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ot + (ou)z =0, in Z(t) x [0,T7,

o(uy + uug) + (p — pg)e =0, in Z(t) x [0, 7],

oVt + udy) + (p — pug)uy = (K(9)Vs)s, in Z(t) x [0,77, (1.1)
0> 0, in Z(¢) x [0,T), '
U(Pl(t),t) = 07 (p - ﬂum)(r2(t)vt) = 07 ﬁz(rz(t)at) = 0’ on [Oa T],

(Q,u,l?)($70) = (QO&UOaﬁO)(x), 1’61(0) =: I,

where p, u, ¢ and p denote the density, velocity, absolute temperature and pressure, respectively. The
notations p and k are viscous coefficient and heat conductivity coefficient, respectively. Z(t) = (I'1(¢), T'2(t))
is the free interval occupied by the fluids with Z(0) = (0,1), where T';(¢) represents the moving interface
between the fluid and vacuum defined by

WO (T (8),1), t>0 (1.2)

ry(0) =0, |
and

) — u(Ty(t), 1), >0 (1.3)

[2(0) = 1. |

In addition, we consider the degenerate case that pg(1) = 0, which indeed gives o(T'2(¢),t) = 0. In this
paper, we study the situation of ideal polytropic gas, where the pressure law reads

p = Ro?,

with R being a positive constant.

In the classical literature, many famous mathematical results on the well-posedness of heat-conductive
compressible Navier—Stokes equations focused on the cases without vacuum, which can describe the move-
ment of heat-conductive viscous liquid. When p and s are both positive constants, the well-posedness of
strong solutions for the initial-boundary value problem has been investigated successfully, either for the
local-in-time theory (see [20]) or for the global-in-time theory (see [13,19]). These results are extended to
the study of viscous heat-conductive “real gases” in [10,11], for instance, where the heat conductivity de-
pends on the temperature. The global existence of strong or classical solutions for the one-dimensional free
boundary problem was achieved by Wang [25], Qin and Yao [23], and other authors.

In the presence of vacuum, the global well-posedness theory for the full compressible Navier—Stokes
equations is far from completed. Feireisl [7] studied the global existence of so-called variational solutions
in a multi-dimensional bounded domain, where the temperature satisfied only an inequality from thermal
equation. Later, Bresch and Desjardins [1] proposed some different assumptions on the viscosity, thermal
conductivity and equation of state, and established the global existence of weak solutions in 7° or R3.
Recently, Wen and Zhu [27,28] obtained the unique global classical solution for the initial-boundary problem
with large initial data and vacuum in one dimension, or three dimensions (with symmetric structure). The
global existence of weak solution for the free boundary problem with radial symmetry was obtained by
Chen and Kratka [3], while the global strong solution was investigated by Li [14] for constant viscosity and
heat-conductivity, for instance.

When one derives the full Navier—Stokes equations (1.1) from the Boltzmann equation by using the
Chapman—Enskog expansion (see [2]), the viscosity coefficient  and the heat conductivity coefficient  are
indeed functions of temperature in the form

1
p=m" k=r0" b> 3’ (1.4)
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where 7t and K are positive constants. This physical case leads to strong nonlinearity and possible degen-
eracy, and produces additional difficulty. If the viscosity coefficient and heat conduction coefficient satisfy
@ = ph(u)f* and k£ = Kh(u)8®, Liu, Yang, Zhao and Zou [16], Wang and Zhao [26] obtained the global
non-vacuum classical solutions under some smallness assumptions (the adiabatic component + is close to 1,
or |al is small, respectively). However, under the assumption (1.4), the global well-posedness of large solu-
tions to (1.1) is still open. Note that, when the viscosity is a constant and the heat conductivity depends
on temperature, some of the ideas by Kazhikhov [12] still work. For instance, Jenssen and Karper [9], Pan
and Zhang [22] proved the global existence of non-vacuum weak solutions or strong solutions, respectively,
to the 1-D initial-boundary value problem under the assumption

pw=T7, k=Fr0"

The main purpose of this paper is to establish the global existence of vacuum strong and classical solutions
to the free boundary problem (1.1) with the assumptions

p=nl+p%, k=701, pe [0, 4+00), ¢ € (0,00), (1.5)

where 7I and & are positive constants. We remark that the assumption p = 7i(1 + p?) is valid in some
sense when the fluid is in the low Mach number regime that the pressure p = Rpf ~ constant (see [5]).
We generalize the results of [9,22] to the case of free boundary problems, where additional nonlinearity
and singularity are involved, thus the classical methods for the initial-boundary problem cannot be applied
directly. Moreover, we also extend the works in [14] for constant viscosity and heat conductivity to the vari-
able ones satisfying (1.5). In contrast with [14], the non-constant viscosity coefficient and heat conductivity
coefficient will create some troubles in establishing the global estimates for the solution, and the method
for setting up the energy estimates are in a different way.

Since it is important to trace the free boundary in this problem, we need to prove that the velocity
field is Lipschitz continuous in spatial variable. Motivated by [4,17], we take the method of Lagrangian
trajectory to establish global energy estimates. However, the system is degenerate near free boundary and
strongly nonlinear, thus the classical theory cannot be applied directly. To overcome the trouble, we first
derive the point-wise upper and lower bounds for the Jacobian J, which governs the evolution of the free
boundary. Then we derive the estimates for the spatial and time derivatives of the solution by some weighted
inequalities. It is also required to show the lower bound of the temperature, which seems to be difficult to
derive with the Lagrangian trajectory coordinate, due to the degeneracy of the coefficient for the time
derivative of the temperature. Thus we take the advantage of Lagrangian mass coordinate to show lower
bound of the temperature, which is equivalent to the one in the Lagrangian trajectory coordinate.

We remark that there are much progress on the free boundary problems of Navier—Stokes equations and
related models in the isentropic regime, for instance, [6,8,15,18,21,29] and the references therein.

The rest of the paper is organized as follows. In Section 2, we present the main theorems of the paper.
In Section 3, some useful lemmas are stated, which will be used to prove the global existence of strong
solutions. In Section 4, we give the proof of Theorem 2.1.

Notations.

(1) I=(0,1), 81 = {0,1}, Qr = I x [0, T] for T > 0.

(2) For 1 < p < oo and positive integer k, we use LP = LP(I) and WP = W¥*P(I) to denote the standard
Lebesgue and Sobolev spaces, respectively, and in the case that k = 2, we use H? instead of W2?. The
norm of Sobolev space W*? is denoted as || - ||yy#.» or || - || g+ for p = 2.

(3) Throughout this paper, the same letter C' (sometimes used as C(X) to emphasize the dependence of C
on X) denote various generic positive constant.
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2. The Lagrangian coordinates and main result

Let y be the Lagrangian trajectory coordinate, and define the coordinate transform between the La-
grangian trajectory coordinate y and the Euler coordinate x as

r =n(y,t),

where n(y, t) is the flow map determined by u, that is

{m(y,t) =u(n(y,t),t), for t >0
n(y,0) =y, yel.

For simplicity of presentation, the reference domain is denoted as
I:=(0,1).

Denote by p, v, 8 and 7 the density, velocity, temperature, and pressure, respectively, in the Lagrangian
trajectory coordinate. That is, we define

p(y,t) :== Q(n(yvt)vt)v U(yvt) = (n(y7t)vt)a

(2.6)
g(yat) = ﬁ(n(yat)at)v W(y,t) = p(n(yvt)at)'
Define the function J = J(y,t) as
J =mny(y,t),
then it follows
Je = vy(y,t), (2.7)
pt + pt =0, in I x [0,T],
pvt_i_ﬂ'Ty:%(#;y)y, inIX[O,T],
v, v2 1 [ w0 .
POy +TF = pH + 5 (Ty)y7 in I x[0,T], (2.8)
p>0, in I x[0,7],
ply=1 =0, vly=0 =0, vyly=1 =0, Oy|y—01 =0,
(P7U79)|t:0 = (p07U0a00) on I x {t = O}a

where m = Rpf, po(y) satisfies that po > 0in I U{y = 0} and pp = 0 on {y = 1}. Due to (2.7) and (2.8),
we find that

v
(pT)e = pieJ + pJy = prJ + pvy = J (Pt + pjy) =0, (y,t) elIx[0,T], (2.9)
which together with p(y,t)|t=0 = po and J(y,t)|t=0 = nylt=0 = 1 yields

Jp = po.

We should note that n, > 0 for all (y,t) € I x [0,T], which can be verified later in the a priori estimates.
One can replace (2.8); with (2.7), by setting p = 22, and rewrite (2.8) as
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Jtsz in]x{t:O}
povt—l—wy:(“—;y)y, in I x {t=0}
2
pobs + wo, = pk + (%) , in I x {t=0} (2.10)
y
U|y:0 =0, Uy|y:1 =0, 9y|y:0,1 =0,
(J,v,6) = (1, v, 60) on I x {t =0},

where 7 = R220.
Theorem 2.1. (i) Suppose that u and k satisfy (1.5) for some positive constants @ and ®. If the initial data
(posvo,00)(z) € H' x H? x H%, py > 0 in [0,1), poly=1 = voyly=1 = 0, v|y—=0 = 0, boy|y=0,1 = 0 and there
is constant 0, such that
0<8<6y(y)in TUII. (2.11)
Moreover, the following compatibility conditions are imposed:
/B3 Ol 2y + /B0 () o) < C. (212
Furthermore, we suppose that, if 8 € (0,1),
g 12y < C. (2.13)

Then for any T > 0, there exists a unique global strong solution (J,v,0) to (2.10) satisfying 86 > C1 > 0 in
I x (0,T) with

(v,0) € L>=(0,T; H*(I)), 64,01, € L*(0,T; L*(I)),

(2.14)
0; € L*(0,T; L°°(I)), (/pove,/pobs) € L*°(0,T; L*(I)).
(i) The expanding rate of the free interval (T'1(t),T2(t)) is

for some positive constants C' and C.

Remark 2.1. It should be noted that our Theorem 2.1 holds for large initial data, when heat conductivity
depends on temperature in the power law of the Chapman—Enskog expansion. The assumption (2.13) means
that the initial viscosity belongs to H2(I), for instance, u(po) = 1+ ph, where pf = (1 — )2,

Remark 2.2. We can also establish the global classical or smooth solution to (2.10), provided that the initial
data are smooth enough, since the uniform upper and low bounds for J and the lower bound for 6 are
already obtained.

The existence and uniqueness of local-in-time solution can be obtained by a standard fixed point argu-
ment, cf. [20,19]. The following lemma gives the local existence of strong solutions, however, the proof is
omitted here.

Lemma 2.1. If (1.5) holds, and the initial data (po,vo,00)(x) € H* x H? x H%, py > 0 in [0,1), poly=1 =
Voyly=1 = 0, v]y=0 = 0, boyly=01 =0 and 0 < § < Oy(y) in I U OI. Moreover, the compatibility conditions
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(2.12) are satisfied. Then there exist positive constants T* and C,, such that the system (2.10) admits a
unique strong solution (J,v,0) in I x (0,T], satisfying @ > Cy > 0 in I x (0,T*] with

(v,0) € L>=(0,T*; H*(I)), 04, v, € L*(0,T*; L*(I)),

0, € L2(0,T%; L°(I)), (v/pove, /pobe) € L(0, T L2(I)). (2.16)

3. Preliminaries

Lemma 3.1 (/28]). Assume that p be an on-negative function such that, 0 < M < | [, pdy| < L for constants
M,L > 0. Then for any 0 € H*(I).

L 1
[Bllcn < 3180 rcny + 57 [ ot
I

In addition, assume |p0| 1y < C. Then for any q > 0, there exists a positive constant C = C(L, M, K, q)
such that

10 e 1y < CINODy N1y + C,
for any 09 € HY(I).
Remark 3.1. The multi-dimensional version of Lemma 3.1 can be found in [7].

Lemma 3.2 (Aubin—Lions—Simon Lemma [2]]). Assume X C E C Y are Banach spaces and X —— E.
Then the following imbeddings are compact:

(i) {ow Dlp € 20, T: X), £p € LYO,T;Y) } > LP(0, T3 E) if 1 < p < o0
(1) {o Dl € L=(0,T; X), 9 € L(0,T;Y) } 5 C(0,T; E) if 1 <7 < 0.
4. A priori estimates and global existence

In this section, we will perform the energy estimates which are stated in the following lemmas to prove
Theorem 2.1. Furthermore, we get a unique global strong solution of (2.10) by using the a priori estimates
of the solutions based on the local existence. We now assume that (u, v, 0)(z,t) is the unique strong solution
of (2.10) defined on [0, 1] x [0, T, satisfying that

J>0, 6>0. (4.17)

The above assumptions will be recovered in the energy estimates. For simplicity of presentation, we will
denote R=c, =p=k=1.

Lemma 4.1. It holds that

/ <P09 + %Po?ﬂ) dy(t) = Eo, (4.18)
T

fort € (0,00), where Ey := [, (pobo + 3povd) dy.



Z. Li et al. / J. Math. Anal. Appl. 474 (2019) 11531177 1159

Proof. Multiplying equation (2.10) by v, adding it to (2.10)3 and integrating the result over I, one gets

d 1

— 0+ Zpgv? | dy =

dt/(po +2,00’U> y =0,
I

where we have used (2.10)4 and pgly=1 =0. O

from integrating by parts that

Lemma 4.2. For any (y,t) € I x [0,T], one has

t

C<Jyt)<CK1+ /poﬂds , (4.19)
0
/de(t) <C(1+1), (4.20)
T

where C is a positive constant independent of T and q, and C’(q) is positive constant depending on q but
not on T.

Proof. Step 1. Point-wise lower bound of J.
Due to (2.10), it follows from (2.10), that

1

B
_E (%) + (log J)ty = pove + my.
ty

Integrating the above equation with respect to y over (y,1) and observing @ = pof/J, poly—1 = 0 and
Jtly=1 = vyly=1 = 0, yield that

1 (] 1
_E (%)t + (logJ)t = —/pO’UtdZ‘i'ﬂ'.

Y

Next, we integrate this equation with respect to ¢ and use J(y,0) = 1 to obtain

1 t
L g 1 s
—— 5 +logJ =— [(pov — povo)dy + [ m(y,s)ds — —=py,
Yy 0

BJr B
from which, recalling 7™ = ”LJO, one gets
/ I oo 01
J=exp{ — /(pov — povo)dy p exp /%(y, s)ds p exp {%) (ﬁ - 1) } . (4.21)
y 0

Multiplying (4.21) by pof, we obtain

9 (1) = podexp My, )} exp (M(y. 1)} (1.22)

where
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B \JP

B(y,t) := exp {/ pLJa(y,s)ds} .

0

1 'y
m(y7t) = /(pOU - pO’UO)dZa m(yat) = s <_ — 1) ’
y

Integrating (4.22) with respect to ¢ over (0,t), one has

t

By 1) =1+ / pobexp {(M(y, 5)} exp (M(y, 5)} ds,
0

which together with (4.21) yields

J =exp{-M(y,t)} exp {M(y,t)} {1 + /p00 exp {M(y, s)} ds} . (4.23)
0

[

Note that

ol
[N
N

1M (y,t)| < ( pody) + ( povgdy>
1/ I/
C,

IN

which yields
exp{—C} < exp{M(y,t)} < exp{C}. (4.24)

This combines with (4.23) and the fact that pgf > 0 to give

J = exp {-M(y,t)} exp {pg} >C. (4.25)

Step 2. Point-wise upper bound of J.
It follows from (4.23), (4.24), (4.25) and ppf > 0 that

J = exp {—M(y,t) + N(y, )} {1 + /p()@exp {M(y,s)} ds}
0

t
SC{l-ﬁ-/ﬂoedS}
0

(4.26)

and
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<C|1+¢max /poedy (4.27)
s€0,t]
I

<C(1+1).
Thus, (4.25)—(4.27) give the proof of Lemma 4.2. O

To obtain the upper bound of J, it needs to get the lower bound of 8. Consequently, it is convenient to
deal with the problem (1.1) in the Lagrangian mass coordinates. From (1.1)1, (1.2) and (1.3), we have

T2 (t) I'2(0)

1
/ o(€, )d = / 00(€)de = O/ 00l€)

Iy (¢) r'1(0)
for simplicity, we assume that fol 00(&)d€ = 1. For any z € [I'1(t),['2(¢)], t € [0,T], we define the Lagrangian

mass coordinates transformation

Aoty = [ ole g nd 7=t

'y (t)

which translates the domain [0,T] x [I'1(¢), T'2(¢)] into [0,T] x [0,1] and satisfies

0z 0z or or
— =0, — =— — =1 d —=0.
or @ o o g~ hand =0
The free boundary problem (1.1) are changed to be
0r + 0%u, =0, (r,2) €0,T] x (0,1),
ur + P, = (,U.Quz)z7 (Tv Z) € [OvT] X (07 1)7
Oy + Pus = pow? + (5(9)p).., (r,2) € [0,T] x (0,1), (4.28)
u(1,0) =0, (nou, — P)(r,1) =0, 9.(r,0) =9.(r,1) =0,
(Q,’U/,’l?)|7—:0 = (907’“07190)7 PSS (Oa 1)
Lemma 4.3. There exists a constant C > 0 such that
[
SU +9)dz(1)<C, T>0. (4.29)
T

Proof. Multiplying equation (4.28)y by u, adding it to (4.28)3 and integrating the result over I, one gets

d [(1,
I

from integrating by parts that

where we have used (4.28)4. O
Lemma 4.4. There exists a constant C > 0 such that

o< C. (4.30)



1162 Z. Li et al. / J. Math. Anal. Appl. 474 (2019) 11531177

Proof. Integrating the (4.28), with respect to z over (z,1) and noticing (pou, — P)|.=1 = 0 yields

—pou, + P = /quz.

It combines with (4.27); to yield that

1

(Ino), + % (Qﬁ)r +P= /urdz,

4
from which, integrating with respect to t over (0,¢), one obtains

1 t

1 1
Bgﬁ:lngo+BQ@—F/(U—UO)CZZJ_/P‘LS'

z 0

Ino+

By using Lemma 4.3 and the nonnegativity of ¢ and P, we find

1 t

0 = 00 exp /(u—uo)dy eXp{%(Qg—gﬁ)}eXp —/Pds

z 0

1 1 3
1

< oo exp /quy + /ugdy exp {Egg}
0 0

<C. O

D=

The following estimate will indeed leads to the positive lower bound of 6.

Lemma 4.5. There exists a constant C' > 0 such that, for any p > 2,

1
9

Proof. Multiplying (4.28), by ¥~? and integrating with respect to z over [0, 1], gives that

2
/,LQ'LLZ (ﬂ)pﬁz gﬂuz
) o dz+p/ ] ——=dz 57 dz
T

I

1 092
= Zd C d
2/ + /191) z (4.32)
I
< 1/“@“2(1 e / EAR
-2 9P 9 ’
I I

where we have used the lower bound of J and Hoélder’s inequality. (4.32) implies that

<C. (4.31)
L°°(0,T;L°°(0,1))

ess sup < C, and, in particular,

T7€[0,T]

Lr—1

—].dT

IN

p—2

d

dr

1

0

1

<C
9

9

p—2 ’

‘ 1

Lr—1 Lr—1 Lr—1



Z. Li et al. / J. Math. Anal. Appl. 474 (2019) 11531177 1163

which gives

< C(T). (4.33)

Lr—1

The constant C'in (4.33) depends only on T and initial data. Letting p — oo, we have proven Lemma 4.5. O

To estimate the upper bound of J, now it suffices to evaluate fot 16(+, $)|| L<ds, which is discussed in two
cases as follows.

Lemma 4.6. For any (y,t) € I x [0,T], one has

C< Iy t) < CO 412 /||9 §)|[eds < Cg)(1+ )2 (4.34)
Proof. Case (i): ¢ > 1. Multiplying (2.10), by #, one achieves

%y
+

po(log0), + 70° To

pobv, _ (K(0)6,) | w(O)16,P
0.7 g ),

Integrating the above equation in I x (0,t) and using (4.19) and (4.18), we can obtain

t
0910, vy
dyd
//( T g ) dvds
01
/ 0
:/pologﬂdyf/pologt%dyqt//%d d

I I
< / o log Oy — / pologOpdy + / / L ayds + C||J 1z, / / pobdyds
{621} {0<bo<1}
< / pofdy + (—log6) / pody + = //ﬂ Ydyds + Ct sup /poﬁdy(t)
{0>1) {o<bo<1) 0 el
1 t
C(1+t) +§//nydyds
0 I
which gives that
[ (06,
Y 'U/Uy <
i 1+1). 4.35
//( 702 +J0>dyds_0( +1) (4.35)
0 I

From Young’s inequality, Lemma 3.1, (4.20) and (4.35), for ¢ > 1, we have
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t t
l/neus»uwdssL/nausn@xds+63
0

/||9 $)|2ds + Ct,

q (4.36)
/|| 0%), (- 5)|2ads + C(t +1)

¢
610, |
< sup [ J(y,s)dy “—dyds +C(t+1)
s€[0,t] 7 0 J6?

SCA+t)?*+0(t+1) <C(1+1)2

Case (ii): q € (0,1). Multiplying (2.10), by 7%(0 < a < ¢ < 1), we obtain

1 1—a p09vy_ H(G)Hy O‘”(G)WyF ,Lwi
a0t 0o = "Jpe ) t 7 gpire T g

Then we integrate the above equation over I x (0,t), and use (4.18) to get

t

ak(0)]6y |2 v,
//( Jol+a J(ga dde
0

_ 1—a 11—« pO Uy
——/ 09 dy —/ 09 dy+// o d ds
// Y dyds + C sup /poﬁdy/H@ L 8|1 ds,
Jo« s€[0,t] 5

which gives

t t
// ar(0)I6, | dyds < C 1+/\|9 s)||Lad (4.37)
J91+a JH v L= ) ‘
0 I 0

Thus by Lemmas 3.1, (4.20) and (4.37), we have

t ¢
/||9 5 8)||p=ds < C (t+//|9ydyds>
0T
‘CG+//¢mf 0“q@@)

t
q 2
<Ct+esré1[afc/ (y,s dy/lw Ol5. qd8+0(6)//39|?i|a dyds
0 I

A
Q
&
+
Q
July
—
+
ﬂ~
\
E
:
S;
»Q
QU
)
+
2
L
U
o\ﬂ
=
e
2L
Q
QU
)
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Note that 0 <1 —a <1 and 0 < 14 a — ¢ < 1. Then we choose ¢, which depends on ¢, to be small enough
in the above inequality, then use the Young inequality to get, for ¢ € (0,1),

/ 100 )l 1=ds < C()(1 + 07, t € [0,T). (4.38)
It follows from (4.36) and (4.38), we obtain that for any g > 0,
/ 100 )l 1=ds < C()(1 + 07, t € [0,T), (4.39)

which combine with (4.19) gives
J(y,t) < C(q)(1 +t)* for (y,t) €I x[0,T]. (4.40)
Thus, (4.39) and (4.40) give the proof of Lemma 4.6. O

Remark 4.1. Lemma 4.6 verifies the assumption that J > 0 for any (y,t) € I x [0,T]. Moreover, from now
on, we always use the conclusion that C < J < C(¢,T) without additional claim.

Lemma 4.7. For any t € [0,T], we have

//widxdt <C, (4.41)
1

o

t
013587 %dt < C, 0 < o < min(1, q). (4.42)

t
//eq**aejdydtju
0 I

Proof. Multiplying (2.10), by v and integrating over I x (0,t) and using (4.18) and (4.34), we can obtain

t
1 2 py
5/,0011 dy—l—//Tdydt
/povody+//po Ivy|d dt
t

1 / 2
v

sc+—//ﬂdydt+c - /poedy/|\e<~,s>||mds
2 0 J s€[0,t] 7 o

o

t

sy [ / Y dydt,

I

|/\
l\')|H
S

which gives (4.41) immediately. Moreover, (4.42) is derived from (4.37) and (4.34), and using Lemma 3.1. 0O
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Lemma 4.8. For any t € [0,T], one has

2
/ T2dy(t) < C. (4.43)
T
Proof. We rewrite (2.10), as
O = Ty, (4.44)
where
= (logJ — =phJP), = T 1,1 + pfJ 7).

B

Then we multiply (4.44) by o and integrate to get

1
2/ 2dy() / (y,0 der//mrydydt

I

<c+// poy0 + poby + o (1 + plJ=7)~ 1)} dydt (4.45)

<C+5//(91+q*"‘ + 097102 ) dydt + C// 1+ 09 o2 dydt,

which gives

t

1 _
3 [ <o [ ol o1z [ otdyar
I

0 ! (4.46)

c+c/ (1+ |61t O‘)/azdydt,

I
by employing (4.42) and the lower bound of € established in Lemma 4.5. Finally, we apply the Gronwall
inequality to (4.46) and using (4.42) to achieve
[Faw<c ren,
1

which yields (4.43). O

Lemma 4.9. For any t € [0,T], we have

t
/ (v2 + (poB) + pof?™?) dy(t) + / / (povi + 6%962) dydt < C, (4.47)
I 0o I
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and

T
/||vy||Loodt <c
0

Proof. Observe that
V< |l =14p0077 <C, Nl = Bpg T~ oy| < Cloy,
and

iyl = Bog TP poy J 7Y — pod 2T, < C + C|J, ),

where the assumption (2.13) is used. Then the rest of the proof will be divided into two steps.
Step 1. Multiplying (2.10), by v; and integrating with respect to y over [0,1] give that

1d [w] / 9 1 / vy gy / Pofuy

S T dy = = LT I PoTy 4

2dt/ 7 Wt | povidy =g 7 o)t g W
I

I I I

= Il + IQ.

We estimate I3 and I respectively as follows:

v§ /wg
01 < Clloyle~ [ 22y < Clloy o~ [y
I I

d

I, = —
T dt

Jflpoevydyf/vy(Jflpof))tdy
1 1

d
=5 [ ey~ [0, 1 p0) (T by
I I

1d _ 1-p _ _
—5@/(;&7) 1(p00)2dy+7/(w) 2p0 TP vy p36°dy
I I

= Ig1 + Inp + Io3 + Io4,

where

Taa| < CJlT 0y | / (pob)dy,
and

[la2| =

IA
~— —
| — |

==
VRS
<&

|

> -
<2
N—
S
[\)

>
<2
<

=

Qﬂ|é§o
N———

Jr

>

[}

&

=
-
| S
&
<
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(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)
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N R A (L
//ﬂ(J J) —dy (4.55)
I

2
JiLy
scwmm+wmm+uw%ﬁq/<7ﬂumw>@
1

+5/povt2dy+0(5)/nz(ﬁ)ﬁidy,
T T

by using (2.10)5, (2.10),. Therefore, submitting (4.52)-(4.55) into (4.51), we have

1d 1< pof\> )
vy — —) dy-i—/povtdy
VH )

2dt ) J
I

2 2
vy (pob)
< (loyllzee + 1100z + 1+ [17,[172) / (—Jy + (EJ ) dy+/H2(9)9§dy
I

! (4.56)
2 2 2 2
woy  (pof) / 1oy (pof)
<C@) |1 0| L~ - d L d
< @) [ 1+161 f/<J+ o an) [ (5 |
T T
+5/p0vt2dy+0/m2(9)0§dy.
T T
In fact, integrating (2.10), over (y, 1), we get
) 1
v
—ujy = fp% + /povtdz.
y
Thus
(4.57)

oyl < 116 = +C /m@@
T
Step 2. To deal with the last term in the right hand of (4.56), we multiply (2.10), by ﬁgqﬂ and

integrate it over I to get

g+1 [0%02

012 dy + —— Ld
/ﬂo y+q+2 7 Y
I I

| =

sy

t

1 poa 1 /uv29q+1
— [ Y, gty vy

g2 ) T T g Y
I I

<Clo o | [ pobloyldy+ [ vidy
I I
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<C (/9%95@1@/)%“ (/(p09)2dy+/v§dy>

I I I

(1 +/(v§ + (p09)2)dy) /(vi + (909)2)dy] :

2q 02
ga/e 992dy + C(6)
I I I

which gives

| =

: / P09 2dy + / 02102 dy < C(0)
I I

QU

(1+/(v§ + (p09)2)dy) /(vi + (p09)2)dy] : (4.58)

I I

Adding (Cy + 1) times (4.58) to (4.56), for sufficiently large C1, and choosing ¢ suitably small, we have

d (11 0\ >
£ (822 s fra) « ot [
I I I

1

2 2 2 2
1oy - (pob) / 1oy - (pob)
< . Py Ty .
c(1+|e||L +/<J+ o) ay e P N ay
I

1

(4.59)

Next, we integrate (4.59) with respect to the time variable over [0,¢] to find

t t

/ (v + (pob)® + po?™?) dy + / / povidydt + / / 02107 dydt
0 I

I 0 I

t
<C+ C/ vy |pofdy + C/ (1 + 10l L= + / (v + pob?) dy) / (v + pob?) dydt
1 0 1 1 (4.60)

1 1
<C+ §/|vyl2dy+ §/p09q+2dy+0/p39dy
I I I

+C L+ )10] > + [ (v + (pof)?) dy) (v + (pob)?) dydt,
[(oame fisvara)

I I

which together with the Gronwall inequality, (4.34) and (4.41), gives
T

/ [vg + (pof)? + pof™*2)] dy + // [pov} + 6%162] dydt
01

T
T T
SCexp{C’(T—i—//vidydt—l—/|9||Loo/p09dydt)} <cC.
0T 0 T

It follows from (4.57), (4.34) and (4.61) that

(4.61)
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1
T T T 3
/||vy||Loodt§/||9HLoodt+/ /povfdy dt < C.
0 0 0 \I
Thus, we finish the proof of Lemma 4.9. O
Lemma 4.10. For any t € [0,T], we have

/ (povi + K2(0)62) dy(t) + / / (v, + por(0)67) dydt < C,

I I

and
16(-, )] e + vy (-, 1) = < C.

Proof. We show this lemma in two steps.
Step 1. Differentiating (2.10), with respect to ¢, we obtain

(B [ MYy HtVy podvy — pobs
POVt (—J )y— <J2> +( 7 )y-l—( 72 7 )y
Yy

Then we multiply the resulting equation by vy, integrate over I and use (4.47) to get

1d ) vp

il d Y

2dt/povt y+/uJ Y
I

T
o 02 922
/vtydy—&-C /J—i—i- 0J2+ 7 dy
Jj

B,dy+ () [ o2 v+@wn@+/£%@
I

IA
>
N\

/  dy+C0) o2 + pw@%@,
I

since |p¢| < Cluy|. From (4.57), Lemma 3.1 and (4.31), one has

ol <€ (161 + [ povbay |
1

and

01~ < [ a5+ [ puvay < [eoia+c.
I

I I

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

Therefore, submitting (4.66) and (4.67) into (4.65), integrating the result in (0,¢) and using (4.47), we have
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/ Ovtder//vtydydt
¢
< //povfdydt—i—Cl//poli((‘))afdydt—i-//92q0§dydt+C
0T 01 0 T
t
_Cg//pon 9 dydt + C.
0

1171

(4.68)

Step 2. To deal with the term fot fI pok(0)6?dydt in above inequality (4.68), we multiply the (2.10)3 by

k(0)0:, integrate over I to get

1d [ r%*06)6
id_/ de—i—/pon(G)HQdy

'UKJ
/ y /7% thy+/ L (6)01dy
I

I:Al + A2 + Ag.

N =

We estimate each A; (i = 1,2, 3) as follows.
A1l < Clo o [ @83,
1

It follows from Cauchy’s inequality, Lemma 3.1 and (4.47) that

[Az| < 5//}0%(9)9?@/+C(5)II9HLWIIH(9)9HLW /vidy
I I

< 5/p0/£(9)9t2dy+0(5)||9HLoc /m2(0)9§dy+1
I I

Notice that

1 d 1 20, v v3 pv2
- - ° 01t dy — —— | patl Syity Y Yl g
d/ Y a+1) l"( J J2>+ J |
I

= Agl -+ A32.

Using Cauchy’s inequality, (4.47) and Lemma 3.1, we have

t
/|A31\dt < [05(0)] /vgdy 11605 (00) | Lo /vgydy < 5/52(9)93@ +C),
0 I

I I

and

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)
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|As| <6 / o2, dy + ()]0 (0) 3 / v2dy + [65(8)]| =~ [[vy | / v2dy

! ! ! (4.74)
< 5/v?ydy + C0)(1+ [lvyllL=) /ﬂ2(9)9§dy + C0)([lvyllL~ +1).
I I

Submitting (4.70)—(4.74) into (4.69), integrating the result in (0,¢) and using (4.34) and (4.48), we have

t
/m2(9)9§dy+//poﬁ(é)ﬁfdydt
1 0T

t t (4.75)
<o [ [etayar e [ [(H [0l + oyl [ @8y +CG).
0T 0 T
Adding (C3 + 1) times (4.75) to (4.68) for large Co, then choosing § suitably small, we have
t t
//{2 02dy+/p0vtdy+//p0/<; )0 dydtJr//vfydydt
T t 0 0T (4.76)
< [+ o=+ loylm) [ @6y +C:
0 1
Then we apply Gronwall’s inequality to (4.76) and use (4.34) to get
t t
/m2(0)9§dy+/povt2dy+//pom )6 dydt+//vydydt <C, (4.77)
T T 07 0T
which together with Lemma 3.1 gives
IOl = o7 < [ 0¥163dy+C < C. (@79
T
Thus, using (4.57), we derive
loolite < 613 + [ povtay < c. (4.79)
T
Finally, (4.77)—(4.79) give the proof of Lemma 4.10. O
Lemma 4.11. For any t € [0,T], we have
t
/poﬁ )02 dy(t +//52(9)9t2ydxdt < C, (4.80)
i 0

16, Dl + / 16,3t < C. (451)
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Proof. Differentiating (2.10), with respect to ¢, we obtain

K(0)8,\ _ (P oy
pols ( 7 )ty‘ (J”yt+ 7 ),

Multiplying the above equation by x(0)6; and integrating the resulting equation over I yield

N | =

d 1
& [osiay + [ S160)00),
I I

1 v
=5 [ oo @ty [ 2, (s00), o
I I
6 0 v2
- /pon(G)Ht (?Uy + TV~ 9J—g> dy (4.82)

I

—I—/ﬁ(&)@t

I

2uvy, Uy \ | He¥y

2ylty Yy d
“( 72T |
:=B1 + By + B3 + By.

We estimate B; through B, respectively as follows:

By| < C (071" [15(6)61]| L~ / pors(0)62dy
I

<C (Il(ﬁ(9)9t)yllm +/po/’~(9)0t|dy) /pon((’)t‘)fdy

I I

<c ||<m<e>et>y||m+(/ pofe(e)wtﬁdy) (/ pom<e>dy) [ @6ty g
1

I I

< 5/\(/{(9)0t)y|2dy+0(5) (/pof-c(e)@fdy) +C (/poﬁ(ﬁ)dy)

I I I

2
< 5/\(H(9)9t)yl2dy+0(5) (/po/fw)@fdy) +C,

I I

Bal <8 [ 160100, Py + CO) o [ w0203
1 4 (4.84)

g&/KM@@Mﬁ@+C®%
I

1Bl < Il [ por®)62dy+ [ vdydy + 5@ o~ [ por(6)63dy
1 1 I
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+ (/ pofi(é))Hfdx) (/ poﬁ(9)92v§dy>

I I

< /vfydy+0/pom(9)0t2dy+0,
T

and, noting that |u| < Clvy|,

| Ba| < [[6(0)80l| L= oyl 2 vy [l 22 + [[vgll L= vy 1 22)
< N1K(0)0¢ll o= (l[veyl L2 + C)
< 8][6(0)B: [ Lo + C(O)[lveyll72 + C(6)
< / |(5(0)04) 2y + 6 / por(8)62dy + C/(5) / v, dy + C(6).
T T
Therefore, submitting (4.83)—(4.86) and into (4.82), we have

ccilt/po“(e)etgdﬁ/((K(G)Gt)y)gdydt

I 1

< ( / ponw)e?dyﬂ) [ pri@zdo+ [ 1o i+ c.

I I I

Applying the Gronwall inequality and (4.63), one gets

/pon 0dy—|—//| JylPdydt < C, te€[0,T),

which gives, by using Lemma 3.1 again,

T

T T
/ (06,2 dt / / ((5(6)6,), dydt + / / |por(0)0,|dydt < C.
0 I 0 I

0

Note that from (4.88), (4.31), (4.63), and (4.89)

t
//52(9 dydt<//| 2dydt+//| ), 0:|*dydt
0 I

2
<C+

st sup 070,02 / 1696, 13 dt

<C.

Next, we integrate (2.10), from 0 to y to get

)0 Yy Yy 6 vy oo,

K Y l’[’vz

7 /poetddz—i—/—J v,dz — / 7 dz
0 0

0

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)
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Thus (4.88), (4.64) and (4.47) imply that

2

15(6)8, |1~ < C /poeqefdy + oyl /poedy+c/v§dy <c (4.92)
I I I

Thus, it follows from (4.92), (4.88) and (4.89) that

t t
110y [| oo +//9t2ydydt+/||0t||iwdt <C.
0 I 0

Thus, (4.88), (4.90) and (4.92) show Lemma 4.11. O

Lemma 4.12. For any t € [0,T], we have

/ (v2, + 02,)dy(t) < C. (4.93)
I

Proof. We rewrite (2.10), and (2.10), as follows:

2
MUy _ pol KUYy gy
J = Pol¢ + 7 + 72 ¥i )
and
k(0)0,, pod vy g0 090,0
J Pobt + J Uy M J J J2 9

which combine with (4.43), (4.63), (4.64), (4.80), (4.81), and the fact that |u,| < C|J,|+C, give the following
estimates

[oyyllLo=0,7:L2) + 1Byy [l L 0,73L2) < C- (4.94)
The proof of Lemma 4.12 is complete. O

Proof of Theorem 2.1. Then the proof of Theorem 2.1 follows from Lemma 2.1 which signifying the local
existence of the strong solution and the global (in time) a priori estimates in Section 4. In fact, by Lemma 2.1,
there exists a local strong solution (J, v, #) on the time interval (0, 7] with T, > 0. Now let with T* > 0 be
the maximal existing time of the strong solution (J, v, ) in Lemma 2.1. Then obviously one has T* > T,.
Now we claim that 7* > T with T' > 0 being any fixed positive constant given in Theorem 2.1. Otherwise,
if T* < T, then all the a priori estimates in Section 4 hold with T being replaced by T*. Therefore, it
follows from a priori estimates in Section 4 that (J,v,0)(x, T*) satisfy assumptions in Theorem 2.1. By
using Lemma 2.1 again, there exists a 77 > 0 such that the strong solution (u,v,6) in Lemma 2.1 exists
on (0,T* 4+ Ty], which contradicts with T* being the maximal existing time of the strong solution (J, v, 6).
Thus it holds that T > T.

Finally, the expanding rate of the free interval (I'1 (¢), I'2(¢)) comes from the estimate in (4.34). The proof
of Theorem 2.1 is completed. O
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