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uniformly convex renorming of super-reflexive Banach spaces as the regularization 
of a raw function built from trees. Among other applications, we provide a sharp 
estimation of the distance of a given function to the set of differences of Lipschitz 
convex functions. Finally, we prove the equivalence of several possible ways to 
quantify the super weakly noncompactness of a convex subset of a Banach space.
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1. Introduction

Along the paper, (X, ‖ · ‖) will be a real Banach space and we will follow the standard notation that 
one can find in books such as [2,12,14,21,24]. However, dealing with real functions defined on X, if there 
is not specific hypothesis on the domain, we will follow the convention typical from Convex Analysis [4,32]
that a function f is defined everywhere and takes values in R = R ∪ {−∞, +∞}. A function f is said to 
be proper if f(x) > −∞ for all x ∈ X, and dom(f) := {x ∈ X : f(x) < +∞} �= ∅. In the following, all the 
functions are supposed to be proper. However, some operations performed on proper functions could lead 
to non-proper functions. The class of lower semicontinuous convex proper functions on X will be denoted 
Γ(X). Note that, if nothing is said on the contrary, all functions are supposed to be defined everywhere in 
X and proper.

Definition 1.1. Let ε > 0. A function f : X → R is said to be ε-uniformly convex if there is δ > 0 such that 
whenever ‖x − y‖ ≥ ε, then
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f

(
x + y

2

)
≤ f(x) + f(y)

2 − δ.

The function is said to be uniformly convex if it is ε-uniformly convex for all ε > 0.

The suggestive name discrete uniformly convex functions applied to functions which are ε-uniformly 
convex for some ε > 0 could be misleading here. Clearly, a uniformly convex function is midpoint-convex, 
that is, the inequality f(x+y

2 ) ≤ f(x)+f(y)
2 holds whenever x, y ∈ X. Therefore, a uniformly convex function 

is convex provided some regularity holds (e.g., if f is lower semicontinuous). The notion of uniform convexity 
for functions was introduced by Levitin and Polyak [23], and based on Clarkson’s uniform convexity for 
normed spaces [11]. Since then, the properties of uniformly convex functions have been studied in several 
papers, notably [28,29,31,1,3,5], section 3.5 in Zalinescu’s book [32], and part of chapter 5 in Borwein-
Vaderwerff’s book [4] devoted to them. In relation to the standard theory, let us point out the notion of 
modulus of uniform convexity

δf (ε) = inf
{
f(x) + f(y)

2 − f

(
x + y

2

)
: x, y ∈ dom(f), ‖x− y‖ ≥ ε

}
.

Note that δf could take negative values unless f is supposed to be (midpoint-) convex. Analogously, it is 
possible to define ε-uniformly concave functions, however it will not be necessary to treat them here because 
all the theory extends trivially.

In this paper, we are focused in ε-uniformly convex functions for a fixed ε > 0 for which the usual 
convexity assumption is not longer assumed. That is the main issue we have to deal with here and the 
reason to do it is that non-convex ε-uniformly convex functions may arise in relation with some discrete 
constructions, starting from trees or barely convex sets. Nonetheless, ε-uniformly convex functions have nice 
properties. Along the paper, f̆ will denote the lower semicontinuous convex envelope of a function f (also 
denoted conv(f) in some references). The next result shows the global behaviour of ε-uniformly convex 
functions and the relative stability of minimizers by linear perturbations.

Theorem 1.2. Let f be an ε-uniformly convex function such that f̆ is proper. Then f is bounded below and 
coercive, more precisely we have

lim inf
‖x‖→+∞

f(x)
‖x‖2 > 0.

Moreover, for any ε′ > ε there exist δ, η > 0 such that if given x∗
0 ∈ X∗ and x0 ∈ X with

f(x0) + x∗
0(x0) < inf(f + x∗

0) + δ,

and x∗ ∈ X∗ such that ‖x∗ − x∗
0‖ < η and x ∈ X that minimizes f + x∗, then ‖x − x0‖ ≤ ε′. The existence 

of such minimizer pair (x, x∗) is guaranteed if f = f̆ .

The proof of the former result relies in the possibility of “making convex” an ε-uniformly convex function 
without loosing the ε-uniformly convexity. We will say that a function f is ε+-uniformly convex if it is 
ε′-uniformly convex for every ε′ > ε. We have the following result.

Theorem 1.3. Let f be ε-uniformly convex and assume that f̆ is proper. Then f̆ is ε+-uniformly convex.

Simple examples, such as Example 2.6, show that the ε-uniformly convexity of f does not guarantee that 
f̆ would be proper. In order to fulfil that requirement in terms of f , we direct the reader to Corollary 5.1. 
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Suppose now that we already have a proper lower semicontinuous convex and ε-uniformly convex function f . 
We wonder if we could “upgrade” f to a new function sharing those properties and, besides, being locally 
Lipschitz (global Lipschitzness is not allowed for uniformly convex functions). In that sense, we have the 
following result.

Theorem 1.4. Let f ∈ Γ(X) be ε-uniformly convex. Then there exists an equivalent norm | | | · | | | on X such 
that the function x → | | |x| | |2 is ε+-uniformly convex on the subsets of dom(f) where f is bounded above. 
Moreover, the norm | | | · | | | can be taken as close to ‖ · ‖ as we wish.

We want to point out that in the previous theorem we get ε+ even in the case that the function f in 
the hypothesis should be convex. If f were uniformly convex, then a series of ε-uniformly convex norms for 
different ε’s going to 0 would produce an equivalent norm whose square is uniformly convex on bounded 
subsets of dom(f).

It turns out that supporting a convex continuous ε-uniformly convex function is actually a geometrical-
topological property of the domain. It is known that a Banach space admits a uniformly convex function 
bounded on bounded sets if and only if it is super-reflexive. The second named author proved in [27] that a 
closed convex bounded set admits a bounded continuous uniformly convex function if and only if it is super 
weakly compact (SWC for short). We will give the actual definition of SWC set in Section 6, however we 
can provide an alternative one on a provisional basis: a bounded closed convex set is SCW if and only if for 
all ε > 0 there is Nε ∈ N such that the height of any ε-separated dyadic tree is bound by Nε. Recall that a 
dyadic tree of height n ∈ N is a set of the form {xs : |s| ≤ n}, indexed by finite sequences s ∈

⋃n
k=0{0, 1}k

of length |s| ≤ n, such that xs = 2−1(xs�0 + xs�1) for every |s| < n, where {0, 1}0 := {∅} indexes the root 
x∅ and the symbol “�” stands for concatenation. We say that a dyadic tree {xs : |s| ≤ n} is ε-separated if 
‖xs�0 − xs�1‖ ≥ ε for every |s| < n.

Our techniques allow us to give a very precise quantitative version of the relation between containment 
of separated trees and supporting a uniformly convex function for a set.

Theorem 1.5. Let C ⊂ X be a closed bounded convex set. Then these two numbers coincide:

(a) the infimum of the ε > 0 such that there is a common bound for the heights of all the ε-separated dyadic 
trees;

(b) the infimum of the ε > 0 such that there is a bounded ε-uniformly convex (and convex, Lipschitz. . . ) 
function defined on C.

As we will see later, the quantities given by the previous theorem can be used as measures of super 
weak noncompactness. Note that the combination of Theorem 1.5 and Theorem 5.6 applied to the ball of a 
Banach space produces yields the famous Enflo’s renorming theorem of super-reflexive spaces. At this point, 
we want to stress that we barely get Enflo’s but not Pisier’s, see [25,12] for instance, because we are mainly 
focused on “ε” (the separation of dyadic trees) instead of “δ” (the quality of the modulus of convexity). The 
importance of Enflo’s result motivated us to offer to the reader a more direct proof based on our arguments.

A couple of comments on the contents of this paper. We will consider the more general notion of ε-
uniformly convexity with respect to a metric d, instead of the norm, or even a pseudometric. Namely, let d
be a pseudometric defined on dom(f) (that we will always assume uniformly continuous with respect to ‖ · ‖
by technical reasons). Given ε > 0, we say that f is ε-uniformly convex with respect to d if there is δ > 0
such that if d(x, y) ≥ ε then
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f

(
x + y

2

)
≤ f(x) + f(y)

2 − δ

(the modulus δf is defined likewise). With this definition Theorem 1.3, Theorem 1.4 and Theorem 1.5
are still true provided that dom(f) is bounded. It is known that the dual notion of uniform convexity is 
the uniform smoothness [1,32,3], however, we will not discuss Fenchel duality here for ε-uniformly convex 
functions. That will be eventually done in a subsequent paper.

The structure of the paper is the following. The second section deals with basic properties of ε-uniformly 
convex and ε-uniformly quasi-convex functions, mostly under the hypothesis of convexity. A few examples 
are given to show that the definitions do not guarantee some additional nice properties. The third section 
is devoted to the proof of Theorem 1.3 that will allow the reduction to the convex case of other results. The 
construction of uniformly convex functions form scratch (trees and sets) is done in the fourth section. The 
fifth section treats general properties of ε-uniformly convex functions and the possibility of adding more 
properties like Lipschitzness or homogeneity (renorming). We also prove an estimation of the approximation 
by differences of convex functions. In the sixth section, we prove the equivalence of several measures of super 
weak noncompactness for convex sets. We also propose a measure of super weak noncompactness for bounded 
sets and we study its behaviour by convex hulls. In the last section we will sketch an understandable proof 
of Enflo’s uniformly convex renorming of super-reflexive spaces theorem based on the ideas exposed along 
the paper.

2. Basic properties and examples

We will discuss in this section results of almost arithmetical nature. The first proposition contains some 
easy facts whose proof is left to the reader.

Proposition 2.1. Let ε > 0 and let f be an ε-uniformly convex function. Then:

1. If g is convex, then f + g is ε-uniformly convex with δf+g ≥ δf .
2. The supremum of finitely many ε-convex functions is ε-convex too.
3. If f ≥ 0, then f2 is ε-uniformly convex.
4. The lower semicontinuous envelope of f is ε-uniformly convex.

Recall that the infimal convolution of two functions f, g is defined as

(f � g)(x) = inf{f(x− y) + g(y) : y ∈ X}, for x ∈ X.

Proposition 2.2. Let f1, f2 be two convex functions such that f1 is ε1-uniformly convex and f2 is ε2-uniformly 
convex for ε1, ε2 > 0. Then f1 � f2 is (ε1 + ε2)-uniformly convex with modulus min{δf1(ε1), δf2(ε2)}.

Proof. Given x1, x2 ∈ dom(f1 � f2) = dom(f1) + dom(f2) with ‖x1 − x2‖ ≥ ε1 + ε2 and η > 0 we may find 
y1, y2 ∈ dom(f2) such that

f1(x1 − y1) + f2(y1) < (f1 � f2)(x1) + η,

f1(x2 − y2) + f2(y2) < (f1 � f2)(x2) + η.

We have

‖(x1 − y1) − (x2 − y2)‖ + ‖y1 − y2‖ ≥ ‖x1 − x2‖ ≥ ε1 + ε2.
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Fig. 1. Geometric interpretation of Proposition 2.3.

Therefore, one of the inequalities either

‖(x1 − y1) − (x2 − y2)‖ ≥ ε1 or ‖y1 − y2‖ ≥ ε2

holds. Assume the first one does (the other case is similar)

(f1 � f2)
(
x1 + x2

2

)
≤ f1

(
x1 + x2

2 − y1 + y2

2

)
+ f2

(
y1 + y2

2

)

≤ f1(x1 − y1) + f1(x2 − y2)
2 − δf1(ε1) + f2(y1) + f2(y2)

2

≤ (f1 � f2)(x1) + (f1 � f2)(x2)
2 − δf1(ε1) + η

which implies the statement as η > 0 was arbitrary. �

Now we will discuss some properties of the modulus of uniform convexity in the classic case, that is, when 
the function is assumed to be also convex. The following property can be deduced easily with the help of a 
picture.

Proposition 2.3. Let f be convex and ε > 0. Then

(1 − t)f(x) + tf(y) − f((1 − t)x + ty) ≥ 2δf (ε) min{t, 1 − t}

whenever x, y ∈ dom(f), ‖x − y‖ ≥ ε and t ∈ [0, 1] (cf. Fig. 1).

Proof. Without loss of generality we may assume t ∈ [0, 1/2] so t = min{t, 1 − t}. Note now that

(1 − t)x + ty = (1 − 2t)x + 2tx + y

2 .

By convexity of f we have

f((1 − t)x + ty) ≤ (1 − 2t)f(x) + 2tf
(
x + y

2

)

≤ (1 − 2t)f(x) + 2t
(
f(x) + f(y)

2 − δf (ε)
)

= (1 − t)f(x) + tf(y) − 2tδf (ε)

as wished. �
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Fig. 2. Example 2.5.

The gage of uniform convexity is introduced in [28] (see also [32, p. 203]) for convex function as

pf (ε) = inf
{

(1 − t)f(x) + tf(y) − f((1 − t)x + ty)
t(1 − t) : 0 < t < 1, ‖x− y‖ ≥ ε

}
.

Corollary 2.4. For any convex function f defined on X and ε > 0, we have

2δf (ε) ≤ pf (ε) ≤ 4δf (ε).

Proof. The first inequality is a consequence of Proposition 2.3 together with the fact that min{t, 1 − t} ≥
t(1 − t), for t ∈ R. The second inequality follows just taking t = 1/2. �

Therefore, for convex functions, ε-uniformly convexity can be expressed as pf(ε) > 0. The gage of uniform 
convexity has the following remarkable property

pf (λε) ≥ λ2pf (ε)

whenever ε ≥ 0 and λ ≥ 1, see [32, Proposition 3.5.1] and note that the proof does not require the uniform 
convexity of f . In particular ε → ε−2pf (ε) is a non decreasing function.

Now we will discuss some examples showing the limitations of the notions we are dealing with.

Example 2.5. f(x) = |x2 − 1/9| is a continuous nonconvex 1-uniformly convex function on R.

Proof. This can be deduced by inspection of the drawing (see Fig. 2). A more detailed computation shows 
that δ = 1/36. �

Example 2.6. A (proper) ε-uniformly convex function may have a non-proper lower semicontinuous convex 
envelope.

Proof. Take a function f which is finite and unbounded below on B(0, ε/3) and takes the value +∞ outside. 
By the very definition, f is ε-uniformly convex and necessarily f̆ = −∞ on B(0, ε/3). �

Example 2.7. A uniformly convex continuous function taking finite values which is unbounded on a bounded 
convex closed set.
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Proof. The function will be defined on �2. Firstly note that ‖x‖2 is uniformly convex. Consider the convex 
function h : R → R defined by

h(t) = max{0, t− 1/2,−t− 1/2}.

The series g(x) =
∑∞

n=1 nh(xn), for x = (xn) ∈ �2, defines a convex continuous function. Indeed, at each 
point, only a finite number of summands can be positive at once. The continuity comes from the fact that 
the same is true on any ball of radius less than 1. Now, the function f(x) = ‖x‖2 + g(x) is continuous, 
unbounded on B�2 and, by Proposition 2.1, it is also uniformly convex. �

The following notions will be useful in relation with ε-uniform convexity.

Definition 2.8. Let f : X → R be a function. Then f is said to be:

1. quasi-convex if

f(λx + (1 − λ)y) ≤ max{f(x), f(y)}

for every x, y ∈ X and λ ∈ [0, 1].
2. ε-uniformly quasi-convex if, for a given ε > 0, there is some δ > 0 such that

f

(
x + y

2

)
≤ max{f(x), f(y)} − δ

whenever x, y ∈ X with ‖x − y‖ ≥ ε (or d(x, y) ≥ ε for a pseudometric d).
3. uniformly quasi-convex if it is ε-uniformly quasi-convex for every ε > 0.

Whereas the notion of quasi-convexity is well known, our definition of uniform quasi-convexity is weaker 
than the one given in [29]. As with convexity, the midpoint version does not imply the “λ-version” unless 
some regularity (e.g. lower semicontinuity) is assumed. The following result shows one relation between the 
quantified versions of uniform convexity and uniform quasi-convexity for functions.

Proposition 2.9. Let ε > 0 and let f ≥ 0 be a convex and ε-uniformly quasi-convex function. Then f2 is 
ε-uniformly convex.

Proof. The following inequality can be checked easily: if for some real numbers a, b, c we have a +b ≥ 2c ≥ 0
then

(
a + b

2 − c

)2

+
(
a− b

2

)2

≤ a2 + b2

2 − c2. (1)

Assume ‖x −y‖ ≥ ε and let δ > 0 be given by the definition of ε-uniform quasi-convexity. If |f(x) −f(y)| > δ

the previous inequality implies

f(x)2 + f(y)2

2 − f

(
x + y

2

)2

≥ δ2

4 .

On the other hand, if |f(x) − f(y)| ≤ δ then

f

(
x + y

)
≤ max{f(x), f(y)} − δ ≤ f(x) + f(y) − δ
2 2 2
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and thus

f(x)2 + f(y)2

2 − f

(
x + y

2

)2

≥ δ2

4

using again the inequality (1). �

Example 2.10. A uniformly quasi-convex non-convex (concave) function.

Proof. Take f(x) = x for x < 0, and f(x) = x/2 for x ≥ 0. �

3. Convexifying the ε-uniform convexity

In order to cover previous developments around finite dentability [26] we will consider uniformly convex 
functions with respect to a pseudometric d defined on the domain of f . The norm of the Banach space 
will still play an important role and we require that d be uniformly continuous with respect to the norm. 
Therefore, along this section we will assume that ε-uniform convexity refers to d. We will refer as d-diameter 
of a subset in X×R the diameter with respect to d of the projection of the set onto X. Let � be the modulus 
of uniform continuity (the standard symbol is “ω” but we are using it as the first countable ordinal later), 
that is, the following inequality holds

d(x, y) ≤ �(‖x− y‖)

and limt→0+ �(t) = 0.

Proposition 3.1. Let f be a function and let ε > 0. Then

1. If f is ε-uniformly convex then every slice of epi(f) disjoint from epi(f + δf (ε)) has d-diameter less 
than ε.

2. If f ∈ Γ(X) and there is δ > 0 such that every slice of epi(f) disjoint from epi(f + δ) has d-diameter 
less than ε then f is ε-uniformly convex with modulus δf (ε) ≥ δ/2.

Proof. For the first statement, assume that (x, f(x)), (y, f(y)) belong to such a slice. The separation from 
epi(f + δf (ε)) implies

f(x) + f(y)
2 < f

(
x + y

2

)
+ δf (ε)

and so d(x, y) < ε. On the other hand, let δ > 0 as in statement 2 and take x, y ∈ X such that the following 
inequality holds

f(x) + f(y)
2 − f

(
x + y

2

)
<

δ

2 .

It implies that 
(

x+y
2 , f(x)+f(y)

2

)
does not belong to epi(f + δ/2). We may take an affine function h such 

that h < f + δ/2 and h(x+y
2 ) > f(x)+f(y)

2 . It is evident that either f(x) < h(x) or f(y) < h(y). We may 
assume without loss of generality that the first inequality holds as the scenario is symmetric for x and y. 
Now we have

f(y) < 2h
(
x + y

)
− f(x) = h(x) + h(y) − f(x) < h(y) + δ

.
2 2
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That implies both (x, f(x)) and (y, f(y)) belong to the slice defined by h + δ/2

S = {(x, t) ∈ epi(f) : t < h(x) + δ/2}.

By our choices, we have S ∩ epi(f + δ) = ∅ and thus d(x, y) < ε by the hypothesis. We deduce in this way 
that δ/2 ≤ δf (ε). �

Corollary 3.2. Let ε > 0 and let f be a convex and ε-uniformly convex function. Then

f(x) ≤
n∑

k=1

λkf(xk) − δf (ε)

whenever x, x1, . . . , xn ∈ dom(f) satisfy that d(x, xk) ≥ ε and x =
∑n

k=1 λkxk with λk ≥ 0 and ∑n
k=1 λk = 1.

Proof. If the inequality does not hold, then (x,
∑n

k=1 λkf(xk)) does not belong to epi(f + δf (ε)) so it can 
be separated from that set with a slice. Necessarily, one of the points (xk, f(xk)) belongs to the slice. That 
implies that the d-diameter of the slice is at least ε which contradicts the previous proposition. �

The following result is based on the techniques of the geometrical study of the Radon–Nikodym property 
(RNP), see [6]. Note that the technique works only on bounded domains.

Lemma 3.3. Let ε > 0 and let f be a bounded below function with bounded domain. Let m > 0 be an upper 
bound for the norm diameter of dom(f) and let τ > 0 be such that τ/m < 1. Assume that the set

{x ∈ X : f(x) < inf f + δ}

has d-diameter less than ε. Then the set

{x ∈ X : f̆(x) < inf f + δτ/m}

has d-diameter less than ε + 2�(τ).

Proof. Consider the sets

A = {(x, r) ∈ X ×R : f(x) ≤ r < inf f + δ};
B = {(x, r) ∈ X ×R : r ≥ inf f + δ, f(x) ≤ r}.

Note that the epigraph of f is A ∪B. Consider their closed convex hulls Ă = conv(A) and B̆ = conv(B) and 
note that conv(Ă∪B̆) is dense in the epigraph of f̆ . Assume that (x, r) ∈ conv(Ă∪B̆) and r < inf f +δτ/m. 
There is λ ∈ [0, 1] such that (x, r) = λ(y, t) + (1 − λ)(z, s) where (y, t) ∈ Ă and (z, s) ∈ B̆. The condition 
λt + (1 − λ)s < inf f + δτ/m implies 1 − λ < τ/m. Indeed, suppose 1 − λ ≥ τ/m. As s ≥ inf f + δ, then

(1 − λ)s ≥ (1 − λ) inf f + δτ/m

On the other hand, λt ≥ λ inf f . Adding these inequalities we get λt + (1 − λ)s ≥ inf f + δτ/m, which 
contradicts the assumption. Therefore

‖x− y‖ = ‖(λ− 1)y + (1 − λ)z‖ = (1 − λ)‖y − z‖ < τ.
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In order to estimate the d-diameter of

S = {(x, t) : x ∈ X, f̆(x) ≤ t < inf f + δτ/m},

we may consider only points on the dense set S ∩ conv(Ă ∪ B̆). Therefore, consider (x1, r1), (x2, r2) ∈
conv(Ă∪ B̆) with r1, r2 < inf f + δτ/m. The convex decomposition above shows that for some λ1, λ2 ∈ [0, 1]
and points (y1, t1), (y2, t2) ∈ Ă and (z1, s1), (z2, s2) ∈ B̆ we have

(x1, r1) = λ1(y1, t1) + (1 − λ1)(z1, s1),

(x2, r2) = λ2(y2, t2) + (1 − λ2)(z2, s2).

By the previous estimations, we have ‖x1−y1‖, ‖x2−y2‖ ≤ τ , which implies that d(x1, y1), d(x2, y2) ≤ �(τ), 
and thus, by the assumption on A,

d(x1, x2) ≤ d(x1, y1) + d(y1, y2) + d(x2, y2) ≤ ε + 2�(τ)

as desired. �

We will deal now with the transfer of the ε-uniform convexity property to the lower semicontinuous convex 
envelope. Note that ε-uniform convexity is referred to a uniformly continuous pseudometric, however we 
require the hypothesis that the domain be norm bounded.

Theorem 3.4. Let ε > 0 and let f be a bounded below ε-uniformly convex function with bounded domain. 
Then f̆ is ε+-uniformly convex and given ε′ > ε, the modulus of convexity δf̆ (ε′) depends only on ε′, δf (ε), 
� and the norm diameter of dom(f).

Proof. Let m an upper bound for the diameter of dom(f) and δ > 0 the parameter given by the definition 
of ε-uniform convexity. Take τ > 0 such that τ/m < 1. We will estimate the d-diameter of any slice of 
epi(f̆) not meeting epi(f̆ + δτ/m). Suppose that the slice is given by x∗ ∈ X∗. Note that the estimation 
of the d-diameter of the slice we need is equivalent to the same for an horizontal slice of epi(f̆ − x∗) not 
meeting epi(f̆ − x∗ + δτ/m), which is the same as taking the points of epi(f̆ − x∗) whose scalar coordinate 
is less than inf(f̆ − x∗) + δτ/m. Since f̆ − x∗ equals the convex envelope of the function f − x∗, which is 
ε-uniformly convex with parameter δ, the set

{x ∈ X : f(x) − x∗(x) < inf(f − x∗) + δ}

has diameter less than ε by Proposition 3.1. The previous lemma applies to get that

{x ∈ X : f̆(x) − x∗(x) < inf(f − x∗) + δτ/m}

has diameter less than ε +2�(τ). Thanks to Proposition 3.1, it follows that f̆ is ε +2�(τ)-uniformly convex. 
Given ε′ > ε, we only have to set τ > 0 such that 2�(τ) < ε′ − ε. �

The following result is the key to deal with unbounded domains.

Proposition 3.5. Let ε > 0 and let f be an ε-uniformly convex function such that f̆ is proper. Then the value 
of f̆(x) for x ∈ dom(f) depends only on the set of values {f(y) : ‖y − x‖ < ε}. Namely, if g is the function 
defined by g(y) = f(y) if ‖y − x‖ < ε and g(x) = +∞ otherwise, then f̆(x) = ğ(x).
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Proof. Let us roughly explain the idea of the proof before going into details. A priori, the computation of 
f̆(x) may involve values of f at points arbitrarily far away from x. Namely, (x, f̆(x)) can be approximated 
by a convex combination of points of the form (xk, f(xk)). As we want the points xk to be close to x, we will 
describe an algorithm that will modify the set {xk} by the substitution of one (or several points) at each 
step until the resulting set is contained in B(x, ε). The algorithm consists in switching a farthest point xi by 
the middle point between it and an “opposite point” xj which is not farther from x as xi is. If d(xi, xj) ≥ ε, 
the ε-uniform convexity of f will imply that we do not loose information about f̆(x) when switching xi by 
(xi +xj)/2. Once, xi has disappeared from the set, we choose a new farthest point and start over. Actually, 
the method brings the points closer to x with respect to a prefixed direction x∗ ∈ X∗. The repetition of 
the algorithm with several directions will eventually finish with the modified set of points contained into 
B(x, ε). Now we will resume the proof.
The definition of f̆ implies that the following set

{
(x, t) : t ≥

n∑
k=1

λkf(xk) with x =
n∑

k=1

λkxk a convex combination
}

is dense in epi(f̆). Fix x ∈ dom(f) and suppose x =
∑n

k=1 λkxk is a convex combination. Now, we are 
going to describe the announced algorithm that will transform the set of points S = {x1, . . . , xn} into a set 
S′ = {x′

1, . . . , x
′
n′} ⊂ B(x, ε) such that still we have 

∑n′

k=1 λ
′
kx

′
k = x, where 

∑n′

k=1 λ
′
kx

′
k = x with λ′

k ≥ 0, ∑n′

k=1 λ
′
k = 1, and

n′∑
k=1

λ′
kf(x′

k) ≤
n∑

k=1

λkf(xk).

In order to do that, without loss of generality, we may assume x = 0. Fix x∗ ∈ SX∗ . Let a = supx∗(S) ≥ 0
and b = − inf x∗(S). As a and b can be exchanged just taking −x∗ instead, without loss of generality we 
may assume a ≥ max{b, ε}. Also, without loss of generality, we may assume x∗(x1) = a. Since x1 is the 
farther point (with respect to x∗), its “mass” λ1 compensates with masses on the side x∗ ≤ 0. Suppose 
firstly that x∗(x2) ≤ 0 and λ2 ≥ λ1. We have ‖x1 − x2‖ ≥ ε. We claim that it is possible to switch x1 by 
x′

1 = (x1 + x2)/2. Indeed,

2λ1x
′
1 + (λ2 − λ1)x2 + λ3x3 + · · · + λnxn = 0

which is still a convex combination. Note that

2λ1f(x′
1) + (λ2 − λ1)f(x2) + λ3f(x3) + · · · + λnf(xn)

≤ λ1(f(x1) + f(x2)) + (λ2 − λ1)f(x2) + λ3f(x3) + · · · + λnf(xn)

= λ1f(x1) + λ2f(x2) + λ3f(x3) + · · · + λnf(xn)

where we have used f(x′
1) ≤ (f(x1) + f(x2))/2 (see the definition of ε-uniform convexity). The inequality 

means that S1 = {x′
1, x2, . . . , xn} is an improvement of S in the sense of the approximation to f̆ . Note also 

that x∗(x′
1) ≤ a/2.

In case, λ1 > λ2, we will use several vectors xk with x∗(xk) ≤ 0 to compensate x1. This is possible because 
a ≥ b implies that the “mass” lying on the halfspace x∗ < 0 is not lesser than λ1. In this case, λ1 could be 
cancelled with several λk’s. In any case, we will get a new set S1 whose cardinal is not larger than that of 
S and conv(S1) ⊂ conv(S). After that, suppose that, unfortunately, we still have supx∗(S1) = a. In such a 
case, the maximizing vector cannot be x1, so it is a new vector, say x3. We will apply the argument with x3
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in order to replace it by another vector x′
3 and S1 by a new set S2. Eventually, we will get supx∗(Sn) ≤ a/2

after a finite number of steps. Then, with the same x∗, we have to change the constants a, b > 0 by new 
ones. This can be done with the same x∗ until we get max{a, b} < ε, so it is not possible to go further.
If the set of points it is not yet inside B(0, ε) then find a new x∗ ∈ SX∗ such that supx∗(Sn) ≥ ε and then 
run again the algorithm. Since conv(S) is finite dimensional, it is enough to do this procedure over finitely 
many x∗ ∈ SX∗ in order to get Sn ⊂ B(0, ε) eventually. �

Proof of Theorem 1.3. For the proof it would be convenient to represent a convex combination in X by 
means of a vector integral instead of the usual symbol “

∑
”. Namely, given a convex combination 

∑n
k=1 λkxk, 

the weights λk are changed by n disjoint intervals Ik of lengths λk and whose union is [0, 1]. In this way, 
the convex combination is represented as the integral of the simple function x defined on [0, 1] by x(t) = xk

whenever t ∈ Ik. As we will deal only with simple functions, no further knowledge of vector integration 
theory is required.
We resume the proof. If f̆ is proper then it is bounded below by an affine function, so by adding an affine 
function (that does not alter the ε-uniform convexity), we may suppose that f is bounded below (actually 
that is true without modifications, see Corollary 5.1). Given x, y ∈ dom(f), if ‖x − y‖ ≥ 3ε then

f̆

(
x + y

2

)
≤ f̆(x) + f̆(y)

2 − δf (ε).

Indeed, fix η > 0. By Proposition 3.5, we may take (xn) a sequence of simple functions defined on [0, 1] such 
that ‖xn(t) − x‖ < ε for all t ∈ [0, 1], n ∈ N, with

lim
n

1∫
0

xn(t) dt = x, and lim
n

1∫
0

f(xn(t)) dt = f̆(x).

Let (yn) and analogous sequence of simple functions playing the same role for y and f̆(y). Clearly we have 
‖xn(t) − yn(t)‖ ≥ ε for all t ∈ [0, 1] and n ∈ N. Therefore

f̆

(
x + y

2

)
≤ lim inf

n

1∫
0

f

(
xn(t) + yn(t)

2

)
dt

≤ lim
n

1∫
0

(
f(xn(t)) + f(yn(t))

2 − δf (ε)
)
dt ≤ f̆(x) + f̆(y)

2 − δf (ε).

Since η > 0 was arbitrary we get the claimed inequality provided ‖x − y‖ ≥ 3ε.
Now we will suppose ε ≤ ‖x −y‖ < 3ε. Proposition 3.5 implies that reducing the domain of f to [x, y] +B(0, ε)
does not affect to the values of f̆(x), f̆(y) and f̆(x+y

2 ). Fix ε′ > ε. Theorem 3.4 says that δf̆ (ε′) depends 
only on ε′, δf (ε), �, which are fixed, and the diameter of the domain, which is bounded by 5ε. �

4. Building uniformly convex functions

Most of the constructions of uniformly convex functions on a Banach spaces that one can find in the 
literature are based on modifications of a uniformly convex norm, see [5]. Nevertheless, the existence of 
a finite uniformly convex function whose domain has nonempty interior implies that X has an equivalent 
uniformly convex norm, see [3, Theorem 2.4]. In any case, the constructions dealing with the composition 
of a uniformly convex norm and a suitably chosen function can be quite tricky, except for the Hilbert space. 
Here we will exploit a method based on “discretization” and uniformly quasi-convex functions.
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Lemma 4.1. Let ε > 0 and let f : X → R be a bounded below ε-uniformly quasi-convex function with modulus 
δ > 0. Then the function h ◦ f is ε-uniformly convex, where h(t) = 3t/δ.

Proof. The function h is increasing and satisfies the property 3h(t) = h(t + δ). Take

η = 4−1 inf{h(t + δ) − h(t) : t ≥ inf f} = 2−1 · 3inf f/δ

and note that it depends only on f . If x, y ∈ dom(f) are such that d(x, y) ≥ ε take a = f(x), b = f(y) and 
c = f(x+y

2 ). The hypothesis says that c ≤ max{a, b} − δ. With no loss of generality, we may assume b ≤ a. 
We have

h(c) ≤ h(a) − 4η.

Since 3h(c) ≤ h(a) and h(b) > 0, we also have

3h(c) ≤ h(a) + 2h(b)

and adding the previous inequality, we get

4h(c) ≤ 2h(a) + 2h(b) − 4η

and thus

h(c) ≤ h(a) + h(b)
2 − η

which is the ε-uniform convexity of h ◦ f . �

If X is uniformly convex, it is well known that x → ‖x‖2 is a uniformly convex function on bounded 
convex subsets. The usual construction of a global uniformly convex functions involves additional properties 
of the norm, such as having a power type modulus of uniform convexity. Here there is a simple alternative 
construction based in our methods.

Proposition 4.2. If X has a uniformly convex norm then there exists a real function φ such that x → φ(‖x‖)
is a uniformly convex function defined on X.

Proof. Fix ε > 0. Take a1 = ε/2 and define inductively a sequence (an) by the implicit equation

an−1 =
(

1 − δX

(
ε

an

))
an

which has a unique solution thanks to the continuity of δX on [0, 2), [17, Lemma 5.1]. The sequence (an)
is increasing with limn an = +∞ and has the following property: if ‖x‖, ‖y‖ ≤ an and ‖x − y‖ > ε then 
‖(x + y)/2‖ ≤ an−1.
Define a function as fε(x) = n if an−1 < ‖x‖ ≤ an. Note that fε satisfies the hypothesis of Lemma 4.1
with δ = 1, and so h ◦ fε is ε+-uniformly convex. Now, for ε = 1/n, take fn the convex envelope of h ◦ fε
and cn = 2−n(sup fn(nBX))−1. The series 

∑∞
n=1 cnfn converges uniformly on bounded sets to a uniformly 

convex function f . By construction, f(x) depends only on ‖x‖. Therefore, we may define a real function by 
φ(t) = f(x) if t = ‖x‖, for t ≥ 0. Clearly, f(x) = φ(‖x‖). �
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Now we will explain constructions using trees. The definition of ε-separated (dyadic) tree was given in 
the introduction. Bushes are defined in a very similar way, however the index set is 

⋃n
k=0 N

k and xs =∑
k λs�kxs�k where λs�k ≥ 0, λs�k = 0 except for finitely many k’s and 

∑
k λs�k = 1. We say that 

a bush {xs : |s| ≤ n} is ε-separated if ‖xs�k − xs‖ ≥ ε for all k such that λs�k > 0. In this way, an 
ε-separated tree is a particular case of an ε/2-separated bush. Separated trees and bushes are obstructions 
to the existence of bounded uniformly convex functions.

Proposition 4.3. Let ε > 0 and let C ⊂ X be a convex set that supports an ε-uniformly convex function f
with values in [a, b]. Then (b − a)/δf (ε) is the maximum height of

1. any ε-separated tree contained in C;
2. any ε+-separated bush contained in C.

Proof. If {xs} is an ε-separated tree then we have

f(xs) ≤ max{f(xs�0), f(xs�1)} − δf (ε)

that gives the estimation. In the case of bushes, the argument is the same after passing to f̆ , which is 
ε+-uniformly convex by Theorem 1.3, and applying Corollary 3.2. �

Our following result is quite a converse.

Theorem 4.4. Let ε > 0 and let C ⊂ X be a convex set such that contains not arbitrarily high ε-separated 
trees (with respect some uniformly continuous pseudometric). Then C supports a bounded ε-uniformly convex 
function, and a bounded convex ε+-uniformly convex function (with respect the same pseudometric).

Proof. Define a function for x ∈ C by

f(x) = −max{height(xs) : (xs) ⊂ C ε-sep. tree, x∅ = x}

and f(x) = +∞ otherwise. We claim that f is ε-uniformly quasi-convex. Indeed, consider points x, y ∈ C

with d(x, y) ≥ ε. Take ε-separated trees contained into C {xs′ : |s′| ≤ n′} and {ys′′ : |s′′| ≤ n′′} of maximal 
length with the property that x∅ = x and y∅ = y. The trees can be “glued” as follows. Take n = min{n′, n′′}. 
Define a new tree (zs), for |s| ≤ n + 1, as z∅ = x+y

2 , z0�s = xs and z1�s = ys for |s| ≤ n. Now (zs) is a 
ε-separated tree rooted at x+y

2 of height min{n′, n′′} +1. That means in terms of the function f the uniform 
quasi-convex inequality

f

(
x + y

2

)
≤ max{f(x), f(y)} − 1

for d(x, y) ≥ ε. Now, Lemma 4.1 says that h ◦ f is ε-uniformly convex and its convex hull is ε+-uniformly 
convex after Theorem 1.3. �

Proof of Theorem 1.5. It just follows from Theorem 4.4 and Proposition 4.3. �

Finally we will explain constructions based on the dentability index. Let C be a bounded closed convex 
set of X, (M, d) a pseudometric space and F : C → M a map. We say that F is dentable if for any nonempty 
closed convex subset D ⊂ C and ε > 0, it is possible to find an open halfspace H intersecting D such that 
diam(F (D ∩H)) < ε, where the notation “diam” stands for the diameter is computed with respect to d. If 
F is dentable, we may consider the following set derivation
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[D]′ε = {x ∈ D : diam(F (D ∩H)) > ε, ∀H ∈ H, x ∈ H}.

Here H denotes the set of all the open halfspaces of X. Clearly, [D]′ε is what remains of D after removing 
all the slices whose diameter through F is less or equal than ε. A useful trick is the so called (nonlinear) 
Lancien’s midpoint argument: if a segment satisfies [x, y] ⊂ D and [x, y] ∩ [D]′ε = ∅ then d(F (x), F (y)) ≤ 2ε, 
see the beginning of [26, Theorem 2.2]. Consider the sequence of sets defined by [C]0ε = C and, for every 
n ∈ N, inductively by

[C]nε = [[C]n−1
ε ]′ε.

If there is n ∈ N such that [C]n−1
ε �= ∅ and [C]nε = ∅ we say that Dz(F, ε) = n. We say that F is finitely 

dentable if Dz(F, ε) < ω for every ε > 0 (ω stands for the first infinite ordinal number). All these notions 
can be applied to the identity map of a convex set where there is a pseudometric defined. The following 
result is the quantified version of [26, Theorem 2.2]. For convenience we will write

ΔΦ(x, y) = Φ(x) + Φ(y)
2 − Φ

(
x + y

2

)
.

Theorem 4.5. Let C ⊂ X be a bounded closed convex set, let M be a pseudometric space, let F : C → M be 
a uniformly continuous map, and let ε > 0.

1. Suppose that there exists a bounded lower semi-continuous convex function Φ defined on C and δ > 0
such that d(F (x), F (y)) ≤ ε whenever x, y ∈ C satisfy ΔΦ(x, y) ≤ δ. Then Dz(F, ε) < ω.

2. On the other hand, if Dz(F, ε) < ω then for every ε′ > 2ε there exists a bounded lower semi-continuous 
convex function Φ defined on C and δ > 0 such that d(F (x), F (y)) ≤ ε′ whenever x, y ∈ C satisfy 
ΔΦ(x, y) ≤ δ.

Proof. Let s = sup f(C). The hypothesis implies [C]′ε ⊂ {f ≤ s − δ}. Iterating this we will eventually get to 
the empty set. For the second part, we need to introduce some notation. Firstly put d′(x, y) = d(F (x), F (y))
which is a pseudometric uniformly continuous with respect to ‖ ·‖. Derivations and diameters will be referred 
to d′. The slice of a set A with parameters x∗ ∈ X∗ and α > 0 is

S(A, x∗, α) = {x ∈ A : x∗(x) > supx∗(A) − α}.

The “half-derivation” of a convex set is defined as

〈D〉′ε = {x ∈ D : x∗(x) ≤ α, ∀x∗, α > 0 such that diam(S(D,x∗, 2α)) > ε}.

The geometric interpretation is that we remove half of the slice, in sense of the width, for every slice of 
d′-diameter less than ε. This derivation can be iterated by taking 〈C〉nε = 〈〈C〉n−1

ε 〉′ε. It is not difficult, but 
rather tedious, to show that if Dz(F, ε) < ω then for every ε′ > 2ε there is some N ∈ N such that 〈C〉nε′ = ∅. 
The idea is the following. Firstly note that every slice of C not meeting [C]′ε has diameter 2ε at most by 
Lancien’s argument. Taking “half a slice” of the slice given by some x∗ ∈ X∗, we deduce that

supx∗(〈C〉′2ε) − supx∗([C]′ε) ≤ 2−1(supx∗(C) − supx∗([C]′ε)).

Iterating, we would get

supx∗(〈C〉n2ε) − supx∗([C]′ε) ≤ 2−n(supx∗(C) − supx∗([C]′ε))
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for every x∗ ∈ X∗. If η > 0, we will get for some n large enough that

〈C〉n2ε ⊂ [C]′ε + B(0, η).

We can do that for every set [C]kε . A perturbation argument, using the room between ε and ε′, will allow 
us to fill the gap between the sequences of sets. In this way we will get that 〈C〉nε′ = ∅ for some n ∈ N large 
enough.
Now we define a function g on C by g(x) = −n if x ∈ 〈C〉nε′ \ 〈C〉n+1

ε′ following the notation above. We 
claim that g satisfies Lemma 4.1 with separation ε′. Indeed, if d′(x, y) > ε′ and n = − max{g(x), g(y)} then 
x, y ∈ 〈C〉nε′ . If x+y

2 /∈ 〈C〉n+1
ε′ then the segment [x, y] would be fully contained into a slice of diameter less 

than ε′ and so d′(x, y) ≤ ε′ which is a contradiction. Therefore x+y
2 ∈ 〈C〉n+1

ε′ and so g(x+y
2 ) ≤ −n −1. Now 

f(x) = 3g(x) is ε′-uniformly convex with respect to d′. Take Φ = f̆ to get the desired function. �

If F in Theorem 4.5 (2) were finitely dentable, a standard argument using a convergent series would lead 
to this result, which is essentially [16, Proposition 3.2 ] with a uniformly convex function instead of a norm.

Corollary 4.6. Let C ⊂ X be a bounded closed convex set, let M be a pseudometric space, and let F : C → M

be a uniformly continuous finitely dentable map. Then there exists a bounded convex function Φ defined on 
C such that for every ε > 0 there is δ > 0 such that d(F (x), F (y)) ≤ ε whenever x, y ∈ C are such that 
ΔΦ(x, y) ≤ δ.

5. Improving functions and domains

So far, the best improvement we have done on an existing ε-uniformly convex function is taking its lower 
semicontinuous convex envelope provided this last one is proper. The aim in this section is to manipulate the 
functions in order to improve their qualities. We will begin by proving the results about global behaviour.

Proof of Theorem 1.2. Since f̆ ≤ f , it is enough to prove that the property holds for an ε-convex and 
convex proper function. Actually the same proof for a uniformly convex function done in Zalinescu’s book 
[32, Proposition 3.5.8] works in this case because lim inft→+∞ t−2pf (t) ≥ ε−2pf (ε) > 0.
For the second part, without loss of generality we may assume that x∗

0 = 0 (just change f by f + x∗
0). Let 

δ = δf̆ (ε′) and take η = inf f + δ − f̆(x0) > 0. Note that inf f = inf f̆ . By the property established in the 

first part applied to f̆ − x∗, there is R > 0 such that f̆(x) ≥ f̆(x0) − x∗(x − x0) for any x∗ ∈ BX∗ and 
‖x − x0‖ ≥ R. Now, fix x∗ such that ‖x∗‖ ≤ η/R. Then we have

f̆(x) + x∗(x) ≥ f̆(x0) + x∗(x0) − δ

for all x ∈ X such that ‖x − x0‖ ≤ R, and therefore the inequality holds for all x ∈ X. That implies 
epi(f̆ + x∗ + δ) does not meet the horizontal slice

S = {(x, t) ∈ epi(f̆ + x∗) : t ≤ f̆(x0) + x∗(x0)}

By Proposition 3.1, the projection of S on X has diameter less than ε′. Moreover, if f + x∗ attains a 
minimum at x, then the same holds for f̆ + x∗ and so x ∈ S. Since x0 ∈ S we have ‖x − x0‖ ≤ ε′. The 
existence of a dense set of x∗’s such that f̆ +x∗ attains a minimum is guaranteed by Brøndsted–Rockafellar 
[4, Theorem 4.3.2] (or Bishop–Phelps [14, Theorem 7.4.1] applied to the epigraph). �

As a consequence, we characterize when an ε-uniformly convex function has a proper convex envelope.
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Corollary 5.1. Let ε > 0 and let f be an ε-uniformly convex function. Then the following statements are 
equivalent:

1. f̆ is proper;
2. f is bounded below;
3. f is bounded below by an affine continuous function.

For a ε-uniformly quasi-convex function we can say the following

Proposition 5.2. Let ε > 0 and let f be an ε-uniformly quasi-convex function that is bounded below. Then f
is coercive and moreover

lim inf
‖x‖→+∞

f(x)
‖x‖ > 0.

Proof. By adding a constant, we may suppose that inf f = 0. Take x0 ∈ X such that f(x0) < δ/2. For 
any x ∈ X such that ‖x − x0‖ ≥ ε we have f(x) ≥ δ. Indeed, otherwise it would be f(x) < δ and by 
the ε-uniformly quasi-convexity, f(x+x0

2 ) < inf f , an obvious contradiction. Now, if ‖x − x0‖ ≥ 2ε, then 
‖x+x0

2 − x0‖ ≥ ε. That implies f(x+x0
2 ) ≥ δ and therefore f(x) ≥ 2δ. Inductively, we will get that if 

‖x − x0‖ ≥ 2nε then f(x) ≥ 2nδ. Now, the statement follows easily. �

The following results will show that, given a ε-uniformly convex function, we can make modifications in 
both the function and its domain in order to get a new function with additional properties.

Proposition 5.3. Let ε > 0, let f be an ε-uniformly convex function that is locally bounded below and let η > 0. 
Then there exists a lower semicontinuous (ε + 2η)-uniformly convex function defined on dom(f) + B(0, η). 
In particular, dom(f) admits a lower semicontinuous ε+-uniformly convex function.

Proof. Define g(x) = inf{f(y) : ‖y − x‖ < η} on dom(f) + B(0, η). This function g is (ε + 2η)-uniformly 
convex (the simple verification of this fact is left to the reader). Now take its lower semicontinuous envelope.

�

The following result will be done for ε-uniformly convexity with respect to a metric because such a degree 
of generality will be needed later.

Proposition 5.4. Let ε > 0, let f be an ε-uniformly convex function (with respect to a metric d with modulus 
of uniform continuity �) and let C ⊂ dom(f) be convex such that f is bounded on it. Then for any ε′ > ε, 
there exists g ∈ Γ(X) Lipschitz (with respect to the norm of X) such that g|C is ε′-uniformly convex.

Proof. Without loss of generality, we may assume that f is convex. Take η > 0 such that �(η) < (ε′− ε)/2, 
m = sup{f(x) − f(y) : x, y ∈ C} and c = m/η. Define

g(x) = inf{f(y) + c‖x− y‖ : y ∈ C}

which is convex and c-Lipschitz. Let x ∈ C and ξ > 0. Then either g(x) = f(x) and the infimum is 
attained with y = x, or g(x) < f(x). In the last case, the infimum can be computed over the y ∈ C such 
that f(y) + c‖x − y‖ < f(x). Therefore, we can find y ∈ C such that f(y) + c‖x − y‖ < g(x) + ξ and 
‖x − y‖ < m/c = η, which implies d(x, y) < (ε′ − ε)/2. Now, for x1, x2 ∈ C with d(x1, x2) ≥ ε′ find 
y1, y2 ∈ C as above. Clearly we have d(y1, y2) ≥ ε, and so
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g

(
x1 + x2

2

)
≤ f

(
y1 + y2

2

)
+ c

∥∥∥∥x1 + x2

2 − y1 + y2

2

∥∥∥∥
≤ f(y1) + f(y2)

2 − δ + c

2‖x1 − y1‖ + c

2‖x2 − y2‖ ≤ g(x1) + g(x2)
2 − δ + 2ξ.

Since ξ > 0 was arbitrary, we get the ε′-uniform convexity of g as wished. �

Remark 5.5. A Baire category argument shows that an ε-uniform convex function f is bounded in an open 
ball if dom(f) has nonempty interior. However, we do not know how to ensure that f will be bounded on 
a larger set.

Now we will show how to change an ε-uniformly convex function by a norm with the same property.

Theorem 5.6. Let (X, ‖ · ‖) be a Banach space, let f ∈ Γ(X) be a non negative function and let C ⊂ dom(f)
be a bounded convex set. Assume f is Lipschitz on C. Then given δ > 0 there exists an equivalent norm 
| | | · | | | on X and ζ > 0 such that Δf (x, y) < δ whenever x, y ∈ C satisfy Δ|||·|||2(x, y) < ζ. Therefore, if f was 
moreover ε-uniformly convex for some ε > 0 (with respect to a pseudometric) on C, then | | | · | | |2 would be 
ε-uniformly convex on C (with respect to the same pseudometric).

Proof. Taking f(x) + f(−x) + ‖x‖ instead, we may indeed assume that f is symmetric and attains a strong 
minimum at 0. Let M = sup f(C) and m = min f(C) + δ/2. The Lipschitz condition easily implies that 
there is η > 0 such that if r ≤ M then

{f ≤ r − δ} + B(0, η) ⊂ {f ≤ r}.

For r ∈ [m, M ] let ‖ · ‖r the Minkowski functional of the set {f ≤ r}, which is an equivalent norm on X. 
Let N = sup{‖x‖ : x ∈ C} and note that λ = (1 + η/N)−1 has the property

{f ≤ r − δ} ⊂ λ {f ≤ r}.

We deduce the following property: if x, y ∈ C, ‖x‖r, ‖y‖r ≤ 1 and Δf (x, y) ≥ δ then
∥∥∥∥x + y

2

∥∥∥∥
r

≤ λ.

Consider a partition m = a1 < a2 < · · · < ak = M such that aj/aj+1 < λ1/2 and put | | | · | | |j = ‖ · ‖aj
. Let 

x, y ∈ C such that Δf (x, y) ≥ δ. Assume f(x) ≥ f(y) for instance. There is some 1 ≤ j < k such that 
1 ≥ | | |x| | |j ≥ λ1/2. Since | | |x+y

2 | | |j ≤ λ, we have
∣∣∣∣
∣∣∣∣
∣∣∣∣x + y

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
j

≤ max{|||x|||j , |||y|||j} − (λ1/2 − λ).

Following the same computations that in the proof of Proposition 2.9, we have

∣∣∣∣
∣∣∣∣
∣∣∣∣x + y

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

j

≤
|||x|||2j + |||y|||2j

2 − (λ1/2 − λ)2

4 .

Therefore, if we define an equivalent norm by | | | · | | |2 =
∑k

j=1 | | | · | | |2j we will have

∣∣∣∣
∣∣∣∣
∣∣∣∣x + y

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ |||x|||2 + |||y|||2 − (λ1/2 − λ)2
.
2 2 4
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whenever x, y ∈ C satisfies Δf (x, y) ≥ δ, meaning that the statement is true with ζ = 4−1(λ1/2 − λ)2. �

Proof of Theorem 1.4. Consider the sets Cn = {f ≤ n} that eventually will “capture” any set where f is 
bounded. Fixed n ∈ N, by Proposition 5.4, we may assume that f is already norm-Lipschitz and finite on 
X provided we change ε by ε+. Let | | | · | | |n the norm given by Theorem 5.6, which is ε+-uniformly convex on 
Cn. Let α > 0 and let (αn) be a sequence of positive numbers such that

||| · |||2 = α||| · |||2 +
∞∑

n=1
αn||| · |||2n

converges uniformly on bounded sets. Clearly, | | | · | | | will be ε+-uniformly convex on bounded sets too. The 
last affirmation follows just taking α > 0 small enough. �

Finally we will discuss the approximation by differences of convex functions in terms of the index of 
dentability improving [26, Theorem 1.4] and [16, Theorem 4.1], which in turn are based in the seminal 
work [9]. A real function defined on a convex set is called DC-Lipschitz if it is the difference of two convex 
Lipschitz functions with the same domain. For convenience, we have to make explicit the domain C. The 
symbol ‖ · ‖C stands for the supremum norm on C.

Theorem 5.7. Let C ⊂ X be a bounded closed convex set and let f : C → R be a uniformly continuous 
function. Consider the following numbers:

(ε1) the infimum of the ε > 0 such that Dz(f, ε) < ω;
(ε2) the infimum of the ε > 0 such that there exists a DC-Lipschitz function g such that ‖f − g‖C < ε.

Then ε1/2 ≤ ε2 ≤ 2ε1.

Proof. Let ε > ε2 and find a DC-Lipschitz function g such that ‖f − g‖C < ε. We know by [26, Proposition 
5.1] that g is finitely dentable, which easily implies that f is 2ε-finitely dentable.
For the reverse inequality, take ε > 2ε1 and M = sup{f(x) − f(y) : x, y ∈ C} < +∞. Apply Theorem 4.5 to 
get a function Φ such that |f(x) − f(y)| ≤ ε if ΔΦ(x, y) < δ. By Proposition 5.4 we may suppose that Φ is 
Lipschitz too, and by Theorem 5.6, there is an equivalent norm | | | · | | | defined on X such that Δ|||·|||2(x, y) < ζ

implies ΔΦ(x, y) < δ. Take c > M/ζ. Consider the function

g(x) = inf
y∈C

{
f(y) + c

(
|||x|||2 + |||y|||2

2 −
∣∣∣∣
∣∣∣∣
∣∣∣∣x + y

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
2
)}

= inf
y∈C

{f(y) + cΔ|||·|||2(x, y)}

which is actually an inf-convolution with the Cepedello’s kernel, see [9] or [2, Theorem 4.21]. For every 
x ∈ C, the infimum can be computed just on the set

A(x) = {y ∈ C : f(y) + cΔ|||·|||2(x, y)} ≤ f(x)}.

If x ∈ C and y ∈ A(x), we have

0 ≤ cΔ|||·|||2(x, y) ≤ f(x) − f(y) ≤ M.

Then Δ|||·|||2(x, y) ≤ ζ by the choice of c and thus 0 ≤ f(x) − f(y) ≤ ε. Fix η > 0 and take y ∈ A(x) such 
that
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f(y) + cΔ|||·|||2(x, y) ≤ g(x) + η.

Then

f(x) − g(x) ≤ f(x) − f(y) − cΔ|||·|||2(x, y) + η ≤ ε + η.

We deduce that ‖f(x) − g(x)‖C ≤ ε and

g(x) = c

2 |||x|||2 − sup
y∈C

{
c

∣∣∣∣
∣∣∣∣
∣∣∣∣x + y

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

− c

2 |||y|||2 − f(y)
}

which is an explicit decomposition of g as a difference of two convex Lipschitz functions on C, as wanted.
�

6. Quantifying the super weakly compactness

The notion of super weak compactness was introduced in [10]. However, some results were established 
independently in [26] for an equivalent notion (finite dentable) within the convex sets. Here we will use a 
definition based on ultrapowers. Given a free ultrafilter U on a set N, recall that XU is the quotient of 
�∞(X) by the subspace of those (xn)n∈N such that limn,U ‖xn‖ = 0. We take KU as the image of K by 
the canonical embedding x �→ (x)n∈N . A subset K ⊂ X is said to be relatively super weakly compact if KU

is a relatively weakly compact subset of XU for a (equivalently all) free ultrafilter U on N, and K is said 
to be super weakly compact if it is moreover weakly closed. The following result gathers several equivalent 
properties, see [10,26,27,22], in order to compare with their quantified versions (Theorem 6.3).

Theorem 6.1. Let C ⊂ X be a bounded closed convex subset. The following statements are equivalent:

(1) Given ε > 0 it is not possible to find arbitrarily long sequences x1, . . . , xn ∈ C such that

d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε

for all k = 1, . . . , n − 1 (d stands for the norm distance between two sets);
(2) C contains not arbitrarily high ε-separated dyadic trees for every ε > 0;
(3) CU is relatively weakly compact in XU , for U a free ultrafilter on N (equivalently, C is relatively SWC, 

by definition);
(4) CU is dentable in XU , for U a free ultrafilter on N;
(5) C is finitely dentable;
(6) C supports a convex bounded uniformly convex function.

In order to state our results we need to introduce some quantities related to sets in Banach spaces. Firstly, 
a measure of non weakly compactness that has been studied in several papers [15,18,7], see also [19, Section 
3.6]. Given A ⊂ X consider A ⊂ X∗∗ by the natural embedding and take

γ(A) = inf{ε > 0 : Aw∗

⊂ X + εBX∗∗}.

It turns out that γ(A) = 0 if and only if A is relatively weakly compact, thus γ quantifies the non-weakly 
compactness of subsets in X. This measure is considered more suitable than De Blasi’s measure for some 
problems in Banach space theory. Given a convex set A ⊂ X, let us denote by Dent(A) the infimum of 
the numbers ε > 0 such that A has nonempty slices contained in balls of radius less than ε, and take 
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Δ(A) = sup{Dent(C) : C ⊂ A}. The measure Dent was introduced in [8] in relation with the quantification 
of the RNP property, and actually we may think of Δ as a measure of non RNP. Note that (X∗)U for U a 
free ultrafilter on N can be identified with an 1-norming subspace of (XU)∗ by means of

〈(x∗
n), (xn)〉 = lim

n,U
x∗
n(xn),

where the notation 〈, 〉 is intended to avoid the confusion of dealing with too many brackets.

Lemma 6.2. Let A ⊂ X be a closed convex bounded subset, U a free ultrafilter on N and ε > 0. Then

[AU ]′2ε ⊂ ([A]′ε)U .

Proof. Given (xn) ∈ AU \ ([A]′ε)U , we have to find a slice of AU containing (xn) of diameter not greater 
than 2ε. As (xn) /∈ ([A]′ε)U , then for some α > 0

{n : d(xn, [A]′ε) ≥ α} ∈ U .

Indeed, otherwise the sequence (xn) would be equivalent to a sequence in [A]′ε. It is possible to find xn ∈ BX∗

such that x∗
n(xn) ≥ α + supx∗

n([A]′ε) for those indices n from the previous set, for the other n’s the choice 
of xn ∈ BX∗ does not make a difference. Consider the functional (x∗

n) ∈ (X∗)U ⊂ (XU )∗. By construction,

〈(x∗
n), (xn)〉 ≥ α + sup〈(x∗

n), ([A]′ε)U 〉.

Now, we will estimate the diameter of the slice defined by (x∗
n). Suppose that (yn), (zn) ∈ AU and

min{〈(x∗
n), (yn)〉, 〈(x∗

n), (zn)〉} ≥ α + sup〈(x∗
n), ([A]′ε)U 〉.

Then, for a subset in U of indices n, we have yn, zn ∈ A ∩ {x : x∗
n(x) ≥ α + supx∗

n(An)} and thus 
‖yn − zn‖ ≤ 2ε by Lancien’s midpoint argument. That implies ‖(yn) − (zn)‖ ≤ 2ε, so the diameter of the 
slice is not greater than 2ε as wished. �

The following result is the quantitative counterpart of Theorem 6.1.

Theorem 6.3. Let C ⊂ X be a bounded closed convex subset. Consider the following numbers:

(μ1) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈ C such that 
d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n − 1;

(μ2) the supremum of the ε > 0 such that there are ε-separated dyadic trees of arbitrary height;
(μ3) = Δ(CU ), for U a free ultrafilter on N;
(μ4) = γ(CU ), for U a free ultrafilter on N;
(μ5) the infimum of the ε > 0 such that Dz(C, ε) < ω;
(μ6) the infimum of the ε > 0 such that C supports a convex bounded ε-uniformly convex function.

Then μ1 ≤ μ2 ≤ 2μ3 ≤ 2μ4 ≤ 2μ1 and μ4 ≤ 2μ5 ≤ 2μ6 ≤ 2μ2.

Proof. We will label the steps of the proof by the couple of numbers associated to the inequality.
(1-2) If ε < μ1, the separation between convex hulls applied to 2n elements allows the construction of a 
ε-separated dyadic trees of height n. Therefore μ2 ≥ μ1.
(2-3) If ε < M2 then Δ(CU ) ≥ ε/2. Indeed, CU contains an infinite ε-separated dyadic tree T , therefore any 
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nonempty slice of T cannot be covered by finitely many balls of radius less than ε/2.
(3-4) By [8, Proposition 6.1], Dent(A) ≤ γ(A), therefore Δ(CU) ≤ γ(CU ).
(4-1) Let ε < μ4. Then there is x ∈ C

w∗

which is at distance greater than ε from X. Following Oja’s proof 
of James theorem [14, Theorem 3.132], it is possible to find an infinite sequence (xn) with convex separation 
greater than ε. Finite representativity gives arbitrarily large sequences in X with the same separation, thus 
μ1 ≥ μ4.
(4-5) If ε > M5 then there is a finite sequence of sets C = C1 ⊃ C2 ⊃ · · · ⊃ Cn given by the ε-dentability 
process. Taking weak∗ closures in the bidual, we have

C
w∗

= (C1
w∗

\ C2
w∗

) ∪ · · · ∪ (Cn−1
w∗

\ Cn
w∗

) ∪ Cn
w∗

.

Now, take any x ∈ C
w∗

that belongs to one of those sets. The w∗-open slice separating x from the smaller 
set, say Ck+1

w∗

(∅ for the last set) in the difference is contained in the w∗-closure of a slice of Ck not 
meeting Ck+1 which has diameter less than 2ε (Lancien’s midpoint argument). Since w∗-closures does not 
increase the diameter, we have d(x, X) ≤ 2ε. The argument actually implies γ(C) ≤ 2ε. However, we can 
apply it to the sequence of sets in XU

CU = CU
1 ⊃ CU

2 ⊃ · · · ⊃ CU
n

which has the same slice-separation property by Lemma 6.2.
(5-6) If ε > μ6, there is a bounded convex and ε-uniformly convex function f that, without loss of generality, 
we may suppose lower semicontinuous. By Proposition 3.1, any slice of the set {x ∈ C : f(x) ≤ a} not 
meeting the set {x ∈ C : f(x) ≤ a + δ} has diameter less than ε. A judicious arranging of these sets shows 
that C is ε-finitely dentable. Thus μ5 ≤ μ6.
(6-2) Take ε > μ2. Then the ε-separated dyadic trees are uniformly bounded in height. By Theorem 4.4, 
that implies the existence of ε′-uniformly convex function for every ε′ > ε. Thus μ6 ≤ μ2. �

Remark 6.4. The equivalence between μ3 and μ4 is both a local and a quantitative version of the well 
known statement saying that super-RNP is the same that super-reflexivity. Let us point out that some other 
relations between the quantities μi for i = 1, . . . , 6 can be established and so improving the equivalence 
constants. For instance μ2 ≤ 2μ5, which is somehow straightforward, or μ6 ≤ μ5 as a consequence of 
Proposition 4.3.

We will need the following estimation of the distance to the points added by the closure with respect to 
the topology induced by a norming subspace of the dual.

Lemma 6.5. Let X a Banach space and F ⊂ X∗ an 1-norming subspace. Then for any bounded convex 
A ⊂ X and any ε > γ(A) we have

A
σ(X,F ) ⊂ A + 2εBX .

Proof. By [19, Proposition 3.59], Aw∗

⊂ A + 2εBX∗∗ . The linear map p : X∗∗ → F ∗ defined by p(x∗∗) =
x∗∗|F has norm 1 and satisfies p(Aw∗

) = A
σ(F∗,F ). We may identify p(X) = X isometrically into F ∗ and so 

we have A
σ(F∗,F ) ⊂ A + 2εBF∗ . Therefore A

σ(X,F ) ⊂ A + 2εBX as wished. �

We will need the following result that appears as a fact inside the proof of [30, Theorem 3.1]. The 
1-norming subspace (X∗)U ⊂ (XU )∗ will play an important role.
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Lemma 6.6. For any (x∗
n) ∈ (X∗)U and (an) ∈ conv(A)U , there is (bn) ∈ conv(AU ) such that 〈(x∗

n), (an)〉 ≤
〈(x∗

n), (bn)〉.

Among the quantities given by Theorem 6.3 only μ4 does not require convexity, so we can propose it as 
a natural measure of super weak noncompactness. The following is a quantitative version (in terms of μ6) 
of [30, Theorem 3.1] establishing that the super weak compactness is stable by closed convex hulls. Note 
that the measure of super weak noncompactness introduced by K. Tu in [30] is different from ours and so 
our result is not equivalent to [30, Theorem 4.2].

Theorem 6.7. Let A ⊂ X be a bounded subset and U a free ultrafilter. Then

γ(conv(A)U ) ≤ 4γ(AU ).

Proof. Consider F = (X∗)U which is an 1-norming subspace of (XU)∗. Take ε > γ(AU ). By Lemma 6.5,

convσ(X,F )(AU ) ⊂ conv(AU ) + 2εBXU .

We claim that (conv(A))U ⊂ conv(AU ) + 2εBXU . If it is not the case, then we could separate a point 
(conv(A))U from convσ(X,F )(AU ) by a functional from F . That leads to a contradiction with Lemma 6.6. 
Now, we have

γ((conv(A))U ) ≤ 2γ(AU ) + 2ε

which implies the statement. �

7. A new glance at Enflo’s theorem

Let us show how Enflo’s theorem follows from our results.

Theorem 7.1 (Enflo [13]). Let X be a super-reflexive Banach space. Then X has an equivalent uniformly 
convex norm.

Proof. The unit ball BX endowed with the weak topology is SWC. Therefore, for every ε > 0, there is a 
bounded convex ε-uniformly convex function defined on BX by Theorem 1.5. Now, by Theorem 1.4, there 
is an equivalent norm ‖ · ‖ε on X whose square is an ε-uniformly convex function on BX . Without loss 
of generality, we may assume that ‖ · ‖ ≤ ‖ · ‖ε ≤ 2‖ · ‖. The series | | | · | | |2 =

∑∞
n=1 2−n‖ · ‖2

1/n defines an 
equivalent uniformly convex norm. �

Enflo’s original proof of the uniformly convex renorming of super-reflexive Banach spaces has remained 
practically unchanged in books, see [14, pages 438-442] for instance. We believe that the reason is that the 
proof is difficult to follow from a geometrical point of view. One of the original aims of this paper was to cast 
some light on the renorming of super-reflexive spaces. Since the geometrical ideas are now diluted along this 
paper, we would like to offer to the interested reader a more direct pathway to Enflo’s theorem in several 
steps.

• From the usual definition of super-reflexivity with finite representation, it is easy to prove that the 
unit ball BX of a super-reflexive space has the finite tree property, that is, given ε > 0, the uniform 
boundedness in height of all the ε-separated dyadic trees [20].
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• The maximal height of an ε-separated tree with root x ∈ BX is an ε-uniformly concave function h(x). 
This is the main idea in the proof of Theorem 4.4. Note that this function is also symmetric.

• g(x) = 3−h(x) is a symmetric ε-uniformly convex function taking values in [0, 1]. This comes from 
Lemma 4.1 and is just an arithmetical fact.

• f = ğ is convex, symmetric and 3ε-uniformly convex. The key idea is that f(x) is computed with the 
values of g(y) with ‖y−x‖ < ε. The technical details can be carried out as in the proof of Theorem 1.3, 
which relies on Proposition 3.5. Nevertheless, the idea is very intuitive: Planet Earth is a non-convex 
ε-uniformly convex radial body for ε = 800 km at most. That implies you do not need the Rocky 
Mountains neither the Himalayas to compute the convex hull over France.

• Let fn be the function given in the previous steep for ε = 1/n. The function

F (x) = ‖x‖ +
∞∑

n=1
2−nfn(x)

is uniformly convex, symmetric, Lipschitz on the balls rBX for 0 < r < 1 and it attains a strong 
minimum at 0. Moreover, elementary computations can show that F (0) ≤ 1/17 and F (x) ≥ 1 for 
x ∈ SX .

• The set B = {x : F (x) ≤ inf F + 1/2} is the unit ball of an equivalent uniformly convex norm | | | · | | |. The 
idea is to use the Lipschitz property of F to show that for any δ > 0, there is λ(δ) ∈ (0, 1) such that

{x : F (x) ≤ inf F + 1/2 − δ} ⊂ λ(δ)B.

Therefore, if | | |x| | | = | | |y| | | = 1 and ‖x −y‖ ≥ ε then F (x) = F (y) = inf F+1/2 and F (x+y
2 ) ≤ inf F+1/2 −δ

for some δ = δ(ε) > 0, and thus | | |x+y
2 | | | ≤ λ(δ).
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[32] C. Zǎlinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co. Inc., River Edge, NJ, 2002.

http://refhub.elsevier.com/S0022-247X(21)00521-7/bibE8B58849C82EAA645AC4F29838D3C092s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibC58AA7D3087C677429DE1488394F8CDAs1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibC58AA7D3087C677429DE1488394F8CDAs1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibAC89F9E6E700EEF9980E1569E3963BCFs1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib28C49BA4D65A76D78BE6C5696FB41F80s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib28C49BA4D65A76D78BE6C5696FB41F80s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibF5C7757378B1017B1C5EE41A376B30E2s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibF5C7757378B1017B1C5EE41A376B30E2s1
https://doi.org/10.1007/s11228-017-0428-5
https://doi.org/10.1007/s11228-017-0428-5
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib1E7E73EC0EB0F60A6D19D13A7D887CE5s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib1E7E73EC0EB0F60A6D19D13A7D887CE5s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib4307E44FE58A3C0854ADE40044414DF0s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib29E4E69D5A031523764D419AFA60E039s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib29E4E69D5A031523764D419AFA60E039s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibFFED880985D9E700410B9CB7133F0517s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib1DB930052867457ACFDE0AE416C8B1F9s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib1DB930052867457ACFDE0AE416C8B1F9s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib90A7C45EAFFBD575CA6FB361E6D170A4s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib7439FAC09313EBF010F5B20E2A399E69s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib7439FAC09313EBF010F5B20E2A399E69s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibC562607189D77EB9DFB707464C1E7B0Bs1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibC562607189D77EB9DFB707464C1E7B0Bs1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibCB69439752D0469384B3A60A060E4B5Fs1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib526E34D04735124F05A090181F3E6E8As1
https://doi.org/10.1016/j.jmaa.2016.02.057
https://doi.org/10.1016/j.jmaa.2016.02.057
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibF5F26EBCF65A4C9665952296406F8FB9s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bibF5F26EBCF65A4C9665952296406F8FB9s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib4ABE97DECAD98C0836E4D7EDDFE2FF59s1
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib4ABE97DECAD98C0836E4D7EDDFE2FF59s1
https://doi.org/10.1090/proc/15393
https://doi.org/10.1016/0022-247X(83)90112-9
https://doi.org/10.1016/0022-247X(83)90112-9
http://refhub.elsevier.com/S0022-247X(21)00521-7/bib496A45377AE0694A06006C4F47CA31A4s1

	On uniformly convex functions
	1 Introduction
	2 Basic properties and examples
	3 Convexifying the ε-uniform convexity
	4 Building uniformly convex functions
	5 Improving functions and domains
	6 Quantifying the super weakly compactness
	7 A new glance at Enflo’s theorem
	Acknowledgments
	References


