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Abstract

Let X be a uniformly smooth infinite dimensional Banach space, @dX, 1) be ao-finite
measure space. Suppose thatX — L*°(£2, X, u) satisfies

A=o)lxlI <ITxlI < lIxll. VxeX,

for some positive number < 1/2 with §x« (2— 2¢) > 13/14. ThenT is close to an isometry/ : X —
L°($2, X, u) such that

1
IT - Ul <16(1—8x+(2—2¢)) + e

wheres y+ (1) is the modulus of convexity of the conjugate space
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Benyamini [2] proved that an isomorphisth of C(K), K compact metric, into
someC(S), S compact Hausdorff, is close to an isometry|if||[|7 1| is close to one.
Alspach [1] proved similar results oh?” spaces for KX p < co. For somekK being un-
metrizable, however, Benyamini [3] gave a counterexample that for an arbitrarQ,
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there is a linear operatdt: C(K) — C(S) satisfying||T||||T ~1|| < 1+ ¢, but there is no
isometry fromC(K) to C(S).

In this paper, we will discuss the small into isomorphisms from an infinite dimensional
uniformly smooth Banach space I6°(£2, X, u) basing on the following representation
theorem for every linear bounded operafarX — L™ (£2, X, u).

Suppose thakX is a Banach space and the conjugate spét®f X has the Radon—
Nikodym property and$2, X, u) is ao-finite measure space. For every linear bounded
operatolT : X — L>®(£2, X, u), thereis arh € L*°(u, X*) so that for allx € X

(Tx)(@) =h(w)(x) and [T = |hlc- (1.1)
Indeed, letS be the restriction of"* to L1(n). ThenS is representable becau&& has
RNP, i.e., there is ah € L (1, X*) such thatSf = [ fhdp. Thus

/f(w)h(w)(x)du=(5f)(x)=Tx(f)=/f(w)Tx(w)du

for everyx € X and, sincef is arbitrary, it follows thafl x (w) = h(w)(x) a.e.

2. Small into isomorphisms on uniformly smooth spaces

Let X be a normed vector space. Denoteyythe set{x: x € X, ||x|| =1} and let
Bx ={x: x € X, |x|| <1}. If X is a uniformly convex Banach space, and [0, 2], the
modulus of convexity o

i x,y € By, IIx—y||>8}

8X(s)=inf{1— H%‘

is positive for alle > 0 and lim_¢d8x(¢) =0, lim,—28x(¢e) = 1.

Itis well known that ifX is a uniformly smooth Banach space the€iis reflexive,X and
X* have the RNP, and the conjugate spa¢es uniformly convex.

In general itis impossible to approximate a small into isomorphism from a finite dimen-
sional uniformly smooth Banach spacelt®’ (§2, X, 1) by an isometry. For example (see
[5]), let X = R" be Euclidean space with< n < co. For eache > 0, there exists a finite
e-net{g1, g2, ..., gn} Of the unit ballBx+. Define

_ & k=12...n
fk—{o, k=n+1,....

Itis easy to verify that the operat®r: X — ¢ defined byT x = (f1(x), f2(x), ...) satis-
fies(1—&)|lx|| < |ITx]| < |lx]l. But any isometryU : X — £°° can be written as

(Ux)(k) =hr(x), hreBxx, k=12,...,
for some sequendd, ;2 ; which is dense irfx-. Hence

IT — Ul =supll fk — kil =sup{llakll: k=n+1,..}=1.
k

The infinite dimensionality oX will be used through the following lemma:



312 S. Xiang / J. Math. Anal. Appl. 290 (2004) 310-315

Lemma2.1[5]. Let X be an infinite dimensional space. Then for any Sx ande € (0, 1)
there is an sefx,},2 ; € Sx such that

() Ix —xyll=cforalln=1,2,..., and
(i) llx; —ax;|l > e/3forall |a| =1andi # ;.

Theorem 2.2. Suppose thaX is an infinite dimensional uniformly smooth Banach space,
(£2, X, n) is a o-finite measure space, arill: X — L*°(£2, X, ) is a linear bounded
operator satisfyingl — ¢)||x|| < ||Tx| < ||x]||, Yx € X, for some positive number< 1/2
with 8x+(2 — 2¢) > 13/14. ThenT is close to an isometry/ : X — L*°(£2, X, 1) such
that

1
||T — U“ < 16(1— 5x>~<(2— 28)) + 58.

Proof. We may assume that is a finite measure. Sinck is reflexive,T By is weakly
compact. By a theorem of Rosenthal [4], it is norm separable, and XcsiaceT is an
isomorphism.

SinceX* has RNP, there exists @ne L>°(u, X*) such that

(Tx)(w)=h()(x) and [IT]=[k]oc-
For h there exists a countable valued mapping
o oo
hi=Y)_ fixg, fieX* ENEj=0G#)), n(E)>0, | JE=2, (2.1)
i=1 i=1
such that

1
A —hilleo < >¢ and |hyfleo <1

The operatoff; given by (T1x)(w) = h1(w)(x) satisfies
1 3
IT — Tl = llh — h1lleo < >¢ and (1— ES)IIXII < Taxl < flxll,  Vx e X.

Let{x,},2, be a dense sequenceSp and choosgg,},” ; C Sx+ such thag;(x;) =1
forall j. For eachx € X, by (2.1), we have thatE € ¥

/(Tlx)(w) dp =/h1(w)(x)du =Y WENE) f; (x).
E E i=1
And for eachx € X

>\ w(ENE)

_ [ Tix(@)dp| _
Tl = sup =BTl B

Hw(E)=>0 n(E) uw(E)>0

fi(x)‘

i=1

> (1— :—;e) llx]l. (2.2)



S. Xiang / J. Math. Anal. Appl. 290 (2004) 310315 313

In particular, for each;, j =1,2,..., by (2.2), there is an; such that
|fi;(x)] > 1— 2. (2.3)
Let|r;]=1 satisfykjfij (xj) >1—2¢. Then 2— 2e < )»jf,'j (xj) + gj(x;) and ||f,] +
gjll>2—2¢.So
ligj — xjfi; | <8(e) :=2(1—58x«(2—2¢)) and lims(e) =0. (2.4)
’ e—0

We assertthatthere existsa gt 1, € N, 1; #1; (i # j)},;2, suchthal|g, —a, fi, || <
85(¢e) for somea, with |a,| =1,n=1,2,..., and f;, # fi; (ti #1)). If this assertion is
true, then defing(w) = Y 2 ; gk x£, andgx is defined as follows: fok =1, 2, ...,

2= aten, fk=1y€ {2 ),
S otherwise
Itis obviousthag € L™ (i, X*), [18lloo < 1,[1h1—glloo < 83(e) and ONE;,, |g(w)(x;)| =
lgj(xj)|=1.
DefineU : X — L*°(u) as follows:

o
(Ux)(@) = §(@)(x) =Y gk (xX) XE;-
n=1
Then||Ux;||=1forall j and||U — T1|| = ||§ — h1lloo- Since{x,-}ﬁl is dense inSy, then
forall x € Sx, |Ux| = 1. HencelU is a linear isometry satisfying

1
IIU—TII<|IU—T1||+||T1—T||<85(8)+§8 (2.5)

and lim._o[88(¢) + /2] =0.

We will prove the above assertion by induction following [5].

Forn =1, by (2.4), there is any with |a1| = 1 andz; € N such that||g1 — a1 f,, || <
85(¢g). Suppose that for the sdt={1,2,...,n — 1} and{g1, g2, ..., gn—1} there exists a
set{ fi, fi, - .-, fi,_1} such that

llgs —asfi, Il <85(e) and fi, # fi, forseA, s#s'.

For eachx € Sy, let g, be the supporting functional atsatisfyingg, (x) = 1. And by
(2.2) there exists aiy such that

|f,-j(x)| >1—2e.
So there is ai; with |Ai;l=1 such that

lgx — Xij fi; | < 8(e). (2.6)
Since X* is uniformly convex, therfx+ = {g,: x € Sx} and{af,: n=1,2,..., a €K,

la] =1} is ad(e)-net of Sxx.
By Lemma 2.1, forg, there is a sefx;;}7° ; C Sx+ such that

lgn —x=75(), i=12,..., 2.7)
and

7
a7 —axfll > 38(e) (i # j) foralljal=1.
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Hence for each (i =1, 2,...), there is anf;;, such that
lx; — bi fs; | < 8(e) (2.8)
and fors; # s;

I f = £y = b7 xF = b7 = | fo = b7 | = [ £y = b7
> :—:5(8) —38(e) —é6(e) > 0.

Soifs; #s; thenfs, # f;;.
Due to the infinity of the elements iy, }°° ; and (2.7) and (2.8), fog, we can select

an f;, denoted byf;, with s, ## (i =1,2,...,n — 1) such that

lign — an fi, | < llgn — x7, Il + lIx;, — an fi, II < 8S(e).

Thus for the setg1, g2, . .., gu} there ard fy,, fi,, - .-, fi,} Such that|g; — a; fi, || < 85(¢).
By induction, the assertion is true o

Coroallary 2.3. Let X be a separable uniformly smooth Banach space with infinite dimen-
sionsand: X — C[0, 1] satisfy(1—e&)|x|| < [T x| < ||lx]l, Vx € X, for some sufficiently
small positive numbet. Then there exist into isometridé € B(C[0, 1], C[O0, 1]) and

V € B(X, C[0, 1]) such that

lUoTx — Vx| <n)lx|l, VxelX,
where

lim n(e) =0.
e—0

Proof. Let I:C[0, 1] — L*[0, 1] be the identity. Thed is a linear isometry andio T :
X — L*°[0, 1] satisfies

A-9)lxI <o Tx[|<[lx]l, VxeX.
According to Theorem 2.2, there is an isoméliye B(X, L*°[0, 1]) such that
1 oT — Vol <n(e), |im077(8)=0-
E—>
Let Y; be the image spac¥yX, Y2 be the image spacg(C[0,1]) andY = Y1 + Y».
SinceX andC[0, 1] are separable, thery, Y> andY are also separable Banach spaces.
SinceC[0, 1] is universal for all separable normed linear spaces, there is a linear isometry

Up:Y — C[0,1]. DefineU =U101 andV = U1 0 Vo. ThenU andV are isometries
satisfying

|lUoTx— Vx| <n(e)lx], VxeX, and IirT(l)n(s)zo. O
E—>
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