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1. Introduction

In one complex variable, it is well-known that the Bohr radius was originally established by Bohr [9] for
1/6. After that the value 1/6 was improved to the value 1/3 by Riesz, Schur and Wiener independently,
and the value 1/3 is optimal. Other new proofs were given by Tomié¢ [24] and Sidon [23].

We also denote by

Fu={f:U=UIf(x) =Y anz"}.
n=1
Let

By = sup{r| Z |ap|r™ < 1for all f € F1},

n=1
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where r = |z|.

The result of By > 1 was proved by Tomié¢ [24] (obtained by Landau [19] independently). After that,
Ricci [21] proved 2 < By < % The optimal result By = % was given because of Bombieri [10]. In 2004,
Beneteau, Khavinson and Dahlner [6] mainly discussed Hardy space functions that vanished at the origin
and obtained an exact positive Bohr radius. After approximately ten years, Abu-Muhanna, Ali [1], Abu-
Muhanna, Ali, Ng, Hasni [2] studied the various refined Bohr’s theorems for analytic functions, harmonic
functions and the hyperbolic metric respectively. In 2017, Kayumov, Ponnusamy [17] gave the sharp Bohr
radius for odd analytic functions. One year later, the above authors established the following theorem.

Theorem A. (See [18].) Let m,k be nonnegative numbers, 0 < m < k, f(z) = 2™ 3 aq2** be analytic on
s=0
U, and |f(2)| <1 on U. Then

oo
o> aselel < 1
s=0

for |z| =1 < Tkm, where ry m, is the mazimal positive root of the equation
_6,],,k:—7n + ,I,Q(k—m) + 87’12k + 1 — 0 .
Each ry, ., is sharp.

In several complex variables, there are many significant and attractive results (see [3], [4], [8], [7], [11],
[12], [13]). Bayart, Pellegrino, Seoane-Sepulveda [5] gave the Bohr radius of polydisk behaved asymptotically
as 4/(log(n))/n in 2014. Unfortunately, the above results can not reduce to the case of one dimension.
Concerning the generalizations of the Bohr’s theorem in several complex variables for holomorphic mappings
by making use of homogeneous expansions, Liu and Wang [20] in 2007 first extended the Bohr’s Theorem
in one complex variable to holomorphic mappings which map one of the four classical domains €2 in the
sense of Hua [16] into itself, and they proved that Bohr radius 1/3 is sharp. After that Hamada, Honda
and Kohr [15] obtained the generalizations of the Bohr’s theorem to holomorphic mappings f : G — By,
where G is a bounded balanced domain in a complex Banach space X and By is the unit ball in a complex
Banach space Y, and they showed that the Bohr radius 1/3 is sharp if By is the unit ball of a J*-algebra.
Sequently, Roos [22] extended the Bohr’s Theorem to all bounded symmetric domains as well, and its proof
does not rely on classification. In essence, the above three references all apply holomorphic automorphisms.

In this paper, we will establish the Bohr inequality of norm type for holomorphic mappings with lacunary
series on the unit polydisk in C™ under some restricted conditions. Meanwhile we will give the Bohr inequal-
ity of norm type for holomorphic mappings with lacunary series on the unit ball of complex Banach spaces
under some additional conditions, and the Bohr inequality of functional type for holomorphic mappings
with lacunary series on the unit ball of complex Banach spaces as well. Our derived results reduce to the
corresponding results in one complex variable, and further simplify the proof of the related theorem of [18].
Taking into account the difficulty of the Bohr inequality of norm type and functional type for holomor-
phic mappings with lacunary series concerning holomorphic automorphisms in several complex variables in
general. So we do not discuss the corresponding problems with respect to holomorphic automorphisms.

We denote by X a complex Banach space with the norm || . ||, X* the dual space of X, B the open unit
ball in X, and U the Euclidean open unit disk in C respectively. Let U™ be the open unit polydisk in C™,
and let N and N be the set of all nonnegative integers and the set of all positive integers accordingly. Let
OU™ denote the boundary of U™, (OU)™ be the distinguished boundary of U™. Let the symbol ’ stand for
transpose. For each z € X\{0},

T(x) = {Te € X* : |Tel|= 1, T () =|ll}
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is well defined. We write H(B, X) (resp. H(B, B)) the set of all holomorphic mappings from B into X (resp.
B).

2. Bohr inequality for holomorphic mappings with lacunary series for holomorphic mappings on the unit
polydisk in C™

We first show an example in this section.

Example 2.1. Let

Then f € H(U? U?). It yields that

i”Dmffo(zm)'>% 15+L211(12)2 _ 1 <1+L)>1

for z = (%, %)’ by a simple calculation.
Example 2.1 becomes a counterexample of the following problem which does not hold.
Zm

Problem 2.1. Let f € H(U™,TU"). If f(z) = 5 2OE") Hpen

m=0

i IIDmfir(L)')(zm)ll <1

1
for ||z]] < 7

We next provide some lemmas below in order to prove the desired results in this section.
Lemma 2.1. Let p € NT,m € N,

p1(r)=2r+r—1,r €[0,1),
pa(r) = 4r2P7m)  gypTIZ2M _gg=2m g2 9p 41 € [0,1),p > 2m,
@3(r) = 4rP 4 p2F2m=p _oplt2mep 4 2mep 4 gy 4o € 0,1),m+1<p < 2m.

Then there exists the maximal positive oot for each pr(r) =0 (k=1,2,3).

Proof. It is not difficult to verify that there exists the maximal positive root for each pi(r) =0 (k = 1,2,3)
from the existence theorem of the root and the algebra basic theorem. This completes the proof. O

Lemma 2.2. Let m,k € N,0 < m < k, and the equation
—6Tk_m + TQ(k—m) + 8T2k +1=0.

Then 27‘km’;;k <1, where 1y, 15 the mazimal positive root of the above equation.
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Proof. Since
—6rim ) et 41 =0,
then it is shown that
0= _67,2?% + Tk 4 Srk(2+k) + T%Tn > _4rz?+k + 8 k(m+k)
Thus it follows the result, as desired. This completes the proof. O

Remark 2.1. Lemma 2.2 is the same as [18][Lemma 1]. We further simplify the proof here.

In view of the counterexample of Problem 2.1, we need some restricted conditions if we investigate
Problem 2.1.

Theorem 2.1. Let m € N,a = (a1, a2, -+ ,a,),p > m+1, f(2) = (a12]" + g1(2), 225" + g2(2), - - ,anz +
gal2) = ZRHGEN o 37 DUQED € (U, €7, faul = flall = mx {laf}d = 1,2, o, and 4, +
SIsSn

m!
S=Pp

g;(z) € HU™U), where % = (@127, a028", -+ ,anz)', and j satisfies |z;| = ||z]| = 1r£1la<xn{|zz|}
Then o

L0 +Z SO

for ||z|| = r < 1rpm, where ry, p, s the mazimal positive root of the equation

2r +r —1=0, if m=0,
4r2P=m) 4o gpptI=2m_ gep=2m 4 2 9p 4 1 =0, if p>2m,m=1,2,---,
4pP 4 p2F2m=p _ 9plH2m=p L p2m—p L 4 4 =0, if m+1<p<2mm=12---.

Especially, 1,0 = %J"Z,l = %, moreover 1,0 = % is optimal.
Proof. Let z € U™\ {0} be fixed, and denote zg = ey Letting h;(§) = f;(20),§ € U, then h; € h(U,U),
and

m o0

z D? f;(0) (=5
mie-a () e ey ZEOE
s=p ’

from the hypothesis of Theorem 2.1, where j satisfies |z;] = |z = max {lz1]1}. We write b,, =

a; (”ZTJH) ,bs = W,s = p,p+1,---. Then it is readily shown that w(&) = b, + > b,£5~™ € H(U,U)
s=p
due to h; € h(U,U). In view of the fact |bs| <1— |by|%, s =p,p+1, - (see [14]), we conclude that

1D £3(0)(z5)]

T <1 gyl =1 fa®.

Hence

D? f(0)(z§
| fl(l)(zo>| S 1-— HaH27ZO S aUnvl = 1727"' , N, S :p7p+ ]-7
St
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if zg € (OU)™. Since each W(l =1,2,---,n) is a holomorphic function on U™, it yields that

[D*£1(0)(5)]

| é]‘_”a’”QazOEaU”vl:1727"'7n7szpvp+]-v"'v
S

by the maximum modulus principle. This implies that

D= f(0) ()]

ol < (L= llal®lzl* < @ = llall®)ry s =p.p+ 1,

Therefore it follows that

ID™FO) ™I, =~ 122 F(0) (=) Tpm
PRSIy S IPTOE < apr, + (1~ ol 22— ol = < .
— pym
If m = 0, then we show that
2y Tom Tpm
lafl + @ = llall") 7= — < llal +2(1 = flal) == = llall + 1 — [lal| = 1. (2.1)
—Tpm L=7pm

Ifp>2m,m=1,2,---, then it yields that

rP
lallrpim + (1= llal®) =7
——

2
rb 1—r
p,m p,m
<1 (o - Lt
- T'p,m QTp)m
2(p— _ _
47‘p,(£l ™) + 47"5}',} am _ 47“5773’” + rg’m —2rpm +1

4(1— Tp,m)rgﬁm

T 1—rpm ?
=1—”—’(|a|—i) <1,

— p—m
1 Tp,m 2Tp7m

This implies that

b
llallrpy, + (1= ||a||2)1f7’ <1 (2.2)
p,m

Ifm+1<p<2m,m=1,2,---, we deduce that

P

r
allr™  + (1 — ||a]|?) —22—
laflrpm + (1 = llal®) = —
Tpom L—rpm )
Sl-g—— lall = —5=
—Tpm 27"p,m
4r§,”m + rﬁj‘f"”_p — 27‘11,:';,?7’L_p + ri%‘p +4rpm —4
4(1 = 1pm)
rh 1—r 2
R o (= I
—'pm 2Tp,77L

That is
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rP
lallrgi, + (1 = llaf*) 25— < 1. (2.3)

1—rpm —

In view of Lemma 2.1, (2.1), (2.2) and (2.3), we derive the desired result.
It is not difficult to check that

A—2z !
f(z) = <1>\le,)\,--- ,A) 2= (21,20, ,2n) €U

(Ae0,1],1=1,2,--- ,m) satisfies the condition of Theorem 2.1. Putting z = (r,0,--- ,0) (0 <r < 1), it
is shown that

||f ” + Z HDmf( )( — Z /\m—l _)\m-&-l),rm — /\+ (11_71\227"

m=1

by a simple calculation. Therefore we show that A + ) > 1 if and only if

1 1
> = .
"I T 11 2f(0)]

Note that
proof. O

— % as || f(0)]lm — 1—. Then we see that s 71,0 = 3§ is optimal. This completes the

1
142[1£(0)]] 3

Theorem 2.2. Let m € N,p > m + 1, f(z) = 7Dmf£2!)(zm) + > 7[)5]((501)(25) € H{U",U"). If —leflfy?!)(zm)‘ =

s=p
—||Dmf£2!)(zm)\|7l =1,2,---,n, then
Dm DS S
[ f + Z | 1 <1
for ||z|| = r < Tpm, where rp p is the same as Theorem 2.1.
Proof. Fix z € U™\ {0}, and denote 2y = %:. Defining h;(§) = fi(€20),€ € U,l = 1,2,--- ,n, then

— [E]
h; € h(U,U), and

e - 2O, DU

from the condition of Theorem 2.2. Hence we easily deduce that w(§) = b, + > b:£5~™ € H(U,U) due to
s=p

h; € h(U,U). Note that |bs| <1 — |bu|?, s =p,p+ 1, (see [14]). It follows that

s! m)! m!

D* O (Dmmoxszl<|Dmf<o><zzr>||)2 I lo
— | ) - bt Y M

That is

IO <1_ (IDmeS!)(za”)ll) ) 1 < (1_ (IIDme!)(ZB")I> >7~pm,s_ L

Therefore it yields that
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IID’”f IIDS )l ",
+Z <llalirgl + (= llal®) 72— 2l =7 < rpm,

p,m

W. With the analogous arguments in the proof of Theorem 2.1, we derive the desired

results. This completes the proof. O

where a =

Theorem 2.3. Let m,k € N,0 < m < k, f(2) = M + Z %w € HU",U"). If
IDTAOE] _ DO 1y, then
1™ FOE i [DFE FO)EH™)

m! — (sk 4+ m)! -
for ||2|| = 7 < Tkm, where i, is the mazimal positive root of the equation

—6rhTm 2T g2k 1 = .
Each ry m is sharp.
Proof. Fix z € U™\ {0}, and set zg = W Letting hy(¢) = f1(€20),6 € U,1=1,2,--- ,n, then h; € H(U,U),

and

D47 f(0)(5+4)
(sk + m)!

(€)= b + 3 bt = L IO gy Z

s=1

§Sk+m

from the hypothesis of Theorem 2.3. We write = &*, then it easily yields that w(n) = co + Y. csn® €
s=1

H(U,U) due to hy € H(U,U), here ¢s = bgptm = DSHTSféfr)TE;wrm) s=20,1,---. Inspired by the idea from

[18], we choose arbitrary p > 1 which satisfies p - r4 ,, < 1. Hence we show that

Z ‘bsk+m||§|8k = Z |CSH§|Sk < Z |CS|7'
s=1

s=1

< Dl

k E — k
s pSkrlim P Skrlf:,v’n

= (2.4)
for |¢] < ry m from [18], where |co| = W.
Also we conclude that
Dsk+m sk+m 1—le 1
|§|m2| fl( )( )|‘€|5k ( | 0| ) 1=1,2,---,n

(sk 4+ m)!

from (2.4). Consequently,
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mx D F(0) (2 Sk+m)|| sk < (1 —lcof?) 1
! \/1*|Co|27’k pF \/l—rkmp k
Taking & = ||z]|, it yields that
oo ||Dsk+mf(0)(zsk+m)” 7 (1 —=lcol?) 1 (2.5)
k ,m .
X Ghem N
Now it suffices to discuss the two cases |co| > ry . and |co| < rj,, respectively.
Case A: |co| > 7} . Putting p = ﬁ in this case from (2.5), we deduce that
Dmf 0)(z™ 0 Dsktm £(0)(zsk+tm . ,r]lz m(l _ |CO|2)
I (')( )||+Z|| f(0)( | )HSTkm lco + ‘ .
m! —~ (sk +m)! ' 1 —|eolr
A direct calculation shows that
-k 2
m TEm (L= lcol®)
i | lcol + ———%—
L—leolry,,
TZ,lm|Co| 27”“"'m|co|2 + rk+m
1- |CO|Tk ,m
U hm)lcol = 205 eo* + ik
= + 2
1-— |CO|7"k,m
2 k m 2(k m) 2k
1 Thm T ¥ o =67y, T +8ri%, +1
1- |CO|Tk’m 4r T 8?"k7m
orktm T S
=1 (e - Rk <
1- |CU| k,m 4r k m
That is
ID™FO) ™, =~ 1D F(0) ()|
<102l < o 2.6
S <Ll < (2.)

Case B: |co| < r,lfj’m. Taking p = % in this case from (2.5), we conclude that

D™ £(0)(z™)]| [ DR f(0) (2R ™)
LR S S L < m
m! i s—1 (sk +m)! = Thm leol +

T]lj,m \% 1—- |CO|2
WJ1— r,%km

it € [0,r’,§7m], it is not difficult to verify that H(t) is an

T’;Ym\/ 1—t2

/ 2k
1*7’k,m

Considering the function H(t) = t +

increasing function on the interval [0, T],;m] because of the fact H'(¢t) > 0,¢ € [0, r’,&m]. Therefore

H(rk )= 27"];";,:” <1

m
Tkm |CO| + ok < Tkom k,m
W1 =T
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from Lemma 2.2. This implies that

ID™FO) ™, g~ 1D ) (™)
+ <Lz <Thm - (2.7)
m! ; (sk +m)!
Hence it follows the desired result from (2.6) and (2.7).
Consider the mapping
k k k !
_ m?A —a g% —a m #n — @ n
f(Z)—(Zl 1_aZ]f722 1_azé€a"'azn1 >7Z€U

with a = r=* (1 — —1\};%), where r = 74 ,,,. Then f satisfies the hypothesis of Theorem 2.3. Setting

|z1] = |#z2| = -+ = |z2| = r, it is shown that the number r = 7, are sharp by the same way in the proof
of [18][Theorem 1]. This completes the proof. O

Setting % =az",l=1,2,--- ,n, Theorem 2.3 gives the following Corollary readily.

Corollary 2.1. Let m,k € N,a = (a1,az2,--- ,a,),0 <m <k, f(2) = (a12]"+91(2), a225"+g2(2), - - - , anz'+

m LM S} sk+m Zsk+m n T m m m 2m
gn(2)) = PRERER 4 3 PG € HEUM T, Jma] = o = Jan], where SEIGER =
(@127, a228", -+ Janzl)'. Then

1™ FOE i D FO) ()| _
m! (sk +m)! -

s=1

for ||2|| < vk.m, where Ty, is the mazimal positive root of the equation
—6Tk_m + TZ(k—nL) + 87,216 +1=0.
Each ry, m is sharp.

3. Bohr inequality for holomorphic mappings with lacunary series for holomorphic mappings on the unit
ball of complex Banach spaces

Theorem 3.1. Let m € N,p > m + 1, f(z) = xg(z) = ZOCT 4 v % € H(B,B), where

m!
s=p

g € H(B,C). Then

L0 +§:HDS @),

for ||z|| =7 < rpm, where 1y, is the same as Theorem 2.1.

Proof. Fix x € B\ {0}, and set xp = ot We define h(¢) = T.(f(£x0)),€ € U. Then h € H(U,U),

Dm—lg(o)(xan 1) N x Ds—lg(o)(x(a) 1)
(m—1)! (s—1)!

s=p

h(€) =&

63
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by the condition of Theorem 3.1. Then it easily yields that w(¢) = by, + 3. b,£5~™ € H(U,U) because of

s=p

h € H(U,T), where by, = 280G b, = PogOGE D 5 = pp 1, Also [by] < 1= [bnf?,5 =

p,p+1,--- (see [14]). It follows that

[D™1g(0) (=™ )]
(m —1)! =1

and

D (0 D7 0)
G-ur © (1 -( 0

‘We mention that

2
)> > Pvma”xH =r<Tpm,s=p,p+1,-

[D2f(0) ()] _ [D*1g(0)(=*"1)

|
s! a (s —1)! lzll,z € B,s=m,p,p+1,---

Therefore,

m m— m— m— m— 2
D750 +ZI|Df Ol 1D e(0)rg 1>T;,}m+<1_<|0 L9(0) (a} 1>|>>1r£,

(m—1)! (m—1)! Tp.m

Similar to that in the proof of Theorem 2.1, it follows the desired result. This completes the proof. 0O

Theorem 3.2. Let m € N;p>m + 1, f(x) = % + > W € H(B,B). Then

S=p

(D" 0" Z'T LA LI

for ||| =7 < rpm, where vy, is the same as Theorem 2.1, w is fized, and |jul| = 1.

Proof. Let x € B\ {0} be fixed, and we write xg = May - Define h(€) = Tu(f(€xp)), & € U, where u is fixed,
and ||u|| = 1. Then h € H(U,U),

L") 5") | i Tu(D* £(0)(5))

m)! s!

h(§) = €™

S=p

from the hypothesis of Theorem 3.2. Then we conclude that w(¢) = by, + Y b,£5~™ € H(U,U) due to

S=p

h € H(U,T), where by, — n(D’"f('O)(a:o’”)) b, = Tu(DSfEO)(wS))78 =pp+1,---. Also |bs] < 1 — |by|?,s =

m! ? s!

p,p+1,--- (see [14]). It yields that

[ Tu(D™ f(0)(25"))]

m!

<1

and

s! m/!

IT(D*FO) )] _ (1_(|Tu(Dmf(0)(x6"))l)2> b el =1 <ryms—pp L
>~ | DM = Tpmyo — V> )
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Consequently,

T (Dmf ZIT (D* f z*))l

- \Tu(Dmf(O)(mS”))lrg?m . (1 B (ITu(Dmﬂ'O)(xS“))I) ) : ig;?;

- m! m!

With analogous arguments in the proof of Theorem 2.1, we drive the desired result, as follows. This completes
the proof. O

Theorem 3.3. Let m,k € N,0 < m < k, f(z) = zg(x) = Dmf(o) Z Sk+7:sl;€_gzgfk+m) H(B,B),
where g € H(B,C). Then -

ID™FO) (™)~ [P f(0) (™)
<1
m! + ; (sk +m)! -
for ||z|| < Tkm, where vy, is the same as Theorem 2.3.
Proof. Let x € B\ {0} be fixed, and put 2o = Tar- We define h(¢) = T (f(€x0)),€ € U. Then h € H(U,U),

D)) | S DR 0) gt
(m —1)! - (sk +m —1)!

S§=

)gsk'—i-m

hE) =&

by the condition of Theorem 3.3. Then it readily yields that w(€) = by, + Y beprm & € H(U,U) because
s=1

D5k+m'7lg(0) (I8k+m,—1)

of h € H(U,U), where by, = 27—9@Gi0 3 - _ — -

(m !

Then it is shown that w(n) = ¢ + Z csn® € H(U,U) due to h € H(U,U), here c¢s = bggym,s =0,1,---.

,8 = 1,2,---. Denote n = &°.

Choose arbitrary p > 1 which satlsﬁes p-Tkm < 1. Hence it follows that

c- sk sk Tllzm( |CO| ) 1
D Ibskrml €] Z |es €7 < Z leslril, < (3.1)
= w— 020 ¥ 1=k

for || < rg m by the same way in the proof of Theorem 3.1.
Also according to (3.1), we deduce that

e D) @ Y] e o T (L o) 1
|§‘ Z k+ 1)| |§| S Tk,m
(sk +m — V1= leolPrk upt /1 =1k o7
Note that
HDsk-&-mf(O)(xsk-i-m)” _ |Dsk+m—1g(0)(xsk+m—1)| B 019
| - _ | ||‘,E||’:EE ,y s =U, 1,4,
(sk +m)! (sk+m —1)!
Thus
e DR F(0) ()]s m(1 = lcol?) 1
€] Z o €1 <1

+m)! \/1—|Co|2?”k ok \/1_7”ka
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Set & = ||«||. Then it is shown that

D™ FO) (&™) | o= [[D=FF™ f(0) (&5 +m)]|
m! + ; (sk +m)! =1

for ||z|| < rgm by the same method in the proof of [18], where 7, is the same as Theorem 3.1.
Consider the mapping

with @ = r—* (1 — —Vl—\é%), where r = 7, u is fixed, and ||u| = 1. Putting « = ru, it follows that
the number r = 7, are sharp by the same approach in the proof of [18][Theorem 1]. This completes the

proof. O

DO ¢ (R B). Then

(118

Theorem 3.4. Let m,k € N,0 <m <k, f(z) = DRSO |

m!

s=1

L0710 Z LD ) )|
(sk +m)! -
for ||| < Tk,m, where g, is the same as Theorem 2.3, u is fizved, and |jul| = 1.

Proof. Let 2 € B\ {0} be fixed, and we write xg = May - Define h(€) = Tu(f(€xp)), € € U, where u is fixed,
and ||u|| = 1. Then h € H(U,U), and

m rm sk+m sk+m
h(é-):é-mTu(D f('O)( 0') +ZT u(D*M f(0) (5 ))§Sk+m
’ s=1

m (sk +m)!

from the hypothesis of Theorem 3.4. Then we conclude that w(&) = by, + Y. beprmé®* € H(U,U) due to
s=1

he H(U, U), where b,,, = w,bs;ﬁm = T“(D“t:kﬂgz)(, ") ,s=1,2,---. Set n = 5’“. Then it is

easily known that v(n) = co + > csn® € H(U,U) because of h € H(U,U), here cs = bgpym,s = 0,1,---.
s=1

Choose any p > 1 which satisfies p - 7y, < 1. Then we conclude that

k:
1
Z|bsk+m|\f|* Z|cs||e|$’“<2|cs|rkm_ ml — of) (32)
\/1—|co|2 k p \/1—7“

for |¢] < ry m from [18].
Also from (3.2), it yields that

|£|mz | T (DS £(0) (2 Sk+m))||§‘sk m(1— leol) 1
(sk + m)! \/1_|CO‘27']€ ok \/1_Tkmp
Putting £ = ||z, then it yields that
m sk+m sk+m
(050 +Z'TD FOE]

(sk 4+ m)! -
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for ||z|| < rk,m by the same arguments in the proof of Theorem 2.3. The arguments concerning sharpness
of the number r = 7, ,, are the same as Theorem 3.3. This completes the proof. O
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