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Abstract

In this paper we prove mixed-means inequalities for integral power means of an arbitra
order, where one of the means is taken over the ballB(x, δ|x|), centered atx ∈ R

n and of radius
δ|x|, δ > 0. Therefrom we deduce the corresponding Hardy-type inequality, that is, the operat
norm of the operatorSδ which averages|f | ∈ Lp(Rn) over B(x, δ|x|), introduced by Christ and
Grafakos in Proc. Amer. Math. Soc. 123 (1995) 1687–1693. We also obtain the operator norm
related limiting geometric mean operator, that is, Carleman or Levin–Cochran–Lee-type ineq
Moreover, we indicate analogous results for annuli and discuss estimations related to the
Littlewood and spherical maximal functions.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Generalizing the well-known Hardy’s inequality (cf. [7] or [11]) to multidimensio
balls, Christ and Grafakos in [2] considered forf ∈ L1

loc(R
n) andδ > 0 the following two

averaging operators:
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(Tδf )(x) = 1

|B(δ|x|)|
∫

B(δ|x|)

∣∣f (y)
∣∣dy

and

(Sδf )(x) = 1

|B(x, δ|x|)|
∫

B(x,δ|x|)

∣∣f (y)
∣∣dy,

whereB(x,R) is the ball inR
n centered atx ∈ R

n and of radiusR > 0, B(R) = B(0,R),
by |x| we denote the Euclidean norm ofx ∈ R

n, and |A| is the Lebesgue measure of
measurable setA ⊆ R

n. They proved that the operator norm ofT1 onLp(Rn), wherep > 1,
is equal top/(p −1), which means that it is the same as in the usual one-dimensional
By using the obvious identity(Tδf )(x) = (T1f )(δx), it holds directly that the operato
norm ofTδ onLp(Rn) is equal to p

p−1δ−n/p .

Christ and Grafakos also solved amore subtleproblem of deriving the operator norm
Sδ on Lp(Rn), which is, in our notation below, equal toC(n;p; δ;0,0) (compare the las
theorem in [2] with our relations (14)–(16)). The importance of this result comes from
fact that, in some sense, the operatorSδ lies between the identity operator and the Hard
Littlewood maximal functionM, and thatMf is, in fact,not much larger thanf (cf. [14,
p. 1244]).

Before presenting our idea, let us introduce some necessary notation. LetSn−1 be the
unit sphere inRn and let|Sn−1| be its area. By An(x;R1;R2) we denote the annulus inRn

centered atx ∈ R
n and of inner and outer radiiR1 andR2, respectively, 0� R1 < R2. If ω

is a weight function onRn (a locally integrable non-negative function onR
n) andA ⊆ R

n is
a measurable set, let|A|ω = ∫

A ω(x) dx. Especially, in the case whenω(x) = |x|α , instead
of |A|ω we shall write|A|α . Moreover, we shall frequently use the obvious identities∣∣B(R)

∣∣
α

= n

α + n
Rα+n

∣∣B(1)
∣∣

for R > 0 andα + n > 0, and∣∣B(
x, δ|x|)∣∣

α
= |x|α+n

∣∣B(e, δ)
∣∣
α

for δ > 0, x ∈ R
n, and an arbitrary vectore ∈ R

n, such that‖e‖ = 1.
Finally, for α ∈ R and a measurable setA ⊆ R

n, such that|A|α < ∞, we define the
integral weighted power mean of orderp �= 0 of a measurable non-negative (in the c
p < 0 positive) functionf by

Mp(f ;A,α) =
(

1

|A|α
∫
A

f p(y)|y|α dy

) 1
p

. (1)

It is known (cf. [7] and [11]) thatMp is an increasing function with respect to the varia
p and it is also easy to see that

M0(f ;A;α) := lim
p→0

Mp(f ;A;α) = exp

(
1

|A|α
∫
A

|y|α logf (y) dy

)

is the related weighted geometric meanG(f ;A;α) of a positive measurable functionf .
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The main aim of this paper is to give another approach (analogous to [5]) to the pr
of obtaining the operator norm of weighted operatorsSδ . Namely, we shall consider th
class of operators

(Sδ,αf )(x) = 1

|B(x, δ|x|)|α
∫

B(x,δ|x|)
f (y)|y|α dy (2)

on weightedLp spaces (with power weights). Our basic idea is to prove appropriate m
means-type inequalities (see Theorems 1 and 2 below) and then apply them to de
related Hardy and Carleman-type inequalities. Analogous results will be obtained also
annuli. Moreover, in the last section we shall give some estimations of the operator
of the Hardy–Littlewood and spherical maximal functions onLp (Rn).

The analysis used in the proofs is based on Minkowski’s integral inequality (cf. [
polar coordinates inRn, and on integral equality

1

|Sn−1|
∫

Sn−1

f (θ) dθ =
∫

SO(n)

f (σe) dσ, (3)

wheredσ is the normalized Haar measure on the rotation groupSO(n) of R
n, dθ is in-

duced Lebesgue measure onSn−1, f is an integrable function on(n− 1)-dimensional unit
sphere, and the vectore ∈ R

n, ‖e‖ = 1, is arbitrary (cf. [15]). We remark that, due to t
compactness ofSO(n), the Haar measure is left and right invariant (cf. [8]).

In what follows, without further explanation, we assume that all integrals exist o
respective domains of their definitions.

2. Mixed-means inequality

We start with the basic inequality.

Theorem 1. Let r, s, b, δ,α1, α2 ∈ R be such thatr � s, r, s �= 0, b > 0, δ > 0, andα1, α2
> −n. If f is a non-negative function onB((1 + δ)b) (f positive in the case whenr < 0)
andb = be1 = b(1,0, . . . ,0) ∈ R

n, then the inequality

[
1

|B(b)|α2

∫
B(b)

(
1

|B(x, δ|x|)|α1

∫
B(x,δ|x|)

f r (y)|y|α1 dy

) s
r

|x|α2 dx

] 1
s

�
[

1

|B(b, δb)|α1

∫
B(b,δb)

(
1

|B(|x|)|α2

∫
B(|x|)

f s(y)|y|α2 dy

) r
s

|x|α1 dx

] 1
r

(4)

holds. Moreover, ifr = s, then equality in(4) holds for all functionsf . In the case when
r < s, equality holds in(4) for functionsf of the formf (x) = C|x|λ, whereC � 0. Finally,
for r > s the sign of inequality in(4) is reversed.
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Proof. Written in terms of characteristic functions, the left-hand side of inequality
reads[

1

|B(b)|α2

∫
B(b)

(
1

|B(x, δ|x|)|α1

∫
B((1+δ)b)

f r(y)χB(x,δ|x|)(y)|y|α1 dy

) s
r

|x|α2 dx

] 1
s

. (5)

The next step is to transform (5) to polar coordinates, so letx = tθ , θ ∈ Sn−1, andy = uφ,

φ ∈ Sn−1. The relation|y − x| � δ|x| is then equivalent toθ · φ � (1−δ2)t2+u2

2ut
. Note that

inequality (1−δ2)t2+u2

2ut
� 1 holds if and only if(1− δ)t � u � (1+ δ)t , so in the caseδ > 1

we have 0� u � (1+ δ)t .
We continue by consideringδ � 1, while forδ > 1 the proof follows the same lines.

this setting, (5) is further equal to

[
1

|B(b)|α2

∫
θ

b∫
t=0

(
1

|B(tθ, δt)|α1

∫
φ

(1+δ)t∫
u=(1−δ)t

f r (uφ)

× χ
φ·θ� (1−δ2)t2+u2

2ut

(uφ)uα1un−1 dudφ

) s
r

tα2tn−1 dt dθ

] 1
s

= |B(b)|−
1
s

α2

|B(e1, δ)|
1
r
α1

[∫
θ

b∫
t=0

(∫
φ

u=1+δ∫
u=1−δ

f r (utφ)

× χ
φ·θ� 1

2
( 1−δ2

u +u
)(utφ)uα1un−1 dudφ

) s
r

tα2tn−1 dt dθ

] 1
s

= |B(b)|−
1
s

α2 |Sn−1| 1
s + 1

r

|B(e1, δ)|
1
r
α1

[ ∫
σ∈SO(n)

b∫
t=0

( ∫
σ ′∈SO(n)

u=1+δ∫
u=1−δ

f r(utσ ′e1)

× χ
σ ′e1·σe1� 1

2
[ 1−δ2

u
+u

](utσ ′e1)u
α1un−1 dudσ ′

) s
r

tα2tn−1 dt dσ

] 1
s

, (6)

where the last equality in (6) is obtained by using (3). Knowing thatSO(n) preserves the
inner product and using the (right) invariance of the Haar measure, (6) is now equal

|B(b)|−
1
s

α2 |Sn−1| 1
s + 1

r

|B(e1, δ)|
1
r
α1

[ ∫
σ∈SO(n)

b∫
t=0

( ∫
σ ′∈SO(n)

u=1+δ∫
u=1−δ

f r (utσσ ′e1)

× χ
σ ′e1·e1� 1

2
[ 1−δ2

u +u
](utσσ ′e1)u

α1un−1 dudσ ′
) s

r

tα2tn−1 dt dσ

] 1
s

, (7)

while applying Minkowski’s inequality and simple transformations, (7) is not greater
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|B(b)|−
1
s

α2 |Sn−1| 1
s + 1

r

|B(e1, δ)|
1
r
α1

[ ∫
σ ′∈SO(n)

1+δ∫
u=1−δ

( ∫
σ∈SO(n)

b∫
t=0

f s(utσσ ′e1)

× χ
σ ′e1·e1� 1

2
[ 1−δ2

u +u
](utσσ ′e1)t

α2tn−1 dt dσ

) r
s

uα1un−1 dt dσ ′
] 1

r

= |B(b)|−
1
s

α2 |Sn−1| 1
s
+ 1

r

|B(b, δb)|
1
r
α1

[ ∫
σ ′

(1+δ)b∫
u=(1−δ)b

( ∫
σ

b∫
t=0

f s
(
(ut/b)σσ ′e1

)

× χ
σ ′e1·e1� 1

2
[ (1−δ2)b

u + u
b

]((ut/b)σσ ′e1
)
tα2tn−1 dt dσ

) r
s

uα1un−1 dt dσ ′
] 1

r

= |Sn−1| 1
s
+ 1

r

|B(b, δb)|
1
r
α1

[ ∫
σ ′

(1+δ)b∫
u=(1−δ)b

(
1

|B(u)|α2

∫
σ

u∫
t=0

f s(tσσ ′e1)

× χ
σ ′e1·e1� 1

2
[ (1−δ2)b

u + u
b

](tσσ ′e1
)
tα2tn−1 dt dσ

) r
s

uα1un−1 dt dσ ′
] 1

r

= |Sn−1| 1
s + 1

r

|B(b, δb)|
1
r
α1

[ ∫
σ ′

(1+δ)b∫
u=(1−δ)b

χ
σ ′e1·e1� 1

2
[ (1−δ2)b

u
+ u

b

](uσ ′e1)

×
(

1

|B(u)|α2

∫
σ

u∫
t=0

f s(tσσ ′e1)t
α2tn−1 dt dσ

) r
s

uα1un−1 dt dσ ′
] 1

r

=
[

1

|B(b, δb)|α1

∫
B(b,δb)

(
1

|B(|x|)α2

∫
B(|x|)

f s(y)|y|α2 dy

) r
s

|x|α1 dx

] 1
r

. (8)

The last equality in (8) follows from the invariance of the Haar measure and from
tion (3).

Finally, it is straightforward to check that both sides of inequality (4), rewritten with
functionf (x) = |x|λ, are equal to

bλMr

(|x|λ;B(e1, δ);α1
)
Ms

(|y|λ;B(1);α2
)
,

which gives the sharpness of inequality (4).�
Remark 1. It is not hard to see that inequality (4) is dilation invariant in the sense th
it holds forb = 1 and a non-negative functionf : B(1 + δ) → R, then it holds for every
b > 0 and the functiong : B((1 + δ)b) → R defined byg(x) = f (x/b). It is also obvious
that both sides of inequality (4) are rotation invariant, that is, they will not be change
given functionx 	→ f (x) is replaced by the functionx 	→ f (σx) for anyσ ∈ SO(n).
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Remark 2. In Theorem 1 it was pointed out that inequality (4) is sharp, owing to the
that it turns to equality in the case of functions of the formf (x) = |x|λ. In [5, Theorem 5],
where integral means were taken over balls inR

n centered at the origin, this form of fun
tionsf was the only possible for achieving equality. The proof presented there was s
since Jensen’s inequality was applied to theangularpart of polar coordinates so radiali
of extremal functions was immediate. Moreover, the family of all extremal function
the related mixed-means inequality (cf. [5, Theorem 7]) was obtained from separab
extremal functions for Minkowski’s inequality. The same holds also in our case her
since the proof is lengthy and quite technical, it will be omitted.

Reformulating the basic inequality in Theorem 1 in terms of integral weighted p
means (1) we obtain the related mixed-means inequalities.

Theorem 2. Under the assumptions of Theorem1, the following inequalities hold:

(1) Ms(Mr(f ;B(x, δ|x|);α1);B(b);α2) � Mr(Ms(f ;B(|x|);α2);B(b, δb);α1);
(2) Ms(Mr(f ;B(|x|);α2);B(b, δb);α1) � Mr(Ms(f ;B(x, δ|x|);α1);B(b);α2).

It is important to state the following corollary, especially in view of the fact that the m
imal function is not a bounded operator onL1 so the dominate convergence and Lebesg
differentiation theorem cannot be applied. This result follows directly from Theorem
takingr = s = 1.

Corollary 1. Suppose thatb > 0, ε > 0, andα1, α2 > −n. If a functionf ∈ L1
α2

(B((1 +
ε)b)) is non-negative, then

lim
δ→0

∫
B(b)

(
1

|B(x, δ|x|)|α1

∫
B(x,δx)

f (y)|y|α1 dy

)
|x|α2 dx =

∫
B(b)

f (y)|y|α2 dy. (9)

To conclude this section, we give a generalization of Theorem 1 to annuli inR
n defined

in the Introduction.

Theorem 3. Let r, s, b, δ1, δ2, α1, α2 ∈ R be such thatr � s, r, s �= 0, b > 0, 0 � δ1 < δ2,
andα1, α2 > −n. If f is a non-negative function onB((1 + δ2)b) (f positive in the case
r < 0) andb = be1 = b(1,0, . . . ,0) ∈ R

n, then

Ms

(
Mr

(
f ;An

(
x; δ1|x|; δ2|x|);α1

);B(b);α2
)

� Mr

(
Ms

(
f ;B

(|x|);α2
);An(b; δ1b; δ2b),α1

)
. (10)

For r = s we have equality in(10). If r < s, then equality holds in(10) for functionsf of
the formf (x) = C|x|λ, whereC � 0. In the case whenr > s, the sign of inequality in(10)
is reversed.

Proof. Since the proofs of Theorems 1 and 3 follow the same line, we omit tech
details here. The only difference appears when using the characteristic function of ann
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in polar coordinatesx = tθ , y = uφ we get the inequalities1
2ut

[u2 + (1− δ2
2)t2] � φ · θ �

1
2ut

[u2 + (1− δ2
1)t2]. �

Remark 3. Although Theorem 1 is an obvious consequence of Theorem 3, we chose
give the complete proof of Theorem 1 and a sketch of the proof of Theorem 3 only to
more complex and awkward notation in the case of annuli.

3. Hardy and Carleman-type inequalities

The mixed means and related inequalities can be used in proving different integ
equalities. Analogously to the procedure established in [4,5], in this section we app
previously obtained mixed-means inequality (4) to deduce the Hardy-type inequal
the operatorSδ .

Theorem 4. Let p > 1, 0 < b � ∞, α1, α2 ∈ R, andδ > 0 be such thatα1, α2 > −n, and
let p > (α2 + n)/(α1 + n) if δ � 1. If f ∈ L

p
α2(B((1 + δ)b)) is a non-negative function

thenSδ,α1(f ) ∈ L
p
α2(B(b)) and the inequality

[ ∫
B(b)

(
1

|B(x, δ|x|)|α1

∫
B(x,δ|x|)

f (y)|y|α1 dy

)p

|x|α2 dx

] 1
p

� C(n;p; δ;α1, α2)

( ∫
B((1+δ)b)

f p(y)|y|α2 dy

) 1
p

(11)

holds, where

C(n;p; δ;α1, α2) = 1

|B(e1, δ)|α1

∫
B(e1,δ)

|x|−
α2+n

p |x|α1 dx (12)

is the best possible constant. The same holds forp � 1 if 0 < δ < 1.

Proof. Let 0< b < ∞. Inequality (4) forr = 1 ands = p can be written in the form

[ ∫
B(b)

(
1

|B(x, δ|x|)|α1

∫
B(x,δ|x|)

f (y)|y|α1 dy

)p

|x|α2 dx

] 1
p

� |B(b)|
1
p
α2

|B(b, δb)|α1

∫ (
1

|B(|x|)|α2

∫
f p(y)|y|α2 dy

) 1
p

|x|α1 dx. (13)
B(b,δb) B(|x|)
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∫
B(|x|) f p(y)|y|α2 dy �

∫
B((1+δ)b) f

p(y)|y|α2 dy holds obviously for everyx ∈
B(b, (1 + δ)b), inequality (11) follows by using a simple substitutionx = bx′ in

|B(b)|
1
p
α2

|B(b, δb)|α1

∫
B(b,δb)

|x|−
α2+n

p |x|α1 dx.

To prove that the constantC(n;p; δ;α1, α2) is the best possible for (11), we consider
functionsfε(x) = |x|−(α2+n)/p+ε, ε > 0. Now, rewrite inequality (11) forfε and denote
the integrals on its left-hand and right-hand sides byIl(fε) andIr (fε), respectively. It is
easy to see that

Il(fε) = |Sn−1| 1
p (pε)

− 1
p bε 1

|B(e1, δ)|α1

∫
B(e1,δ)

|x|−
α2+n

p
+ε+α1 dx

and

Ir (fε) = |Sn−1| 1
p (pε)

− 1
p (1+ δ)εbε,

which obviously gives

lim
ε→0

Il(fε)

C(p;n; δ;α1, α2)Ir (fε)
= 1.

This implies that for anyε1 > 0 there existsε > 0 such that the inequalityIl(fε) > (1 −
ε1)C(p;n; δ;α1, α2)Ir (fε) holds, so we obtained that the constantC(n;p; δ;α1, α2) is the
best possible for inequality (11).

The caseb = ∞ follows from the finite case by taking limb→∞. The statement tha
the same constant is the best possible also in this case can be proved easily by ta
characteristic function of the setB((1+ δ)b) for some finiteb > 0. �

Using a method of calculating integrals over ballsB(e1, δ) described in [2], that is, th
crucial formula∫

Sn−1

χθ ·e1�t dθ = |Sn−2|
1∫

t

(1− s2)(n−3)/2ds

for n � 2, we obtain the following:

(i) If 0 < δ < 1, α1, α2 > −n, p � 1, andp �= (α2 + n)/(α1 + n), then

C(n;p; δ;α1, α2) = p|Sn−2|
α1p − α2 + n(p − 1)

1

|B(e1, δ)|α1

×
1∫

√
1−δ2

(1− s2)
n−3

2
[(

s +
√

s2 + δ2 − 1
)α1− α2

p + n

p′

− (
s −

√
s2 + δ2 − 1

)α1− α2
p

+ n
p′ ]ds; (14)
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n

8)

geo-
(ii) If 0 < δ < 1, α1, α2 > −n, andp = (α2 + n)/(α1 + n) � 1, then

C(n;p; δ;α1, α2) = |Sn−2|
|B(e1, δ)|α1

1∫
√

1−δ2

(1− s2)
n−3

2 log
s + √

s2 + δ2 − 1

s − √
s2 + δ2 − 1

ds;

(15)

(iii) If δ � 1, α1, α2 > −n, p > 1, andp > (α2 + n)/(α1 + n), then

C(n;p; δ;α1, α2) = p|Sn−2|
α1p − α2 + n(p − 1)

1

|B(e1, δ)|α1

×
1∫

−1

(1− s2)
n−3

2
(
s +

√
s2 + δ2 − 1

)α1− α2
p + n

p′ ds. (16)

Note thatp′ = p/(p − 1) is the usual conjugate exponent ofp. The casen = 1 is elemen-
tary.

Similarly, from Theorem 1 we deduce also the boundedness of the operator

(Mp,δ,αf )(x) = Mp

(
f ;B

(
x, δ|x|);α

)
(17)

onL1 spaces for 0�= p < 1.

Theorem 5. Suppose that0 �= p < 1, 0 < b � ∞, δ > 0, α1, α2 > −n, and p <

(α2 + n)/(α1 + n) if δ � 1. If the functionf ∈ L1
α2

(B((1 + δ)b)) is non-negative, the

Mp,δ,α1(f ) ∈ L1
α2

(B(b)) and the inequality

∫
B(b)

(
1

|B(x, δ|x|)|α1

∫
B(x,δ|x|)

f p(y)|y|α1 dy

) 1
p

|x|α2 dx

� C(n;p; δ;α1, α2)

∫
B((1+δ)b)

f (y)|y|α2 dy (18)

holds, where

C(n;p; δ;α1, α2) =
(

1

|B(e1, δ)|α1

∫
B(e1,δ)

|y|−p(α2+n)|y|α1 dy

) 1
p

is the best possible constant.

Proof. To prove that the constantC(n;p; δ;α1, α2) is the best possible for inequality (1
one can use the same procedure as in Theorem 4, with theextremal almost divergentfunc-
tionsfε(y) = |y|−p(α2+n)+ε, ε > 0. �

Finally, we give the related Carleman or Levin–Cochran–Lee-type inequality for
metric mean (cf. [3,6,9]).
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re
is

state
n that
tions of
Theorem 6. Suppose thatα1, α2 > −n, 0 < b � ∞, and δ > 0. If the functionf ∈
L1

α2
(B(1 + δ)b)) is positive, thenG(f,B(x, δ|x|), α1) ∈ L1

α2
(B(b)) and the inequality

∫
B(b)

exp

[
1

|B(x, δ|x|)|
∫

B(x,δ|x|)
|y|α1 logf (y) dy

]
|x|α2 dx

� C(n; δ;α1, α2)

∫
B((1+δ)b)

f (y)|y|α2 dy (19)

holds, where

C(n; δ;α1, α2) = exp

[
α2 + n

|B(e1, δ)|α1

∫
B(e1,δ)

|x|α1 log
1

|x| dx

]
(20)

is the best possible constant.

Proof. Inequality (19) follows from inequality (18) by taking the limiting procedu
limp→0. The proof that the constantC(n; δ;α1, α2) is the best possible for (19)
analogous to the corresponding one in Theorem 4 by using the functionsfε(y) =
|y|−n−α2+ε, ε > 0. �

The versions of Theorems 4–6 for the case of annuli are obvious, so we omit to
them explicitly. For the sake of discussion in the final section, here we just mentio
the best possible constant in the annuli-version of Theorem 4 (see also the assump
Theorem 3) is equal to

C(n;p; δ1, δ2;α1, α2) = 1

|An(e1; δ1, δ2)|α1

∫
An(e1;δ1,δ2)

|x|−
α2+n

p |x|α1 dx. (21)

4. Concluding remarks

First, we give several remarks on the constantC(n;p; δ;α1, α2) from (12) for the case
whenα1 = α2 = 0. In this setting it is equal to

C(n;p; δ) := C(n;p; δ;0,0) = 1

|B(e1, δ)|
∫

B(e1,δ)

|x|− n
p dx.

Using [10, Theorem 3.4] we have

‖Sδ‖Lp = 1

|B(e1, δ)|
∫

B(e1,δ)

|x|− n
p dx = 1

|B(e1, δ)|
∫
Rn

|x|− n
p χB(e1,δ) dx

<
1

|B(e1, δ)|
∫
n

|x|− n
p χB(δ) dx = p

p − 1
δ
− n

p = ‖Tδ‖Lp .
R
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tor
,

n

hat

ximal

[13])
Suppose thatp > 1 andf ∈ Lp(Rn) is a non-negative function. Obviously,(Sδf )(x) �
(Mf )(x) (a.e.) holds for everyδ > 0, where

(Mf )(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

f (y) dy

is the usual Hardy–Littlewood maximal function. Therefore, for everyδ > 0 the norm of
the operatorSδ onLp(Rn), that is,C(n;p; δ), is a lower bound of the norm of the opera
M on Lp(Rn). We know that supδ>0C(n;p; δ) is attained for some 1< δ < 2 (see, e.g.
[2, Section 3]).

Now, consider the harmonic case of the functionx 	→ |x|−n/p, that is, the case whe
p = n/(n − 2) andn � 3. For 0< δ < 1 we haveC(n;p; δ) = 1, while for δ � 1 using
(16) we obtain

C(n;p; δ) = n

2

|Sn−2|
|Sn−1|

1

δn

1∫
−1

(1− s2)
n−3

2
(
s +

√
s2 + δ2 − 1

)2
ds

= n
Γ (n/2)√

π Γ ((n − 1)/2)

[
2

1∫
0

(1− s2)
n−3

2 s2 ds

+ (δ2 − 1)

1∫
0

(1− s2)
n−3

2 ds

]

= 1

2

(
n

δn−2
− n − 2

δn

)
, (22)

whereΓ (x) = ∫ ∞
0 tx−1e−t dt is the usual Gamma function. It is obvious from (22) t

C(n;p;1) = 1 and thatC(n;p; δ) is strictly decreasing with respect toδ � 1. Analo-
gously, in the casep = n/(n − 4), n � 5 (super-harmonic case), forδ � 1 we obtain
C(n;p; δ) = 1

2δn

[ 12
n+2 +4(δ2−1)+ n

2(δ2−1)2
]
, so we see thatC(n;p;1) = 6/(n+2) and

thatC(n;p; δ) is strictly decreasing forδ � 1. Thus,C(n;p; δ) < 1 = limδ→0 C(n;p; δ).
Similarly, we can obtain lower bounds for the operator norm of the spherical ma

function (SMf )(x) = supr>0
1

|Sn−1(x,r)|
∫
Sn−1(x,r)

f (θ) dθ on Lp(Rn) for p > n/(n − 1).
This can be made by using annuli-version of Theorem 4, the boundedness ofSM on
Lp(Rn) for p > n/(n − 1), the dominated convergence theorem, and the relation (cf.

lim
ε→0

C(n;p; δ − ε, δ + ε) = 1

|Sn−1(e1, δ)|
∫

Sn−1(e1,δ)

|θ |− n
p dθ,

whereC(n;p; δ1, δ2) is the constant in (21) forα1 = α2 = 0. Note that

1

|An(x, (δ − ε)|x|, (δ + ε)|x|)|
∫

f (y) dy
An(x,(δ−ε)|x|,(δ+ε)|x|)
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t

= 1

|An(0, δ − ε, δ + ε)|
∫

An(0,δ−ε,δ+ε)

f
(
x − |x|y)

dy

= 1

|An(0, δ − ε, δ + ε)|
δ+ε∫

t=δ−ε

∫
θ

f
(
x − |x|tθ)

tn−1 dt dθ

= n

(δ + ε)n − (δ − ε)n

δ+ε∫
t=δ−ε

tn−1

(
1

|Sn−1|
∫
θ

f (x − |x|tθ) dθ

)
dt

� (SMf )(x).

The concluding result is related to [1, Lemma 1] and to the failure of theLp-
boundedness of the spherical maximal operator forp = n/(n − 1) (see also [12]). In wha
follows, byC(n;p;1− ε,1+ ε) we denote the constantC(n;p; δ1, δ2;α1, α2) in (21) for
the caseα1 = α2 = 0 and 0< ε < 1.

Theorem 7. For n � 2 and a small enoughε > 0 there exists a constantK > 0 (indepen-
dent onε), such that

C
(
n;n/(n − 1);1− ε,1+ ε

)
� K log

1

ε
. (23)

Proof. Using (14) and (15) we have

C
(
n;n/(n − 1);1− ε;1+ ε

)

= |Sn−2|
|Sn−1|

2n

(1+ ε)n − (1− ε)n

[ 1∫
0

(1− s2)
n−3

2
(
s2 + (1+ ε)2 − 1

) 1
2 ds

−
1∫

√
1−(1−ε)2

(1− s2)
n−3

2
(
s2 + (1− ε)2 − 1

) 1
2 ds

]

� |Sn−2|
|Sn−1|

2n

(1+ ε)n − (1− ε)n

1∫
0

(1− s2)
n−3

2
[(

s2 + (1+ ε)2 − 1
) 1

2 − s
]
ds

� |Sn−2|
|Sn−1|

2n

(1+ ε)n − (1− ε)n

1/2∫
0

(1− s2)
n−3

2
[(

s2 + (1+ ε)2 − 1
) 1

2 − s
]
ds

� K1
1

ε

1/2∫
0

[(
s2 + (1+ ε)2 − 1

) 1
2 − s

]
ds � K log

1

ε
,

where the constantK1 is independent onε and it is obtained for a small enoughε. �
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