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Abstract

Let X be a uniformly smooth infinite dimensional Banach space, and(Ω,Σ,µ) be aσ -finite
measure space. Suppose thatT :X → L∞(Ω,Σ,µ) satisfies

(1− ε)‖x‖ � ‖T x‖ � ‖x‖, ∀x ∈ X,

for some positive numberε < 1/2 with δX∗(2−2ε) > 13/14. ThenT is close to an isometryU :X →
L∞(Ω,Σ,µ) such that

‖T −U‖ � 16
(
1− δX∗(2− 2ε)

) + 1

2
ε,

whereδX∗(t) is the modulus of convexity of the conjugate spaceX∗.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Benyamini [2] proved that an isomorphismT of C(K), K compact metric, into
someC(S), S compact Hausdorff, is close to an isometry if‖T ‖‖T −1‖ is close to one
Alspach [1] proved similar results onLp spaces for 1� p < ∞. For someK being un-
metrizable, however, Benyamini [3] gave a counterexample that for an arbitraryε > 0,
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there is a linear operatorT :C(K) → C(S) satisfying‖T ‖‖T −1‖ � 1 + ε, but there is no
isometry fromC(K) to C(S).

In this paper, we will discuss the small into isomorphisms from an infinite dimens
uniformly smooth Banach space toL∞(Ω,Σ,µ) basing on the following representatio
theorem for every linear bounded operatorT :X → L∞(Ω,Σ,µ).

Suppose thatX is a Banach space and the conjugate spaceX∗ of X has the Radon–
Nikodym property and(Ω,Σ,µ) is a σ -finite measure space. For every linear boun
operatorT :X → L∞(Ω,Σ,µ), there is anh ∈ L∞(µ,X∗) so that for allx ∈ X

(T x)(ω)= h(ω)(x) and ‖T ‖ = ‖h‖∞. (1.1)

Indeed, letS be the restriction ofT ∗ to L1(µ). ThenS is representable becauseX∗ has
RNP, i.e., there is anh ∈ L∞(µ,X∗) such thatSf = ∫

fhdµ. Thus∫
f (ω)h(ω)(x) dµ= (Sf )(x) = T x(f ) =

∫
f (ω)T x(ω) dµ

for everyx ∈ X and, sincef is arbitrary, it follows thatT x(ω) = h(ω)(x) a.e.

2. Small into isomorphisms on uniformly smooth spaces

Let X be a normed vector space. Denote bySX the set{x: x ∈ X, ‖x‖ = 1} and let
BX = {x: x ∈ X, ‖x‖ � 1}. If X is a uniformly convex Banach space, andε ∈ [0,2], the
modulus of convexity ofX

δX(ε) = inf

{
1−

∥∥∥∥x + y

2

∥∥∥∥: x, y ∈ BX, ‖x − y‖ � ε

}

is positive for allε > 0 and limε→0 δX(ε) = 0, limε→2 δX(ε) = 1.
It is well known that ifX is a uniformly smooth Banach space thenX is reflexive,X and

X∗ have the RNP, and the conjugate spaceX∗ is uniformly convex.
In general it is impossible to approximate a small into isomorphism from a finite di

sional uniformly smooth Banach space toL∞(Ω,Σ,µ) by an isometry. For example (se
[5]), let X = Rn be Euclidean space with 1< n < ∞. For eachε > 0, there exists a finite
ε-net{g1, g2, . . . , gn} of the unit ballBX∗ . Define

fk =
{
gk, k = 1,2, . . . , n,
0, k = n+ 1, . . . .

It is easy to verify that the operatorT :X → !∞ defined byT x = (f1(x), f2(x), . . .) satis-
fies(1− ε)‖x‖ � ‖T x‖ � ‖x‖. But any isometryU :X → !∞ can be written as

(Ux)(k) = hk(x), hk ∈ BX∗ , k = 1,2, . . . ,

for some sequence{hk}∞k=1 which is dense inSX∗ . Hence

‖T −U‖ = sup
k

‖fk − hk‖ � sup
{‖hk‖: k = n + 1, . . .} = 1.

The infinite dimensionality ofX will be used through the following lemma:



312 S. Xiang / J. Math. Anal. Appl. 290 (2004) 310–315

ce,
Lemma 2.1 [5]. LetX be an infinite dimensional space. Then for anyx ∈ SX andε ∈ (0,1)
there is an set{xn}∞n=1 ⊆ SX such that

(i) ‖x − xn‖ = ε for all n = 1,2, . . . , and
(ii) ‖xi − axj‖ > ε/3 for all |a| = 1 andi �= j .

Theorem 2.2. Suppose thatX is an infinite dimensional uniformly smooth Banach spa
(Ω,Σ,µ) is a σ -finite measure space, andT :X → L∞(Ω,Σ,µ) is a linear bounded
operator satisfying(1− ε)‖x‖ � ‖T x‖ � ‖x‖, ∀x ∈ X, for some positive numberε < 1/2
with δX∗(2 − 2ε) > 13/14. ThenT is close to an isometryU :X → L∞(Ω,Σ,µ) such
that

‖T −U‖ � 16
(
1− δX∗(2− 2ε)

) + 1

2
ε.

Proof. We may assume thatµ is a finite measure. SinceX is reflexive,T BX is weakly
compact. By a theorem of Rosenthal [4], it is norm separable, and so isX sinceT is an
isomorphism.

SinceX∗ has RNP, there exists anh ∈ L∞(µ,X∗) such that

(T x)(ω)= h(ω)(x) and ‖T ‖ = ‖h‖∞.

Forh there exists a countable valued mapping

h1 =
∞∑
i=1

fiχEi , fi ∈ X∗, Ei ∩Ej = ∅ (i �= j), µ(Ei) > 0,
∞⋃
i=1

Ei = Ω, (2.1)

such that

‖h − h1‖∞ � 1

2
ε and ‖h1‖∞ � 1.

The operatorT1 given by(T1x)(ω) = h1(ω)(x) satisfies

‖T − T1‖ = ‖h − h1‖∞ � 1

2
ε and

(
1− 3

2
ε

)
‖x‖ � ‖T1x‖ � ‖x‖, ∀x ∈ X.

Let {xn}∞n=1 be a dense sequence inSX and choose{gn}∞n=1 ⊂ SX∗ such thatgj (xj ) = 1
for all j . For eachx ∈ X, by (2.1), we have that∀E ∈ Σ

∫
E

(T1x)(ω) dµ=
∫
E

h1(ω)(x) dµ=
∞∑
i=1

µ(E ∩ Ei)fi(x).

And for eachx ∈ X

‖T1x‖ = sup
µ(E)>0

∣∣∫
E
T1x(ω) dµ

∣∣
µ(E)

= sup
µ(E)>0

∣∣∣∣∣
∞∑
i=1

µ(E ∩Ei)

µ(E)
fi(x)

∣∣∣∣∣
�

(
1− 3

ε

)
‖x‖. (2.2)
2
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In particular, for eachxj , j = 1,2, . . . , by (2.2), there is anij such that∣∣fij (xj )∣∣ > 1− 2ε. (2.3)

Let |λj | = 1 satisfyλjfij (xj ) > 1 − 2ε. Then 2− 2ε � λjfij (xj ) + gj (xj ) and‖fij +
gj‖ � 2− 2ε. So

‖gj − λjfij ‖ � δ(ε) := 2
(
1− δX∗(2− 2ε)

)
and lim

ε→0
δ(ε) = 0. (2.4)

We assert that there exists a set{tn: tn ∈ N, ti �= tj (i �= j)}∞n=1 such that‖gn−anftn‖ �
8δ(ε) for somean with |an| = 1, n = 1,2, . . . , andfti �= ftj (ti �= tj ). If this assertion is
true, then definēg(ω) = ∑∞

n=1 ḡkχEk andḡk is defined as follows: fork = 1,2, . . . ,

ḡk =
{
a−1
n gn, if k = tn ∈ {t1, t2, . . .},

fk, otherwise.

It is obvious that̄g ∈ L∞(µ,X∗), ‖ḡ‖∞ � 1,‖h1− ḡ‖∞ � 8δ(ε) and onEij , |ḡ(ω)(xj )| =
|gj (xj )| = 1.

DefineU :X → L∞(µ) as follows:

(Ux)(ω) = ḡ(ω)(x) =
∞∑
n=1

ḡk(x)χEk .

Then‖Uxj‖ = 1 for all j and‖U − T1‖ = ‖ḡ − h1‖∞. Since{xj }∞j=1 is dense inSX , then
for all x ∈ SX , ‖Ux‖ = 1. HenceU is a linear isometry satisfying

‖U − T ‖ � ‖U − T1‖ + ‖T1 − T ‖ � 8δ(ε)+ 1

2
ε (2.5)

and limε→0[8δ(ε)+ ε/2] = 0.
We will prove the above assertion by induction following [5].
For n = 1, by (2.4), there is ana1 with |a1| = 1 andt1 ∈ N such that‖g1 − a1ft1‖ �

8δ(ε). Suppose that for the setA = {1,2, . . . , n − 1} and{g1, g2, . . . , gn−1} there exists a
set{ft1, ft2, . . . , ftn−1} such that

‖gs − asfts‖ � 8δ(ε) and fts �= fts′ for s ∈ A, s �= s′.
For eachx ∈ SX , let gx be the supporting functional atx satisfyinggx(x) = 1. And by

(2.2) there exists anij such that∣∣fij (x)∣∣ > 1− 2ε.

So there is aλij with |λij | = 1 such that

‖gx − λij f̂ij ‖ � δ(ε). (2.6)

SinceX∗ is uniformly convex, thenSX∗ = {gx : x ∈ SX} and{afn: n = 1,2, . . . , a ∈ K,

|a| = 1} is aδ(ε)-net ofSX∗ .
By Lemma 2.1, forgn there is a set{x∗

n}∞n=1 ⊂ SX∗ such that

‖gn − x∗
i ‖ = 7δ(ε), i = 1,2, . . . , (2.7)

and

‖x∗
i − ax∗

j ‖ >
7
δ(ε) (i �= j) for all |a| = 1.
3
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Hence for eachx∗
i (i = 1,2, . . .), there is anfsi such that

‖x∗
i − bifsi‖ � δ(ε) (2.8)

and forsi �= sj

‖fsi − fsj ‖ �
∥∥b−1

i x∗
i − b−1

j x∗
j

∥∥ − ∥∥fsi − b−1
i x∗

i

∥∥ − ∥∥fsj − b−1
i x∗

i

∥∥
� 7

3
δ(ε) − δ(ε)− δ(ε) > 0.

So if si �= sj thenfsi �= fsj .
Due to the infinity of the elements in{fsn}∞n=1 and (2.7) and (2.8), forgn we can selec

anfsn denoted byftn with sn �= ti (i = 1,2, . . . , n− 1) such that

‖gn − anftn‖ � ‖gn − x∗
tn
‖ + ‖x∗

tn
− anftn‖ � 8δ(ε).

Thus for the set{g1, g2, . . . , gn} there are{ft1, ft2, . . . , ftn} such that‖gi − aifti‖ � 8δ(ε).
By induction, the assertion is true.✷
Corollary 2.3. LetX be a separable uniformly smooth Banach space with infinite dim
sions andT :X → C[0,1] satisfy(1−ε)‖x‖ � ‖T x‖ � ‖x‖, ∀x ∈ X, for some sufficiently
small positive numberε. Then there exist into isometriesU ∈ B(C[0,1],C[0,1]) and
V ∈ B(X,C[0,1]) such that

‖U ◦ T x − V x‖ � η(ε)‖x‖, ∀x ∈ X,

where

lim
ε→0

η(ε) = 0.

Proof. Let I :C[0,1] → L∞[0,1] be the identity. ThenI is a linear isometry andI ◦ T :
X → L∞[0,1] satisfies

(1− ε)‖x‖ � ‖I ◦ T x‖ � ‖x‖, ∀x ∈ X.

According to Theorem 2.2, there is an isometryV0 ∈ B(X,L∞[0,1]) such that

‖I ◦ T − V0‖ � η(ε), lim
ε→0

η(ε) = 0.

Let Y1 be the image spaceV0X, Y2 be the image spaceI (C[0,1]) andY = Y1 + Y2.
SinceX andC[0,1] are separable, thenY1, Y2 andY are also separable Banach spac
SinceC[0,1] is universal for all separable normed linear spaces, there is a linear iso
U1 :Y → C[0,1]. DefineU = U1 ◦ I andV = U1 ◦ V0. ThenU andV are isometries
satisfying

‖U ◦ T x − V x‖ � η(ε)‖x‖, ∀x ∈ X, and lim
ε→0

η(ε) = 0. ✷
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