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We deal with germs of diffeomorphisms that are reversible under an involution. We 
establish that this condition implies that, in general, both the family of reversing 
symmetries and the group of symmetries are not finite, in contrast with continuous-
time dynamics, where typically there are finitely many reversing symmetries. 
From this we obtain two chains of fixed-points subspaces of involutory reversing 
symmetries that we use to obtain geometric information on the discrete dynamics 
generated by a given diffeomorphism. The results are illustrated by the generic case 
in arbitrary dimension, when the diffeomorphism is the composition of transversal 
linear involutions.

© 2020 Published by Elsevier Inc.

1. Introduction

Symmetry occurs in many different contexts. It has driven attention in many fields of Mathematics 
and related areas whenever existence and analysis of patterns become relevant. Symmetric objects have 
characteristic features that are not present in generic objects. Symmetry carries geometric information that 
facilitates the study of such objects. One particularly important kind of symmetry – or reversing symmetry, 
as we shall say – is given by an involution. For a local study in Rn, this is defined as the germ of a 
diffeomorphism ϕ : (Rn, 0) → (Rn, 0) satisfying ϕ ◦ ϕ = In, namely a germ of diffeomorphism which is its 
own inverse. We point out that many results in the present work are algebraic, so it shall be clear that those 
also hold for general invertible maps. For the same reason, although formulated for diffeomorphisms, our 
results often do not require differentiability and hold for homeomorphisms.

One branch of applications of reversing symmetries comes from dynamical systems. We refer to [4]
for references on reversibility and related problems. For discrete dynamics governed by the iteration of a 
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(germ of) diffeomorphism F : (Rn, 0) → (Rn, 0), we recall that this is called reversible under a (germ of) 
diffeomorphism R : (Rn, 0) → (Rn, 0), or simply R-reversible, if F ◦ R = R ◦ F−1. In other words, the 
symmetric copy of a trajectory is also a trajectory with time reversed. If F happens to be reversible under 
an involution ϕ1, it follows that it can be decomposed as F = ϕ1 ◦ ϕ2, for some involution ϕ2. Yet, F is 
also ϕ2-reversible. As a consequence, contrary to the continuous case, reversible discrete dynamical systems 
always have more than one reversing involution. We remark that there exist reversing symmetries that are 
not involutions, even for linear isomorphisms; for example, 2 ×2 symmetric matrices are reversible under the 
rotation of π/2. Here we assume throughout that F has an involutory reversibility. In this case, interesting 
dynamics resides in the class governed by diffeomorphisms that possess an infinite number of involutions. 
In algebraic terms, if ϕ1 and ϕ2 generate an Abelian group, then these are simultaneously linearizable, as a 
consequence of the Bochner-Montgomery theorem about linearization of a compact group of transformations 
around a fixed point (see [7]). In our setting, the two involutions generate a discrete group which may be 
non-Abelian and is generally noncompact. Then, a natural question raised in this set-up regards the local 
linearization around a fixed point. The simultaneous linearization and transversality of ϕ1 and ϕ2 is a 
sufficient condition for the linearization of F (see [5] for more on this topic). Also, pairs of involutions are 
linearizable provided F is a hyperbolic germ of diffeomorphism [9]. The work in [6] extends this result to F
normally hyperbolic. In the first case, the fixed-point set of F reduces to a point; in the second case, it can 
be a local submanifold with positive dimension. Normally hyperbolic examples are treated in [2].

In the present work, simultaneously linearizable involutions are treated as a particular case of our results. 
Sets of linear involutions are treated in Section 3 for the planar case and in Section 4 for higher dimensions.

Another branch of applications comes from Singularity theory in the study of divergent diagrams of folds 
(see, for example, [5,8,10]). We recall that given a fold f : (Rn, 0) → (Rn, 0), there exists a unique nontrivial 
involution ϕ associated with f , that is, such that f ◦ϕ = f . In [5] the authors prove that equivalent classes 
of s-tuples of divergent diagram of folds, for s ≥ 1 finite, are described through the simultaneous equivalence 
of the associated s-tuples of involutions. Here we remark that the same holds for an infinite sequence of 
folds. In addition, it follows that the study of singular sets of folds is deduced directly from the description 
of fixed-point subspaces of involutions we present here, once the singular set of f is precisely the fixed-point 
submanifold of the associated involution ϕ. Further investigation on this topic is carried out in [1].

Here is what we shall encounter in the next sections. In Section 2 we recall some basic definitions and 
properties; we also present the main general results regarding symmetries and reversing symmetries of a 
reversible germ of diffeomorphism F . We establish in Theorem 2.8 the existence of a chain of fixed-point 
subspaces of the (infinite) sequence of reversing involutions which must be tracked by the iterates of F . 
In the particular case when the fixed-point submanifolds of ϕ1 and ϕ2 have codimension 1, Theorem 2.13
describes the orbits of points in the complement in Rn of these fixed-point submanifolds. The connected 
components of this complement are interchanged by F . We also use the chain of fixed-point subspaces to 
find periodic points. In Section 3 the results of the Section 2 are applied to the class of pairs of transversal 
linear involutions on the plane. This is done using the normal forms obtained in [5] under the equivalence 
given by simultaneous conjugacy. We also relate the reversible dynamics to the geometry of the chain of 
fixed-point subspaces of the reversing involutions. In Section 4 we use the results of Section 3 to extend 
the analysis to dimension greater or equal to three. Here we use again normal forms of transversal linear 
involutions given in [5] which, for almost all cases, are suspensions of the normal forms on the plane.

In short, Section 2 contains general results on reversible diffeomorphisms. These results are illustrated by 
detailed descriptions of the geometry in two dimensions (Section 3) and in higher dimensions (Section 4).

2. Reversibility and equivariance

The local study developed in this paper is assumed to be about the origin 0 ∈ Rn. Hence, we shall work 
with the notion of a germ: Let F : U1 ⊆ Rn → Rn be a mapping defined on a neighborhood U1 of 0 such that 
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F (0) = 0. The germ of F at 0, denoted by F : (Rn, 0) → (Rn, 0), is the set of mappings G : U2 ⊆ Rn → Rn

such that there is a neighborhood U ⊆ U1 ∩ U2 of 0 with F |U = G|U . When F is a diffeomorphism, we say 
that F : (Rn, 0) → (Rn, 0) is a germ of a diffeomorphism.

Let Ω be the group under composition of the invertible maps on (Rn, 0) acting on (Rn, 0) by the standard 
action of application,

Ω × (Rn, 0) → (Rn, 0), (ϕ, x) �→ ϕx = ϕ(x).

Definition 2.1. Let ϕ ∈ Ω. A germ of a diffeomorphism F : (Rn, 0) → (Rn, 0) is ϕ-equivariant if F ◦ϕ = ϕ ◦F . 
It is ϕ-reversible if F ◦ ϕ = ϕ ◦ F−1. In the first case, ϕ is a symmetry of F and in the second case ϕ is a 
reversing symmetry of F .

Note that if F is ϕ-reversible then so is F−1. For a given germ of diffeomorphism F of (Rn, 0) we denote 
by Γ+ the group formed by the symmetries of F and by Γ− the set of reversing symmetries of F , that is,

Γ+ = {ϕ ∈ Ω : F ◦ ϕ = ϕ ◦ F} and Γ− = {ϕ ∈ Ω : F ◦ ϕ = ϕ ◦ F−1}. (1)

In general, the set Γ− doesn’t have a group structure. Indeed, Γ+∩Γ− 	= ∅ if, and only if, Γ+ = Γ−, which is 
equivalent to F 2 = In, where In denotes the germ of the identity map on Rn. This is the only case for which 
Γ− is a group. For F 2 	= In, we have that Γ− is closed under inversion, but composition of two reversing
symmetries belongs to Γ+. Moreover, we can write Γ− = δΓ+ for any δ ∈ Γ− fixed (and arbitrary). For 
ϕ ∈ Γ+ we have

F ◦ (δ ◦ ϕ) = δ ◦ F−1 ◦ ϕ = (δ ◦ ϕ) ◦ F−1,

hence δ ◦ ϕ ∈ Γ−. Conversely, if ϕ ∈ Γ− then ϕ = δ ◦ (δ−1 ◦ ϕ) ∈ δΓ+.

Definition 2.2. An involution is a germ of a diffeomorphism ϕ : (Rn, 0) → (Rn, 0) satisfying ϕ ◦ ϕ = In.

From now, we assume that there exists an involution in Γ−. In [5] it has been recognized that, in this 
case, reversible diffeomorphisms are in 1–1 correspondence with pairs of involutions. In fact, if ϕ1 is an 
involution then F is ϕ1-reversible if, and only if, F = ϕ1 ◦ ϕ2 for the involution ϕ2 = ϕ1 ◦ F . We now also 
remark that, in this case, F is ϕ2-reversible too, for

F ◦ ϕ2 = ϕ1 = ϕ−1
1 = ϕ2 ◦ ϕ−1

2 ◦ ϕ−1
1 = ϕ2 ◦ F−1.

Hence F corresponds to the pair of reversing symmetries (ϕ1, ϕ2). In what follows we show that, more 
than one pair, there are actually two infinite sequences of involutions ϕk and ϕ′

k such that F is ϕk- and 
ϕ′
k-reversible if Fm 	= In, for all m ∈ N. We take

ϕk = ϕ2 ◦ F k−2, ϕ′
k = F k−1 ◦ ϕ1, k ∈ N, k ≥ 1. (2)

This definition is consistent for k = 1 and k = 2, with ϕ′
1 = ϕ1.

Proposition 2.3. Let ϕ1 : (Rn, 0) → (Rn, 0) be an involution and let F : (Rn, 0) → (Rn, 0) be a ϕ1-reversible 
germ of diffeomorphism such that Fm 	= In, for all m ∈ N. Then F has an infinite group of symmetries 
and an infinite set of reversing symmetries.
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Proof. F is clearly a symmetry of F itself, so the subgroup generated by F ,

[F ] = {F k : k ∈ Z},

is formed by symmetries, and then Γ+ is infinite. Furthermore, all ϕk and ϕ′
k defined in (2) are different 

elements in Γ−, so Γ− is infinite. �
Examples are given in Sections 3 and 4.

Definition 2.4. Given a germ of a diffeomorphism F : (Rn, 0) → (Rn, 0), the F -orbit of a point x ∈ (Rn, 0)
is the ordered set {xk = F k(x) : k ∈ Z}. When F is clear from the context we just call this set the orbit
of x.

If F : (Rn, 0) → (Rn, 0) is the germ of a ϕ-reversible diffeomorphism, then ϕ maps the F -orbit of 
x ∈ (Rn, 0) into the F−1-orbit of ϕ(x), preserving the order.

2.0.1. The fixed-point sets

Definition 2.5. The fixed-point set of a map-germ ϕ ∈ Ω is

Fix(ϕ) = {x ∈ (Rn, 0) : ϕ(x) = x}

and the fixed-point set of a subgroup Σ ≤ Ω is

Fix(Σ) = {x ∈ (Rn, 0) : γx = x, ∀ γ ∈ Σ} .

If ϕ is linear and Σ is a subgroup of the linear group GL(n) then Fix(ϕ) and Fix(Σ) are naturally 
extended to the whole Rn as linear subspaces of Rn. It follows that the fixed-point set of any involution 
ϕ : (Rn, 0) → (Rn, 0) is a smooth submanifold in (Rn, 0), since ϕ is conjugate to the germ of its linear part 
dϕ(0) at the origin (see [6, Lemma 2.2]). Denote by 〈a1, . . . , a�〉 the linear subspace generated by a1, . . . , a�.

The following result is classical and extensively used in equivariant continuous-time dynamics:

Lemma 2.6. Let F : (Rn, 0) → (Rn, 0) be a germ of an equivariant diffeomorphism with symmetry group 
Γ+. If Σ ≤ Γ+ is a subgroup, then Fix(Σ) is F -invariant.

Proof. A point x ∈ (Rn, 0) belongs to Fix(Σ) if, and only if, γx = x for all γ ∈ Σ. Then if F is equivariant, 
we have γF (x) = F (γx) = F (x) for all γ ∈ Σ. Hence F (x) ∈ Fix(Σ). �

Fixed-point sets of symmetries of F are therefore invariant under the discrete dynamics ruled by F . There 
is no similar result for Γ−. Firstly, subsets of Γ− do not have a group structure. In addition, if Σ is a subset 
of Γ− and x ∈ Fix(Σ), then γF−1(x) = F (γx) = F (x) for all γ ∈ Σ. Concerning reversing symmetries, we 
have:

Lemma 2.7. Let ϕ1 : (Rn, 0) → (Rn, 0) be an involution and let F : (Rn, 0) → (Rn, 0) be a ϕ1-reversible germ 
of diffeomorphism. Consider the two sequences of reversing symmetries of F given in (2). The following 
equalities hold:

F (Fix(ϕk+2)) = Fix(ϕk), F (Fix(ϕ′
k)) = Fix(ϕ′

k+2), k ∈ N, k ≥ 1.
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Proof. Consider x ∈ Fix(ϕk+2), i.e., x = ϕ2(F k(x)). If y = F (x), then

y = F (ϕ2(F k(x))) = ϕ2(F−1(F k(x))) = ϕ2(F k−2(F (x))) = ϕk(y),

so F (Fix(ϕk+2)) ⊆ Fix(ϕk).
For the other inclusion, let y ∈ Fix(ϕk). Then

y = ϕk(y) = ϕ2 ◦ F k−2(y) = F (ϕ2 ◦ F k−1(y))

and, therefore, y = F (x) for x = ϕ2 ◦ F k−1(y). Also, ϕk+2(x) = ϕ2 ◦ F k(x) = ϕ2 ◦ F k−1(y) = x.
The equalities for the other sequence are obtained analogously. �

Theorem 2.8. Applying F to the fixed-point submanifolds of the involutions of (2) the following chains are 
obtained:

· · · −→ Fix(ϕ2k) −→ · · · −→ Fix(ϕ2) −→ Fix(ϕ′
2) −→ · · · −→ Fix(ϕ′

2k) −→ · · · ,

· · · −→ Fix(ϕ2k+1) −→ · · · −→ Fix(ϕ1) −→ Fix(ϕ′
3) −→ · · · −→ Fix(ϕ′

2k+1) −→ · · · ,
(3)

for k ≥ 1.

Proof. Similar calculations to those of Lemma 2.7 give

F (Fix(ϕ1)) = Fix(ϕ′
3) and F (Fix(ϕ2)) = Fix(ϕ′

2).

We now use Lemma 2.7 to get the result. �
If for any k ≥ 1 and � ∈ N we have either Fix(ϕk) = Fix(ϕk+2�) or Fix(ϕk) = Fix(ϕ′

k+2�) or Fix(ϕ′
k) =

Fix(ϕ′
k+2�) then the whole chain in (3) containing one of these fixed-point manifolds is finite.

The following is also a direct consequence of Lemma 2.7:

Corollary 2.9. All fixed-point submanifolds of the involutions of (2) with odd index have dimension equal to 
dim Fix(ϕ1), and the ones for even index have dimension equal to dimFix(ϕ2).

It should be stressed that dynamically and geometrically relevant results should not depend on the choice 
of coordinates. Proposition 2.11 below establishes this point. Before stating it we define the equivalence of 
two sets of involutions which is given by simultaneous conjugacy:

Definition 2.10. Two pairs (ϕ1, ϕ2) and (ψ1, ψ2) of involutions on (Rn, 0) are equivalent if there exists a 
germ of diffeomorphism h : (Rn, 0) → (Rn, 0) such that ψi = h ◦ ϕi ◦ h−1, for i = 1, 2. If h is a germ of a 
linear isomorphism, we say that (ϕ1, ϕ2) and (ψ1, ψ2) are linearly equivalent.

For two equivalent pairs of involutions (ϕ1, ϕ2) and (ψ1, ψ2), it follows that for each k ∈ N, k ≥ 2, the two 
pairs (ϕk, ϕ′

k) and (ψk, ψ′
k), constructed in (2) for F = ϕ1 ◦ϕ2 and G = ψ1 ◦ψ2 respectively, are equivalent. 

In addition, F and G are also conjugate, so they generate equivalent dynamics. These equivalences are 
clearly governed by the same h, which directly implies the following:

Proposition 2.11. The equalities in Lemma 2.7 and the chains in Theorem 2.8 are invariant under equiva-
lence.
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The next result gives a sufficient condition for an orbit starting at a fixed-point submanifold to be 
periodic:

Proposition 2.12. For any reversing symmetry ϕ of F , if x ∈ Fix(ϕ) and if there exists � ∈ N such that 
F �(x) ∈ Fix(ϕ), then the orbit of x is periodic. In addition, for the sequences of reversing symmetries of F
in (2) and � > k, we have:

(A) If x ∈ Fix(ϕk) ∩ Fix(ϕ�), then the orbit of x is a periodic orbit with period that divides � − k. Also, if 
x is a periodic point with period that divides � − k and x ∈ Fix(ϕk), then x ∈ Fix(ϕ�).

(B) If x ∈ Fix(ϕ′
k) ∩ Fix(ϕ′

�), then the orbit of x is a periodic orbit with period that divides � − k. Also, if 
x is a periodic point with period that divides � − k and x ∈ Fix(ϕ′

k), then x ∈ Fix(ϕ′
�).

(C) If x ∈ Fix(ϕ′
k) ∩Fix(ϕ�), then the orbit of x is a periodic orbit with period that divides k+ � − 2. Also, 

if x is a periodic point with period that divides k + � − 2 and x ∈ Fix(ϕ′
k), then x ∈ Fix(ϕ�).

Proof. The first part is straightforward, just noticing that x, F �(x) ∈ Fix(ϕ) implies that

F−�(x) = F−�(ϕ(x)) = ϕ(F �(x)) = F �(x).

For the statements (A)–(C) we use (2) to get

ϕk ◦ ϕ� = F �−k, ϕ′
k ◦ ϕ′

� = F k−�, ϕ′
k ◦ ϕ� = F �+k−2.

The periodicity then follows from Fix(ϕk) ∩ Fix(ϕ�) ⊆ Fix(ϕk ◦ ϕ�) = Fix(F �−k) for (A) and similarly for 
(B) and for (C). �

A particular case of the proposition above can be found in [3], namely when the whole space has even 
dimension and the fixed-point subspaces are n/2-dimensional submanifolds of Rn.

From Corollary 2.9, if dim Fix(ϕ1) = dim Fix(ϕ2) = n −1, then the fixed-point submanifolds split (Rn, 0)
into connected regions. The result below describes how the dynamics by F = ϕ1 ◦ ϕ2 behaves with respect 
to these regions.

Theorem 2.13. Let ϕ1, ϕ2 : (Rn, 0) → (Rn, 0) be two involutions with dim Fix(ϕ1) = dim Fix(ϕ2) = n − 1. 
Let ϕk, ϕ′

k ∈ Γ−, k ∈ N, k ≥ 1 be as in (2). Then F = ϕ1 ◦ ϕ2 interchanges the connected components of 
the germ at the origin of

C = Rn \
∞⋃
k=1

(Fix(ϕk) ∪ Fix(ϕ′
k)) ,

determined by these fixed-point submanifolds.

Proof. Take V a region whose boundary is determined by the fixed-point manifolds of involutions ψp, ψq ∈
Δ = {ϕk, ϕ′

k : k ≥ 1}. By path connectedness of F (V ) and Lemma 2.7, the boundary of F (V ) is determined 
by Fix(ψ̂p) ∪Fix(ψ̂q), with ψ̂p, ψ̂q ∈ Δ where each pair (ψp, ψ̂p) and (ψq, ψ̂q) consists of consecutive elements 
in one of the chains in (3), that is,

F (Fix(ψp)) = Fix(ψ̂p), F (Fix(ψq)) = Fix(ψ̂q).

Therefore, F (V ) is another component.
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It remains to consider the case when part of the boundary of a connected component V of the complement 
is not contained in a fixed-point manifold of any involution in Δ (see the examples of Subsections 3.3.2, 
3.3.4 and 4.1). This happens when the boundary of V meets the set C of accumulation points of these 
fixed-point manifolds. We claim that F (C) ⊂ C. Indeed, a point x ∈ C may be written as x = lim

n→∞
xn

with xn ∈ Fix(ψn) for some ψn ∈ Δ. Since F is a homeomorphism, then F (x) = lim
n→∞

F (xn). Lemma 2.7

implies that F (xn) ∈ Fix(ψ̂n) for some ψ̂n ∈ Δ, establishing the claim. It follows that if the boundary of a 
component V ⊂ C consists of accumulation points of fixed-point subspaces, then V is mapped by F into a 
component with the same type of boundary. The same is true if the boundary of V contains both elements 
of fixed-point submanifolds and elements of C, completing the proof. �

We now define transversality of two involutions. This is a generic condition we assume for the pairs of 
involutions treated in the next sections.

Definition 2.14. Two involutions ϕ1, ϕ2 on (Rn, 0), n ≥ 2, are transversal if Fix(ϕ1) and Fix(ϕ2) are in 
general position at 0, i.e.,

Rn = T0 Fix(ϕ1) + T0 Fix(ϕ2),

where T0 Fix(ϕi) denotes the tangent space to Fix(ϕi) at 0, i = 1, 2.

In the next two sections we apply the previous results to analyse the behavior of a ϕ1-reversible germ of 
diffeomorphism F associated with a pair (ϕ1, ϕ2) of transversal linear involutions on (Rn, 0), for n = 2 and 
n ≥ 3, respectively. For this, we restrict our study to the linear case, considering the group of symmetries 
Γ+ and the set of reversing symmetries Γ−, defined in (1), as subsets of the linear group GL(n) and keeping 
the notation introduced in this section.

3. Dynamics and geometry of linear reversible maps on the plane

In this section we consider a germ of diffeomorphism F = ψ1 ◦ ψ2 on (R2, 0), where ψ1 and ψ2 are 
transversal linear involutions (Definition 2.14). We present the results up to equivalence of pairs of involu-
tions given by simultaneous conjugacy. Hence, the pair (ψ1, ψ2) is considered to be in normal form, which 
is given in [5, Theorem 6.2]. For that, we first recall the definition of the antipodal subspace of a linear 
involution ϕ on Rn,

A(ϕ) = {x ∈ Rn : ϕ(x) = −x}.

Notice that Rn = Fix(ϕ) ⊕ A(ϕ). Denote by Λ = [ψ1, ψ2] the group generated by ψ1 and ψ2. There are 
three cases to be considered:

(i) Λ is Abelian;
(ii) Λ is non-Abelian and A(ψ2) = Fix(ψ1);
(iii) Λ is non-Abelian and A(ψ2) 	= Fix(ψ1).

Our aim is to investigate, for the cases above, the fixed-point subspaces of the reversing involutions in 
Λ− = Λ ∩ Γ− and their relation to the dynamics generated by F . Let us denote by Λ+ = Λ ∩ Γ+ the group 
generated by F and by Z2(ϕ) the 2-element group generated by ϕ.
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3.1. Λ is Abelian

This is a trivial case. By [5, Theorem 6.2], (ψ1, ψ2) is equivalent to (ϕ1, ϕ2), where

ϕ1(x, y) = (−x, y) and ϕ2(x, y) = (x,−y),

so Λ = Z2(ϕ1) ⊕Z2(ϕ2). Since F = −I2, the dynamics is rather degenerate because all the F -orbits (except 
the origin) are periodic of period 2. Moreover,

ϕ2k+1 = ϕ′
2k+1 = ϕ1 and ϕ2k = ϕ′

2k = ϕ2

for all k ≥ 1. Therefore, Fix(F ) = {(0, 0)} and the fixed-point subspaces Fix(ϕ1) = 〈(0, 1)〉 and Fix(ϕ2) =
〈(1, 0)〉 divide the plane into four connected components that are interchanged by F (Theorem 2.13).

Moreover, Γ+ = Γ− = GL(2), while Λ+ = Z2(−I2) and Λ− = {ϕ1, ϕ2}.

3.2. Λ is non-Abelian and A(ψ2) = Fix(ψ1)

By [5, Theorem 6.2], (ψ1, ψ2) is equivalent to (ϕ1, ϕ2), where

ϕ1(x, y) = (−x, x + y) and ϕ2(x, y) = (x,−y).

In this case F (x, y) = (−x, x − y), whose eigenvalues are λ1 = λ2 = −1 with geometric multiplicity 1. 
Writing F = −I2 + N , where

N =
(

0 0
1 0

)
,

we have F k = (−1)k(I2 − kN) 	= I2 for all k ∈ N, which implies that

ϕk(x, y) = (−1)k(x, (k − 2)x− y) and ϕ′
k(x, y) = (−1)k(x,−kx− y).

Yet,

Fix(F ) = {(0, 0)} = Fix(F 2k+1), Fix(ϕ2k) = 〈(1, k − 1)〉, Fix(ϕ′
2k) = 〈(1,−k)〉,

Fix(F 2k) = Fix(ϕ2k+1) = Fix(ϕ′
2k+1) = 〈(0, 1)〉,

for all k ≥ 1. Therefore, the fixed-point subspaces of ϕ2k and ϕ′
2k approach the y-axis as k tends to infinity 

(see Fig. 1).
For the dynamics, we use the expression of F k to conclude that the y-axis is F -invariant and that the 

orbits of all its points, except the origin, have period 2. For the other points, by linearity, it suffices to look at 
the orbits of points (1, y) given by F k(1, y) = (−1)k (1, y − k), as illustrated in Fig. 1, on the right. This case 
provides an interesting illustration of Theorem 2.13. For instance, the sector {(x, y) : x > 0, 0 < y < x}
between Fix(ϕ2) and Fix(ϕ4) is mapped onto the sector {(x, y) : x < 0, 0 < y < −x} between Fix(ϕ′

2) and 
Fix(ϕ2). Also, the sector {(x, y) : x < 0, −x < y < −2x} between Fix(ϕ′

2) and Fix(ϕ′
4) is mapped onto 

the sector {(x, y) : x > 0, −3x < y < −2x} between Fix(ϕ′
6) and Fix(ϕ′

4). See Fig. 1 on the left.
Symmetries and reversing symmetries are as follows:

Λ+ =
{
(−1)k(I2 − kN) : k ∈ Z

}
, Λ− = {ϕk, ϕ′

k : k ∈ N, k ≥ 1} ,
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Fig. 1. Left: fixed-point subspaces for the involutions ϕ1, ϕ2k and ϕ′
2k in case (ii). Note that Fix(ϕ′

2k+1) = Fix(ϕ2k+1) = Fix(ϕ1), 
k = 1, 2, 3, . . .. Right: orbit of the point X0 = (1, 0), Xk = Fk(X0).

Γ+ =
{(

a 0
c a

)
: a, c ∈ R, a 	= 0

}
and Γ− =

{(
a 0
c −a

)
: a, c ∈ R, a 	= 0

}
,

both Γ± manifolds of dimension 2.

3.3. Λ is non-Abelian and A(ψ2) 	= Fix(ψ1)

Let us denote t = tr(ψ1 ◦ ψ2). From [5, Theorem 6.2], (ψ1, ψ2) is equivalent to (ϕ1, ϕ2), where

ϕ1(x, y) = (−x, y + (2 + t)x) and ϕ2(x, y) = (x + y,−y). (4)

The analysis here considers all possibilities for the parameter t, which is an invariant under linear simulta-
neous conjugacy. We have

F =
(

−1 −1
2 + t 1 + t

)
,

whose eigenvalues

λ+ = t +
√
t2 − 4
2 and λ− = t−

√
t2 − 4
2

satisfy λ+λ− = 1. Notice that λ+ = λ− = ±1 if, and only if, t = ±2, respectively. A direct calculation gives 
the group of symmetries of F

Γ+ =
{(

a + (2 + t)b b
−(2 + t)b a

)
∈ GL(2) : a, b ∈ R

}
and the set of reversing symmetries of F

Γ− =
(

1 1
0 −1

)
Γ+ =

{(
a a + b

(2 + t)b −a

)
∈ GL(2) : a, b ∈ R

}
,

both manifolds of dimension 2.
Since the normal form of F depends only on the parameter t, we have subdivided this subsection in four 

cases. In all of them the group of symmetries and the set of reversing symmetries generated by ϕ1 and ϕ2
are given respectively by Λ+ =

{
F k : k ∈ Z

}
and Λ− = {ϕk, ϕ′

k : k ∈ N, k ≥ 1}.
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Fig. 2. Fixed-point subspaces for the involutions ϕ1, ϕ2k and ϕ′
2k in case (iii) with t = ±2. Left: t = −2. In this case Fix(ϕ′

2k) =
Fix(ϕ2k) = Fix(ϕ2), k = 1, 2, 3, . . .. Right: t = 2. The dashed line is Fix(F ) = {(x, y) : y = −2x} where all the lines Fix(ϕk) and 
Fix(ϕ′

k) accumulate as k → ∞.

3.3.1. Normal form (4) with t = −2
In this case, F (x, y) = (−x − y, −y), whose eigenvalues are λ1 = λ2 = −1 with geometric multiplicity 1. 

Writing F = −I2 + N , where N is a nilpotent matrix of index 2, we have F k(x, y) = (−1)k(x + ky, y) for 
all k ∈ Z, which implies that

ϕk(x, y) = (−1)k(x + (k − 1)y,−y) and ϕ′
k(x, y) = (−1)k(x− (k − 1)y,−y).

Therefore

Fix(F ) = {(0, 0)} = Fix(F 2k+1), Fix(ϕ2k) = Fix(ϕ′
2k) = Fix(F 2k) = 〈(1, 0)〉,

Fix(ϕ2k+1) = 〈(−k, 1)〉 and Fix(ϕ′
2k+1) = 〈(k, 1)〉

for all k ≥ 1. The fixed-point subspaces of ϕ2k+1 and ϕ′
2k+1 approach the x-axis as k tends to infinity, which 

is an F -invariant line (see Fig. 2).

3.3.2. Normal form (4) with t = 2
In this case, F (x, y) = (−x − y, 4x + 3y), whose eigenvalues are λ1 = λ2 = 1 with geometric multiplicity 

1. Writing F = I2 + N for a nilpotent matrix N of index 2, we have

F k(x, y) =
(
(1 − 2k)x− ky, 4kx + (1 + 2k)y

)
, ∀ k ∈ Z,

which implies that ϕk(x, y) = ((2k − 3)x + (k − 1)y, −4(k − 2)x − (2k − 3)y) and ϕ′
k(x, y) = ((1 − 2k)x −

(k − 1)y, 4kx − (1 − 2k)y). Therefore

Fix(F ) = Fix(F k) = 〈(1,−2)〉

is the eigenspace of F associated with λ = 1 for all k ∈ Z non-zero. Moreover, Fix(ϕk) = 〈(k − 1, 4 − 2k)〉
and Fix(ϕ′

k) = 〈(k−1, −2k)〉 for all k ≥ 1. The fixed-point subspaces of ϕk and ϕ′
k approach the F -invariant 

line y = −2x as k tends to infinity (see Fig. 2). Here the two half-lines Fix(F ) ∩ {(x, y) ∈ R2 : x > 0} and 

Fix(F ) ∩ {(x, y) ∈ R2 : x < 0} are components of R2 \
∞⋃

(Fix(ϕk) ∪ Fix(ϕ′
k)).
k=1
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Fig. 3. Fixed-point subspaces in the R × I coordinates for the involutions ϕk in case (iii), when |t| < 2 for θ = 2π/5. In this case 
Fix(ϕ1) is the I-axis, Fix(ϕk) = Fix(ϕl) = Fix(ϕ′

r) when k ≡ l (mod 5) and r + k ≡ 2 (mod 5).

3.3.3. Normal form (4) with |t| < 2
When −2 < t < 2, the map F has complex eigenvalues

λ± = t± i
√

4 − t2

2 ,

with |λ±| = 1. Hence F is diagonalizable over C with λ± = e±iθ, where θ = arccos(t/2). This means that 
there is a change of coordinates that conjugates F to a rotation of θ radians around the origin. The complex 
eigenvectors associated to λ± have the form R + iI where

R =
(

1,− t

2 − 1
)

I =
(

0,−
√

4 − t2

2

)
.

From now on we use coordinates in the basis β = {R, I} of R2 for which, taking αk = (k− 1)θ, with k ≥ 1, 
we have

ϕk|β =
(
− cosαk sinαk

sinαk cosαk

)
and ϕ′

k|β =
(
− cosαk − sinαk

− sinαk cosαk

)
,

whence

Fix(ϕk) = 〈 (sinαk, 1 + cosαk)|β〉 and Fix(ϕ′
k) = 〈 (− sinαk, 1 + cosαk)|β〉.

Hence the coordinates in the basis β of the generators of Fix(ϕk) and Fix(ϕ′
k) lie on a circle of center (0, 1)

and radius 1 (see Fig. 3). When θ/2π = p/q, p, q ∈ Z, q 	= 0, then F q = I2 and all the F -orbits are periodic 
of period q. Also, Λ− is finite and their fixed-point subspaces form a finite set of lines through the origin. 
When θ/2π /∈ Q, Λ− is infinite and a set of generators of Fix(ϕk) and of Fix(ϕ′

k) can be taken to form each 
a dense set in the circle, and hence the union of fixed-point subspaces is dense in the plane. In the original 
coordinates, there is a family of concentric F -invariant ellipses and each F -orbit is dense on the ellipse that 
contains it.

3.3.4. Normal form (4) with |t| > 2
When t > 2 the map F has real eigenvalues λ+ > 1 and 0 < λ− < 1, whereas for t < −2 the eigenvalues 

of F satisfy λ− < −1 < λ+ < 0. Hence, F is hyperbolic and F k 	= I2 for k 	= 0. The eigenvectors of F
associated to λ± are generated by (1, −1 − λ±), respectively. From now on we use coordinates in the basis 
β = {(1, −1 − λ+), (1, −1 − λ−)} of R2 for which we have F diagonal,
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Fig. 4. Eigenspaces for F (dotted) and fixed-point subspaces for the involutions ϕ1, ϕ2k and ϕ′
2k in case (iii) for |t| > 2. Left: 

t = −3. Right: t = 3.

ϕk|β =
(

0 −λk−1
−

−λk−1
+ 0

)
and ϕ′

k|β =
(

0 −λk−1
+

−λk−1
− 0

)
.

Therefore,

Fix(ϕk) = 〈(1,−λk−1
+ )|β〉 and Fix(ϕ′

k) = 〈(1,−λk−1
− )|β〉.

These fixed-point subspaces do not coincide with the eigenspaces of F . Hence, powers of F and F−1 map 
Fix(ϕk), Fix(ϕ′

k) into distinct subspaces, according to Theorem 2.8. Moreover, it follows that the Fix(ϕ′
k)’s 

accumulate, when k → ∞, on the expanding eigenspace of F : if t > 2 the Fix(ϕ′
k)’s accumulate on the 

eigenspace of λ+ > 1 and for t < −2 they accumulate on the eigenspace of λ− < −1 (see Fig. 4). Similarly, 
the subspaces Fix(ϕk)’s accumulate, when k → ∞, on the contracting eigenspace of F (the expanding 
eigenspace of F−1).

4. Dynamics and geometry of linear reversible maps for n ≥ 3

In this section we obtain a generalization of the results of Section 3 for n ≥ 3. As we shall see, the planar 
case leads to a similar analysis of the dynamics of a germ of diffeomorphism F = ψ1 ◦ ψ2 on (Rn, 0), for 
n ≥ 3, where ψ1 and ψ2 are transversal linear involutions. Again, we denote by Λ = [ψ1, ψ2] the group 
generated by the involutions and use the normal forms for the pairs of transversal linear involutions on 
(Rn, 0) now given in [5, Theorem 7.3]. There are five cases to consider:

(a) Λ is Abelian;
(b) Λ is non-Abelian, tr(F ) 	= n and A(ψ2) ⊂ Fix(ψ1);
(c) Λ is non-Abelian, tr(F ) 	= n and A(ψ2) 	⊂ Fix(ψ1);
(d) Λ is non-Abelian, tr(F ) = n and A(ψ1) = A(ψ2);
(e) Λ is non-Abelian, tr(F ) = n and A(ψ1) 	= A(ψ2).

We investigate the relation between the fixed-point subspaces of the involutions in Λ− and the dynamics 
generated by F . Let us denote by ei the vector with 1 in the i-th coordinate and 0 elsewhere, for i = 1, . . . , n.

The following definition will be useful:
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Definition 4.1. The map-germ f̂ : (Rm+�, 0) → (Rm+�, 0) is a suspension of f : (Rm, 0) → (Rm, 0) if 
f̂(x, y) = (f(x), y), where x ∈ Rm and y ∈ R�. The pair (ϕ̂1, ϕ̂2) is a suspension of (ϕ1, ϕ2) if each ϕ̂i is a 
suspension of ϕi in the same system of coordinates.

A consequence of the results of [5] is that a pair of linear transversal involutions (ψ1, ψ2) is equivalent to 
a suspension of a pair of planar involutions, except in case (e), with n ≥ 4, for which the pair is equivalent 
to a suspension of a pair of involutions in R3. The following trivial proposition summarises the properties 
of suspensions.

Proposition 4.2. For linear involutions ϕ̂i : (Rm+�, 0) → (Rm+�, 0), i = 1, 2, if (ϕ̂1, ϕ̂2) is a suspension of 
the involutions (ϕ1, ϕ2), with ϕi : (Rm, 0) → (Rm, 0), then:

• F̂ = ϕ̂1 ◦ ϕ̂2 is a suspension of F = ϕ1 ◦ ϕ2;
• ϕ̂k and ϕ̂′

k, k ≥ 1 integer, are suspensions of ϕk and ϕ′
k respectively;

• Fix(ϕ̂k) = Fix(ϕk) ×R� and Fix(ϕ̂′
k) = Fix(ϕ′

k) ×R�;
• The group Γ̂+ of symmetries of F̂ consists of matrices of the form

(
A C

D B

)
,

where A ∈ Γ+ is a symmetry of F and B ∈ GL(�), with FC = C and DF = D. A similar result holds 
for the set Γ̂− of reversing symmetries of F̂ .

Using [5, Theorem 7.3], the relation of cases (a)–(d) above to (i)–(iii) of the previous section is the 
following:

(a) if Λ is Abelian, then (ψ1, ψ2) is equivalent to (ϕ̂1, ϕ̂2), where (ϕ̂1, ϕ̂2) is a suspension of the normal 
forms in Subsection 3.1;

(b) if Λ is non-Abelian, tr(F ) 	= n and A(ψ2) ⊂ Fix(ψ1), then (ψ1, ψ2) is equivalent to (ϕ̂1, ϕ̂2), where 
(ϕ̂1, ϕ̂2) is a suspension of the normal forms in Subsection 3.2;

(c) if Λ is non-Abelian, tr(F ) 	= n and A(ψ2) 	⊂ Fix(ψ1), then (ψ1, ψ2) is equivalent to (ϕ̂1, ϕ̂2), where 
(ϕ̂1, ϕ̂2) is a suspension of the normal forms in Subsection 3.3 with t 	= 2;

(d) if Λ is non-Abelian, tr(F ) = n and A(ψ1) = A(ψ2), then (ψ1, ψ2) is equivalent to (ϕ̂1, ϕ̂2), where 
(ϕ̂1, ϕ̂2) is a suspension of the normal forms in Subsection 3.3 with t = 2.

All these cases satisfy the hypothesis of Theorem 2.13, i.e., Fix(ψ1) and Fix(ϕ2) are hyperplanes.
In the next subsection we discuss the remaining case (e), which does not suspend from the planar problem.

4.1. Case (e): Λ is non-Abelian, tr(F ) = n and A(ψ1) 	= A(ψ2)

By [5, Theorem 7.3], (ψ1, ψ2) is equivalent to (ϕ1, ϕ2), where

ϕ1(x1, . . . , xn) = (−x1, 4x1 + x2, x3, . . . , xn),
ϕ2(x1, . . . , xn) = (x1 + x2, −x2, x2 + x3, x4, . . . , xn).
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In this case F = In + N , where

N =

⎛⎜⎜⎜⎝
−2 −1 0
4 2 0
0 1 0

0

⎞⎟⎟⎟⎠
is a nilpotent matrix of index 3. Therefore F has eigenvalues λ = 1 with algebraic multiplicity n and 
geometric multiplicity n − 2. Since

F k = In + kN + k(k − 1)
2 N2 =

⎛⎜⎜⎜⎝
1 − 2k −k 0
4k 2k + 1 0
2k(k − 1) k2 1

In−3

⎞⎟⎟⎟⎠
for each k ∈ Z, we have

Fix(F ) = Fix(F k) = 〈e3, . . . , en〉,

for all k ∈ Z non-zero. Moreover,

Fix(ϕk) = 〈(k − 1)e1 + (4 − 2k)e2, e3, . . . , en〉

and

Fix(ϕ′
k) = 〈(k − 1)e1 − 2ke2, e3, . . . , en〉

for all k ≥ 2. For k = 1, we have Fix(ϕ1) = Fix(ϕ′
1) = 〈e2, e3, . . . , en〉. Thus, when k → ∞, the fixed-point 

subspaces of ϕk and ϕ′
k approach the F -invariant subspace x2 = −2x1.

The subspaces Fix(ϕk) and Fix(ϕ′
k) have codimension 1, so we can still apply Theorem 2.13. The situ-

ation is similar to the example of Subsection 3.3.2: the invariant limit hyperplane contains two connected 
components of

Rn \
∞⋃
k=1

(Fix(ϕk) ∪ Fix(ϕ′
k)) .

Linear symmetries of F have the form given in Proposition 4.2, where A ∈ Γ+ and B ∈ GL(n − 3), with 
FC = C and DF = D, and where Γ+ is the 3-dimensional manifold of elements

(
a b 0

−4b a− 4b 0
2(b + c) c a− 2b

)
, a, b, c ∈ R, a 	= 2b.

Linear reversing symmetries of F have the same form, with A ∈ Γ− = ϕ1Γ+, the 3-dimensional manifold of 
elements ( −a −b 0

4(a− b) a 0
)
, a, b, c ∈ R, a 	= 2b.
2(b + c) c a− 2b
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