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Abstract

Sufficient conditions are established for the permanence in a delayed discrete predator—prey model
with Holling type Il functional response:
— _ _ _ a1 (k) N1(k)Na(k)
Nik+1) = N1k explba k) —ar (kN1 — [m1) — St Bigin ).
(k) N2 (k—[72]) |
N2(k—[12))+m2N2(k—[r2]) I

No(k +1) = No(k) exp{—bo(k) +

Our investigation confirms that when the death rate of the predator is rather small as well as the
intrinsic growth rate of the prey is relatively large, the species could coexist in the long run.
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1. Introduction

Many mathematical models have been established to describe the relationships between
the species and the outer environment or among the different species in biomathematics.
The dynamics of the growth of a population can be described if the functional behavior
of the rate of growth is known. Of course, it is this functional behavior which is usually
measured in the laboratory or in the field. Among the relationships between the species
living in the same outer environment, the predator—prey theory plays an important and
fundamental role. The dynamic relationship between predators and their prey has long
been and will continue to be one of the dominantthemes in both ecology and mathematical
ecology due to its universal existence and importance (Berryman [5]). These problems may
appear to be simple mathematically at fisgght, they are, in fact very challenging and
complicated. There are many different kinds of predator—prey models in the literature, for
more details we can refer to [5] and [9]. In general, a predator—prey system takes the form

/7 X
:x/ = rx(l K) o(x)y, (1.1)
Yy =y(pelx) — D),

whereg(x) is the functional response function, which reflects the capture ability of the
predator to prey. For more biological meaning, the reader may consult [9] and [19]. Massive
work has been done on this issue. We refer to the monographs [10,16,21,24] for general
delayed biological systems and to [18,22,23,25-27,30,31] for investigation on predator—
prey systems.

Until very recently, both ecologists and mathematicians chose to base their studies
on this traditional prey-dependent functibmasponse predator—prey system named as
prey-dependent model [14]. But there is a growing explicit biological and physiological
evidence [4,13,15,17] that in many situatipaspecially when predators have to search for
food (and, therefore, have to share or compete for food), a more suitable general predator—
prey theory should be based on the so-called ratio-dependent theory, which can be roughly
stated as that the per capita predator growth rate should be a function of the ratio of prey
to predator abundance, and so should be the so-called ratio-dependent functional response.
This is strongly supported by numerous field and laboratory experiments and observations
[3,11]. A general form of a ratio-dependent model is

:X’ =rx(1-%) —e(3)y.
y'=y(ne(§) - D).

Here the predator—prey interactions are describeg(byy) instead ofp(x) in (1.1). This

can be interpreted as: when the numbers of predators change slowly (relative to the change
of their prey), there is often competition among the predators, and the per capita rate of
predation depends on the numbers of both prey and predator, most likely and simply on
their ratio. For the system (1.2) with periodic coefficients, in [8] we explored the existence
of periodic solutions with delays. In addition, most research works concentrate on the so-
called Michaelis—Menten type ratio-dependent predator—prey model

!x, = rx(l— %) - mo;izx’

y’:y(—d+ mfj—x)’

(1.2)
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see [4,13,15,17,29] and references therein. In view of periodicity of the actual environment,
Fan and Wang [6] established verifiable criteria for the global existence of positive periodic
solutions of a more general delayed ratio-dependent predator—prey model with periodic
coefficients of the form

x'(1) =x(O[a(t) = b() [1  k(t —$)x(s)ds] — Gomd),
Y(6) = y() [ RN — d )]

The functional response functi@r(u) = cu/(m + u), u = x/y in above models was used
by Holling as Holling type Il function, they usually describe the uptake of substrate by the
microorganisms in microbial dynamics or chemical kinetics [9].

But when we describe the relationship between more higher animals, a more suitable
response function

px?

1+ px2’
should be taken into the predator—preteiractions, which is proposed by Holling [12]
based on the fundament of exprent. This response function is usually called the Holling
type Il response function [9]. In two previous articles [25,26], Wang and Li established
verifiable criteria for the global existence of positive periodic solutions and the stability for
the following delayed predator—prey model with Holling type Il response function

MO =N0O[br(0) = axO N1t = 7)) = FEIHEN(1 = 0 (1))],
az(:)Nf(t—rz(t»]
1+mNZ(t—1o(1)

p(x) =

Nj(t) = Na(t)[—b2(t) — a2(t) N2 (1) +

where N1(t), N2(t) are the densities of the prey poptite and predator population at
timet, b; :R— R, a;, 1,0, : R — [0, 400) (i =1,2) are continuous functions of pe-

riod T and [OT bi(t)dt > 0, a;(t) # 0, m is a nonnegative constant. And in [27], Wang
and Li also investigated the global existence of positive periodic solutions and the perma-
nent property of the ratio-dependent predator—prey system with Holling type 11l functional
response which takes the form

X'(0) = x(O]alt) = b(t) [T k(t — $)x(s)ds] — SO0

mZy2(t)+x2(t)°
Fee e()x?(1—7) _
YO =yl i —4®],

(1.3)

where the functional response functiptu) = cu?/(1+ m?u?), u = x/y; a(t), b(t), c(1),

e(t), andd(r) are all positive periodic continuous functions; and> 0, T > 0 are real
constants. They found that the criteria for the permanence is exactly the same as that for
the existence of the positive periodic solutions of (1.3).

On the other hand, though most predator—prey theories are based on continuous models
governed by differential equations, the discrete time models are more appropriate than the
continuous ones when the size of the population is rarely small or the population has non-
overlapping generations [2,21]. For the dieter Michaelis—Menten type ratio-dependent
predator—prey model, Fan and Wang [7] established the existence of positive periodic solu-
tions. And for the discrete delayed ratio-dependent predator—prey model with Holling type
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Il response function, Wang and Li [28] established the existence of positive periodic so-
lution. But in ecosystems, a more important theme that interested mathematicians as well
as biologists is whether the species in these systems would survive in the long run. That is,
whether the ecosystems are permanent. In the present paper we will make our try on this
problem.

Just as pointed out in [10, pp. 78—79], even if the coefficients are constants, the asymp-
totical behavior of the discrete system is rather complex and “chaotic” than the continuous
one. For example, consider the logistic equation

x’(t):rx(t)|:l— %}, t>0, (1.4)
wherer, K are both positive constants and its corresponding discrete equation
x(n—l—l):x(n)exp{r[l—%i“, n=012,.... (1.5)

It is known from the works of May [20] that for certain parameter values, tfie asymp-
totical behavior of the solutions of Eq. (1.5) is complex and “chaotic.” While the solutions
of Eq. (1.4) are rather normal.

Based on the above considerations, we will focus on the discrete time analogue of
the ratio-dependent predator—prey systgith Holling type Il functional response. The
present paper is organized as follows: we first make some preparations for our main work
in the next section. Sufficient conditions for the permanence of the system in consideration
are proposed and proved in the third section. And a brief discussion is carried out in the
final section.

2. Preliminary

Throughout this paper, we always den@teZ*, R, Rt, andR? as the sets of all inte-
gers, honnegative integers, real numbers, ngatiee real numbers, and two-dimensional
Euclidean vector space, respectively.

We begin with the corresponding continuous ratio-dependent predator—prey system with
Holling type Ill functional response

a1()NZ(1)No(1)
MO +ENZ @) 2.1)

dNa(1) _ a2()NZ(t—1p)
A = No(1)[—b2(1) + le(wH;zN%(Hz)],

AN — Ny ()b (1) — a1 () N1t — 11)] —

where N1(r) and No(¢) represent the densities of the prey population and predator pop-
ulation at timet, respectively;n > 0, 71 > 0, 12 > 0 are real constant®; : R — R
andai, ; : R — RT (i =1, 2) are continuous periodic functions with peried> 0 and

[6" bi(t)dt > 0 (i =1, 2); b1(r) stands for prey intrinsic growth ratk,(z) stands for the
death rate of the predater; (r) andaz(¢) stand for the conversion rates,stands for half
capturing saturation; the functiaMy (r)[b1(t) — a1(t) N1(t — 71)] represents the specific
growth rate of the prey in the absence of predator; BA¢)/[N2(t) + m2N3(t)] denotes

the ratio-dependent response function, vatrieflects the capture ability of the predator.
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Let us assume that the average grow rates in (2.1) change at regular intervals of time,
then we can incorporate this aspect in (2.1) and obtain the following modified system:

L_dNO) — p ([1]) — ar ([t]) N1 ([t] — [71]) — 2adDNaAD A1)

Ni() —dr NZ([t)+m2N3([1]) 2.2)
1 dNo(t) _ a2([t) N2 ([1]—[r2]) '
M dr o — b2(liD+ N2([11~[e2)+m2N2([1]-[z2])’ 1#£0.12...,

where[f] denotes the integer part of r € (0, +00). By a solution of (2.2), we mean a
function N = (N1, N2)T, which is defined for € (0, +00), and possesses the following
properties:

(1) N is continuous om0, +00);

(2) the derivativé”;#, % exist at each pointe [0, +00) with the possible exception
of the pointy € {0, 1, 2, .. .}, where left-sided derivatives exist;

(3) the equations in (2.2) are satisfied on each intdkal + 1) with k =0,1,2,....

On any interval of the fornik, k+ 1), k =0, 1, 2, ..., we can integrate (2.2) and obtain
fork<tr<k+1,k=0,1,2,...,

N1(t) = N1(k) exp| [br(k) — ar(k) Ny (k — [ra]) — RO G ),

N2(k)+m2N3 (k) 2.3)
_ _ ap(k)NE (k—[z2]) _ .
Na(t) = Na(k) exp|[—ba(k) + T T (k_[m)](t o).
Letr — k 4+ 1, we obtain from (2.3) that
— k)N1(k)No(k
N1k + 1) = Ny1(k) exp{b1(k) — ar(k)N1(k — [t1]) — % 3 o

2
Na(k +1) = No(k) expl—ba(k) + g 5 o).
which is a discrete time analogue of system (2.1), whére), N2(¢) are the densities of
the prey population and predator population at time
The exponential form of Eq. (2.4) ases that, for any initial conditiow (0) > 0, N (k)
remains positive. In the remainder of this paper, for biological reasons, we only consider
solutionN (k) with

Ni(—k)>0, k=12 ... maxq[ril, [z2]}; N;(0)>0, i=12 (2.5)

For convenience, we denote

_ 1 w—1
f=22 10,
i=0
for any w-periodic sequencgf (k)}.

In [28], Wang and Li considered the existence of positive periodic solution for Eq. (2.4)
and obtained that
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Lemma 2.1. Assume that the following conditions hold

(H1) 2mb1 > &1, and
(H2) a2 > ba.

Then(2.4) has at least one positive-periodic solution.

In order to present our main results, we need the following definition and theorem taken
from [1].

Definition 2.1. Let A € (0, oo] and letg : [0, A) — [0, A) be a continuous function. Sup-
poseg(0) =0, g(x) > 0 for 0 < x < A, and assume that has a unique fixed point
x € (0, A). Suppose also that(x) > x for 0 < x < x andg(x) < x for x <x < A. Then
the difference equation

xn+l:g(xn)a I’l:O, 17"'7 (26)

is called apopulation model

Theorem 2.1. Let A € (0, o] and assume that ER.6)is a population model. I§(x) < x
for x < x, thenx is a global attractor of all solutions of E¢2.6) with xg € (0, A).

And the following lemma is from [32].

Lemma 2.2. Suppose thaf : Z* x [0, 00) — [0, 00) andg : ZT x [0, 0o) — [0, co) with
fn,x)<gn,x) (f(n,x) > gn,x)) forn e Z* andx € [0, c0). Assume thag(n, x) is
nondecreasing with respect to argumentf {x(n)} and{u(n)} are solutions of
x(n+1)= f(n, x(n)) and u(n+1) = g(n, u(n)),
respectively, and (0) < u(0) (x(0) > u(0)), then
x(n) <u) (x(n) > u(n)) foralln > 0.

3. Main results

In this section, we consider the permanence of system (2.4). First, we introduce some
definitions and notations, and state some results which will be useful to establish our main
results. LeiC denote the set of all bounded sequelicéZ — R, C isthe setof allf € C
such thatf > 0. Givenf € C,, :={f € C+ | f(k+ w) = f(k)}, we denote

M= sup ftb), ft= inf flk.
ke[0,0] kel0,w]

Definition 3.1. System (2.4) is said to bgermanentf there exist two positive constants
A1, A2 such that

A1 < liminf N; (k) <limsupN; (k) < x2, i=1,2,
k—o00

k— 00

for any solution(N1(k), N2(k)) of (2.4).
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The following lemma will be useful to establish our main results.

Lemma 3.1. The problem

x(k +1) = x(k)exp{a(k) — b(k)x(k)},
x(0)=x0>0,

has at least one periodic solutidii if » € C,,, a € C anda is an w-periodic sequence
with a > 0, moreover, the following properties hold

(3.1)

(a) U is positivew-periodic

(b) U is constant ifz/b is constant, in this casé] = a/b;

(c) if b(k) = b is a constant anda(k))™ < 1, thenbu(k) < 1 for k sufficiently large,
whereu (k) is any solution of Eq(3.1).

Proof. Notice thatin Eq. (2.4), lek1(k) =0, 711 =0, then (2.4) can be reduced to

:Nl(k + 1) = N1(k) exp{ba(k) — ar(k) N1(k)},

(K)N2(k—[1,]) 3.2
Na(k+1) = Na(k) eXp{_bZ(k) + le(ki?rz])JrlmzNg(Zkf[rzD }’ 82

and the condition (H1) of Lemma 2.1 reduce§510_> 0. By Lemma 2.1, Eq. (3.2) has at
least one positive-periodic solution provided thdt; > 0 andaz > b». And this implies
that

N1k + 1) = N1(k) exp{br(k) — ar(k)N1(k)}

has at least one positive-periodic solution under the assumptions of Lemma 3.1. The
proof of (a) is complete.

The proof of (b) is obvious, we omit it here.

For the rest, we only need to prove (c). Given any soluti¢h) of (3.1), letv(k) =
bu(k), then from (3.1), we have

v(k + 1) = bu(k) expla(k) — bu(k)} = v(k) expla (k) — v(k)}
< vk exp{(a0) —viio)}. (3.3)

Consider the auxiliary equation

Vk+1) = VK exp{(at)” = Vo). (3.4)
Itis easy to show that Eq. (3.4) is a population model, noticeutt@®t= bu(0) > 0, then by
Theorem 2.1, we have lim, o V (k) = (a(k))™. Thus(a(k))™ < 1 implies all solutions
of Eq. (3.4) are less than 1 whéns sufficiently large. Then from Lemma 2.2, we know
thatbu (k) < 1 for k sufficiently large. This complete the proofn
Theorem 3.1. Assume thafH1), (H2), and

(b)) <1 (3.5)
hold. Then systerf2.4)is permanent.
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To prove this theorem, we nedlde following several propositions. For the rest of this
paper, we consider the solution of (2.4ithwinitial conditions (2.5). For the definition of
semicycle and other related concepts, we refer to the monograph [1]. And in what follows,
for > 7, f(i), we define its value as zerorif< m.

Proposition 3.1. There exists a positive constakit such that

limsupNy(k) < K1.

k— 00

Proof. Given any positive solutiotws (k), N2(k)) of (2.4), from the first equation of (2.4),
we have

N1(k + 1) < N1(k) exp{b1(k) — a1(k)N1(k — [t1])}.
Let x (k) = In(N1(k)), then
x(k +1) — x(k) < b1(k) — ar(k) exp{x (k — [t1])},

thus
k—1 k—1
Y i+ —x@)< Y bi),
i=k—[11] i=k—[11]
that is,
k—1
x(y— Y bil) <x(k—[rl),
i=k—[r1]
hence
N1(k — [t1]) = exp{x (k — [z1])}
k—1 k—1
>exp{x(k)— > b1(i>}=zv1(k)exp{— > bl(i)}~
i=k—[11] i=k—[r1]
Therefore

k—1
Ni(k+1) < Na(k) eXp{bl(k) — a1 (k)N1(k) exp{— Z bl(i)} ,

i=k—[r1]
Consider the following auxiliary equation:

k—1
2(k+1) =z(k) exp{bl(k) —arbz(byexpl — Y bl(i)}}, (3.6)

i=k—[t1]

by Lemma 3.1, Eqg. (3.6) has at least one positiveeriodic solution, denoted a3(k).
Let

y(k) =In(z*(k)), (3.7)
then
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x(k +1) = x(k) < bak) — ar(k) eXp{ - kil bl(i)} exp{x(k)},
i=ll:;r1]
y(k+1) — y(k) = by (k) — ax(k) exp{ - > bl(i)} exply (k) }.
Denoteu(k) = x (k) — y(k), then o
u(k+1) —u(k) < —aa(k) expy — kf bl(i)} exp|y (k) }[exp{u(k)} —1]. (3.8)
i=k—[11]

First we assume that(k) does not oscillate about zero, thetk) either will be even-
tually positive or eventually negative. If the latter holds, iwa.(k) < u2(k), this implies
that

Nik) < (k) < ().

Either if the former holds, then by (3.8), we havé + 1) < u(k), which means thai(k)
is eventually decreasing, also in terms of its positivity, we obtain thatligau (k) exists.
Then (3.8) leads to lim, o u (k) = 0, this implies
lim supN1 (k) < (* (k)"
k— o0

Now we assume that(k) oscillates about zero, by (3.8), we know thauifk) > 0O,
thenu(k + 1) < u(k). Thus, if we let{u(/)} be a subsequence @i(k)} in which u (/)
will be the first element of théth positive semicycle ofu(k)}, then limsup_, . u(k) =
limsup_, ., u(1). From

ul) <ul —1)

-2
—a1(l — 1) exp| — Z bl(i)}exp{y(l—l)}[exp{u(l—l)}—1],

i=l-1-[11]
andu(/ — 1) < 0, we know

i=l-1-

-2
u() <arl—Dyexpi— Y bl(i)} exp{y(l — D}[1—explu( — 1)}]
[r1]

-2
<al-Dexpi— > bl(i)}exp{y(l—l)}
[r1]

i=l-1—-
-2

M
< <a1(1 —1) exp{— Z bl(i)} exp{y(l — 1)}) .

i=l—1—[11]
Therefore

-2 M
lim supu(l) < (al(l—l)ex - Z bl(i)}exp{y(l—l)}) )

k—o00 i=l—1—[71]
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By the medium of (3.7), we have limsyp., N1(k) < K1, where
k-1 M
K1 = (z*(k))M exp{ (al(k)z*(k) exp{— Z bl(i)}) } O
i=k—[r1]
Proposition 3.2. Under the conditiorfH1), there exists a positive constantsuch that

liminf N1(k) > k1.
k— o0

Proof. Given any positive solutiotw (k), N2(k)) of (2.4), from the first equation of (2.4),
we have

k
N1tk +1) = N1(k) exp{bl(k) — “;fn) (k — [rﬂ)}'
Let x(k) =In(N1(k)). Then
k
x(k+ 1) — x(k) > by(h) — 20 (k=) ),
thus
k=1 k=1 ( )
Y (xi+D-x@)= > (bl(z) - ;— - al(l)Kl)
i=k—[11] i=k—[11] "
that is,
k=1 (l)
2k —[nl) <x) - . <bl(l) e a1(i>1<1>,
=k —[r1] 2m
then
N1(k — [t1]) = exp{x (k — [z1])}
= a1 (i)
<exp{x<k>— > (1i ' )}
Nl ] 2m
13) .
= N1(k) ex Z < ) }
i=k—[11] 2’"
Therefore
N1k + 1) > N1(k) exp{bl(k) - “;f:)
— N1(k)ay (k) ex kz (bl(z m) ' )} }

Consider the following auxiliary equation:
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a(k)
2m

z(k +1) = z(k) exp{ b1(k) —

k—1
— 2(k)ax (k) exp{— 3 (b (i) - % - alo)Kl) ” (3.9)

i=k—[t1]

by Lemma 3.1, Eq. (3.9) has at least one posiiiveeriodic solution, denoted a$(k).
Let

y(k) =In(z1 (k). (3.10)
then
x(k+1) — x(k) = by(k) — al(k)
k—1 ()
— ax(k) ex kz[ b 1)~ S —a1(z>1<1)}exp{x(k>},
i 1]
and
k
Yk +1) — y(k) = by(k) — “;(n)
— a1(i)
—ar(k) exp} — (bl(l) -5 al(i)Kl) } exp{y(k)}.
i=k—[11]
Denoteu (k) = x (k) — y(k), then
uCk +1) —uk)
= a1(i)
>—abexpr— Y (b)) - = = —adK
i=k—[11]
x exply (o)} [exp{uti)} — 1]. (3.11)

If u(k) does not oscillate, then by a similar analysis as that in Proposition 3.1, we have
liminf N1(k) > (z5(0)".
k— o0

Either if u(k) oscillates about zero, by (3.11), we know thatuifk) < O, then
u(k + 1) > u(k). Thus, if we let{u(l)} be a subsequence @i(k)} in which u(l) will
be the first element of th&h negative semicycle ofu(k)}, then liminf_ - u(k) =
liminf;_ o u(l). From

-2
. (@) .
ul) Zul =1 —arl —Dexpl— > ( -2 )}
] 2m

i=l-1-[11
x exp{y(l — D }[exp{ut — D} —1]
andu(l — 1) > 0, we know
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-2 .
u(l) > ar(l — 1y expy — 1213[ ](bl(i)—%(l)—al(i)lfl)}
i=l-1-[11

x exp{y(l — D}[1—exp{u(l — D}]
-2 .
>-—ail—Dexpy— ) (bl(i)—a;—r(;)—al(i)Kl)}exp{y(l—l)}

i=l—1—[11]
S a1 i) ‘
3 (bm')— - —al(i)Kl)}) .

i=l-1-[11]

> (—al(l —Dzi( —Dexpy —
Therefore
liminfu() > (—al(l —-Dzid -1
[—o00

-2 1) L
<expl— Y <b1(i)—21—m—a1(i)K1)}) .

i=l-1—[11]
By the medium of (3.10), we have

liminf N1 (k) > ()" exp{ (—al(l —-Dzi( -1

1-2 . L
x exp{— 3 <b1(i) - “212) —al(i)K1> }) }
i=l—-1—[11]

therefore liminf_, o N1(k) > k1, where

k= (k)" exp{ (—al(k)zi(k)

S G ’
xexpl— Y (bl(i) - —al(i)Kl) . O

i=k—[t1]

Proposition 3.3. If (3.5), then there exists a positive constdft such that
limsupNa(k) < K».

k— 00

Proof. Given any positive solutioV1 (k), N2(k)) of (2.4), letN2(k) = 1/w(k), from the
second equation of (2.4), we have

a2(k)N2(k — [t2))w?(k — [2]) }
k+1)=wk bo(k) — R
wikt b =w )eXp{ 20 = N2 rah i — (2 + m?
then

w(k + 1) > w(k) exp{bak) — az(k)}, (3.12)
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and by the inequality? + b2 > 2ab, we have
az(k)Kiw(k — [t2]) }

o (3.13)

Let y(k) = In(w(k)), then from (3.12), we have
y(k+1) — yk) = ba(k) — az(k),

wk +1) > wk) exp{bz(k) -

thus
k-1 k=1
Yo E+D—y@)= D (b2li) —a20i)),
i=k—[12] i=k—[72]

which is equivalent to

k—1
Ye—lr2d) <yt — > (bali) — 20i)),
i=k—[12]
then
k-1
w(k — [t2]) = exp|y(k — [r2])} < exp{y(k) - > (bali) - az(i))}
i=k—[72]
k—1
= w(k) exp{— D (b2l - Oéz(i))}~
i=k—[12]

Therefore by (3.13), we have

a2(k) K1 i . .
wlk +1) > w(k) exp) ba(k) — w(k)——— expj - D (b20i) — a2()

i=k—[r2]

Z w(k) exp{ ba(k)

k—1 M
_ (“2(221{1 exp:— > (b2l - ozz(i))}> w(k)}.
i=k—[]
Consider the following auxiliary equation:
k-1 M
2(k+1) =z(k)eXp{b2(k) - (“Z(an)fl exp: - Y (b2l —Olz(i))}> z(k)},
i=k—[17]

(3.14)

by Lemma 3.1, Eq. (3.14) has at least one positiveeriodic solution, denoted ag(k).
Also inview of (3.5), by Lemma 2.2 and part (c) of Lemma 3.1, we knoW) > z3(k).
Therefore

liminf w(k) > (k)"
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If we choose
1

Ky=——,
27 @Gt
then by the medium aW2 (k) = 1/w(k), we have limsup., . N2(k) < K2. O

Proposition 3.4. Under the conditiorfH2), there exists a positive constantsuch that

liminf Na(k) > ko.
k— 00

Proof. Given any positive solutioiiN1(k), N2(k)) of (2.4), from the second equation of
(2.4), we have

a2(k)N2(k — [12]) }
No(k+1) = No(k —bo(k
2kt 1) = N )eXp{ 20 2 eah + mN2 G — 22D
= Na(k) eXP{az(k) —ba(k)

NE(k — [2]) B 1“
NZ(k — [t2]) + m2NZ(k — [z2])

+ az(k)[

= Na(k) eXP{az(k) — ba(k)

m?N2(k — [t2]) ”
N2(k — [t2]) + m2N3(k — [t2]) 1]

- az(k)[

by the inequality:? 4 b2 > 2ab, we have

(3.15)

Na(k +1) > Na(k) eXp{az(k) by — 22RmNatk — [r2]) }

2kq
In view of

2 —
No(k 4+ 1) = Na(k) eXp{—bz(k) + a2(k) N1 (k —[72]) }

NZ(k — [t2]) + m2NZ (k — [72])
> Na(k) exp{—ba(k)},
if we let y(k) = In{N2(k)}, then we can obtain(k + 1) — y(k) > —b2(k). Thus
k=1 k-1

Yo G+ —y@®)= Y (b)),

i=k—[12] i=k—[17]
that is,
k—1

yk=lr2) <y + D (b)),

i=k—[12]
then
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Na(k —[r2]) = exp{y(k — [72])} gexp{y(k)+ ki:l (bz(i))}

i=k—[12]

k—1
= No(k) ex Z (bz(i))}.

i=k—[72]
Therefore from (3.15), we have

k—1
k
Na(k + 1) > Na(k) exp{az(k) — ba(k) — Na(k) “Zz(ki'" exp{ > (bai) } }
i= 1

Consider the auxiliary equation

k—1
z(k+1)=z(k)exp{a2(k) ba(k) — 2(k) 22 imexp: > (bz(i))}}, (3.16)

i=k—[t2]
by Lemma 3.1 and (H2), Eq. (3.16) has at least one positiperiodic solution, denoted
asz; (k).
Let
x(k) = In(z5(k)), (3.17)
then

k k=1
Y+ D~ y() > 0ok~ bok) — A ™ e {Z bz(z)}exp{y(k)},

[2]

1
x(k+ 1) — x(k) = as(k) — ba(k) — 2( )m {Z bz(l)}exp{x(k)}.

i=k—[t2]
Denoteu (k) = y(k) — x(k), then
a2(k)m

k=1
ule+1) —uh) > ——5 exp{ | > (bz(i))} explx (k) } [explut)} — 1].

=k—[r2]

(3.18)
If u(k) does not oscillate, then by a similar analysis as that in Proposition 3.1, we have

liminf Na(k) > (500)".

Either ifu(k) oscillates about zero, by (3.18), we know that() < 0, thenu(k + 1) >
u(k). Thus, if we let{u(l)} be a subsequence @i (k)} in which u(l) will be the first
element of théth negative semicycle df«(k)}, then liminf_ o u (k) = liminf;_ o u(l).
From

-2

-1
u(l)>u(l—1)—%exp{ > (bz(i))}

i=]—1—[12]

x exp{x(l — 1)} [exp{ut — 1)} — 1],



372 Y.-H. Fan, W.-T. Li/ J. Math. Anal. Appl. 299 (2004) 357-374

andu(/ — 1) > 0, we know

u(l))%ex Z (b2(i) }exp{x(l—l)}[l—exp{u(l—l)}]
i=l—-1—[12]

-2

a2(l — Dym .
_72](1 exp{ izlz (bz(z))} eXp{x(l — 1)}

—1-[r2]

maz(l — D25 — 1) =2 ‘
> <_ 2k12 exp{ Z bz(l) ,)

i=l-1—

WV

Therefore

[— 1zt —1 12 t
Iier;M(l))(—maZ( 21:2( )exp{ Z bz(z) })

i=l—-1—

By the medium of (3.17), we have

L
. . maz(l — D)zl — 1)
Ilkrglorlle(k»(zz(k))LeXp{<— 2k12 ex Z[ (b2()) }) }

i=l-1

therefore liminf_, oo N1(k) > ko, where

k)23 (k = t
k2=(zz(k))Lexp{<—7ma2(2k)fz( )exp{ 3 (bm‘))}) } 0

=k—[2]

Proof of Theorem 3.1. From the Propositions 3.1-3.4, we can easily know that system
(2.4) is permanent. The proof is completex

4, Discussion

In what above we have obtained sufficient conditions for the permanence of Eq. (2.4) in
which the coefficients are periodic. For the system with the corresponding continuous sys-
tem, in [27], Wang and Li established verifiable criteria for the permanence of the periodic
system (1.3) and found that for (1.3), the criteria for the permanence is exactly the same as
that for the existence of the positive periodic solution. But for the corresponding discrete
system (2.4), to make the system be permanent, the death rate of the predator must not be
too large except that the conditions for the existence of the positive periodic solution hold
true. Just as pointed out in [10], even if the coefficients are constants, the asymptotical be-
havior of the discrete system is rather complex and contains more rich dynamics than the
continuous one. Our investigation gives an affirmative explanation for this point of view.
By intuition, we should believe that when the death rate of the predator is rather small as
well as the intrinsic growth rate of the prey is relatively large, the two species could coexist
in the long run. The conclusion we obtain here exactly confirm this.



Y.-H. Fan, W.-T. Li/ J. Math. Anal. Appl. 299 (2004) 357-374 373

References

[1] V.L. Kocic, G. Ladas, Global Behavior of Nonline&@ifference Equations of Higher Order with Applica-
tions, Kluwer Academic, London, 1993.
[2] R.P. Agarwal, Difference Eqti@ans and Inequalities: Theory, Methoatsd Applications, Monogr. Textbooks
Pure Appl. Math., vol. 228, Dekker, New York, 2000.
[3] R. Arditi, N. Perrin, H. Saiah, Functional response antttageneities: an experiment test with cladocerans,
OIKOS 60 (1991) 69-75.
[4] E. Beretta, Y. Kuang, Global analysis in some deldyatio-dependent predatprey systems, Nonlinear
Anal. TMA 32 (1998) 381-408.
[5] A.A. Berryman, The origins and evolution of predator—prey theory, Ecology 73 (1992) 1530-1535.
[6] M. Fan, K. Wang, Periodicity in a delayed ratio-@eplent predator—prey system, J. Math. Anal. Appl. 262
(2001) 179-190.
[7] M. Fan, K. Wang, Periodic solutions of a discré¢it@e nonautonomous ratio-dependent predator—prey sys-
tem, Math. Comput. Modelling 35 (2002) 951-961.
[8] Y.H. Fan, W.T. Li, L.L. Wang, Periodic solutions afelayed ratio-dependent predator—prey models with
monotonic or nonmonotonic functional pEmnse, Nonlinear Anal. RWA 5 (2004) 247-263.
[9] H.l. Freedman, Deterministic Mathematicalollels in Population Ecology, Dekker, New York, 1980.
[10] K. Gopalsamy, Stability and Oscillations in Delay feifential Equations of Population Dynamics, Kluwer
Academic, Dordrecht, 1992.
[11] I. Hanski, The functional response afgglator: worries bout scale, TREE 6 (1991) 141-142.
[12] C.S. Holling, The functional response of predatomptey density and its role in mimicry and population
regulation, Mem. Entomol. Sec. Can. 45 (1965) 1-60.
[13] S.B. Hsu, T.W. Hwang, Y. Kuangslobal analysis of the Michaelis—Mtam type ratio-dependent predator—
prey system, J. Math. Biol. 42 (2001) 489-506.
[14] S.B. Hsu, T.W. Hwang, Y. Kuang, Rich dynamics afratio-dependent one-gréwo-predators model,
J. Math. Biol. 43 (2001) 377—396.
[15] C. Jost, O. Arino, R. Arditi, About deterministic extition in ratio-dependent predator—prey models, Bull.
Math. Biol. 61 (1999) 19-32.
[16] Y. Kuang, Delay Differential Guations with Applications in Popuian Dynamics, Academic Press, New
York, 1993.
[17] Y. Kuang, E. Beretta, Global qualitative analysis ohtio-dependent predator—prey system, J. Math. Biol. 36
(1998) 389-406.
[18] W.T. Li, Y.H. Fan, S.G. Ruan, Periodic solotis in a delayed predator—prey model with nonmonotonic
functional response, submitted for publication.
[19] R.M. May, Complexity and Stability in Model Ecosystems, Princeton Univ. Press, Princeton, NJ, 1973.
[20] R.M. May, Biological popudtions obeying difference equations: I8t points, stable cycles and chaos,
J. Theory Biol. 51 (1975) 511-524.
[21] J.D. Murry, Mathematical Biagy, Springer-Verlag, New York, 1989.
[22] M.L. Rosenzweig, Paradox of enrichment: desizdttion of exploitation ecosystem in ecological time, Sci-
ence 171 (1971) 385-387.
[23] S. Ruan, D. Xiao, Global analysis in a predafmey system with nonmonotonic functional response, SIAM
J. Appl. Math. 61 (2001) 1445-1472.
[24] Y. Takeuchi, Global Dynamical Properties of kat-Volterra Systems, World Scientific, Singapore, 1996.
[25] L.L. Wang, W.T. Li, Existence of periodic solotis of a delayed predator—prey system with functional
response, International Math. Math. Sci. 1 (2002) 55-63.
[26] L.L. Wang, W.T. Li, Existence and global stability pbsitive periodic solutions of a predator—prey system
with delays, Appl. Math. Comput. 146 (2003) 167-185.
[27] L.L. Wang, W.T. Li, Periodic solutions and peanence for a delayed nartanomous ratio-dependent
predator—prey model with Holling type functidmasponse, J. Comput. Appl. Math. 162 (2004) 341-357.
[28] L.L. Wang, W.T. Li, Periodic solutions and stabilifgr a delayed discrete ratio-dependent predator—prey
system with Holling type functional response, Discrete Dyn. Nat. Soc., in press.
[29] D. Xiao, S. Ruan, Global dynamics of a ratio-éepent predator—prey system, J. Math. Biol. 43 (2001)
268-290.



374 Y.-H. Fan, W.-T. Li/ J. Math. Anal. Appl. 299 (2004) 357-374

[30] D. Xiao, Z. Zhang, On the uniques® and nonexistence of limit cycles for predator—prey systems, Nonlin-
earity 16 (2003) 1185-1201.

[31] H.P. Zhu, S. Campebell, G. Wolkowicz, Bifutaan analysis of a predator—prey system with nonmonotonic
functional response, SIAM J. Appl. Math. 63 (2002) 636—682.

[32] L. Wang, M.Q. Wang, Ordinary Difference Equats, Xinjiang Univ. Press, Xjiang, 1989 (in Chinese).



