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Abstract

In this paper we prove mixed-means inequalities for integral power means of an arbitrary real
order, where one of the means is taken over the Batl §|x|), centered ak € R" and of radius
8|x|, 8§ > 0. Therefrom we deduce the corresponding dyatype inequality, that is, the operator
norm of the operatofs which averagesf| € LP (R") over B(x, §|x|), introduced by Christ and
Grafakos in Proc. Amer. Math. Soc. 123 (1995) 1687-1693. We also obtain the operator norm of the
related limiting geometric mean operator, that is, Carleman or Levin—Cochran—Lee-type inequality.
Moreover, we indicate analogous results for annuli and discuss estimations related to the Hardy—
Littlewood and spherical maximal functions.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Generalizing the well-known Hardy's inequality (cf. [7] or [11]) to multidimensional
balls, Christ and Grafakos in [2] considered foe Llloc(R”) ands > 0 the following two
averaging operators:
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1
T = — d
1300 = poos / f )| dy
B(8IX])
and

1
(55100 = oo / F )| dy.

B(x,81x])

whereB(x, R) is the ball inR” centered ak € R” and of radiusR > 0, B(R) = B(0, R),
by |x| we denote the Euclidean norm rfe R”, and|A| is the Lebesgue measure of a
measurable set C R”. They proved that the operator normm@fon L? (R"), wherep > 1,
is equal top/(p — 1), which means that it is the same as in the usual one-dimensional case.
By using the obvious identityTs f)(X) = (T1f)(8X), it holds directly that the operator
norm of 73 on L?(R") is equal topL_laf”/P.

Christ and Grafakos also solvedrere subtleroblem of deriving the operator norm of
Ss on L”(R™), which is, in our notation below, equal &(n; p; §; 0, 0) (compare the last
theorem in [2] with our relations (14)—(16)). The importance of this result comes from the
fact that, in some sense, the operdipties between the identity operator and the Hardy—
Littlewood maximal functionM, and thatM f is, in fact,not much larger thary (cf. [14,
p. 1244]).

Before presenting our idea, let usrmuce some necessary notation. K&t be the
unit sphere irR” and let|S"~1| be its area. By Atx; R1; R2) we denote the annulus &’
centered ax € R" and of inner and outer radR; and R, respectively, 6 Ry < Ry. If w
is aweightfunction ofR” (a locally integrable non-negative function&f) andA C R” is
a measurable set, I |, = fA w(X) dx. Especially, in the case when(x) = |x|*, instead
of |A], we shall write|A|,. Moreover, we shall frequently use the obvious identities

[BR)|, = ——R*""|B(D)

for R > 0 andw +n > 0, and
[B(x.8x))|, = Ix1“*"| Be.)],

for 8§ > 0,x € R", and an arbitrary vectae R", such thatje|| = 1.

Finally, for « € R and a measurable sdtC R”, such thatA|, < oo, we define the
integral weighted power mean of ordgr£ O of a measurable non-negative (in the case
p < 0 positive) functionf by

1

1 P

My(f; A, )= <|A| /f”(y)IYI“dY) : (1)
A

Itis known (cf. [7] and [11]) thad,, is an increasing function with respect to the variable
p and itis also easy to see that

. 1
Mo(f; A; ) :=1|)ILn0Mp(f; A;a)=eXP(IA| /|y|°‘ |09f(y)dy>
A

is the related weighted geometric maanf; A; o) of a positive measurable functigh
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The main aim of this paper is to give another approach (analogous to [5]) to the problem
of obtaining the operator norm of weighted operatgysNamely, we shall consider the
class of operators

1
Ss.a =— *d 2
(S5.0.)00 = T pe SO / FOIyI*dy (2)

B(X,8|X])
on weighted.” spaces (with power weights). Our basic idea is to prove appropriate mixed-
means-type inequalities (see Theorems 1 and 2 below) and then apply them to derive the
related Hardy and Carleman-type inequaditidnalogous results will be obtained also for
annuli. Moreover, in the last section we shall give some estimations of the operator norm
of the Hardy—Littlevood and spherical nxamal functions onZ? (R").

The analysis used in the proofs is based on Minkowski’s integral inequality (cf. [10]),
polar coordinates ifR”, and on integral equality

1
W / f(6)do = / f(oe)do, 3)
sn—1 SQn)

wheredo is the normalized Haar measure on the rotation gré@) of R”, d6 is in-
duced Lebesgue measure $iT1, f is an integrable function ofn — 1)-dimensional unit
sphere, and the vectere R", |le|| = 1, is arbitrary (cf. [15]). We remark that, due to the
compactness dQn), the Haar measure is left and right invariant (cf. [8]).

In what follows, without further explanation, we assume that all integrals exist on the
respective domains of their definitions.

2. Mixed-meansinequality
We start with the basic inequality.
Theorem 1. Letr,s, b, 8, a1, 02 € R be suchthat <s,r,s #0,b >0, § > 0, andaz, az

> —n. If f is a non-negative function oB((1+ 8)b) (f positive in the case when< 0)
andb =be; =5b(1,0,...,0) € R", then the inequality

s 1
L / = / frylyl“tdy rIXI“de S
IB(b)|azB | B(X, 8|X[)]ay

(®) B(x.81x[)

L 1
1 1 : 1
S| Be —_— s @2 4 a1 g 4
[IB(b,ab)|al / (IB(|X|)|a2 / Frylyl y) IX| x} 4)
B(b B(Ix))

,8b)

holds. Moreover, it = s, then equality in(4) holds for all functionsf. In the case when
r < s, equality holds ir(4) for functionsf of the formf (x) = C|x|*, whereC > 0. Finally,
for r > s the sign of inequality irf4) is reversed.
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Proof. Written in terms of characteristic functions, the left-hand side of inequality (4)
reads

s

1 1 r s
r *14 *2 4 . 5
|:|B(b)|a23.({) (IB(X,(SIXI)Ial / P D xsecsp Y] y) X X} ®)

B((1+8)b)

The next step is to transform (5) to polar coordinates, se4etd, 6 € S"~1, andy = u¢,

¢ € S"~1. The relationly — x| < §|x| is then equivalent t® - ¢ > % Note that

mequalltyw 1 holds if and only if(1 — 8)t < u < (1+ )¢, S0 in the casé > 1

we have 0< u < (1+ 8)r.
We continue by considering< 1, while foré > 1 the proof follows the same lines. In
this setting, (5) is further equal to

[B(D)lay |B(20,1)]ay
6 =0 ¢ u=

1 1 '
X X g 0 52),2+u2(u¢)u°‘1u" dudq)) 192"~ dtd9j|

u=1+§

_ 1BO)ay [//”(/ / £ i)

| B(ey, 5)|a1 20 V¢ u=1-5

ap, n—1 (92— 1 ’
XKoLy )(ut¢)u u dud¢) t dtde]

b u=1+4

BBy |smY
T

|B(e1, 0)lay 0eSOn) 1=0 \o/eS0n) u=1-5

s

/ oy, ,n—1 / ar n—1
xxa,el_ae@%[#ﬂ](uta e u*tu dudcr) 192t dtda] , (6)

where the last equality in (6) is obtained by using (3). Knowing 8@t:) preserves the
inner product and using the (right) invariance of the Haar measure, (6) is now equal to

7; 1 1 b u:l+5
B(b s Sn—l e
B0l | 1| [ / /( / / f"utoo'ey)
|B(ey, 8)|&1 0eSQAn) t=0 ‘¢’eSAn) u=1-§

s 1
X x t“Zt"‘ldtdcr} , (7)

/ oy, n—1 /
a/el»e1>%[l;52+u] (utoo'ep)u“u" ~dudo )

while applying Minkowski’s inequality and simple transformations, (7) is not greater than
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_1 1,1 146 b
B(b ssnfl sTF
ol i3
|B(e, 8)la, o'€S0n) u=1—8 ‘oeSn) 1=0

1

r
s r

X _s2
Xorerer> 3152 1u]

B®)lay 15" [ / (7% ( /
= 1
|B(b1 (Sb)l&l o’ u=(1-98)b ot

a—s2p 5z),, ((ut/b)crcr e1)r*2"” ldtdcr)
+5]

(maa’el)t“ztnldtda> u“lu”ldtda/]

f*(ut/byoa'er)

c”D\;w

s

r

X X u“lu"_ldtdcr':|

o'ep-e >5[
P (1+8)b
ZM / / //fs(tcro ey
B(b. sh)I7 |B(7/‘)|a2
|B(0,8b)a; Ly ye(isyp o
r 1
-1 ! -1 '
X Xa/ﬂ_el>%[(1_52)b+%](ta(r/e1)t°‘2t" dtd(r) utu" dtda/]
o) |
/
= X, 152 uq (U0 €1)
1 o'er-er >5[ =241
|B(b, 8b)lay L5 e i—syp ’ ’

5 1

(m/ / P (tao'erye- wfda) dd}

L 1

1 r !
~ | 1B, sb) |y, Y *2 4 a1 g _ 8
[|B(b’5b)|a13(b/5 <|B(|x|)a2 / Y y) IX| x} (8)

B(X))

The last equality in (8) follows from the invariance of the Haar measure and from rela-
tion (3).

Finally, it is straightforward to check that both sides of inequality (4), rewritten with the
function f (x) = |x|*, are equal to

*M,(1XI*; Bew, 8); aa) M (lyl™; B(D); az),

which gives the sharpness of inequality (4)2

Remark 1. It is not hard to see that inequality (4) is dilation invariant in the sense that if
it holds forb = 1 and a non-negative functiofi: B(1+ §) — R, then it holds for every

b > 0 and the functiory : B((1 + §)b) — R defined byg(x) = f(X/b). It is also obvious

that both sides of inequality (4) are rotation invariant, that is, they will not be changed if a
given functionx — f(X) is replaced by the functioxn— f(ox) for anyo € SQn).
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Remark 2. In Theorem 1 it was pointed out that inequality (4) is sharp, owing to the fact
that it turns to equality in the case of functions of the fofitx) = |x|*. In [5, Theorem 5],
where integral means were taken over ball®fncentered at the origin, this form of func-
tions f was the only possible for achieving equality. The proof presented there was simple
since Jensen’s inequality was applied to #imgular part of polar coordinates so radiality

of extremal functions was immediate. Moreover, the family of all extremal functions for
the related mixed-means inequality (cf. [5, Theorem 7]) was obtained from separability of
extremal functions for Minkowski’s inequality. The same holds also in our case here, but
since the proof is lengthy and quite technical, it will be omitted.

Reformulating the basic inequality in Theorem 1 in terms of integral weighted power
means (1) we obtain the related mixed-means inequalities.

Theorem 2. Under the assumptions of Theordithe following inequalities hotd

(1) My(M,(f5 B(X, 8IX]); a1); B(D); a2) < My (M (f5 B(IX]); a2); B(b, 8b); a1);
(2) Ms(M,(f; B(IXD); a2); B(b, 8b); 1) < My (M (f; B(X, 81X|); 1); B(b); t2).

Itis important to state the following corollary, especially in view of the fact that the max-
imal function is not a bounded operator bhso the dominate convergence and Lebesgue’s
differentiation theorem cannot be applied. This result follows directly from Theorem 1 by
takingr =s =1.

Corollary 1. Suppose thab > 0, ¢ > 0, andas, a2 > —n. If a function f € LiZ(B((1+
£)b)) is non-negative, then

. 1 o o — (03
gin()/ (m / Flyl ldy)IXI 2dx = / fylyl*2dy. 9

B(b) B(X,8%) B(b)

To conclude this section, we give a generalization of Theorem 1 to anrikfi defined
in the Introduction.

Theorem 3. Letr, s, b, 81, 82, @1, a2 € R be such that <s,r,s #0,b > 0,0< 81 < J2,
andai, ap > —n. If f is a non-negative function oB((1 + §2)b) (f positive in the case
r<0)andb=be; =5(1,0,...,0) € R", then

M (M, (f5 An(x; 81I; 82|X]); a1); B(b); ar2)
< M, (M (f; B(IX]); a2); An(b; 81b; 82b), a1). (10)

For r = s we have equality ii10). If r < s, then equality holds i(10) for functionsf of
the form £ (x) = C|x|*, whereC > 0. In the case when > s, the sign of inequality i§10)
is reversed.

Proof. Since the proofs of Theorems 1 and 3 follow the same line, we omit technical
details here. The only difference appears whsing the characteristic function of annuli
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in polar coordinates = 16, y = u¢ we get the inequalities™- [u? + (1 — §2)1?] < ¢ - 0 <
e u? 4+ (1-8H1%). O
Remark 3. Although Theorem 1 is an obvious cawence of Theorem 3, we chose to

give the complete proof of Theorem 1 and a sketch of the proof of Theorem 3 only to avoid
more complex and awkward notation in the case of annuli.

3. Hardy and Carleman-typeinequalities

The mixed means and related inequalities can be used in proving different integral in-
equalities. Analogously to the procedure established in [4,5], in this section we apply the
previously obtained mixed-means inequality (4) to deduce the Hardy-type inequality for
the operatosSs.

Theorem 4. Letp >1,0< b < o0, a1, a2 € R, ands > 0 be such thatv1, a2 > —n, and
letp > (a2 +n)/(a1+n)if s >11If fe L§2(B((1+ 8)b)) is a non-negative function,
thensS;s o, (f) € LE,(B(b)) and the inequality

1 p
TDrv Sloinl a1 g @2 4
[/<wmamm [ rom Y>M X}
B(b)

=

B(X,8|X])
1
P
< C(n; p; 8; 0, az)( fryly|*? dy) (11)
B((1+8)b)
holds, where
C(n: p: 8 a1 a2) ! / X1~ x| dx (12)
n; p;o;o1,02) = ————— g
|B(€1,8)|a;
B(er.5)

is the best possible constant. The same holdgfarlif 0 < § < 1.

Proof. Let 0 < b < co. Inequality (4) forr = 1 ands = p can be written in the form

)4 1
1 P
Thiv Slvlnl o1 g @2 g
[/<wmamm | rom Y)M X}
B(b)

B(X,5|x])

1

1 1

B, /‘ 1 / z

< —2 _ Py)ly|*2d X|*t dX. 13

B(D, 8b) o, Bxe, | O] X 13)
B(b,8b) B(|x])
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Since /B(\x\) FPyly|*2dy < /B((l+8)b) fP(y)ly|*2dy holds obviously for everyx e
B(b, (14 8)b), inequality (11) follows by using a simple substitutioa= bx’ in
1

B(b)|L _agtn
_|BO)ay / IX| % [X|%L dX.
|B(b, 8b)|q,

B(b,8b)

To prove that the constanii(n; p; 8; a1, a2) is the best possible for (11), we consider the
functions f, (x) = |x|~(@2+t™/P+¢ ¢ = 0. Now, rewrite inequality (11) forf, and denote
the integrals on its left-hand and right-hand sideg/fgy.) and I.( f;), respectively. It is
easy to see that
1 1 1 ag+n
Ii(fe)=18""Hr (pe) 1 bf ————— / x| T dx
e P BewDlus

(€1,9)
and

1 1
L(fe) = 18" 7 (pe) "7 (14 8)°b°,
which obviously gives

. I (fe) _
e—0 C(p; n; 8; a1, a2) I, (fe) '
This implies that for any1 > 0 there existg > 0 such that the inequality; (f;) > (1 —
£1)C(p; n; §; a1, a2) I, (f¢) holds, so we obtained that the constéiit; p; §; a1, o) is the
best possible for inequality (11).
The caseb = oo follows from the finite case by taking lign, .. The statement that
the same constant is the best possible also in this case can be proved easily by taking the
characteristic function of the s84((1 + 8§)b) for some finiteb > 0. O

Using a method of calculating integrals over bal&;, §) described in [2], that is, the
crucial formula

1
/ X0-e1>t do = |Sn72|/(1_s2)(n73)/2ds
t

sn—1

for n > 2, we obtain the following:

) f0<d8<l,a1,02>—n, p>=1,andp # (a2 +n) /(a1 + n), then
pIS" 2| 1
a1p —oa2+n(p—1) |B(e, 8l

C(n; p; 8; a1, a2) =

1
B BCE b (T
i
—(s— 52+52_1)a1—a72+

n

7 ds; (14)
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(i) fO <8<1,01,02 > —n,andp = (a2+n)/(a1 +n) > 1, then

s s++/s2+82-1
C(n; p; 8; a1, 02) = a- ————ds;
|B(€ey, <3)|q1 —Vs?2+52-1
1— 52
(15)

@ii) If 61,001,020 > —n, p>1,andp > (a2 +n)/(a1 +n), then
pIS"?| 1
a1p —az+n(p—1) |B(€1,8)|a,

C(n; p; 8;a1,a2) =
ne _%2 ., n
X /(1— s2)73(s +Vs2+82-1)7 v ds.  (16)

Note thatp’ = p/(p — 1) is the usual conjugate exponentfThe case: = 1 is elemen-

tary.
Similarly, from Theorem 1 we deduce also the boundedness of the operator

(Mp,ﬁ,af)(X)ZMp(f§B(Xa 8|X|)§05) (17)

on L' spaces for & p < 1.

Theorem 5. Suppose thaD # p <1, 0 <b < o0, § >0, a1,02 > —n, and p <
(a2 + n)/(a1 + n) if § > 1. If the functionf € L(}[Z(B((l + 8)b)) is non-negative, then

Mps5.a,(f) € Liz(B(b)) and the inequality

1
- - p ald “Zd
B(/ (IB(X SIX[) ey / FrWIyl y) IX|%2 dx

B(X,5|x])

< C(n; p; 85 a1, a2) / flyl“2dy (18)
B((1+8)b)
holds, where

1 P
Cn; p; s ag, @) = | ———— / ly| =Pty gy
P <|B(e1,a)|al
B(é1.9)

is the best possible constant.

Proof. To prove that the constagt(n; p; §; a1, a2) is the best possible for inequality (18)
one can use the same procedure as in Theorem 4, wittxtremal almost divergeffiinc-

tions £ (y) = |y| P2t + ¢ > 0. O

Finally, we give the related Carleman or Levin—Cochran—Lee-type inequality for geo-
metric mean (cf. [3,6,9]).
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Theorem 6. Suppose thatvy, a2 > —n, 0 < b < 0o, and § > 0. If the function f €
Liz(B(lJr 8)b)) is positive, therG (f, B(x, §|X|), a1) € LéZ(B(b)) and the inequality

1 o o
/eXp[m / lyl 1Iogf(y)dy:||x| 2dx

B(b) B(x,8]x[)
< C(n; 65 a1, a2) / flyl“2dy (19)
B((1+3)b)
holds, where
ar+n 1
C(n; 8; a1, 00) = exp| ———— / [X|“* log — dx (20)
p[w(el, 5los X
B(ey1,9)

is the best possible constant.

Proof. Inequality (19) follows from inequality (18) by taking the limiting procedure
lim,_.0. The proof that the constar@(n; §; @1, «2) is the best possible for (19) is
analogous to the corresponding one in Theorem 4 by using the funcfiaqy$ =
ly|7*=%2*¢ ¢> 0. O

The versions of Theorems 4—6 for the case of annuli are obvious, so we omit to state
them explicitly. For the sake of discussion in the final section, here we just mention that
the best possible constant in the annuli-version of Theorem 4 (see also the assumptions of
Theorem 3) is equal to

1 _aptn

Cn; p; 81,82 01, 00) = ————————— / IX|” 7 |X|“tdx. (21)

b |An(€r: 81, 82)lay
An(€1;61,82)

4. Concluding remarks

First, we give several remarks on the constant; p; 8; a1, a2) from (12) for the case
whena; = a2 = 0. In this setting it is equal to

1 n
Cmn; p;8)=C(n; p;6;0,00) = ——— / [X| 7 dx.
P b B(er, 8)]
B(€1,9)
Using [10, Theorem 3.4] we have

1 _n 1 _n

1S5l = ——— / IX| pdx=—/|x| ? XB(ey.s) dX

|B(er. o) |B(er, 8)| (er.9)
B(ey,8) R7

1 / _n p  —n
<—— | X P xpeydx=—L—8"0 = | T5||Lr.
B o)l ) -]



A. Cizmesija, . Pei/ J. Math. Anal. Appl. 291 (2004) 625-637 635

Suppose thap > 1 and f € L?(R") is a hon-negative function. Obviousli§s f)(X) <
(Mf)(x) (a.e.) holds for every > 0, where

1
M =
R e T R]

[ roay

B(X,r)

is the usual Hardy-Littlewood maximal function. Therefore, for eviery 0 the norm of
the operatos on L? (R"), that is,C (n; p; 8), is a lower bound of the norm of the operator
M on LP(R"). We know that sup oC(n; p; §) is attained for some & § < 2 (see, e.g.,
[2, Section 3]).

Now, consider the harmonic case of the function> |x|~"/?, that is, the case when
p=n/(n—2)andn > 3. For 0< § < 1 we haveC(n; p; §) = 1, while for§ > 1 using
(16) we obtain

nl|$" 2 1

C(n; p; 5)=EW5_”

1
/(1—s2)LE3(s +Vs2+82—1)%ds
-1

1
_ F(n/Z) 2 n-3 o
_”ﬁr((n—n/z)[zof(l s E s

1
+ 82— 1)/(1— 27 ds:|
0

1/ n n—2
= z(an—z - 5—> (22)

wherel' (x) = [0°° t*~Le~! dt is the usual Gamma function. It is obvious from (22) that
C(n; p; 1) = 1 and thatC(n; p; 8) is strictly decreasing with respect to> 1. Analo-
gously, in the case = n/(n — 4), n > 5 (super-harmonic case), fér> 1 we obtain
C(n: p: 8) = 70 [ 25 +4(82— 1) + 5(82 — 1)2], so we see thal (n: p; 1) = 6/(n+2) and
thatC (n; p; 8) is strictly decreasing fa3 > 1. Thus,C(n; p; 8) < 1=Ilims_oC(n; p; J).

Similarly, we can obtain lower bounds for the operator norm of the spherical maximal
function (SMf)(x) = sup._, m Jsr1cry f(6)d6 ON LP(R™) for p > n/(n — 1).
This can be made by using annuli-version of Theorem 4, the boundedné&id oh
L?(R") for p > n/(n — 1), the dominated convergence theorem, and the relation (cf. [13])

1 n
IimCm; p;d—¢,84+6)= ————— / 0| rdo,
Ap e )= e o)) !
S"—l(el,S)

whereC (n; p; 81, 82) is the constant in (21) faz; = a2 = 0. Note that

1

W) d
[ANGK, (6 — £)[XI, @ + &)XD| Fyydy
An(Xx,(8—e&)|X],(5+&)|X])
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1
= X—|X|y)d
|An(0,8 —¢,8 + &) / f(x=Ixy)dy
An(0,6—¢,8+4¢)

1 S+e
n—1
T AN, 5 —£.5+ o) / /f(X—letG)t drdo

t=8—¢ 0

S+
_ n / tn—l
e —(@—e) (
=

=5—¢
< (SMF)(X).

The concluding result is related to [1, Lemma 1] and to the failure of Eie
boundedness of the spherical maximal operatopfern/(n — 1) (see also [12]). In what
follows, by C(n; p; 1 — ¢, 1+ ¢) we denote the constatt(n; p; 81, 82; w1, a2) in (21) for
the casery = a2 =0and O< ¢ < 1.

|Sn1_1|/f(x—|x|t9)d9> dt
0

Theorem 7. For n > 2 and a small enough > 0 there exists a consta > 0 (indepen-
dent ong), such that

1
C(nin/(n—1);1—¢,1+¢) > Klog-. (23)
&

Proof. Using (14) and (15) we have
C(n; n/n—1;1—¢;1+ 8)

_ 152 2n
ST A4 —(1—e

1
T |:/(1—s2)”23(s2+(1+8)2—1)%ds
0

1
- / (1—s2)"23(s2+(1—8)2—1)%ds:|
1—(1—¢)?

1§72 2n
TS At ey -

1
i /(1—s2)§’[(s2+(1+s)2— 1)% —s]ds
0

1/2

n—2
Sl 2”(1_8)n/(1—s2)”;z3[(s2+(1+s)2—1)%—s]ds
0

TS (At ey -

1/2
1 1 1
> K1~ /[(s2+ (1+6)?-1)2 —s]ds > Klog =,
& &
0
where the constark; is independent on and it is obtained for a small enough 0O
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