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1. Introduction

The notion of a mock theta function was introduced by Ramanujan in his last letter to Hardy in 1920
(see [19, p. 127-131]). He listed 17 such functions having orders 3, 5, and 7. Since then, other mock theta
functions have been found, including eight having order 8 by Gordon and McIntoch [10].

The mock theta functions have been the subject of intense study. Their combinatorial aspects have been
investigated by many authors, including [1,6,21]. When studying their arithmetic properties, many authors
have found congruence properties of partition functions connected with mock theta functions. For instance,
recently in [3] the authors found a number of congruences for the partition functions p,(n) and p,(n),
introduced in [2], associated with the third order mock theta functions w(q) and v(q) defined, respectively,
by

x q2(n2+n) 0 qn(n+l)
w(q) = ———— and v(q) = —_—.
@ T;) (©:¢%)n 1 @ ,; (=4 ¢*)n+1

* Corresponding author.
E-mail addresses: brietzke@mat.ufrgs.br (E.H.M. Brietzke), silva.robson@unifesp.br (R. da Silva), sellersj@psu.edu
(J.A. Sellers).

https://doi.org/10.1016/j.jmaa.2019.06.016
0022-247X/© 2019 Elsevier Inc. All rights reserved.

Please cite this article in press as: E.H.M. Brietzke et al., Congruences related to an eighth order mock theta function of
Gordon and McIntosh, J. Math. Anal. Appl. (2019), https://doi.org/10.1016/j.jmaa.2019.06.016



https://doi.org/10.1016/j.jmaa.2019.06.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:brietzke@mat.ufrgs.br
mailto:silva.robson@unifesp.br
mailto:sellersj@psu.edu
https://doi.org/10.1016/j.jmaa.2019.06.016

Doctopic: Miscellaneous YJMAA:23245

2 E.H.M. Brietzke et al. / J. Math. Anal. Appl. eee (seee) eee—see

Very recently, Wang [22] presented some additional congruences for both p,(n) and p,(n).
This paper is devoted to exploring arithmetic properties of a partition function, namely vg(n), associated
to the mock theta function Vy(q) of order 8 (see [10]) defined by

2n

Volq ——1+QZ —1+2Z , (1)
n=0

2n+1
where we use the following standard g-series notation:

(a;q)o =1

(@;9)n = (1 —a)(1 —aq)--- (1 —ag""),¥n > 1,
(@; @)oo = limy 00 (@5 @)y [q] < 1,

(a1,a2, ..., 015 9) 0o = (015 0)00 (025 @)oo -+ (AR5 @)oo

Here we consider instead the function

- n o (a5 @)ng” Volg) 1
nZ::OUO(n)q =2 (¢;¢®)n 2 @)

Except for v9(0) = 1, vo(n) is half the coefficient of ¢" in Vp(g). This function has been combinatorially
interpreted in terms of split n-color partitions in [1] and in terms of signed partitions in [20]. Using the
objects called overpartitions, introduced in [9], we note that vy(n) is also the number of overpartitions of n
into odd parts without gaps between the non-overlined parts. Indeed, in

(—¢;¢° i A+ +g®) (14 an_l)q1+3+w+2n—1
U 1-q)1-¢) - (1—¢ 1)

the term ¢' T3+ *t27~! generates one copy of each odd number from 1 to 2n—1, the numerator generates the
overlined parts, and the denominator gives us additional copies of the non-overlined odd numbers from 1 to
2n — 1. Arithmetic properties for the number of overpartitions of n, p(n), and the number of overpartitions
into odd parts, p,(n), have been studied by many authors, including [8,13-17]. In [8] and [14], a number of
Ramanujan-like congruences modulo 32 and 64 for p,(n) were proven.

In this paper, we present a complete characterization of the parity of vg(n), from which infinitely many
Ramanujan-like congruences mod 2 are obtained. Namely, for n > 0, vg(pn + ) =0 (mod 2), where r is a
quadratic nonresidue modulo the prime p > 2. We also prove higher moduli congruences such as

vo(4(pn+7)) =0 (mod 4),

if p > 2 is a prime and r is a quadratic nonresidue modulo p, and many congruences modulo certain numbers
of the form 2%375, including

0(12n+9) =0 (mod 3?), 0(16n4+12) =0 (mod 2%),
vo(80n +52) =0 (mod 5), vo(40n +37) =0 (mod 225),
vo(36n +21) =0 (mod 2%3%), vp(24n+21) =0 (mod 223%),
vo(48n +40) =0 (mod 2*3),  v(32n+28) =0 (mod 29),

0(60n +57) =0 (mod 223%5), vp(96n +28) =0 (mod 2°3)

Our proof techniques are elementary, utilizing dissections of generating functions as well as theta series
identities.
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This paper is organized as follows. In Section 2, we recall some basic properties of Ramanujan’s theta
functions and we also present some useful lemmas including the 2- and 3-dissections of vg(2n). Section 3
is devoted to presenting the characterization of the parity of vg(n) from which we derive infinitely many
Ramanujan-like congruences for vg(n) modulo 2. Congruences modulo certain powers of 2 and related
identities are discussed in Section 4, while congruences modulo powers of 3 are the subject of Section 5. In
Section 6, we prove a number of arithmetic properties of vo(n) moduli certain numbers of the form 2%375.

2. Preliminaries

We recall Ramanujan’s theta functions

f(a,b) := Z an(n;l)bn(wé_l), for |ab| < 1,

n—=—oo

B e o (D%
ola) =120 = n:z_:ooq (9% (g% eh% ¥
00 = g = 3407 = G 0

These functions satisfy many interesting properties (see Entries 18, 19, and 22 in [4]), including:

f(1q) = 2¢(q), (5)
f(a,b) = (—a;ab) oo (—b; ab) s (ab; ab) s, (Jacobi’s Triple Product) (6)
f(=q): = f(—=¢,—¢*) = (¢:¢)so, (Euler Pentagonal Theorem) (7)
and
_ _(@a)
=) = (4% ¢%)o’ ®)
o @ d)w(etd)
v = (@%@ ©)

By Entry 25 (i), (ii), (v), and (vi) in [4, p. 40], we have
¢(a) = ¢(q") +2q¥(q"), (10)
$(a)* = ¢(q*)* + 4y (¢")*. (11)
We also recall the following version of the Quintuple Product Identity (see [5, Eq. (1.3.54), p. 19])

f(—=2% —\x) f(= 23, —=\229)

F(=X20%, =)+ f (=2, -0 = (=, —xa?)

(12)

An additional relation involving these theta functions is presented in the next lemma.

Lemma 2.1. We have

V(g)?  o(—¢*)? | v(g®)?
o) - e e (13)
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Proof. We recall from [12, Chapter 22] the following identities:

¢(§)(_QZ;3 _ % (alg) +2a(?), ([12, Bq. 22.11.8))
ZEZ;}? = % (alg) +a(g®), (12, Eq. 22.11.9))
qwzi‘i;g - % (alq) —a(g?), ([12, Eq. 22.11.10))
where
a(q) = l’ig )) n 3qd$2 ([12, Eq. 22.11.6])

Identity (13) follows directly from (14), (15), and (16). O
Throughout the remainder of this paper, we define
fr = (¢ ¢ )00
in order to shorten the notation.

Lemma 2.2. The following identities hold:

LR 12 ffs
2 +2 5 ’
2RI f3fs
1 14 4
7 4 +4 f4if)8 )
B
L g 4o o5, ag PR e TR
FE R f%gfé’ 27 ffs 20
1 28 f4f8
—= + 8¢+ +16q2 a8,
flS 2 8 f24 20
1 42 30 f18f f
_|_12q 8 2J4 8 +64 3J4 ,
112 f42f12 f38f4 f34 f30
RN ff‘*fw VO IS i
14 47 7 43 39
1 f8f16 2 f16 f16

32 20
2

Proof. By (3) and (4) we can rewrite (10) in the form

Bkt
2T T

from which we obtain (17) after multiplying both sides by f5'
By (3) and (4) we can rewrite (11) in the form

5 fg
= +4q
fifi f2 f3f i

st 1f16_

YIMAA:23245
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from which we obtain (18). Squaring (18) we obtain (20).

YIMAA:23245

5

Multiplying equations (17) and (18) we obtain (19). Identity (21) follows after multiplying (18) and (20)

while (22) can be obtained by multiplying (17) and (21). O
We recall Eq. (5.15) from [11] (also Eq. (2.9) in [18]):
Vola) = (=% 4")5 (6% ¢%) e + 24B(¢?),
where B(q) (see [11, Eq. (5.1)]) is given by
e ng (D) s

Z Z v

_ q:9 )n+1 n—0 n—i—l

Bringmann, Ono, and Rhoades [7] obtained the identity
B(q) + B(—q) = 2q7~

It follows from (23) that the even part of V;(q) is given by

Yola) + Vo(=4) _ = (=% ") (0% ¢%)

2
_ (0%0%)5(@% %)
(4% 9%)%
(g% ¢4
(6% 0)E (6 6P
while its odd part is given by
V()(Q) B %(_Q) _ 2(13((]2)-

2

Using (8), we can deduce from (25) and (26) the following result.

Proposition 2.3. We have

In the following three lemmas we establish the 3-dissections of 1(q), ¢(q) and 1/¢(

Lemma 2.4. We have

fof2 |k
fafis  Tpy

Y(q) =

Proof. This identity follows from the first equality in Corollary (ii) [4, p. 49]. O

—q).

(25)
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Lemma 2.5. We have

o(q) = ¢(¢”) + 2¢Q(¢°), (29)
where
o 5 N~ an?ion  J3f3f12
Qq) = fg,4°) = n;ooq =35 (30)

Proof. By Corollary (i) [4, p. 49], we have (29) with Q(q) = f(g, ¢°). Using Jacobi’s triple product identity
(6), we have

oo

> ( ) ( )
3n2+2n _ 5n(n+1 n(n—1
E q = E qa * q 2

n=—oo n=—oo

= f(¢.¢")
= (_q? _q57 q6; qﬁ)oo
(=4, 4% —4°:¢%) o0 (4% ¢°) o
(—¢%¢%)
(= 46%)50(4%6%) 00 (6% 4%) o
(4% ¢'%)

which completes the proof. O

Remark 2.6. By (30) and Jacobi’s triple product identity (6) we have

.2 6. 6
Q—q) = f(—0.-¢°) = (0.4°, % ¢°)c = @ q(q)é,’_o;qﬁ)’ Chee

and, hence,

(45 94 ¢0)5
(o) = (0% ¢%)oo (0% @)oo

2

(31)

Lemma 2.7. We have

Proof. A proof of this result can be seen in [13]. O

Putting all these pieces together we obtain the 3-dissection of -, vo(2n)g".
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Theorem 2.8. We have

9
7+2v0 ()¢ = <20 [6(¢)6(—¢)20(—a1%) — 4% 0(~a* AP ")

= 26(-g)
+8¢°0(—¢"*)Q*)U—¢)* — 4¢° () p(—¢°)Q—¢*)Q(—¢°)]
i q% [26(—a*)26(=a™)2(e) + 20(¢°)6(~*) 6 =) —¢?)

—8¢°¢(—¢”)Ua*)QU—*)—¢°) — 8¢°d(a°)U—¢°)U—¢*)?]
- qQ% [46(q")p(—¢"*)U—¢°)* — 16¢°Q(¢*)Q(—¢°)U—¢°)*
+46(—¢")d(—a"*)—¢*)U®) — 26(¢”)d(—¢°)*Q(—¢°)] -

The next theorem presents the 2-dissection of ) -, vo(2n)q"

Theorem 2.9. We have

o0

1 1
3 +n:1vo(2n)q = 20 (6(¢°)* + 4qv(¢*)?)
Proof. We start by noting that
. _ (¢*; )% . 2\2
from which we have
1 ¢(q)

Then, by (27), it follows that

LNy (o — LO@e(=a?)
5 +nz::1 0o(2n)q" = é(—q)
_ 1 ¢
2¢(—¢?)
= 5o () +dav(a")?)

using (11) for the last step. O
We now 2-dissect ¢(q)Q(—q).
Lemma 2.10. We have

f3 11
fifg

o(q*)U—q) = fi —q

7
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Proof. We have

oo

¢(q3)Q(—q): Z (_1)mq3n2+3m2+2m.

n,m=—oo

When n +m = 0(mod 2), we write n = r + s and m = r — s, and when n + m = 1(mod 2), we write
n=r+s+1and m =r —s. Then,

Z (_l)mq3n2+3m2+2m — Z (_1)rfsq3(r+s)2+3(r75)2+2(7’75)

+ Z (_1)r—sq3(r+s+1)2+3(r—s)2+2(r—s)

r,§=—00
oo
— Z (71)r+sq67‘2+652+27‘72s
r,8=—00
+ Z r+s 612 +652 +8r+4s+3
r,8=—00
By Jacobi’s triple product identity (6), we have
e 2 2
Z (_1)r+sq6r +6s°+2r—2s _ (q47q87q12;q12)oo(q4,q87q12;q12)oo
r,8=—00
4, 4
= (¢4 q"%
and
© 2 2
Z (1)t HOsTHS bk _ (3 (=2 (14 (12, 12) (g2 (10 (12, 012)
r,8=—00
=*(1- ¢ )", d"* "% ¢") (. ¢, 0% ")

=—q(¢*,¢", ¢"%: ¢"?)2

_ _q(q2)q67q10; q12>c2>o<q12; q12>c2>0
(45 q*2)%
BNt 0 S et S

(4% 4%)%
_ _q(qQ.q2)2 (q12;q12)4
(g% ¢*)2.(¢% q%)%

Thus ¢(¢*)2(—q) = (¢%¢")% — q(i'i% (?q ;cqz )) -

We also require the following two identities whose proofs can be found in [12, Section 22.7].

Lemma 2.11. We have

BB

fo B ChfE (33)
3 s fif§
hM T R (34)
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Proof. Equation (33) can be found in [12, Eq. (22.7.4)], while (34) can be found in [12, Eq. (22.7.6)]. O
3. The parity of vo(n)

A complete characterization of the parity of vp(n) is presented in the theorem below, which is proven in
two different ways. As a corollary, we also obtain infinitely many explicit Ramanujan-like congruences for

vo(n) modulo 2.

Theorem 3.1. For alln > 1,

(35)

vo(n) = 1 (mod 2), if n is a perfect square,
=0 (mod 2), otherwise.

Proof. Since ¢* = —¢* (mod 2),Vk > 0, we have (—¢;¢%)» = (¢;¢*)n (mod 2). Then from (2) it follows
that

Z vo(n)q" = Z 7 (mod 2),
n=0 n=0

which concludes the proof. O
We now give a combinatorial proof of Theorem 3.1.
Combinatorial proof of Theorem 3.1. Consider the series

> " (~¢;%)n
2 (Ga%)n (36)

n=0

Its general term is

¢ (~q;qD)n _ ¢TI 4 ) (14 ¢?) - (L4 g2
(q;q2)n (1-9)(1 —q3)...(1 _q2n71) .

As the numerator of (37) is the generating function for partitions into odd parts with no gaps, in which

(37)

each part occurs at most twice and largest part 2n — 1 and

1
1= —¢*)---(1—-g>"1)

is the generating function for partitions into odd parts and largest part less than or equal to 2n — 1, we

have that (36) is the generating function for pairs (A, 1) of partitions into odd parts in which

(i) A has no gaps, is nonempty and each part occurs at most twice,
(74) the largest part of p is less than or equal to the largest part of .

Let V,, be the set of all pairs (A, ) satisfying (i) and (i7) above and such that |A\|+|u| = n. In order to give
a combinatorial proof of Theorem 3.1, whenever n is not a square, we construct an involution ¢ : V,, — V),
such that ¥(A, 1) # (A, @), Y(A, 1) € V,,. This proves that vg(n) is even if n is not a square.

Given (A, ) € Vy, we define (N, ') such that (N, ') = ¥(A, p) in the following way. Let m > 1 be the
smallest part of A that either appears twice in A or once in A and at least once in u. In the former case, we
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remove a part m from A\ and add it to u; in the last case, we remove a part m from p and add it to A\. We
define (XN, ') as the resulting pair obtained by this procedure. We note that, since n is not a square (which
implies that n is not the sum of consecutive and distinct odd numbers), we have p # (), which assures that
such smallest part m does exist.

For example, for n = 12 we have:

((1),(1,1,1,1,1,1,1,1,1,1,1)) +— ((1,1),(1,1,1,1,1,1,1,1,1,1))
((1,3),(1,1,1,1,1,1,1,1)) +— ((1,1,3),(1,1,1,1,1,1,1))
((1,3,3),(1,1,1,1,1)) «— ((1,1,3,3),(1,1,1,1))
((1,3),(1,1,1,1,1,3)) «— ((1,1,3),(1,1,1,1,3))
((1,3,3),(1,1,3)) «— ((1,1,3,3),(1,3))
((1,3),(1,1,3,3)) «— ((1,1,3),(1,3,3))
((1,3,5),(1,1,1)) «—((1,1,3,5),(1,1))
((1,3,5),(3)) +— ((1,3,3,5),0)

As additional examples of the case m > 1, we have

¥((1,3,5,5,7,9,9),(3,3,5,7,7,7)) = ((1,3,3,5,5,7,9,9),(3,5,7,7, 7)),
¥((1,3,5,5,7,9,9), (7,7,9,9)) = ((1,3,5,7,9,9), (5,7, 7,9,9)).
This construction breaks down if n is a square, n = k2. In this case it is not possible to define
¥((1,3,5,...,2k — 1)),0). But the involution still works in V,, minus this pair, proving that in this case
vo(n) isodd. O

We close this section by noting that we can deduce from Theorem 3.1 infinitely many Ramanujan-like
congruences mod 2 involving vg(n).

Corollary 3.2. Let p > 2 be a prime. It follows that, for alln >0,
vo(pn+7r) =0 (mod 2),
where r is any quadratic nonresidue modulo p.
This yields an infinite family of results. For each prime p it yields (p — 1)/2 congruences modulo 2.
4. Congruences modulo powers of 2
This section is devoted to presenting identities involving the generating function for vg(n) which yield
a number of congruences modulo certain powers of 2. We begin with a theorem that establishes infinitely

many congruences modulo 4.

Theorem 4.1. For alln > 0,

_J (=D (mod 4), ifn=k?
UO(4n):{ 0 (mod4), otherwise. (38)
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Proof. By Theorem 2.9 we have

% + Z vo(2n)q" = % + Z vo(4n)g*™ + Z vo(4n + 2)g*" !
n=1 n=1 n=1
Lo (e
= 20— )

Then, taking the even part on both sides of this equation and using (3) and (8), we obtain

= 1 1
1+ Z vo(4n)q" = 3 + 3 (39)
n=1

Since f& = f2  (mod 8), we have

Thus, by (39),

from which we obtain

> we(an)g" =3 (-1)F¢F  (mod 4),

n=0 k=0

which completes the proof of (38). O
The next result yields an infinite family of congruences modulo 4.
Corollary 4.2. For all primes p > 2,
vo(4(pn+7r)) =0 (mod 4)
if r is a quadratic nonresidue modulo p.
4.1. Congruences from the odd part of vo(n)

We now derive some congruences related to identities involving the odd part of Y-, vo(n)g". In what
follows, we denote by E (f(q)) (resp. O (f(q))) the even (resp. odd) part of the function f(g). That is to say,

if f(q) =Y 5—oa(n)q"”, then

E(f(g)) = Y a(2n)¢™ and O(f(q)) =) a(2n+1)¢"" .
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Theorem 4.3. We have

iv0(8n+5)q f2f4 (40)

n=0 ‘flr 7
from which it follows, for allm >0,
vo(8n+5) =0 (mod 4).

Proof. Taking the even part on both sides of (28) and using (24), we deduce that

Z vo(4n + 1 ¢n = f4

5
from which we obtain
- w13 Y(0)?
4 == = . 41
2 wldn+ 1" =5 = 57 )

Taking the odd part in both sides of the first equality in (41), it follows that

ZUO 8n + 5)¢>" ! = f30 (fl )
1

n=0
f fs
L} = (by (18))
2
Now, dividing by ¢ and replacing ¢® by ¢, we have (40). O
Theorem 4.4. We have
_ 205
vo(12n + 5)q . 42
Z o( flof (42)

From (42) it follows that, for alln >0,
vo(12n+5) =0 (mod 4).

Proof. By (41), using Lemma 2.4 and Lemma 2.7, it follows that

i vo(dn + 1)¢" = (a)?
n=0

#(—q)
o(—q°) ([ fefd fis
= o(—q ﬂ(hﬁs+ b)
X ((—4°)* 4 2q0(—¢")Q—=¢%) + 46°Q(—¢%)?) . (43)

Then,
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S st 0(=¢") ( 9 f&fs o2 fefofis
Z}mmn+mq = 4 |20~ )ﬁﬁm+2w (D

f
SQ 2J18
40— )@>’

from which we obtain

- —q
12 5)¢" =2
7;01)0( n+ )q ¢<_q)4

4
< (st 4 o 2RI s ls)

Using (8), (9), and (31) this expression becomes

- n OB A (RIS RS
2)“””+“q‘”¢v@eﬁ<ﬁn+ ﬁﬁ)
L o(=®) [ufd (=) W(¢P)?
=Yt g <¢<w +qwm>>
o= [1fE v(g)? e
=45t g g Y Lemma 2l)

which, after simplification, results in (42). O

Corollary 4.5. We have

§v0(24n +17)" = J;gjzf;j +32 fﬁ;ﬁg 1198y L2081 N2 gﬁfif 2, (44)
from which it follows that, for alln >0,
vo(24n+17) =0 (mod 8).
Proof. We recall from [12, Section 30.10] the 2-dissection of ;—fz:
f_§ _ fifelt f4fgf8f24.

27 hsfer 2 fif

From Theorem 4.4 it follows that

i v(24n + 17)¢*" ! = 4%00 (f—g i) .

2 £8
2 o \f2TE

By (20) and (45) we can see that

2 3f4f6f8f24.

+3
34 frz

I3 1 ) [P fe [t I3 1§ foa
(0)
(f1 I3 54 f229f8f24 +2qf232]"};7f112

Then,
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- [ fofoa f 1t 5 f3 fo f3 foa
vo(24n 4+ 17)¢*" 1 = 8¢ + 32¢q + 128¢° — 7.
T;) 13213 frz 132 fs.foa f3*fz

After dividing both sides of this last expression by ¢ and replacing ¢? by ¢, we obtain (44). O
4.2. Congruences from the even part of vo(n)
Initially we present the 2-dissection of Y-, vo(2n)q"

Theorem 4.6. We have

1 f3!
—+Zv0 (4n)q =37 (46)
Zv ) 1
0(4n +2)q f e (47)
Proof. By Theorem 2.9 we have
1« ¢(¢*)? U(g*)?
= 2
32 260~ o)’

from which we have

L5 n_ 97 S n_ 20(¢°)?
3 +n§=:1v0(4n)q T and Zv0(4n+2)q =

n=1

which, after simplification, result in (46) and (47), respectively. O

Corollary 4.7. We have

Zvo (8n +2)q ;jf‘* (48)

from which it follows that, for all n >0,
vo(8n+2) =0 (mod 2).

Proof. Since

s
fa

is an even function, taking the even part on both sides of (47), we obtain

HEZ:OUO(Sn +2)¢*" = ff <f1 )

fif3

=2 .
31

(by (17))

Replacing ¢2 by q we obtain (48). O
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Corollary 4.8. We have
00 6 £2
> vo(sn + 6)g" = 42225, (49)
n—0 Jifa

from which it follows that, for alln >0,
vo(8n+6) =0 (mod 4).

Proof. By taking the odd part on both sides of (47), we obtain
oo 4
1
> vo(8n+ 6)g”" ! = 2lig <—2>
fo \fi

112
15 s

n=0

= 4g28018 by (17))

Dividing both sides by ¢ and replacing ¢? by ¢ we obtain (49). O

Theorem 4.9. We have

o 17

> wo(16n + 8)¢" = 8~ (50)
fit i

n=0

from which it follows that, for allm >0,
vo(16n +8) =0 (mod 8).

Proof. Taking the even part on both sides of (46) and using (19) to obtain the even part of 1/(q;q)%,, it
follows that

1 1f3! < s o f113 s
S+ w(8n)g*t = -2 + 8¢
5+ 2 e =5 (e, T
1 £10 3 42
IR/ Y
2f2f16 f2
from which we deduce, by replacing ¢ by ¢, that
1 1 (1£°% 3 42
-+ v8nq”z—<— +4qf.f5 ) - 51

Now, taking the odd parts on both sides of this last equation, we have

> 10 1 1 1
Zuo(l6n+8)q2"+1 = f2f§f4E (f?) o (f_{*) +4qf3 f2E (f_i‘) .

n=0

Now, by (18), we have

S ontl 1 F30fs 314 3 42 '
vo(16n + 8)¢=""" = (4q —|—4qff>:8q—.
2 wn(16n+ )¢ = i (4075 T + Al ) = Sagrig

The result follows after dividing both sides of this equation by ¢ and replacing ¢? by ¢. O
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Corollary 4.10. We have

e 42 2 28 18
> vp(32n + 24)¢" = 16 f§0 ffg + 96f§6f‘; +512qf21842 1 768072 f4f8 , (52)
2 E TR T : 22

from which it follows that, for alln >0,
v9(32n4+24) =0 (mod 16).

Proof. By (50) we have
- 1
> vo(32n + 24) 2”+1_8f2 0( )
n=0 f4

From (22) we see that

1 fffs [ s 5 JEO3 76 5 fofs”
0 2q + 12¢q + 96¢° —=— + 64¢q .
(fl ) i RZE 13 135 1

Then,

[P g0 10 | qoe I F3TEs

Zvo (32n + 24)¢*" ™! = 16q sy + 960 + 76 +5123f4

P f23 1t

After dividing both sides of this last expression by ¢ and replacing ¢? by ¢, we obtain (52). O

Theorem 4.11. We have

> f11f2
> wo(16n +12)¢" = 16251, (53)
n=0 1

from which it follows that, for all n > 0,
vo(16n 4+ 12) =0 (mod 16).

Proof. Taking the odd part on both sides of (46) and using (19), it follows that

16
ZUO 8n+4) 2n+1 _ 2 (2qf419f156 +4q f145f8 >
f4 2 s

n=0 8

IR R )
(fgfg e )

from which we deduce, dividing by ¢ and replacing ¢ by ¢, that

2 9
ZUO (B +4)0" = <f1 ko fjj%)' ®

Now, taking the odd parts on both sides of this last equation, we have
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S on+1 _ o2 I ( ) (1) i ( )
;UO(IGn—FlZ)q 2 7 E 7 0 73 +2f2f80 7

208 At fifs fi foé‘

=8¢ + 8¢q
2R e f2f8 50
11 2
= 16q 4158,
2

where we have used (18). The result follows after dividing both sides of this equation by ¢ and replacing ¢?
by ¢q. O

Corollary 4.12. We have

00 32
> wo(32n + 28)¢" = 192}027104 + 10244 fifi 19 : (55)
n=0

from which it follows that, for allm >0,
vo(32n +28) =0 (mod 64).

Proof. By (53) we have

1
Zvo (32n + 28)¢*" ™ = 16f3" 1 (ﬁ)
n=0 1

32
= 192q—5+— + 1024q 3 fifi (by (21))
371 5°
Now, (55) follows after dividing both sides by ¢ and replacing ¢* by ¢. O
Theorem 4.13. We have
> wo(6n+2)q" = R J211S5 (56)

f1 fi2
from which it follows that, for alln >0,
vo(6n +2) =0 (mod 2).

Proof. By Theorem 2.8 we have

o0 9

> (b -+ 204 = 55~ (260" P00
+20(¢")o(=¢")d(—¢"*)Q(—¢")
—8¢°¢(—¢")q* )2 —¢*)2(—¢°)
—8¢°0(¢”)2-¢*)U—4¢")?) ,

n=1

from which
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S wo(6n + 20" = 2T (6 226(~)a) + 6()0(—*)o( ") —a)

o(—q)*
~4q¢(—*)U@)U~0)Q(—4) — 440(¢*)2~¢*)2~0q)?)
= ﬁE:Zjﬁ (6(—¢*)q) + ¢(¢*)—q))

By Lemma 2.10 it follows that

Then

[]Sing (3 ) we haVe 1hat

BV 6y B o B8 AIE foft
¢(=q")d(—4") — 49Q—q)Q( q)—f6f12 4q T Tl

_ Nifs (fg f12>

fafiz \ f1 fa
S
= f22f9?f12 (by (34))

Finally,

- GO0 o SHE B e A 311
2 vol6n +2)q" =20 i s =2 Ml =2 e

Corollary 4.14. We have

n_o f2°f3
f2ffe’

> wo(12n +2)g

from which it follows that, for all n > 0,

vo(12n+2) =0 (mod 2).
Proof. Since

f313 18
f12

is an even function, taking the even part on both sides of (56) we obtain

oo

ZU0(12n+2)q2 f2£42f6E (f1>

n=0
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Using (18) it follows that

31368 fit

> wo(12n +2)¢”" =2 Fin JHE

n=0

Replacing ¢2 by ¢, (57) follows. O

Corollary 4.15. We have

c- n_ o3 f3fd
§v0(12n+8)q =38 o

from which it follows that, for all n >0,
vo(12n4+8) =0 (mod B8).

Proof. Taking the odd part on both sides of (56) we obtain

00 202 £2 1
Z vo(12n + 8)q2n+1 = 2—f2jjc?2f6 (0] (f_f) .

n=0

Using (18) it follows that

& 2 r2 24 2 r4
Zvo(lzn+8)q2n+1:2f2ff4f6 qf140f8
n=0 12 2

Dividing by ¢ we obtain

[eS) 4 £2 r4
> wo(12n 4+ 8)g*" = 8f4éfﬁf8 :
= f3 fr2

Now replacing ¢? by ¢, we obtain (58). O

5. Congruences modulo powers of 3

In this section, we present some congruences for vg(n) modulo powers of 3. In order to do so, many
additional identities involving the generating function for vy(n) are derived.

Theorem 5.1. We have

— 3 £3
> wo(6n+4)g" =3 f%;i , (59)
n=0

from which it follows that, for all n >0,

vo(bn+4) =0 (mod 3).
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Proof. By Theorem 2.8 we have

— 3n+2 _ 2 ¢(—q9) 9\ 1/ 18\O(_ 3\2
Z (6n+ 4)q o) (40(¢”)p(—¢"*)2(—¢")

- 16¢°Q(¢*)2(—¢*)U—¢*)?
+46(—¢")p(—¢"*)Q2(—¢*)(¢%)
—26(¢”)6(—¢")*Q(—¢")) ,

from which we obtain

S woln + 4)q" = ‘““fi (26(6)6(~4)2~0)* — 84202~ )A~0)?
n=1
-

Using (3), (4), (8), and (30) we have

4f30(—4")Q2(—q) — U—¢%) (8¢Qq)U—9)* + ¢(¢*)d(—¢°)?)
— g2 e 8 N1E  fofi (8 fShsfi2 s n fs f_?)
fi2 fafs  fafe fifsfe 315 f3f% fé
f1f4f6 _ Rfifg n fif2f2 (8 f12)
f2f3f12 Ja f3fa fa
_ f2f3f6 fifs < fi f1)
B Ja * fafafa 4f12 * f3

(by (34))
Now, by (33) it follows that

4f30(—=°)—q) — Q(—¢*) (8¢Q2q)2—q)* + ¢(¢*)d(—4*)?)

_ Ghiif, hf (ﬁ}cg”%)
7 +3%

fa Jafsfa

_s fife
fofifa

Thus,

- n_0=0) fifs L BR
;UO(6n+4)q _3¢(—(1)4f2f§f4 fifa’

completing the proof. O
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S
G f2° 13
Zv0(12n+4)q f211f3;7 (60)
n=0
vo(12n+4) =0 (mod 3).

Proof. Since

is an even function, taking the even part on both sides of (5

> wo(12n 4 4)¢”" =
n=0

Using (18) it follows that

Replacing ¢2 by ¢, (60) follows. O

Theorem 5.3. We have

518
fi

9) we obtain

WY
fi E(h)

From (61) it follows that, for alln >0,

200(12n+4)q2 3f2ff6 fglifg
ivo(12n+9)q" fz;:ffG. (61)
n=0
vo(12n4+9) =0 (mod 9).

Proof. By (43) we have

Z vo(12n + 9)¢*" 2 =

n=0

This means

fefof1s
f3

2 ¢(*q9)
o)

342 fgfé)
V)

(¢< q>2f“ 46—~

H4Q(—

f2f3f6
bit

+46(=¢*)2(-q)

2f6

<“ “V
2 r4
q)2f22f32)

1252
3
9Z$_i;if§f€, (by (8) and (31))

+40(—

which, after simplification, gives us (61). O
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6. Congruences involving other moduli

In this section, we prove a number of congruences moduli certain numbers of the form 23%57. In some
of the following proofs we make use of the well-known results stated in the two lemmas below.

Lemma 6.1. Given a prime p and positive integers k and m, we have

W= 3 (mod 4), (62)
7" = for (mod p). (63)

Proof. These two congruences follow directly from the binomial theorem. 0O

Lemma 6.2. The following identities hold true:

oo

fi= Y0 (=1)ngriem, (64)
=) (=1 @2n + g/, (65)
n=0

Proof. Equation (64) is Euler’s Pentagonal Theorem given in (7). Equation (65) is Jacobi’s identity (see [5,
Eq. (1.3.24)]). O

Theorem 6.3. We have

Z (12n + 10)q _12f2f7ff. (66)

From (66) it follows that, for alln >0,
vo(12n+10) =0 (mod 12).

Proof. Taking the odd part on both sides of (59) we obtain

i vo(12n + 10)g*" ! = f2ff6 0] (f1 )

n=0

Using (18) it follows that

- 3 3 2 p4
S iz 4 10)g2e0t = g3 IS
n=0 f4 2

Dividing by ¢ and replacing ¢ by ¢ (66) follows. O
Theorem 6.4. We have

i 10 £3 £2 19 5 £6 £2
200(24n+21)q"=36f2 131318 +36f2 f3{6 + 144q f2f3f4f12.

(67)
= 1°fts s 13
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From (67) it follows that, for alln >0,
vo(24n+21) =0 (mod 36).
Proof. By Theorem 5.3 we have
- 2n+1 __ 4 f_SL
> wo(24n +21)q =9f3f60 (=3 ).
2 5Nz
By (18) and (45) it follows that
10 £2 £2 ¢4 19 £3
O(fs )—4q 4 .];%f82f12+4q 42£6£12+16 3f4f;?gf8f24~
it I3 [ f3° [ f33 %
Then,
Z,UO 24n+ 21) 2n+1 __ — 36 40f6f8f12 4 36(] legfélflz + 144 3f4f6f8f24
2 7572, AR TR,
After dividing both sides of this last expression by ¢ and replacing ¢* by ¢, we obtain (67). O
Theorem 6.5. We have
(68)

(mod 20), for ¢t € {13,17},

vo(20n +¢t) =0
(mod 180), for t € {33,57}.

vo(60n +1¢t) =0

Proof. From (41), it follows that
o0

> wtn+ 1) = - 2 3 g

n=0

Since f7 = fsk (mod 5), there is a power series k(¢°) € Z[[¢°]] such that

5
f% = % =k(¢°) (mod 5).
Thus
S wn+ )" = k(g®) > (-1)"¢®" T2 (mod 5).

Since (3n? —n)/2 # 3,4 (mod 5) it follows that the coefficients of ¢°" "3 and ¢°"** in >"°7 jvo(4n + 1)

. 2
are congruent to 0 (mod 5), which proves that vo(20n +t) =0 (mod 5), for t € {13,17}
In order to complete the proof of (68), we take identity (41) modulo 4 to produce

Y woldn+1)g" = £2 =3 (=1)"(2n + 1)g" ") (mod 4),
n=0

n=0
using (62) and (65). Since n(n + 1) # 3,4 (mod 5) it follows that the coefficients of ¢°**3 and ¢°"*+* in
Y meo Vo(4n + 1)g™ are congruent to 0 (mod 4), which completes the proof of (68).

00
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To prove (69) we use (61), from which it follows that

fifs
fafs’

Z vo(12n + 9)¢™ = 9h(q)
n=0

where

f5 5
h(Q) = 2103 .
1

There is a power series g(q°) € Z[[¢]] such that h(q) = g(¢°) (mod 5), since f? = f5 (mod 5). Note that

(0:0%(@°;¢%) (7;9)2.(¢°;¢%) o

(230%)o(@®3 8300 (62565)00 (0% 34%) 00 (4% 4%) 00 (¢35 ¢%) o

(050)00(q:0%) 00 (@%50) 00 (47 5 6%
(4%50%) 00 (0% 5 4%) 0 (6% 5 4°) o

(450 00(056°) 00 (0%5 %) 0o (%5 47 ) o
(450300 (=43 0®) 00 (0?5 6% )00 (6% 5 63) 0 (03 1 43) 0

(75000 (¢*;¢%) 0
(=0:6%) 00 (—? 1 ®) e (%1% )0

Using (6) and (7), it follows that

fifs _ f(=a.—a*)f(=d’,—4°)
faf3 f(a%q) .

On the other hand, taking = —¢g and A = —1 in (12), we get

f(=¢*,—°) f(—q,—¢°) .

f(qﬁaqg) - Qf(q97 1) = f(q2;q)

Combining this with (70) yields

> w0120 +9)¢" = 9h(q)(f(d°. ") — af(d, 1)

=99(¢")(f(¢°,¢*) — af(¢°,1)) (mod 5).

Therefore, to prove that vy(60n 4+ 33) = vo(60n + 57) = 0 (mod 45), it suffices to prove that both series
f(q®% ¢®) and qf(¢°, 1) contain only powers of ¢ with exponents congruent to 0, 1, and 3 modulo 5. Note
that

o0 oo
6 3 6n(n+1) 3n(n—1) 9n2+43n
f=> a7 ¢ 7 => q
n=—oo n=-—oo
and

9n? + 3n

5 =22 -n=0,1,3 (mod 5), Vn € Z.

Also, by (5),
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9n(n+1)
af(@®,1) = 2q9(¢° —ZZ i

and
W‘FIEZH(R—FI)-FIEO,L?) (mod 5), Vn € N.
Therefore
i (12(5n+j) +9)¢" =0 (mod 45), for j =2,4. (71)

To finish the proof of (69) it suffices to show that vo(12(5n 4 j) +9) =0 (mod 4), j = 2,4.
Consider again the right hand side of (61),

NC VI

3
5 f1 9

1 _3\2
d)(fq)‘*(b( q°)".

We have ¢(—q) = 1 + 2u(q), where u(q) = Y5>, (~1)¥¢*" € Z[[¢]] and, hence, ¢(—¢)? = 1 (mod 4).
Likewise, ¢(—¢®)2 =1 (mod 4). Therefore,

of2fifs _ f2 (mod 4).
i
Replacing ¢ by ¢° in Jacobi’s identity (65) we get
of2fsfo f3 fo _ Z(—l)”(2n +1)¢™ % (mod 4). (72)

Since all the exponents in the right hand side of (72) are congruent to 0, 1, or 3 modulo 5, it follows that
v (60n 4 33) = vo(60n 4+ 57) =0 (mod 4), which completes the proof of (69). O

Theorem 6.6. For alln > 0,
vo(36n+t) =0 (mod 36), fort e {21,33}.

Proof. By Theorem 5.3, we know that vy(36n+¢) =0 (mod 9), for ¢t € {21,33}. Thus, we shall prove that
vo(36n +t) =0 (mod 4), for ¢ € {21,33}. Taking (61) modulo 4 we obtain

0 4 r4
zpw%+mw=ﬁﬁﬁzﬁﬁ<mﬂ@
1

n=0

from which it follows that the coefficients of ¢*"*! and ¢*"*2 in > ° jvo(12n + 9)¢™ are congruent to 0
modulo 4, completing the proof. O

Theorem 6.7. For all n > 0,

vo(48n +28) =0 (mod 48), (73)
vo(48n +40) =0 (mod 48). (74)
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Proof. By (53) and (4), it follows that

0 1f 12 12 *©
> wo(16n +12)¢" = 162234 = 16}312 =162 Zq" (n+1),
n=0 1 n=0

Since n(n +1) #1 (mod 3),Vn > 0, and

Z vo(16n + 12)¢" = 16 Z gt (mod 3),
n=0

3nt+1 in this last expression is congruent to 0 (mod 3), which completes

we deduce that the coeflicient of ¢
the proof of (73).

By (50), we have

2" 8f212 13 —8f—§i (¢) (mod 3).

(oo}
> wo(16n +8)" = 8-

nE SRR
Since ¢(q) = 14235222 ¢" and n® # 2 (mod 3) for any n, we have that the coefficient of ¢3+2 in fl{‘%;f
is a multiple of 6. Hence (74) follows. O
Theorem 6.8. For alln > 0,
vo(96n +28) =0 (mod 192). (75)

Proof. By Corollary 4.12, we already know that vo(32n + 28) = 0 (mod 64). Using (55) and (4) it follows
that

Vo n q =4q f19 =q flg ’l/}(Q) =475 (Q) (HlO ) ( )
n=0 1 1 3

By (4), we have ¥(q) = _,>¢ q""*t1/2 Since n(n +1)/2 # 2 (mod 3),Vn > 0, we see that the coefficient
of ¢® on both sides of (76) is congruent to 0 (mod 3), which completes the proof of (75). O

Theorem 6.9. For alln > 0,
vo(80n +t) =0 (mod 5), fort € {32,48,52,68}.

Proof. Taking the even part on both sides of (51) using (18) and (20) and replacing ¢* by ¢, we obtain

7+Zvo (16n)q 3° + 24q f2f4
T2 f 8flo 10
1 30 2 5£5
= S g R
By (3) and (8) we have
Boa= 3 oo
f2 n=-—oo
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Then, by (64), it follows that

l\D|P—‘

f230 = 1\, n? f25f4§ = _1\n,2(3n%—n)
ZUO 16n)q Z (—1)"g"™ +24q 770 Z (—1)"q .
1 J4 1

n=—oo n=—oo

Using (63), it follows that

1 1 f6 n 2
1+Zv0(16n)q =3 + §f§}0220 Z (—1)"q
J10f20

+ 24q
N

ST (=1 (mod 5).

n=—oo

Since n? # 2,3 (mod 5) and 2(3n? — n) # 1,2 (mod 5), then the coefficients of ¢°**2 and ¢°"3 in
>0 o vo(16n)g™ are congruent to 0 (mod 5), which implies that

vo(80n + 32) = 1p(80n 4+ 48) =0 (mod 5).

In order to prove that vo(80n +t) = 0 (mod 5), for t € {52,68}, we consider (54), from which, after
taking the even parts on both sides, we are left with

0 23 10
vo(16n + 4)q"™ + 16
2_: of 4" =35 + 160G

Recalling that ¢(q)* — ¢(—q)* = 16q1(¢*)* (see Entry 25 (vii) in [4, p. 40]) it follows that

o(—q)* = d(q)* +4q¥(¢*)*  (mod 5).

Then,
- n_ g f3/3 ( f4) i°
2::110(16714—4)(1 ;\AR a fz f1f2
3L (600 + aquia?)?) + 40 2
I 2 fe
B3 i
=3 5 (—q)* +4qf1f2 (mod 5)
f4 7
f + 4955 10, (mod 5)
= 30(¢%) +4¢220(~q) (mod 5)
5
—32(]"("“ —|—4qf20 Z "2 (mod 5).
n=0 n=-—00

Since n(n + 1) # 3,4 (mod 5) and n? # 2,3 (mod 5), then the coefficients of ¢°"*3 and ¢°*** in
oo o vo(16n 4 4)¢g™ are congruent to 0 (mod 5), which completes the proof. O
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7. Concluding remarks

While we have provided elementary proofs of numerous congruences satisfied by vg(n), computational
data seems to indicate that other congruences may exist. We leave such investigations to the interested
reader.
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