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In this paper, a diffusive host-pathogen model with horizontal transmission and 
heterogeneous parameters is proposed and analyzed. We first prove the global 
existence of solution and a global attractor of the model. We then give the threshold 
dynamics for extinction and persistence of the disease. Our result suggests that by 
adding horizontal transmission, even a homogeneous case, the basic reproduction 
number is larger than the case without horizontal transmission mechanism. This 
may lead to over-evaluating the threshold role of the basic reproduction number. 
Finally, we also carry out the bifurcation analysis of steady state solutions by 
considering disease-induced mortality as the main bifurcation parameter, and such 
results can help us better understanding how it affects the spatial pattern of the 
pathogen.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Since the pioneering work of Anderson and May [1], pathogens have been shown to be an important 
factor in regulating host behavior and viability, and as a consequence the host-pathogen models have 
attracted much attention of many researchers. The pathogens may survive in the environment for several 
decades, a lot of research on host-parasite systems has treated that disease transmission can occur when 
contagious infection between host and parasite/disease individuals or between members of the same species; 
and vertically from mother to offsprings. On the other hand, density-dependent host reproduction and 
host movement behavior can help better understand the mechanisms of spread of infectious diseases. In a 
recent work, Dwyer [6] considered spatial model with a logistic growth for the hosts, given by the following 
system
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
= dΔu1 − ru1

(
1 − u1 + u2

K

)
− βu1u3, x ∈ R, t > 0,

∂u2

∂t
= dΔu2 + βu1u3 − αu2 − r

u1 + u2

K
, x ∈ R, t > 0,

∂u3

∂t
= −δu3 + λu2, x ∈ R, t > 0,

(1.1)

where the pathogen u3 is assumed to be immobile in the environment, and the host population u1, u2
are structured by density-dependent host reproduction (a logistic growth) with one dimensional Laplacian 
operator accounting for the host movement behavior. r represents the reproductive rate of host population; 
K is the carrying capacity. Under the assumption that all parameters are constants, Dwyer studied how 
these parameters affect the spatial spread of the pathogen by considering the existence traveling wave and 
spreading speed.

However, environment in reality typically varies with respect to space and time, and this heterogeneity 
may directly have influences on the disease invasion and host persistence. Subsequently, Wang et al. [26]
modified the model (1.1) based on the following three facts: i) the population habitat should be a bounded 
spatial domain with zero-flux boundary condition; ii) space-dependent parameters should be used due to 
spatial heterogeneity; iii) consumption of pathogen by the hosts must be considered. The model studied in 
[26] takes the following form,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
= dΔu1 − ru1

(
1 − u1 + u2

K(x)

)
− β(x)u1u3, x ∈ Ω, t > 0,

∂u2

∂t
= dΔu2 + β(x)u1u3 − αu2 − r

u1 + u2

K(x) u2, x ∈ Ω, t > 0,

∂u3

∂t
= −δu3 + λ(x)u2 − β(x)(u1 + u2)u3, x ∈ Ω, t > 0,

∂u1

∂ν
= ∂u2

∂ν
= 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = u0
i (x), x ∈ Ω, i = 1, 2, 3.

(1.2)

Here spatial region Ω is assumed to be a bounded domain in Rn(n ≥ 1) with smooth boundary ∂Ω. Ω
is isolated from outside for the host, implying the homogeneous Neumann boundary condition; ∂

∂ν means 
the normal derivative along ν to ∂Ω; The positive functions β(x) and λ(x) represent the rates of disease 
transmission, and shedding rate at position x, respectively. K(x) is the carrying capacity depending position 
x. By using theories of monotone dynamical systems and uniform persistence, the authors in [26] studied the 
disease extinction and persistence. Further, a bifurcation analysis for steady state solutions are performed, 
which indicates that a backward bifurcation may occur when the parameters are space-dependent.

Due to the mathematical complexity, the model (1.2) assume that both susceptible and infectious hosts 
have the same diffusion rate. It is critical important to show prove the eventual uniform boundedness of 
solution of (1.2), which in turn ensures the existence of the global attractor. However, as pointed in Wu and 
Zou [28], susceptible and infectious hosts may disperse at different rates, and whether some new phenomenon 
or results in disease spread under different host movement behavior can occur? So considering the fact that 
susceptible and infectious hosts may disperse at different rates can help better understand the mechanisms 
of spread of infectious diseases. On the other hand, inspired by [26], Wu and Zou [28] used linear source 
growth term and bilinear incidence rate for the host (compare to the model (1.2)) to investigate the effect 
of spatial heterogeneity and distinct diffusion rates on the long term dynamics of diffusive host-pathogen 
models. They investigated the asymptotic profiles of steady states as one diffusion rate approaches zero and 
found an interesting phenomenon that the infected hosts will concentrate on certain points which can be 
characterized as the pathogen’s most favored sites, provided that the dispersal rate of infected hosts is very 
small (see Section 4.2 in Wu and Zou [28]).
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However, in the model (1.2) (and also the model in [28]), horizontal transmission is ignored (hence there 
is no infection pathway mechanism between susceptible and infectious hosts) so that even in the absence 
of pathogen, the host population would arrive at steady state level. To make things not too complicated, 
we modify a little bit in model (1.2) by adding horizontal transmission between susceptible and infectious 
hosts. With these considerations, we consider the following diffusive system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dSΔS + r

(
1 − S + I

K(x)

)
S − β1(x)SI − β2(x)SP, x ∈ Ω, t > 0,

∂I

∂t
= dIΔI + β1(x)SI + β2(x)SP − (b + c)I − r

S + I

K(x) I, x ∈ Ω, t > 0,

∂P

∂t
= λ(x)I −mP − β3(x)(S + I)P, x ∈ Ω, t > 0,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, P (x, 0) = P0(x) ≥ 0, x ∈ Ω,

(1.3)

with

∂S

∂ν
= ∂I

∂ν
= 0, x ∈ ∂Ω, t > 0. (1.4)

Here S(x, t), I(x, t) stand for the density of susceptible hosts, infective hosts at position x and time t, 
respectively, while P (x, t) corresponds to the concentration of pathogen particles at position x and time 
t; dS > 0 and dI > 0 are positive constants measuring the mobility of susceptible and infected hosts, 
respectively. The horizontal transmission and the pathogen transmission are modeled by the mass action 
mechanism β1(x)SI and β2(x)SP with transmission rate β1(x) and β2(x). c and m are the natural death 
rate of infected hosts and the decay rate of pathogen particles. b is the rate of disease-induced mortality. 
λ(x) is the rate of production of pathogen particles by infected hosts. β3(x)(S + I)P is the consumption of 
the pathogen particles; K(x) is the carrying capacity. All the location-dependent parameters β1(x), β2(x), 
β3(x), λ(x) and K(x) of system (1.3) are continuous, strictly positive and uniformly bounded on Ω. The 
initial conditions, (S0(x), I0(x), P0(x)), x ∈ Ω are nonnegative continuous functions.

The organization of this paper is as follows. In Section 2, we will firstly summarize the well-posedness of 
(1.3), such as the existence of a unique mild solution of (1.3) and uniform boundedness of all solutions. In 
Section 3, we studied the extinction of the disease, the basic reproduction number and principal eigenvalue 
and prove uniform persistence of system (1.3) by theories of monotone dynamical systems and uniform per-
sistence. We also carry out a bifurcation analysis for steady state solution of the system (1.3) by bifurcation 
theory. Section 5 is devoted to some detailed conclusions and discussions.

2. Well-posedness of the model

We first set X := C(Ω̄, R3) be the Banach space with the supremum norm ‖ · ‖X. Define its cone by 
X+ := C(Ω̄, R3

+), then (X, X+) is a strongly ordered Banach space. In this section, we aim to prove that 
the solution of the system (1.3) and (1.4) exist globally for t ∈ [0, ∞) in X+.

To this end, we take advantage of a semigroup approach. Denote by Γ the Green function associated with 
∂ν
∂t = Δν in Ω subject to the Neumann boundary condition. Suppose that A1(t), A2(t) : C(Ω̄, R) → C(Ω̄, R)
are the C0 semigroups associated with dSΔ and dIΔ − (b + c) subject to the Neumann boundary condition, 
respectively. Hence, we obtain that for any ϕ ∈ C(Ω̄, R), t ≥ 0,

(A1(t)ϕ)(x) =
∫
Ω

Γ(dSt, x, y)ϕ(y)dy,

and
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(A2(t)ϕ)(x) = e−(b+c)
∫
Ω

Γ(dIt, x, y)ϕ(y)dy. (2.1)

It then follows from [21, Section 7.1] that for any t > 0, Ai(t) : C(Ω̄, R) → C(Ω̄, R)(i = 1, 2) is strong 
positive and compact. Denote

(A3(t)ϕ)(x) = e−mtϕ(x).

Hence, A(t) := (A1(t), A2(t), A3(t)) : X → X, t ≥ 0, formulate a C0 semigroup (see, for example, [19]).
Let F = (F1, F2, F3) : X+ → X be defined by

F1(φ)(x) = r

(
1 − φ1 + φ2

K(x)

)
φ1 − β1(x)φ1φ2 − β2(x)φ1φ3,

F2(φ)(x) = β1(x)φ1φ2 + β2(x)φ1φ3 − r
φ1 + φ2

K(x) φ2,

F3(φ)(x) = λ(x)φ2 − β3(x)(φ1 + φ2)φ3,

for x ∈ Ω̄ and φ = (φ1, φ2, φ3) ∈ X+. It follows that (1.3) can be formulated as the following integral 
equation

u(t) = A(t)φ +
t∫

0

A(t− s)F(u(·, s))ds.

The following results concern the local solution of the system (1.3) and (1.4) on X+.

Lemma 2.1. For any initial data φ := (φ1, φ2, φ3) ∈ X+, (1.3) with (1.4) admits a unique solution 
u(·, t; φ) := (S(·, t), I(·, t), P (·, t)) on (0, τmax) with u(·, 0; φ) = φ, where τmax ≤ ∞. Furthermore, for 
t ∈ (0, τmax), u(·, t; φ) ∈ X+.

Proof. Since A corresponds to the linear homogeneous part of (1.3) and the domain of A is

D(A) = {φ : ∂φ
∂ν

= 0 on ∂Ω, Aφ ∈ C(Ω̄,R3)}.

It is easy to check that A is the infinitesimal generator of a C0-semigroup on X. Let β̄1 := maxΩ̄{β1(x)}, β̄2 :=
maxΩ̄{β2(x)}, β̄3 := maxΩ̄{β3(x)} and K̄ := minΩ̄{K(x)}. We can check that

lim
h→0+

dist(φ + hF(φ),X+) = 0, ∀ φ ∈ X+. (2.2)

In fact, for any φ ∈ X and h ≥ 0, we have

φ + hF(φ) =

⎛
⎜⎜⎜⎝

φ1 + h
(
r
(
1 − φ1+φ2

K(x)

)
φ1 − β1(x)φ1φ2 − β2(x)φ1φ3

)
φ2 + h

(
β1(x)φ1φ2 + β2(x)φ1φ3 − r φ1+φ2

K(x) φ2

)
φ3 + h [λ(x)φ2 − β3(x)(φ1 + φ2)φ3]

⎞
⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎝

φ1

[
1 − h

(
r
K̄

(φ1 + φ2) + β̄1φ2 + β̄2φ3

)]
φ2

[
1 − h r

K̄
(φ1 + φ2)

]
φ3[1 − hβ̄3(φ1 + φ2)]

⎞
⎟⎟⎟⎠ .
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By [21, Corollary 4], (1.3) has a unique positive solution (S(·, t), I(·, t), P (·, t)) on (0, τmax), where 0 <
τmax ≤ ∞. �

In what follows, we prove that the local solution can be extended to a global one, that is τmax = ∞. To 
this end, we only need to prove that the solution is bounded in Ω × (0, τmax).

We first give the following lemma, which will be used later.

Lemma 2.2. [30, Theorem 3.1.5] For any dW , r > 0 and W 0(x) 	≡ 0, the following diffusive logistic equation,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂W

∂t
= dWΔW + r

(
1 − W

K(x)

)
W, x ∈ Ω, t > 0,

∂W

∂ν
= 0, x ∈ ∂Ω, t > 0,

W (x, 0) = W 0(x), x ∈ Ω,

(2.3)

admits a unique positive steady state W ∗(x), which is globally asymptotically stable in C(Ω̄, R).

Lemma 2.3. For any initial data φ ∈ X+, system (1.3) has a unique solution u(·, t; φ) := (S(·, t; φ), I(·, t; φ),
P (·, t; φ)) on [0, ∞) with u(·, t; φ) = φ. The semiflow Φ(t) : X+ → X+ generated by (1.3) is defined by

Φ(t)φ = (S(·, t;φ), I(·, t;φ), P (·, t;φ)), ∀x ∈ Ω̄, t ≥ 0. (2.4)

Furthermore, Φ(t) : X+ → X+ is point dissipative.

Proof. First, we prove that S(x, t) is ultimately bounded. It follows from the third equation of (1.3), it is 
easy to see that S(x, t) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂S

∂t
≤ dSΔS + r

(
1 − S

K(x)

)
S, x ∈ Ω, t > 0,

∂S

∂ν
= 0, x ∈ ∂Ω, t > 0.

(2.5)

From (2.3), we know (2.5) is bounded and the standard parabolic comparison theorem implies that S(x, t)
is uniformly bounded. Further, from Lemma 2.1 and the comparison principle, we have

lim sup
t→∞

S(x, t) ≤ W ∗(x), uniformly for x ∈ Ω̄, (2.6)

that is, S(x, t) is ultimately bounded in the sense that ‖S(x, t)‖ ≤ M0 for some positive constant M0. By 
using the divergence theorem, we integrate first two equations of (1.3) and adding them up yields

∂

∂t

∫
Ω

(S(x, t) + I(x, t))dx =
∫
Ω

rSdx−
∫
Ω

r
(S + I)2

K(x) dx−
∫
Ω

(b + c)Idx

≤
∫
Ω

r(S + I)dx−
∫
Ω

r
(S + I)2

K(x) dx.

It follows that

lim sup(‖S(x, t)‖1 + ‖I(x, t)‖1) ≤ M11,

t→∞
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with M11 = |Ω|r/K∗. Thus, the solution (S, I) of (1.3) satisfies the L1 bounded estimate. Then, from the 
third equation of (1.3), we have

∂

∂t

∫
Ω

Pdx =
∫
Ω

λ(x)Idx−
∫
Ω

mPdx−
∫
Ω

β3(x)(S + I)Pdx

≤ λ∗M11 −m

∫
Ω

Pdx.

It follows that

lim sup
t→∞

(‖P (x, t)‖1) ≤ M12,

i.e., the solution P of (1.3) satisfies the L1 bounded estimate.
Through the above, we can get there exists a positive constant M1, such that

lim sup
t→∞

(‖S(x, t)‖1 + ‖I(x, t)‖1 + ‖P (x, t)‖1) ≤ M1. (2.7)

Thus, the solution of (1.3) satisfies the L1 bounded estimate. Recall that lim supt→∞ ‖S(·, t)‖ ≤ M0. Next 
we only need to verify the solution (I, P ) of (1.3) to be ultimately bounded. To this end, we first verify it 
satisfies the L2k bounded estimate, that is, for k ≥ 0, there exists a positive constant M2k independent of 
u0 = (S0(x), I0(x), P 0(x)) ∈ X+ such that it satisfies the following estimate

lim sup
t→∞

(‖I(·, t)‖2k + ‖P (·, t)‖2k) ≤ M2k , ∀ t > T, (2.8)

for some large time T > 0. We will prove (2.8) holds by the method of induction. The case for k = 0 is valid 
in (2.7). We now assume that (2.8) is true for k − 1, that is, there exists M2k−1 > 0 such that

lim sup
t→∞

(‖I(·, t)‖2k−1 + ‖P (·, t)‖2k−1) ≤ M2k−1 , ∀ t > T. (2.9)

Multiplying the second equation of (1.3) by I2k−1 and integrating over Ω, we get

1
2k

∂

∂t

∫
Ω

I2k

dx ≤ dI

∫
Ω

I2k−1ΔIdx +
∫
Ω

β1(x)SI2k

dx +
∫
Ω

β2(x)SI2k−1Pdx−
∫
Ω

(b + c)I2k

dx. (2.10)

Recall that

dI

∫
Ω

I2k−1�Idx ≤ −dI

∫
Ω

∇I · ∇I2k−1dx = − (2k − 1)dI
∫
Ω

(∇I · ∇I)I2k−2dx

= − 2k − 1
22k−2 dI

∫
Ω

|∇I2k−1 |2dx.

Hence (2.10) becomes

1
2k

∂

∂t

∫
Ω

I2k

dx ≤ −Dk

∫
Ω

|∇I2k−1 |2dx +
∫
Ω

β1(x)SI2k

dx +
∫
Ω

β2(x)SPI2k−1dx−
∫
Ω

(b + c)I2k

dx, (2.11)

where Dk = 2k−1
2k−2 dI .
2
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By lim supt→∞ ‖S(·, t)‖ ≤ M0, there exists t0 > 0 such that
∫
Ω

β1(x)SI2k

dx ≤ β1(M0 + 1)
∫
Ω

I2k

dx, for t ≥ t0,

and ∫
Ω

β2(x)SI2k−1Pdx ≤ β2(M0 + 1)
∫
Ω

PI2k−1dx, for t ≥ t0. (2.12)

Applying Young’s inequality: ab ≤ εap + ε−
q
p bq, where a, b, ε > 0 and 1

p + 1
q = 1. One can estimate (2.12)

by setting ε1 = m
4β2(M0+1) , p = 2k and q = 2k/(2k − 1) as follows,

∫
Ω

PI2k−1dx ≤ m

4β2(M0 + 1)

∫
Ω

P 2k

dx + Cε1

∫
Ω

I2k

dx, for t ≥ t0,where Cε1 = ε
− 1

2k−1
1 .

Thus, (2.11) can be estimated by

1
2k

∂

∂t

∫
Ω

I2k

dx ≤ −Dk

∫
Ω

|∇I2k−1 |2dx + m

4

∫
Ω

P 2k

dx + Ck

∫
Ω

I2k

dx, (2.13)

where Ck = β1(M0 + 1) + β2(M0 + 1)Cε1 .
Multiplying the third equation of (1.3) by P 2k−1 and integrating over Ω, we get

1
2k

∂

∂t

∫
Ω

P 2k

dx ≤
∫
Ω

λ̄P 2k−1Idx−
∫
Ω

mP 2k

dx. (2.14)

Again applying Young’s inequality (by setting ε2 = m
4λ̄ , p = 2k/(2k − 1) and q = 2k), we have

∫
Ω

P 2k−1Idx ≤ m

4λ̄

∫
Ω

P 2k

dx + Cε2

∫
Ω

I2k

dx,where Cε2 = ε1−2k

2 .

Hence (2.14) becomes

1
2k

∂

∂t

∫
Ω

P 2k

dx ≤ − 3m
4

∫
Ω

P 2k

dx + λ̄Cε2

∫
Ω

I2k

dx. (2.15)

Consequently, from (2.13) and (2.15), we have

1
2k

∂

∂t

∫
Ω

(I2k

+ P 2k

)dx ≤ −Dk

∫
Ω

|∇I2k−1 |2dx + Ek

∫
Ω

I2k

dx− m

2

∫
Ω

P 2k

dx, (2.16)

where Ek = Ck + cCε2 .
Applying interpolation inequality: for any ε > 0, there exists Cε > 0 such that

‖ξ‖2
2 ≤ ε‖∇ξ‖2

2 + Cε‖ξ‖2
1,where ξ ∈ W 1,2(Ω).

Let ε3 = Dk/(2Ek), ξ = I2k−1 , then
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−Dk

∫
Ω

|∇I2k−1 |2dx ≤ −2Ek

∫
Ω

I2k

dx + 2EkCε3

⎛
⎝∫

Ω

I2k−1
dx

⎞
⎠

2

.

Thus (2.16) becomes

1
2k

∂

∂t

∫
Ω

(I2k

+ P 2k

)dx ≤ −r∗

∫
Ω

(I2k

+ P 2k

)dx + 2EkCε3

⎛
⎝∫

Ω

I2k−1
dx

⎞
⎠

2

,

where r∗ = min{Ek, 
m
2 }.

It then follows from (2.8) that lim supt→∞
∫
Ω
I2k−1

dx ≤ M2k−1

2k−1 , which in turn implies that

lim sup
t→∞

(‖I(·, t)‖2k + ‖P (·, t)‖2k) ≤ M2k ,with M2k = 2k

√
2EkCε3

r∗
M2k−1 .

Thus, according to continuous embedding Lq(Ω) ⊂ Lp(Ω), q ≥ p ≥ 1, we can conclude that for any p > 1, 
there exists a positive constant Mp, independent of initial conditions, such that

lim sup
t→∞

(‖I(·, t)‖p + ‖I(·, t)‖p) ≤ Mp.

By using the same arguments as those in [28, Lemma 2.4], we have that there exists a positive constant 
M∞ such that lim supt→∞ ‖I(·, t)‖ ≤ M∞, lim supt→∞ ‖P (·, t)‖ ≤ M∞. Thus, the solution exists globally 
for all t ∈ [0, ∞), and moreover, Φ(t) : X+ → X+ is point dissipative. �

In what follows, we consider asymptotic smoothness of the solution semiflow Φ(t), as there is no diffusion 
term in the third equation in (1.3). To overcome this problem, we introduce the Kuratowski measure of 
noncompactness, κ(·),

κ(B) := inf{r : B has a finite cover of diameter < r},

for any bounded set B. Then B is precompact if and only if κ(B) = 0. We next claim that Φ(t) is a 
κ-contraction in the sense that there exists a continuous function k(t) : R+ → R+ with 0 ≤ k(t) < 1 such 
that for any t > 0 and bounded set B, {Φ(s)B, 0 ≤ s ≤ t} is bounded and κ(Φ(t)B) ≤ k(t)κ(B).

Lemma 2.4. Φ(t) is κ-contracting in the sense that

lim
t→∞

κ(Φ(t)B) = 0 for any bounded set B ⊂ X+.

Proof. Let

G(S, I, P ) = −mP + λ(x)I − β3(x)(S + I)P

be the right hand of the third equation of (1.3). Then

∂G(S, I, P )
∂P

= −m− β3(x)(S + I) ≤ −m, (S, I, P ) ∈ X+.

Based on this fact, Φ(t) can be decomposed as Φ(t) = Φ1(t) + Φ2(t), t ≥ 0, where



Y. Shi et al. / J. Math. Anal. Appl. 481 (2020) 123481 9
Φ1(t)u0 =

⎧⎨
⎩S(·, t;u0), I(·, t;u0),

t∫
0

e
∫ t
s
(m+S(·,l)+I(·,l))dlλ(x)I(·, s;u0)ds

⎫⎬
⎭ , t ≥ 0,

and

Φ2(t)u0 =
{

0, 0, e−
∫ t
0 (m+S(·,l)+I(·,l))dlP 0(x)

}
, t ≥ 0.

By Lemma [28, Lemma 2.5], Φ1(t)B is precompact for any t > 0. Hence, κ(Φ1(t)B) = 0. Moreover, the 
operator norm of Φ2(t) can be estimated as

‖Φ2(t)‖ = sup
ψ∈X

‖Φ2(t)ψ‖X
‖ψ‖X

≤ e−mt sup
ψ∈X

‖ψ‖X
‖ψ‖X

= e−mt.

It then follows that for t > 0,

κ(Φ(t)B) ≤ κ(Φ1(t)B) + κ(Φ2(t)B) ≤ 0 + ‖Φ2(t)‖κ(B) ≤ e−mtκ(B).

Thus, Φ(t) is a κ-contraction on X+ with the contraction function e−mt. �
The following result reveals that solutions of system (1.3) converge to a compact attractor in X+, which 

is just a consequence of applying the general results in [7, Theorem 2.4.6].

Theorem 2.1. Φ(t) admits a connected global attractor on X+.

3. Threshold dynamics

3.1. Extinction

Let T (t) : C(Ω̄, R2) → C(Ω̄, R2) be the semigroup associated to the following linear problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I

∂t
= dIΔI + β1(x)S0(x)I + β2(x)S0(x)P − (b + c)I, x ∈ Ω, t > 0,

∂P

∂t
= λ(x)I −mP, x ∈ Ω, t > 0,

∂I

∂ν
= 0, x ∈ ∂Ω, t > 0,

I(x, 0) = I0(x), P (x, 0) = P0(x), x ∈ Ω.

(3.1)

Since (3.1) is cooperative, T (t) is a positive C0-semigroup on C(Ω̄, R2). It is easy to see that T (t) has the 
generator

B =
(
dIΔ + β1(x)S0(x) − (b + c) β2(x)S0(x)

λ(x) −m

)
.

It then follows from [25, Theorem 3.5] that B is a closed and resolvent positive operator.
Substituting I(x, t) = eμtψ2(x) and P (x, t) = eμtψ3(x) into the first and two equations of (3.1), we can 

get
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μψ2 = dIΔψ2 + β1(x)S0(x)ψ2 + β2(x)S0(x)ψ3 − (b + c)ψ2, x ∈ Ω,

μψ3 = λ(x)ψ2 −mψ3, x ∈ Ω,

∂ψ2

∂ν
= 0, x ∈ ∂Ω.

(3.2)

The existence of the principle eigenvalue of (3.2) is described by the following result.

Lemma 3.1. Let s(B) = sup{Reλ, λ ∈ σ(B)} be the spectral bound of B. Then the following statements hold.

(i) s(B) is the principal eigenvalue of the eigenvalue problem (3.2) associated with a strongly positive 
eigenfunction;

(ii) s(B) has the same as ξ0, where ξ0 is the principal eigenvalue of the eigenvalue problem

⎧⎪⎪⎨
⎪⎪⎩

dIΔϕ +
(
β1(x)S0(x) + β2(x)λ(x)S0(x)

m
− (b + c)

)
ϕ = ξϕ, x ∈ Ω,

∂ϕ(x)
∂ν

= 0, x ∈ ∂Ω.

(3.3)

Proof. Proof of (i). We define an one-parameter family of linear operators on C(Ω̄, R):

Lμ = dIΔ + β1(x)S0(x) − (b + c) + β2(x)λ(x)S0(x)
μ + m

, μ > −m.

Let C1 := minx∈Ω̄{β1(x)S0(x)} > 0, C2 := minx∈Ω̄{β2(x)λ(x)S0(x)} > 0. Recall that the following eigen-
value problem

⎧⎨
⎩

η̂ϕ = dIΔϕ− (b + c)ϕ, x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω,

admits one principle eigenvalue, η̂0 = −(b + c), with an associated eigenvector ϕ0 � 0. Denote by μ∗ =
1
2 [(η̂0 −m + C1) +

√
(η̂0 + m + C1)2 + 4C2 the larger root of the following algebraic equation

μ2 + (m− C1 − η̂0)μ− (C2 + m(C1 + η̂0)) = 0.

It follows that μ∗ > −m and

Lμ∗ϕ0 = dIΔϕ0 + β1(x)S0(x)ϕ0 − (b + c)ϕ0 + β2(x)λ(x)S0(x)
μ + m

ϕ0

≥
(
η̂0 + C1 + C2

μ∗ + m

)
ϕ0 = μ∗ϕ0.

With the aid of [29, Theorem 2.3 (i)], we complete the proof of (i).
Proof of (ii). The result directly follows from [29, Theorem 2.3 (ii)], that is, s(B) has the same sign as 

s(L0), where

L0 = dIΔ + β1(x)S0(x) − (b + c) + β2(x)λ(x)S0(x)
m

.

This completes the proof. �
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It is easy to see that system (1.3) has a trivial equilibrium at M1(0, 0, 0) and a disease-free equilib-
rium at M2(S0(x), 0, 0), where S0(x) = W ∗(x) is the unique positive solution of (2.3) which is globally 
asymptotically stable in C(Ω̄, X) for the dynamics of (2.3).

The following result reveals that s(B) is a threshold for disease extinction.

Theorem 3.1. If s(B) < 0, then the disease-free equilibrium (S0(x), 0, 0) is global attractive for the system 
(1.3), that is, for any initial data φ ∈ X+, we have

lim
t→∞

‖(S(x, t), I(x, t), P (x, t)) − (S0(x), 0, 0)‖ = 0.

Proof. We fix ε0 > 0. It then follows from (2.6) that there exists t0 > 0 such that 0 ≤ S(·, t) ≤ S0(x) + ε0
for all t ≥ t0. It then follows from the comparison principle for cooperative systems (see e.g., [12]) that 
(I(x, t), P (x, t)) ≤ (Î(x, t), P̂ (x, t)) on Ω̄ × [t0, ∞), where (Î(x, t), P̂ (x, t)) satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Î

∂t
= dIΔÎ + β1(x)(S0(x) + ε0)Î + β2(x)(S0(x) + ε0)P̂ − (b + c)Î , x ∈ Ω, t > t0,

∂P̂

∂t
= λ(x)Î −mP̂ , x ∈ Ω, t > t0,

∂Î

∂ν
= 0, x ∈ ∂Ω, t > t0.

(3.4)

Since s(B) < 0, there exists a small ε0 > 0 such that s(Bε0) < 0 and it corresponded to an associ-
ated eigenvector (ψε0

2 (x), ψε0
3 (x)) � 0. Suppose that for any given φ ∈ X+, there exists some α > 0

such that (I(x, t0; φ), P (x, t0; φ)) ≤ α(ψε0
2 (x), ψε0

3 (x)), for all x ∈ Ω̄. Recall that (3.4) admits a solution 
αes(Bε0 )(t−t0)(ψε0

2 (x), ψε0
3 (x)), for all t ≥ t0. The comparison principle implies that

(I(x, t0;φ), P (x, t0;φ)) ≤ αes(Bε0 )(t−t0)(ψε0
2 (x), ψε0

3 (x)), t ≥ t0.

It follows that (Î(x, t), P̂ (x, t)) → (0, 0) as t → ∞ uniformly for x ∈ Ω. Therefore, we have (I(x, t), P (x, t)) →
(0, 0) as t → ∞ uniformly for x ∈ Ω. Moreover, from (2.3), we conclude that S(x, t) → S0(x) as t → ∞
uniformly for x ∈ Ω. This completes the proof on the global attractivity of M2. �
3.2. Basic reproduction number and principal eigenvalue

In what follows, we pay attention to original system (1.3). Linearizing system (1.3) at (S0(x), 0, 0), we 
get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dSΔS + r

(
1 − 2S0(x)

K(x)

)
S −

(
r

K(x) + β1(x)
)
S0(x)I − β2(x)S0(x)P, x ∈ Ω, t > 0,

∂I

∂t
= dIΔI + β1(x)S0(x)I + β2(x)S0(x)P − (b + c)I − r

S0(x)
K(x) I, x ∈ Ω, t > 0,

∂P

∂t
= λ(x)I −mP − β3(x)S0(x)P, x ∈ Ω, t > 0,

∂S

∂ν
= ∂I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), P (x, 0) = P0(x), x ∈ Ω.

(3.5)

It is easy to observe that equations for variables I and P in (3.5) are decoupled with the equations of S. 
Then we first consider the following subsystem (which is cooperative):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I

∂t
= dIΔI + β1(x)S0(x)I + β2(x)S0(x)P − (b + c)I − r

S0(x)
K(x) I, x ∈ Ω, t > 0,

∂P

∂t
= λ(x)I −mP − β3(x)S0(x)P, x ∈ Ω, t > 0,

∂I

∂ν
= 0, x ∈ ∂Ω, t > 0,

I(x, 0) = I0(x), I(x, 0) = I0(x), x ∈ Ω.

(3.6)

Denote by Π(t) the solution semiflow of (3.6) on C(Ω̄, R2) with generator

BS0 =
(
dIΔ + β1(x)S0(x) − (b + c) − r S0(x)

K(x) β2(x)S0(x)
λ(x) −m− β3(x)S0(x)

)
:= B + F, (3.7)

where

B =
(
dIΔ − (b + c) − rS0(x)

K(x) 0
λ(x) −m− β3(x)S0(x)

)
, F =

(
β1(x)S0(x) β2(x)S0(x)

0 0

)
.

We can check that BS0 and B are resolvent-positive operators. Let T̃ (t) : C(Ω̄, R2) → C(Ω̄, R2) be the 
C0-semigroup generated B. It follows that B is cooperative for any x ∈ Ω, which implies that T̃ (t) is a 
positive semigroup in the sense that T̃ (t)C(Ω̄, R2

+) ⊆ C(Ω̄, R2
+).

It follows that the next generation operator L := −FB−1 takes the following form

Lφ(x) =
∞∫
0

F (x)T̃ (t)φ(x)dt = F (x)
∞∫
0

T̃ (t)φ(x)dt φ ∈ C(Ω,R2), x ∈ Ω.

Then L is well-defined, continuous, and positive operator on C(Ω̄, R2), which maps the initial infection 
distribution φ to the distribution of the total new infections produced during the infection period. We then 
follow the procedure in [29] to define the spectral radius of L as the basic reproduction number

�0 := r(L) = sup{|λ|, λ ∈ σ(L)},

where σ(L) is the spectrum of L. By the general results in [25] and the same arguments as in [29, Lemma 
2.2], we have the following result.

Lemma 3.2. Then �0 − 1 has the same sign as s(BS0).

Lemma 3.3. Let λ̃0 be the principal eigenvalue of the problem⎧⎪⎪⎨
⎪⎪⎩

dIΔϕ−
(
b + c + r

S0(x)
K(x)

)
ϕ + λ̃

(
β1(x)S0(x) + λ(x)β2(x)S0(x)

m + β3(x)S0(x)

)
ϕ = 0, x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω.

Then �0 = 1/λ̃0.

Proof. In fact, the operator −FB−1 can be computed as

−FB−1ψ = −
(
β1(x)S0(x) β2S

0(x)
0 0

)⎛⎝ (dIΔ − (b + c) − r S0(x)
K(x) )−1 0

λ(x)(dIΔ−(b+c)−r S0(x)
K(x) )−1

− 1

⎞
⎠ψ
m+β3(x)S0(x) m+β3(x)S0(x)
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=

⎛
⎝−

(
β1(x)S0(x) + λ(x)β2S

0(x)
m+β3(x)S0(x)

)(
dIΔ − (b + c) − r S0(x)

K(x)

)−1
β2(x)S0(x)

m+β3(x)S0(x)

0 0

⎞
⎠ψ.

So �0 := r(L) = r(−(β1(x)S0(x) + λ(x)β2(x)S0(x)
m+β3(x)S0(x) )(dIΔ − (b + c) − r S0(x)

K(x) )−1). Therefore, �0 is the principle 
eigenvalue of

−
(
β1(x)S0(x) + λ(x)β2(x)S0(x)

m + β3(x)S0(x)

)(
dIΔ − (b + c) − r

S0(x)
K(x)

)−1

ϕ = �0ϕ, ϕ ∈ C2(Ω)

that is,

dIΔϕ−
(
b + c + r

S0(x)
K(x)

)
ϕ +

(
β1(x)S0(x) + λ(x)β2(x)S0(x)

m + β3(x)S0(x)

)
1
�0

ϕ = 0, ϕ ∈ C2(Ω),

which completes the proof. �
Remark 3.1. From Lemma 3.3, �0 have the following variational formula:

�0 = 1
λ̃0

= sup
φ∈H1(Ω), φ �=0

⎧⎨
⎩
∫
Ω(β1(x)S0(x) + λ(x)β2(x)S0(x)

m+β3(x)S0(x) )φ2dx∫
Ω

(
dI |∇φ|2 + (b + c + r S0(x)

K(x) )φ2
)

dx

⎫⎬
⎭ . (3.8)

From (3.8), we can easily get the information that how �0 depends on the diffusion coefficient dI .

Remark 3.2. When all parameters in (1.3) are constant, one can easily see that S0(x) = K, and �0 can be 
reduced to

�const.
0 = 1

λ̃0
=
(
β1K + β2λK

m + β3K

)
/(b + c + r). (3.9)

Substituting I(x, t) = eΛtψ2(x), P (x, t) = eΛtψ3(x), into (3.6), we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λψ2 = dIΔψ2 + β1(x)S0(x)ψ2 + β2(x)S0(x)ψ3 − (b + c)ψ2 − r
S0(x)
K(x) ψ2, x ∈ Ω,

Λψ3 = λ(x)ψ2 −mϕ3 − β3(x)S0(x)ψ3, x ∈ Ω,

∂ψ2

∂ν
= 0, x ∈ ∂Ω.

(3.10)

The existence of the principal eigenvalue of (3.10) are stated in the following result.

Lemma 3.4. Let BS0 be defined in (3.7) and s(BS0) be the spectral bound. If s(BS0) ≥ 0, then s(BS0) is the 
principal eigenvalue of eigenvalue problem (3.10) associated with a strongly positive eigenfunction.

Proof. It follows from (3.6) that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I(·, t, φ) = A2(t)φ2 +
t∫

0

A2(t− s)g(I(·, s, φ), P (·, s, φ))ds,

P (·, t, φ) = Ã3(t)φ3 +
t∫
Ã3(t)(t− s)[λ(·)I(·, s, φ)]ds,
0
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where g(I, P ) =
(
− r

K(x)S
0(·) + β1(·)S0(·)

)
I + β2(·)S0(·)P , and Ã3(t)φ3 = e−(m+β3(·)S0(·))tφ3 for φ3 ∈

C(Ω̄, R).
We define a linear operator

Π2(t)φ = (0, Ã3(t)φ3), φ = (φ2, φ3) ∈ C(Ω̄,R2), (3.11)

and a nonlinear operator

Π3(t)φ =

⎛
⎝I(·, t, φ),

t∫
0

Ã3(t)(t− s)[λ(·)I(·, s, φ)]ds

⎞
⎠ , φ = (φ2, φ3) ∈ C(Ω̄,R2).

It is easy to see that Π(t) = Π2(t) + Π3(t). Similar to Lemma 2.4, we know that Π3(t) is compact. Hence, 
from (3.11), we have

sup
φ∈C(Ω̄,R2),‖φ‖�=0

‖Π2(t)φ‖
‖φ‖ ≤ sup

φ∈C(Ω̄,R2),‖φ‖�=0

‖e−(m+β3(·)S0(·))tφ3‖
‖φ‖ ≤ sup

φ∈C(Ω̄,R2),‖φ‖�=0

‖e−mtφ3‖
‖φ‖ ≤ e−mt,

and hence ‖Π2(t)‖ ≤ e−mt.
It follows that for any bounded set B in C(Ω̄, R2), there holds

κ(Π(t)B) ≤ κ(Π2(t)B) + κ(Π3(t)B) ≤ ‖Π2(t)‖κ(B) ≤ e−mtκ(B), t > 0.

Thus, Π(t) is a κ-contraction on C(Ω̄, R2) with a contracting function e−mt, that is, the essential spectra 
radius, ωess(Π(t)) ≤ −m. Here ωess(Π(t)) := limt→∞

α(Π(t))
t . Here α(·) is the measure of non-compactness. 

Recall that

ωS0 = max{s(BS0), ωess(Π(t))},

where ωS0 , defined as ωS0 := limt→∞
ln ‖Π(t)‖

t , is the exponential growth bound of Π(t) such that

‖Π(t)‖ ≤ MeωS0 t, for some M > 0.

On the other hand, the spectral radius r(Π(t)) of Π(t) satisfies

r(Πt) = es(BS0 )t ≥ 1, when s(BS0) ≥ 0, t > 0.

This implies that ωess(Π(t)) < r(Πt) for any t > 0. The result directly follows from a generalized Krein-
Rutman Theorem [13]. �
3.3. Persistence

The following result concerns the disease persistence when s(BS0) > 0. To this end, we set

X0 :=
{
φ ∈ X+ : φ1(·) 	≡ 0 and φ2(·) 	≡ 0

}
,

and

∂X0 := X+\X0 =
{
φ ∈ X+ : φ1(·) ≡ 0 or φ2(·) ≡ 0

}
.
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Then X = X0 ∪ ∂X0, X0 is relatively open with X0 = X, and ∂X0 is relatively closed in X. Let Φ(t) be 
defined by (2.4). Set M∂ = {φ ∈ ∂X0 : Φ(t)φ ∈ ∂X0, ∀ t ≥ 0} and let ω(φ) be the omega limit set of the 
forward orbit γ+(φ) := {Φ(t)(φ) : t ≥ 0}.

Theorem 3.2. If s(BS0) > 0 (or �0 > 1), then (1.3) is uniformly persistent in the sense there exists δ > 0
such that for any φ ∈ X+ with φi 	≡ 0, i = 1, 2,

lim inf
t→∞

S(x, t;φ) ≥ δ, lim inf
t→∞

I(x, t;φ) ≥ δ, lim inf
t→∞

P (x, t;φ) ≥ δ, uniform for all x ∈ Ω̄.

Furthermore, system (1.3) and (1.4) admits at least one positive steady state.

Proof. We prove the following claims.

Claim 1. X0 is positively invariant with respect to Φ(t), that is, Φ(t)X0 ⊆ X0, for all t ≥ 0.

Suppose that (S(·, t; φ), I(·, t; φ), P (·, t; φ)) is the solution (1.3) with φ ∈ X+. It follows from Lemma 2.1
that S(x, t) satisfies

dSΔS − ∂S

∂t
+ h1(x, t)S = −rS ≤ 0, x ∈ Ω, t > 0,

where h1(x, t) = − r
K(x) [S(x, t) + I(x, t)] − β1(x)I(x, t) − β2(x)P (x, t) ≤ 0. Then S(x, t; φ) > 0 directly 

follows from the strong maximum principle and the Hopf boundary lemma. From the second equation of 
(2.1), we have ∂I∂t ≥ dIΔI − (b + c)I − r S+I

K(x)I, I is the upper solution of the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Î

∂t̂
= dIΔÎ − (b + c)Î − r

S + I

K(x) Î , x ∈ Ω, t > 0,

∂Î

∂ν
= 0, x ∈ ∂Ω, t > 0,

I(x, 0) = Î0(x) = I0, x ∈ Ω.

By the maximum principle and I0 	≡ 0, we have Î(x, t) > 0 for all x ∈ Ω̄ and t > 0. So I(x, t) > Î(x, t) > 0
for all x ∈ Ω̄ and t > 0 directly follows from the comparison principle. From the third equation of (1.3), we 
get

P (x, t) = e−
∫ t
0 (m+S(·,l)+I(·,l))dlP 0(x) +

t∫
0

e−
∫ t
s
(m+S(·,l)+I(·,l))dlλ(x)I(·, s;u0)ds,

which in turn implies that P (x, t) > 0 for all x ∈ Ω̄ and t > 0. This proves Claim 1.

Claim 2. ω(ψ) = M1
⋃
M2, ∀ ψ ∈ M∂, where M1 = {(0, 0, 0)} and M2 = {(S0, 0, 0, )}.

If ψ ∈ M∂ , then we have Φ(t)ψ ∈ M∂ , ∀ t ≥ 0. It follows that S(x, t; ψ) ≡ 0 or I(x, t, ψ) ≡ 0. Suppose that 
I(x, t; ψ) ≡ 0, ∀ t ≥ 0. From the third equation of system (1.3), we have limt→∞ P (x, t; ψ) = 0 uniformly for 
x ∈ Ω̄. Thus, it follows from the first equation of system (1.3) and Lemma 2.2 that limt→∞ S(x, t; ψ) = 0 or 
limt→∞ S(x, t; ψ) = S0 uniformly for x ∈ Ω. Suppose that I(x, ̃t0, ψ) 	≡ 0, for some t̃0 ≥ 0, Claim 1 implies 
that I(x, t, ψ) > 0, ∀ x ∈ Ω̄, t > t̃0. Hence, the case for S(x, ̃t, ψ) ≡ 0, ∀ t > t̃0, holds. It follows that the 
second equation of (1.3) becomes ∂I∂t = dIΔI +β1(x)SI +β2(x)SP − (b + c)I− r S+I

K(x)I, x ∈ Ω, t > t̃0, which 
implies that limt→∞ I(x, t; ψ) = 0. Further, from the third equation of (1.3), we have limt→∞ P (x, t; ψ) = 0
uniformly for x ∈ Ω. Hence ω(ψ) = M1

⋃
M2, ∀ ψ ∈ M∂ . This proves Claim 2.
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Claim 3. For any φ ∈ X0, lim supt→∞ ‖Φ(t)φ−Mi‖ ≥ σ0
2 , ∀ φ ∈ X0, ∀ i = 1, 2.

It follows from Lemma 3.4, s(BS0) > 0 is the principal eigenvalue of eigenvalue problem (3.10) associated 
with a strongly positive eigenfunction. For convenience of later discussion, we suppose that there is a small 
σ0 > 0 such that s(Bσ0

S0) > 0 is still the principle eigenvalue problem (3.10), where

Bσ0
S0 =

(
dIΔ + β1(x)(S0(x) − σ0) − (b + c) − r (S0(x)+σ0)

K(x) β2(x)(S0 − σ0)

λ(x) −m− β3(x)(S0(x) + σ0)(x)

)
.

Let ψ̃ = (ψ̃2, ψ̃3) be the strongly positive eigenfunction corresponding s(Bσ0
S0). Without loss of generality, 

we further assume σ0 is sufficiently small such that

1 − σ0 max
x∈Ω̄

(
1

K(x) + β1(x)
r

+ β2(x)
r

)
> 0.

Assume for the contrary that there exists φ0 ∈ X0 such that

lim sup
t→∞

‖Φ(t)(φ0) −M1‖ <
σ0

2 or lim sup
t→∞

‖Φ(t)(φ0) −M2‖ <
σ0

2 .

We consider the first case that lim supt→∞ ‖Φ(t)(φ0) −M2‖ < σ0
2 . It follows that there exists t1 > 0 such 

that S0(x) − σ0
2 < S(x, t, φ0) < S0(x) + σ0

2 , I(x, t, φ0) < σ0
2 , P (x, t, φ0) < σ0

2 , ∀ t ≥ t1, x ∈ Ω̄. Thus 
I(x, t, φ0) and P (x, t, φ0) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I

∂t
≥ dΔI + β1(x)(S0(x) − σ0)I + β2(x)(S0(x) − σ0)P

− (b + c)I − r
S0(x) + σ0

K(x) I, x ∈ Ω, t > t1,

∂P

∂t
≥ −mP + λ(x)I − β3(x)(S0(x) + σ0)P, x ∈ Ω, t > t1,

∂I

∂ν
= 0, x ∈ ∂Ω, t > t1.

It follows that I(x, t, φ0) > 0, P (x, t, φ0) > 0, ∀ x ∈ Ω̄, t > 0. Recall that the linear system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ǐ

∂t
= dΔǏ + β1(x)(S0(x) − σ0)Ǐ + β2(x)(S0(x) − σ0)Ǐ

− (b + c)Ǐ − r
S0(x) + σ0

K(x) Ǐ , x ∈ Ω, t > t1,

∂P̌

∂t
= −mP̌ + λ(x)Ǐ − β3(x)(S0(x) + σ0)P̌ , x ∈ Ω, t > t1,

∂Ǐ

∂ν
= 0, x ∈ ∂Ω, t > t1,

admits a solution ε0e
s(BS0 )(t−t1)ψ̃ for some positive constant ε0. From the standard comparison principle, 

we have

(I(x, t, φ0), P (x, t, φ0)) ≥ ε0e
s(BS0 )(t−t1)ψ̃, ∀ t > t1, x ∈ Ω̄.

which in turn implies that I(x, t, φ0) and P (x, t, φ0) is unbounded as s(BS0) > 0. This leads to a contradic-
tion.
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We next consider the case that lim supt→∞ ‖Φ(t)(φ0) −M1‖ < σ0
2 . It follows that there exists t2 > 0

such that S0(x) < σ0
2 , I(x, t, φ0) < σ0

2 and P (x, t, φ0) < σ0
2 , ∀ t ≥ t2, x ∈ Ω̄. From the first equation of 

(1.3), we get

⎧⎪⎨
⎪⎩

∂S

∂t
≥ dΔS + r(1 − σ0θ1)S, x ∈ Ω, t > t2,

∂S

∂ν
= 0, x ∈ ∂Ω,

where θ1 := maxx∈Ω̄

(
1

K(x) + β1(x)
r + β2(x)

r

)
.

Recall that
⎧⎪⎪⎨
⎪⎪⎩

∂S̃

∂t
= dΔS̃ + r(1 − σ0θ1)S̃, x ∈ Ω, t > t2,

∂S̃

∂ν
= 0, x ∈ ∂Ω,

admits a solution τer(1−σ0θ1)(t−t2)ξ̃ for some positive constant τ , where ξ̃ is strongly positive eigenfunction 
corresponding r(1 − σ0θ1). From the standard comparison principle, we have

S(x, t, φ0) ≥ er(1−σ0θ1)(t−t2)ξ̃, ∀ t > t2, x ∈ Ω̄.

Hence S(x, t, φ0) is unbounded as (1 − σ0θ1) > 0, which leads to a contradiction. This proves Claim 3.
Define a continuous function p : X+ → [0, ∞) by

p(φ) = min{min
x∈Ω

φ1(x),min
x∈Ω

φ2(x)}, ∀ φ ∈ X+.

Obviously, p−1(0, ∞) ⊆ X0, and p has the property that if either p(φ) = 0 with φ ∈ X0 or p(φ) > 0, then 
p(Φ(t)φ) > 0, ∀ t > 0. Thus p is a generalized distance function for the semiflow Φ(t) : X+ → X+ (see e.g. 
[20]). Further, W s(Mi) 

⋂
X0 = ∅, ∀i = 1, 2, where W s(Mi) is the stable subset of Mi, i = 1, 2. It is also 

confirmed that there is no cycle in M∂ from M1
⋃

M2 to M1
⋃

M2. Hence, from [20, Theorem 3] and similar 
arguments in [8, Theorem 3.4], we arrive at the conclusion that there exists a δ > 0 such that

lim inf
t→∞

p(Φt(ψ)) > δ, ∀ ψ ∈ X0,

which implies that

lim inf
t→∞

S(x, t;φ) ≥ δ lim inf
t→∞

I(x, t;φ) ≥ δ, and lim inf
t→∞

P (x, t;φ) ≥ δ,∀ φ ∈ X0.

Therefore, Φ(t) is uniformly persistent with respect to (X0, ∂X0). It follows from [11, Theorem 4.7] that 
system (1.3) admits at least one steady state in X0 (see, e.g. the proof of [26, Theorem 2.3]), which is a 
positive steady state. This completes the proof. �
4. Bifurcation analysis

Recall that system (1.3) is uniformly persistent when �0 > 1 (see Theorem 3.2), thus (1.3) admits at least 
one positive steady state. In this section, we consider disease-induced mortality b as the main bifurcation 
parameter to do some bifurcation analysis on steady state solutions.
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A steady state of (1.3) is a solution of the elliptic system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSΔS + r

(
1 − S + I

K(x)

)
S − β1(x)SI − β2(x)SP = 0, x ∈ Ω,

dIΔI + β1(x)SI + β2(x)SP − (b + c)I − r
S + I

K(x) I = 0, x ∈ Ω,

λ(x)I −mP − β3(x)(S + I)P = 0, x ∈ Ω,

∂S

∂ν
= ∂I

∂ν
= 0, x ∈ ∂Ω.

(4.1)

By (4.1), we see that (S, I, P ) is a PSS of (1.3) if and only if (S, I) is a positive solution of the problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dSΔS + r

(
1 − S + I

K(x)

)
S − β1(x)SI − λ(x)β2(x)SI

m + β3(x)(S + I) = 0, x ∈ Ω,

dIΔI + β1(x)SI + λ(x)β2(x)SI
m + β3(x)(S + I) − (b + c)I − r

S + I

K(x) I = 0, x ∈ Ω,

∂S

∂ν
= ∂I

∂ν
= 0, x ∈ ∂Ω,

(4.2)

and P satisfies

P (x) = λ(x)I(x)
m + β3(x)(S(x) + I(x)) .

Hence in the sequel, we will focus on (4.2) instead of (4.1).
It is easy to see that (S0(x), 0) is a semi-trivial steady state solution of (4.2), where S0(x) is described 

in (2.3). Denote by b0 the principle eigenvalue of the following eigenvalue problem:

⎧⎪⎪⎨
⎪⎪⎩

dIΔψ +
[
β1(x)S0(x) + β2(x)λ(x)S0(x)

m + β3(x)S0(x) − r

K(x)S
0(x) − c

]
ψ = bψ, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω,

(4.3)

associated with positive eigenfunction ψ0(x) (determined by the normalization maxx∈Ω̄ ψ0(x) = 1). Notice 
that b = b0 is equivalent to λ̃0 = 1 or �0 = 1.

Define a function

H(x) =
[
β1(x)S0(x) + β2(x)λ(x)S0(x)

m + β3(x)S0(x) − r

K(x)S
0(x) − c

]
. (4.4)

It follows that b0 = H if H(x) = H is a constant.
We next consider the case when H(x) 	≡ constant and it could change sign in Ω. It is well-known from 

[14, Theorem 4.2] that the following eigenvalue problem with indefinite weight:

⎧⎨
⎩

Δϕ(x) + ΛH(x)ϕ = 0, x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω,

(4.5)

admits a nonzero principal eigenvalue Λ0 = Λ0(H) if and only if H(x) charges sign in Ω and 
∫
Ω H(x)dx 	= 0.

It then follows from [14, Proposition 4.4] and also in [26, Lemma 3.1], the sign of the principal eigenvalue 
b0 of the problem (4.3) are described by the following result.
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Lemma 4.1. The following statements hold.

(i) If 
∫
Ω H(x)dx ≥ 0, then b0 > 0 for all dI > 0;

(ii) If 
∫
Ω H(x)dx < 0, then

{
b0 > 0 for all dI < 1

Λ0(H) .

b0 < 0 for all dI > 1
Λ0(H) .

Remark 4.1. Suppose that the coefficients of (4.1) are all constants. It follows that S0(x) ≡ K and

H(x) ≡ H =
[
β1K + β2λK

m + β3K
− r − c

]
= (m + β3K)(β1K − r − c) + β2λK

m + β3K
. (4.6)

Hence b0 = H > 0 if β1K ≥ r + c.

We next regard b as a bifurcation parameter and investigate that a local branch (and also a global 
continuum) of positive solution of (4.2) bifurcated from {(b, S0(x), 0) : b > 0}. To this end, we rewrite (4.2)
by u = S and w = I as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duΔu + r

K(x) (K(x) − u− w)u− β1(x)uw − β2(x)λ(x)uw
m + β3(x)(u + w) = 0, x ∈ Ω,

dwΔw + β1(x)uw + β2(x)λ(x)uw
m + β3(x)(u + w) − (b + c)w − r

K(x) (u + w)w = 0, x ∈ Ω,

∂u(x)
∂ν

= ∂w(x)
∂ν

= 0, x ∈ ∂Ω.

(4.7)

We now give the result on the set of steady state solution of (4.2).

Theorem 4.1. Let b0 be the principle eigenvalue problem (4.3). Let

Σ =
{
(b, u, w) ∈ R+ ×X ×X : (b, u, w) is a positive solution of (4.2)

}
, (4.8)

where X =
{
u ∈ W 2,p(Ω) : ∂u(x)

∂ν = 0, x ∈ ∂Ω
}
. The following statements hold:

(i) There is a connected component Σ1 of Σ̄ containing (b0, S0, 0), and the projection projbΣ1 of Σ1 into 
the b-axis satisfies (0, b0] ⊂ projbΣ1 ⊂ (0, M ] for

M = max
x∈Ω̄

[
β1(x)S0(x) + β2(x)λ(x)S0(x)

m
− c

]
. (4.9)

In particular, (4.2) admits at least one positive steady state solution for 0 < b < b0.
(ii) Near b = b0, Σ1 is a smooth curve

C1 = {(b(s), u(s), w(s)) : s ∈ (0, ε)}, (4.10)

where u(s) = S0(·) + sφ0(·) + o(s), w(s) = sψ0(s) + o(s) where ψ0(x) > 0 is the principle eigenvalue of 
(4.3), and φ0(x) < 0 satisfies

⎧⎪⎨
⎪⎩

−duΔφ0(x) + r

K(x) (K(x) − 2S0(x))φ0(x) = −q(x)ψ0(x), x ∈ Ω,

∂φ0(x) = 0, x ∈ ∂Ω,

(4.11)
∂ν
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where

q(x) = r

K(x)S
0(x) + β1(x)S0(x) + β2(x)λ(x)S0(x)

m + β3(x)S0(x) .

Further, b′(0) can be calculated by

b′(0) = L∫
Ω ψ2

0(x)dx
, (4.12)

where

L =
∫
Ω

β2(x)λ(x)mφ0(x)(ψ0(x))2
[m+β3(x)S0(x)]2 −

∫
Ω

r
[
φ0(x)(ψ0(x))2+(ψ0(x))3

]
K(x) −

∫
Ω

λ(x)β2(x)β3(x)S0(x)(ψ0(x))3
[m+β3(x)S0(x)]2 . (4.13)

Proof. We then follow the procedure in [22] to consider the solution of (4.2).
Define F : R ×X ×X → Y × Y by

F(b, u, w) =
(

duΔu + r
K(x) (K(x) − u− w)u− β1(x)uw − p(u,w)

dwΔw + β1(x)uw + p(u,w) − (b + c)w − r
K(x) (u + w)w

)
,

where p(u, w) = β2(x)λ(x)uw
m+β3(x)(u+w) . Direct calculations give

F(u,w)(b, u, w)[φ, ψ] =
(

duΔφ

dwΔψ

)

+
(

r
K(x) (K(x) − 2u− w) − β1(x)w − pu − r

K(x)u− β1(x)u− pw

β1(x)w + pu − r
K(x)w β1(x)u + pw − (b + c) − r

K(x) (u + 2w)

)(
φ

ψ

)
,

where

pu := pu(u,w) = β2(x)λ(x)(m + β3(x)w)w
(m + β3(x)(u + w))2 , pw := pw(u,w) = β2(x)λ(x)(m + β3(x)u)u

(m + β3(x)(u + w))2 .

We can check that

pu(S0, 0) = 0, pw(S0, 0) = β2(x)λ(x)S0(x)
m + β3(x)S0(x) .

Furthermore, we can compute

Fb(b, u, w) =
(

0
−w

)
, Fb(b, u, w)[φ, ψ] =

(
0
−ψ

)
,

and

F(u,w),(u,w)(b, u, w)[φ, ψ]2 =

⎛
⎝−

(
2r

K(x) + puu

)
φ2 − 2

(
r

K(x) + β1(x) + puw

)
φψ − pwwψ

2

puuφ
2 + 2

(
puw + β1(x) − r

K(x)

)
φψ +

(
pww − 2r

K(x)

)
ψ2

⎞
⎠ ,

where
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puu := puu(u,w) = −2λ(x)β2(x)β3(x)(m+β3(x)w)w
[m+β3(u+w)]3 ,

puw := puw(u,w) = β2(x)λ(x)(m2+β3(x)mu+β3(x)mw+2(β3(x))2uw)
[m+β3(u+w)]3 ,

pww := pww(u,w) = −2λ(x)β2(x)β3(x)(m+β3(x)u)u
[m+β3(u+w)]3 .

We can check that

puu(S0, 0) = 0, puw(S0, 0) = β2(x)λ(x)m
[m + β3(x)S0(x)]2 , pww(S0, 0) = −2λ(x)β2(x)β3(x)S0(x)

[m + β3(x)S0(x)]2 . (4.14)

In particular,

F(u,w)(b0, S0, 0)[φ, ψ] =
(
duΔφ + r

K(x) (K(x) − 2S0(x))φ− q(x)ψ

dwΔψ − b0ψ + H(x)ψ

)
,

where H(x) is defined as in (4.4) and

q(x) = r
K(x)S

0(x) + β1(x)S0(x) + β2(x)λ(x)S0(x)
m+β3(x)S0(x) . (4.15)

It follows that the kernel N(F(u,w)(b0, S0, 0)) = span(φ0, ψ0), where ψ0 is the positive eigenfunction of (4.3)
and φ0 satisfies (4.11). Recall that, from Lemma 2.2, S0(x) is globally asymptotically stable in C(Ω̄, R). It 
follows that

[
duΔ + r

K(x) (K(x) − 2S0(x))
]−1

,

exists and it is a positive operator. Thus, φ0(x) < 0 for x ∈ Ω.
Let Y = Lp(Ω). We next consider the range

R(Fu,w(b0, S0, 0)) = {(h1, h2) ∈ Y 2 :
∫
Ω h2(x)ψ0(x)dx = 0}. (4.16)

It is easy to see that (h1, h2) ∈ R(Fu,w(b0, S0, 0)) if and only if there exists (φ, ψ) ∈ X ×X such that

h1 = duΔφ + r
K(x) (K(x) − 2S0(x))φ− q(x)ψ,

h2 = dwΔψ − b0ψ + H(x)ψ,

where q(x) and H(x) are defined as in (4.15) and (4.4). Hence,

∫
Ω h2(x)ψ0(x)dx = d

∫
Ω Δψ(x)ψ0(x)dx +

∫
Ω[−b0ψ0(x) + H(x)ψ0(x)]ψ(x)dx. (4.17)

It then follows from integration by parts and the boundary condition of ψ and ψ0 that

∫
Ω Δψ(x)ψ0(x)dx =

∫
Ω Δψ0(x)ψ(x)dx. (4.18)

With the help of (4.3), (4.18) and (4.17), we have 
∫
Ω h2(x)ψ0(x)dx = 0, which in turn implies that (4.16) is 

valid. Since

Fb,(u,w)(b0, S0, 0)[φ0, ψ0] = (0,−ψ0), (4.19)

and 
∫

[−ψ0(x)]ψ0(x)dx < 0. It follows that
Ω
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Fb,(u,w)(b0, S0, 0)[φ0, ψ0] /∈ R(Fu,w(b0, S0, 0)).

Follow the theorem of bifurcation from a simple eigenvalue (see e.g. Crandall and Rabinowitz [23], we 
can conclude that the set of positive solution to (4.2) near (b0, S0(x), 0) is a curve in from (4.10), with 
(u′(0), w′(0)) = (φ0, ψ0).

Further, b′(0) can be calculated as follows

b′(0) = − 〈l,F(u,w),(u,w)(b0,S0,0)[φ0,ψ0]2〉
2〈l,Fb,(u,w)(b0,S0,0)[φ0,ψ0]〉 ,

where l is a linear function on Y 2 defined as 〈l, [h1, h2]〉 =
∫
Ω h2(x)ψ0(x)dx. Note that the second component 

of F(u,w),(u,w)(b0, S0, 0)[φ0, ψ0]2 takes the form

G(x) := 2
(
puw(S0(x), 0) − r

K(x)

)
φ0(x)ψ0(x) +

(
pww(S0(x), 0) − 2r

K(x)

)
(ψ0(x))2,

where puw(S0(x), 0) and pww(S0(x), 0) are defined in (4.14). Thus

b′(0) = −
∫
Ω G(x)φ0dx

2
∫
Ω ψ2

0(x)dx := L∫
Ω ψ2

0(x)dx , (4.20)

where L is defined as in (4.13). Using the similar arguments as in [26, Theorem 3.1], we could end with the 
proof. �
5. Conclusion and discussion

In this paper, we formulate and analyze a diffusive host-pathogen model with horizontal transmission 
mechanism and heterogeneous coefficients. In the model, we assume that susceptible and infective hosts 
may disperse at different rates, there is no diffusion term in the pathogen equation. This assumption brings 
some difficulties in estimating the ultimate boundedness of the solution. We overcome this problem by using 
the method of induction and continuous embedding theorem. We then consider asymptotic smoothness of 
the solution semiflow by introducing the Kuratowski measure of noncompactness to identify the existence 
of a connected global attractor.

We identify the threshold behavior of model in a bounded habitat of general spatial dimension, which is 
determined in the sense that: If s(B) < 0, then the disease-free equilibrium (S0(x), 0, 0) is global attractive 
(see Theorem 3.1); If s(BS0) > 0 (or �0 > 1), then (1.3) is uniformly persistent and (1.3) admits a positive 
steady state, representing the persistence of pathogen. �0 is mathematically defined as the spectral radius of 
the next generation operator, then it can be calculated as in Lemma 3.3 and (3.8) (see also a homogeneous 
case as in (3.9)). While we can not determine the case �0 < 1 for the extinction of the disease.

We extend the original model [26] by including one realistic complication, horizontal transmission mech-
anism and thus strengthens the original conclusion. Compared to the formula as in (2.29) and (2.30) of 
[26], we can conclude that the principal eigenvalue of the associated eigenvalue problem and the long-time 
behavior remain similar as those in [26]. However, by adding horizontal transmission, even a homogeneous 
case as in (3.9), the basic reproduction number is larger than the case without horizontal transmission 
mechanism. This may lead to over-evaluating the threshold role of the basic reproduction number. We also 
explored the bifurcation analysis of steady state solutions by considering disease-induced mortality b as the 
main bifurcation parameter, and such results can help us better understanding how it affects the spatial 
pattern of the pathogen.

As like some recent works on asymptotical profiles of the positive steady state for large and small diffusion 
rates, we refer interested readers to [2,9,10,15–18,24,26–28] and the references therein. Would considering 
asymptotic profiles of the positive steady state as the dispersal rate of susceptible or infected hosts tends 
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to zero may help us to understand how host’s mobility affect spatial pattern of the pathogen. On the 
other hand, some recent work investigated the effect of the spatial heterogeneity of environment on basic 
reproduction number and disease dynamics (see e.g. [3–5]). Would the spatial heterogeneity can enhance 
the infectious risk of disease? Thus, we have to leave this interesting problem for further investigation.

Acknowledgments

The authors would like to thank the editor and the referee for their helpful comments. J. Gao was sup-
ported by National Natural Science Foundation of China (No. 61761002) and the First-Class Disciplines 
Foundation of Ningxia (No. NXYLXK2017B09). J. Wang was supported by National Natural Science Foun-
dation of China (No. 11871179), Natural Science Foundation of Heilongjiang Province (No. LC2018002) and 
Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems.

References

[1] R.M. Anderson, R.M. May, The population dynamics of microparasites and their invertebrate hosts, Philos. Trans. R. 
Soc. Lond. B, Biol. Sci. 291 (1981) 451–524.

[2] R. Cui, Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations 261 (2016) 
3305–3343.

[3] Y. Cai, Y. Kang, M. Banerjee, W. Wang, Complex dynamics of a host-parasite model with both horizontal and vertical 
transmissions in a spatial heterogeneous environment, Nonlinear Anal. Real World Appl. 40 (2018) 444–465.

[4] Y. Cai, X. Lian, Z. Peng, W. Wang, Spatiotemporal transmission dynamics for influenza disease in a heterogenous envi-
ronment, Nonlinear Anal. Real World Appl. 46 (2019) 178–194.

[5] Y. Cai, Z. Ding, B. Yang, Z. Peng, W. Wang, Transmission dynamics of Zika virus with spatial structure – a case study 
in Rio de Janeiro, Brazil, Phys. A 514 (2019) 729–740.

[6] G. Dwyer, Density dependence and spatial structure in the dynamics of insect pathogens, Amer. Nat. 94 (1994) 533–562.
[7] J.K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1989.
[8] Y. Jin, F.-B. Wang, Dynamics of a benthic-drift model for two competitive species, J. Math. Anal. Appl. 462 (2018) 

840–860.
[9] H. Li, R. Peng, F.-B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS 

epidemic model, J. Differential Equations 262 (2017) 885–913.
[10] B. Li, H. Li, Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys. 68 (2017) 

96.
[11] P. Magal, X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. 

Anal. 37 (2005) 251–275.
[12] R.H. Martin, H.L. Smith, Abstract functional differential equtions and reaction-diffusion systems, Trans. Amer. Math. 

Soc. 321 (1990) 1–44.
[13] R.D. Nussbaum, Eigenvectors of nonlinear positive operator and the linear Krein-Rutman theorem, in: E. Fadell, G. 

Fournier (Eds.), Fixed Point Theory, in: Lecture Notes in Mathematics, vol. 886, Springer, New York/Berlin, 1981, 
pp. 309–331.

[14] W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82, Society 
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.

[15] R. Peng, S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal. 71 
(2009) 239–247.

[16] R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model, part I, J. Differential 
Equations 247 (2009) 1096–1119.

[17] R. Peng, F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of 
epidemic risk and population movement, Phys. D 259 (2013) 8–25.

[18] R. Peng, X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity 25 (2012) 
1451–1471.

[19] A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, 
1983.

[20] H.L. Smith, X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. TMA 47 (9) (2001) 6169–6179.
[21] H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, 

vol. 41, American Mathematical Society, 1995.
[22] J.-P. Shi, X.-F. Wang, On global bifurcation for quasilinear elliptic system on bounded domains, J. Differential Equations 

246 (2009) 2788–2812.
[23] J. Shi, Persistence and bifurcation of degenerate solution, J. Funct. Anal. 169 (1999) 494–531.
[24] Y. Tong, C. Lei, An SIS epidemic reaction-diffusion model with spontaneous infection in a spatially heterogeneous envi-

ronment, Nonlinear Anal. Real World Appl. 41 (2018) 443–460.
[25] H.R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time hetero-

geneity, SIAM J. Appl. Math. 70 (2009) 188–211.

http://refhub.elsevier.com/S0022-247X(19)30749-8/bib416E646572736F6Es1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib416E646572736F6Es1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4375694C6F75323031364A4445s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4375694C6F75323031364A4445s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib43616932303138s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib43616932303138s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib43616932303139s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib43616932303139s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib43616950412D32303139s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib43616950412D32303139s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4477796572s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib48616C6531393838s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4A696E57616E67323031382D6A6D6161s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4A696E57616E67323031382D6A6D6161s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4C6932303137s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4C6932303137s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4C69626F32303137s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4C69626F32303137s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4D6167616C32303035s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4D6167616C32303035s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4D617274696E536D69746831393930s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4D617274696E536D69746831393930s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4B52s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4B52s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4B52s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4E6932303131s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4E6932303131s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50656E674C6975323030394E41s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50656E674C6975323030394E41s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50656E67323030394A4445s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50656E67323030394A4445s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50656E6759693230313350s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50656E6759693230313350s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50656E675A68616F323031324Es1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50656E675A68616F323031324Es1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50617A79s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib50617A79s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib536D69746832303031s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib536D69746831393935s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib536D69746831393935s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib53686932303039s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib53686932303039s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib53686931393939s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4C656932303138s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib4C656932303138s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib546869656D6532303039s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib546869656D6532303039s1


24 Y. Shi et al. / J. Math. Anal. Appl. 481 (2020) 123481
[26] F.-B. Wang, J. Shi, X. Zou, Dynamics of a host-pathogen system on a bounded spatial domain, Commun. Pure Appl. 
Anal. 14 (6) (2015) 2535–2560.

[27] Y. Wu, X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mecha-
nism, J. Differential Equations 261 (2016) 4424–4447.

[28] Y. Wu, X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differential 
Equations 264 (2018) 4989–5024.

[29] W. Wang, X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst. 
11 (4) (2012) 1652–1673.

[30] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.

http://refhub.elsevier.com/S0022-247X(19)30749-8/bib57616E675368695A6F7532303135s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib57616E675368695A6F7532303135s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib57755A6F75323031364A4445s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib57755A6F75323031364A4445s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib57755A6F754A444532303138s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib57755A6F754A444532303138s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib57616E6732303132s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib57616E6732303132s1
http://refhub.elsevier.com/S0022-247X(19)30749-8/bib5A68616F32303033s1

	Analysis of a reaction-diffusion host-pathogen model with horizontal transmission
	1 Introduction
	2 Well-posedness of the model
	3 Threshold dynamics
	3.1 Extinction
	3.2 Basic reproduction number and principal eigenvalue
	3.3 Persistence

	4 Bifurcation analysis
	5 Conclusion and discussion
	Acknowledgments
	References


