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Abstract

Sufficient conditions are established for the permanence in a delayed discrete predator–pre
with Holling type III functional response:


N1(k + 1) = N1(k)exp

{
b1(k) − a1(k)N1(k − [τ1]) − α1(k)N1(k)N2(k)

N2
1 (k)+m2N2

2 (k)

}
,

N2(k + 1) = N2(k)exp
{−b2(k) + α2(k)N2

1 (k−[τ2])
N2

1 (k−[τ2])+m2N2
2 (k−[τ2])

}
.

Our investigation confirms that when the death rate of the predator is rather small as well
intrinsic growth rate of the prey is relatively large, the species could coexist in the long run.
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1. Introduction

Many mathematical models have been established to describe the relationships b
the species and the outer environment or among the different species in biomathe
The dynamics of the growth of a population can be described if the functional beh
of the rate of growth is known. Of course, it is this functional behavior which is usu
measured in the laboratory or in the field. Among the relationships between the s
living in the same outer environment, the predator–prey theory plays an importan
fundamental role. The dynamic relationship between predators and their prey ha
been and will continue to be one of the dominant themes in both ecology and mathem
ecology due to its universal existence and importance (Berryman [5]). These problem
appear to be simple mathematically at firstsight, they are, in fact very challenging a
complicated. There are many different kinds of predator–prey models in the literatu
more details we can refer to [5] and [9]. In general, a predator–prey system takes th{

x ′ = rx
(
1− x

K

) − ϕ(x)y,

y ′ = y(µϕ(x) − D),
(1.1)

whereϕ(x) is the functional response function, which reflects the capture ability o
predator to prey. For more biological meaning, the reader may consult [9] and [19]. M
work has been done on this issue. We refer to the monographs [10,16,21,24] for g
delayed biological systems and to [18,22,23,25–27,30,31] for investigation on pre
prey systems.

Until very recently, both ecologists and mathematicians chose to base their s
on this traditional prey-dependent functional response predator–prey system named
prey-dependent model [14]. But there is a growing explicit biological and physiolo
evidence [4,13,15,17] that in many situations, especially when predators have to search
food (and, therefore, have to share or compete for food), a more suitable general pr
prey theory should be based on the so-called ratio-dependent theory, which can be
stated as that the per capita predator growth rate should be a function of the ratio
to predator abundance, and so should be the so-called ratio-dependent functional re
This is strongly supported by numerous field and laboratory experiments and obser
[3,11]. A general form of a ratio-dependent model is{

x ′ = rx
(
1− x

K

) − ϕ
(

x
y

)
y,

y ′ = y
(
µϕ

(
x
y

) − D
)
.

(1.2)

Here the predator–prey interactions are described byϕ(x/y) instead ofϕ(x) in (1.1). This
can be interpreted as: when the numbers of predators change slowly (relative to the
of their prey), there is often competition among the predators, and the per capita
predation depends on the numbers of both prey and predator, most likely and sim
their ratio. For the system (1.2) with periodic coefficients, in [8] we explored the exis
of periodic solutions with delays. In addition, most research works concentrate on t
called Michaelis–Menten type ratio-dependent predator–prey model{

x ′ = rx
(
1− x

K

) − αxy
my+x

,

y ′ = y
(−d + f x )

,

my+x
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see [4,13,15,17,29]and references therein. In view of periodicity of the actual environ
Fan and Wang [6] established verifiable criteria for the global existence of positive pe
solutions of a more general delayed ratio-dependent predator–prey model with p
coefficients of the form


x ′(t) = x(t)

[
a(t) − b(t)

∫ t

−∞ k(t − s)x(s) ds
] − c(t)x(t)y(t)

my(t)+x(t)
,

y ′(t) = y(t)
[ f (t)x(t−τ (t))

my(t−τ )+x(t−τ )
− d(t)

]
.

The functional response functionϕ(u) = cu/(m + u), u = x/y in above models was use
by Holling as Holling type II function, they usually describe the uptake of substrate b
microorganisms in microbial dynamics or chemical kinetics [9].

But when we describe the relationship between more higher animals, a more s
response function

ϕ(x) = µx2

1+ ρx2
,

should be taken into the predator–prey interactions, which is proposed by Holling [1
based on the fundament of experiment. This response function is usually called the Holl
type III response function [9]. In two previous articles [25,26], Wang and Li establi
verifiable criteria for the global existence of positive periodic solutions and the stabili
the following delayed predator–prey model with Holling type III response function


N ′

1(t) = N1(t)
[
b1(t) − a1(t)N1(t − τ1(t)) − α1(t)N1(t)

1+mN2
1 (t)

N2(t − σ(t))
]
,

N ′
2(t) = N2(t)

[−b2(t) − a2(t)N2(t) + α2(t)N
2
1(t−τ2(t))

1+mN2
1 (t−τ2(t))

]
,

whereN1(t),N2(t) are the densities of the prey population and predator population a
time t , bi : R → R, ai, τi, σ,αi : R → [0,+∞) (i = 1,2) are continuous functions of pe
riod T and

∫ T

0 bi(t) dt > 0, αi(t) �= 0, m is a nonnegative constant. And in [27], Wa
and Li also investigated the global existence of positive periodic solutions and the p
nent property of the ratio-dependent predator–prey system with Holling type III funct
response which takes the form


x ′(t) = x(t)

[
a(t) − b(t)

∫ t

−∞ k(t − s)x(s) ds
] − c(t)x2(t)y(t)

m2y2(t)+x2(t)
,

y ′(t) = y(t)
[

e(t)x2(t−τ )

m2y2(t−τ )+x2(t−τ )
− d(t)

]
,

(1.3)

where the functional response functionϕ(u) = cu2/(1+ m2u2), u = x/y; a(t), b(t), c(t),
e(t), andd(t) are all positive periodic continuous functions; andm > 0, τ � 0 are real
constants. They found that the criteria for the permanence is exactly the same as
the existence of the positive periodic solutions of (1.3).

On the other hand, though most predator–prey theories are based on continuous
governed by differential equations, the discrete time models are more appropriate th
continuous ones when the size of the population is rarely small or the population ha
overlapping generations [2,21]. For the discrete Michaelis–Menten type ratio-depend
predator–prey model, Fan and Wang [7] established the existence of positive period
tions. And for the discrete delayed ratio-dependent predator–prey model with Holling
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III response function, Wang and Li [28] established the existence of positive period
lution. But in ecosystems, a more important theme that interested mathematicians
as biologists is whether the species in these systems would survive in the long run. T
whether the ecosystems are permanent. In the present paper we will make our try
problem.

Just as pointed out in [10, pp. 78–79], even if the coefficients are constants, the a
totical behavior of the discrete system is rather complex and “chaotic” than the conti
one. For example, consider the logistic equation

x ′(t) = rx(t)

[
1− x(t)

K

]
, t � 0, (1.4)

wherer, K are both positive constants and its corresponding discrete equation

x(n + 1) = x(n)exp

{
r

[
1− x(n)

K

]}
, n = 0,1,2, . . . . (1.5)

It is known from the works of May [20] that for certain parameter values ofr, the asymp-
totical behavior of the solutions of Eq. (1.5) is complex and “chaotic.” While the solu
of Eq. (1.4) are rather normal.

Based on the above considerations, we will focus on the discrete time analog
the ratio-dependent predator–prey systemwith Holling type III functional response. Th
present paper is organized as follows: we first make some preparations for our mai
in the next section. Sufficient conditions for the permanence of the system in conside
are proposed and proved in the third section. And a brief discussion is carried out
final section.

2. Preliminary

Throughout this paper, we always denoteZ, Z
+, R, R

+, andR
2 as the sets of all inte

gers, nonnegative integers, real numbers, nonnegative real numbers, and two-dimension
Euclidean vector space, respectively.

We begin with the corresponding continuous ratio-dependent predator–prey syste
Holling type III functional response


dN1(t)

dt
= N1(t)[b1(t) − a1(t)N1(t − τ1)] − α1(t)N

2
1(t)N2(t)

N2
1 (t)+m2N2

2 (t)
,

dN2(t)
dt

= N2(t)
[−b2(t) + α2(t)N

2
1(t−τ2)

N2
1 (t−τ2)+m2N2

2 (t−τ2)

]
,

(2.1)

whereN1(t) andN2(t) represent the densities of the prey population and predator
ulation at timet , respectively;m > 0, τ1 � 0, τ2 � 0 are real constants;bi : R → R

anda1, αi : R → R
+ (i = 1,2) are continuous periodic functions with periodω > 0 and∫ ω

0 bi(t) dt > 0 (i = 1,2); b1(t) stands for prey intrinsic growth rate,b2(t) stands for the
death rate of the predator,α1(t) andα2(t) stand for the conversion rates,m stands for half
capturing saturation; the functionN1(t)[b1(t) − a1(t)N1(t − τ1)] represents the specifi
growth rate of the prey in the absence of predator; andN2

1 (t)/[N2
1(t) + m2N2

2(t)] denotes
the ratio-dependent response function, which reflects the capture ability of the predator.
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Let us assume that the average grow rates in (2.1) change at regular intervals o
then we can incorporate this aspect in (2.1) and obtain the following modified system




1
N1(t)

dN1(t)
dt

= b1([t]) − a1([t])N1([t] − [τ1]) − α1([t ])N1([t ])N2([t ])
N2

1 ([t ])+m2N2
2 ([t ]) ,

1
N2(t)

dN2(t)
dt

= −b2([t]) + α2([t ])N2
1([t ]−[τ2])

N2
1 ([t ]−[τ2])+m2N2

2 ([t ]−[τ2]) , t �= 0,1,2, . . . ,
(2.2)

where[t] denotes the integer part oft , t ∈ (0,+∞). By a solution of (2.2), we mean
functionN = (N1,N2)

T , which is defined fort ∈ (0,+∞), and possesses the followin
properties:

(1) N is continuous on[0,+∞);
(2) the derivativedN1(t)

dt
, dN2(t)

dt
exist at each pointt ∈ [0,+∞) with the possible exceptio

of the pointst ∈ {0,1,2, . . .}, where left-sided derivatives exist;
(3) the equations in (2.2) are satisfied on each interval[k, k + 1) with k = 0,1,2, . . . .

On any interval of the form[k, k + 1), k = 0,1,2, . . . , we can integrate (2.2) and obta
for k � t < k + 1, k = 0,1,2, . . . ,


N1(t) = N1(k)exp

{[
b1(k) − a1(k)N1(k − [τ1]) − α1(k)N1(k)N2(k)

N2
1 (k)+m2N2

2 (k)

]
(t − k)

}
,

N2(t) = N2(k)exp
{[−b2(k) + α2(k)N2

1 (k−[τ2])
N2

1 (k−[τ2])+m2N2
2 (k−[τ2])

]
(t − k)

}
.

(2.3)

Let t → k + 1, we obtain from (2.3) that


N1(k + 1) = N1(k)exp
{
b1(k) − a1(k)N1(k − [τ1]) − α1(k)N1(k)N2(k)

N2
1 (k)+m2N2

2 (k)

}
,

N2(k + 1) = N2(k)exp
{−b2(k) + α2(k)N2

1 (k−[τ2])
N2

1 (k−[τ2])+m2N2
2 (k−[τ2])

}
,

(2.4)

which is a discrete time analogue of system (2.1), whereN1(t), N2(t) are the densities o
the prey population and predator population at timet .

The exponential form of Eq. (2.4) assures that, for any initial conditionN(0) > 0,N(k)

remains positive. In the remainder of this paper, for biological reasons, we only co
solutionN(k) with

Ni(−k) � 0, k = 1,2, . . . ,max
{[τ1], [τ2]

}; Ni(0) > 0, i = 1,2. (2.5)

For convenience, we denote

f̄ = 1

ω

ω−1∑
i=0

f (i),

for anyω-periodic sequence{f (k)}.
In [28], Wang and Li considered the existence of positive periodic solution for Eq.

and obtained that



362 Y.-H. Fan, W.-T. Li / J. Math. Anal. Appl. 299 (2004) 357–374

taken

-
t

some
r main

ts
Lemma 2.1. Assume that the following conditions hold:

(H1) 2mb̄1 > ᾱ1, and
(H2) ᾱ2 > b̄2.

Then(2.4)has at least one positiveω-periodic solution.

In order to present our main results, we need the following definition and theorem
from [1].

Definition 2.1. Let A ∈ (0,∞] and letg : [0,A) → [0,A) be a continuous function. Sup
poseg(0) = 0, g(x) > 0 for 0 < x < A, and assume thatg has a unique fixed poin
x̄ ∈ (0,A). Suppose also thatg(x) > x for 0 < x < x̄ andg(x) < x for x̄ < x < A. Then
the difference equation

xn+1 = g(xn), n = 0,1, . . . , (2.6)

is called apopulation model.

Theorem 2.1. LetA ∈ (0,∞] and assume that Eq.(2.6) is a population model. Ifg(x) � x̄

for x < x̄, thenx̄ is a global attractor of all solutions of Eq.(2.6)with x0 ∈ (0,A).

And the following lemma is from [32].

Lemma 2.2. Suppose thatf : Z
+ × [0,∞) → [0,∞) andg : Z

+ × [0,∞) → [0,∞) with
f (n, x) � g(n, x) (f (n, x) � g(n, x)) for n ∈ Z

+ andx ∈ [0,∞). Assume thatg(n, x) is
nondecreasing with respect to argumentx. If {x(n)} and{u(n)} are solutions of

x(n + 1) = f
(
n,x(n)

)
and u(n + 1) = g

(
n,u(n)

)
,

respectively, andx(0) � u(0) (x(0) � u(0)), then

x(n) � u(n)
(
x(n) � u(n)

)
for all n � 0.

3. Main results

In this section, we consider the permanence of system (2.4). First, we introduce
definitions and notations, and state some results which will be useful to establish ou
results. LetC denote the set of all bounded sequencef : Z → R, C+ is the set of allf ∈ C

such thatf > 0. Givenf ∈ Cω := {f ∈ C+ | f (k + ω) = f (k)}, we denote

f M = sup
k∈[0,ω]

f (k), f L = inf
k∈[0,ω]f (k).

Definition 3.1. System (2.4) is said to bepermanentif there exist two positive constan
λ1, λ2 such that

λ1 � lim inf
k→∞ Ni(k) � lim sup

k→∞
Ni(k) � λ2, i = 1,2,

for any solution(N1(k),N2(k)) of (2.4).
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The following lemma will be useful to establish our main results.

Lemma 3.1. The problem{
x(k + 1) = x(k)exp{a(k) − b(k)x(k)} ,
x(0) = x0 > 0,

(3.1)

has at least one periodic solutionU if b ∈ Cω, a ∈ C and a is anω-periodic sequence
with ā > 0, moreover, the following properties hold:

(a) U is positiveω-periodic;
(b) U is constant ifa/b is constant, in this case,U = a/b;
(c) if b(k) ≡ b is a constant and(a(k))M < 1, thenbu(k) � 1 for k sufficiently large,

whereu(k) is any solution of Eq.(3.1).

Proof. Notice that in Eq. (2.4), letα1(k) ≡ 0, τ1 = 0, then (2.4) can be reduced to{
N1(k + 1) = N1(k)exp{b1(k) − a1(k)N1(k)},
N2(k + 1) = N2(k)exp

{−b2(k) + α2(k)N2
1(k−[τ2])

N2
1 (k−[τ2])+m2N2

2 (k−[τ2])
}
,

(3.2)

and the condition (H1) of Lemma 2.1 reduces tob̄1 > 0. By Lemma 2.1, Eq. (3.2) has
least one positiveω-periodic solution provided that̄b1 > 0 andᾱ2 > b̄2. And this implies
that

N1(k + 1) = N1(k)exp
{
b1(k) − a1(k)N1(k)

}
has at least one positiveω-periodic solution under the assumptions of Lemma 3.1.
proof of (a) is complete.

The proof of (b) is obvious, we omit it here.
For the rest, we only need to prove (c). Given any solutionu(k) of (3.1), letv(k) =

bu(k), then from (3.1), we have

v(k + 1) = bu(k)exp
{
a(k) − bu(k)

} = v(k)exp
{
a(k) − v(k)

}
� v(k)exp

{(
a(k)

)M − v(k)
}
. (3.3)

Consider the auxiliary equation

V (k + 1) = V (k)exp
{(

a(k)
)M − V (k)

}
. (3.4)

It is easy to show that Eq. (3.4) is a population model, notice thatv(0) = bu(0) > 0, then by
Theorem 2.1, we have limk→∞ V (k) = (a(k))M . Thus(a(k))M < 1 implies all solutions
of Eq. (3.4) are less than 1 whenk is sufficiently large. Then from Lemma 2.2, we kno
thatbu(k) � 1 for k sufficiently large. This complete the proof.�
Theorem 3.1. Assume that(H1), (H2), and(

b2(k)
)M

< 1 (3.5)

hold. Then system(2.4) is permanent.
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To prove this theorem, we needthe following several propositions. For the rest of t
paper, we consider the solution of (2.4) with initial conditions (2.5). For the definition o
semicycle and other related concepts, we refer to the monograph [1]. And in what fo
for

∑n
i=m f (i), we define its value as zero ifn < m.

Proposition 3.1. There exists a positive constantK1 such that

lim sup
k→∞

N1(k) � K1.

Proof. Given any positive solution(N1(k),N2(k)) of (2.4), from the first equation of (2.4
we have

N1(k + 1) � N1(k)exp
{
b1(k) − a1(k)N1

(
k − [τ1]

)}
.

Let x(k) = ln(N1(k)), then

x(k + 1) − x(k) � b1(k) − a1(k)exp
{
x
(
k − [τ1]

)}
,

thus
k−1∑

i=k−[τ1]

(
x(i + 1) − x(i)

)
�

k−1∑
i=k−[τ1]

b1(i),

that is,

x(k) −
k−1∑

i=k−[τ1]
b1(i) � x

(
k − [τ1]

)
,

hence

N1
(
k − [τ1]

) = exp
{
x
(
k − [τ1]

)}
� exp

{
x(k) −

k−1∑
i=k−[τ1]

b1(i)

}
= N1(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}
.

Therefore

N1(k + 1) � N1(k)exp

{
b1(k) − a1(k)N1(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}}
.

Consider the following auxiliary equation:

z(k + 1) = z(k)exp

{
b1(k) − a1(k)z(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}}
, (3.6)

by Lemma 3.1, Eq. (3.6) has at least one positiveω-periodic solution, denoted asz∗(k).
Let

y(k) = ln
(
z∗(k)

)
, (3.7)

then
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x(k + 1) − x(k) � b1(k) − a1(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}
exp

{
x(k)

}
,

y(k + 1) − y(k) = b1(k) − a1(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}
exp

{
y(k)

}
.

Denoteu(k) = x(k) − y(k), then

u(k + 1) − u(k) � −a1(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}
exp

{
y(k)

}[
exp

{
u(k)

} − 1
]
. (3.8)

First we assume thatu(k) does not oscillate about zero, thenu(k) either will be even-
tually positive or eventually negative. If the latter holds, i.e.,u1(k) < u2(k), this implies
that

N1(k) < z∗(k) �
(
z∗(k)

)M
.

Either if the former holds, then by (3.8), we haveu(k + 1) < u(k), which means thatu(k)

is eventually decreasing, also in terms of its positivity, we obtain that limk→∞ u(k) exists.
Then (3.8) leads to limk→∞ u(k) = 0, this implies

lim sup
k→∞

N1(k) �
(
z∗(k)

)M
.

Now we assume thatu(k) oscillates about zero, by (3.8), we know that ifu(k) > 0,
thenu(k + 1) � u(k). Thus, if we let{u(l)} be a subsequence of{u(k)} in which u(l)

will be the first element of thelth positive semicycle of{u(k)}, then lim supk→∞ u(k) =
lim supl→∞ u(l). From

u(l) � u(l − 1)

−a1(l − 1)exp

{
−

l−2∑
i=l−1−[τ1]

b1(i)

}
exp

{
y(l − 1)

}[
exp

{
u(l − 1)

} − 1
]
,

andu(l − 1) < 0, we know

u(l) � a1(l − 1)exp

{
−

l−2∑
i=l−1−[τ1]

b1(i)

}
exp

{
y(l − 1)

}[
1− exp

{
u(l − 1)

}]

� a1(l − 1)exp

{
−

l−2∑
i=l−1−[τ1]

b1(i)

}
exp

{
y(l − 1)

}

�
(

a1(l − 1)exp

{
−

l−2∑
i=l−1−[τ1]

b1(i)

}
exp

{
y(l − 1)

})M

.

Therefore

lim sup
k→∞

u(l) �
(

a1(l − 1)exp

{
−

l−2∑
b1(i)

}
exp

{
y(l − 1)

})M

.

i=l−1−[τ1]
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),
By the medium of (3.7), we have lim supk→∞ N1(k) � K1, where

K1 = (
z∗(k)

)M exp

{(
a1(k)z∗(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

})M}
. �

Proposition 3.2. Under the condition(H1), there exists a positive constantk1 such that

lim inf
k→∞ N1(k) � k1.

Proof. Given any positive solution(N1(k),N2(k)) of (2.4), from the first equation of (2.4
we have

N1(k + 1) � N1(k)exp

{
b1(k) − α1(k)

2m
− a1(k)N1

(
k − [τ1]

)}
.

Let x(k) = ln(N1(k)). Then

x(k + 1) − x(k) � b1(k) − α1(k)

2m
− a1(k)exp

{
x
(
k − [τ1]

)}
,

thus
k−1∑

i=k−[τ1]

(
x(i + 1) − x(i)

)
�

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)
,

that is,

x
(
k − [τ1]

)
� x(k) −

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)
,

then

N1
(
k − [τ1]

) = exp
{
x
(
k − [τ1]

)}
� exp

{
x(k) −

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}

= N1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}
.

Therefore

N1(k + 1) � N1(k)exp

{
b1(k) − α1(k)

2m

− N1(k)a1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}}
.

Consider the following auxiliary equation:
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have
z(k + 1) = z(k)exp

{
b1(k) − α1(k)

2m

− z(k)a1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}}
, (3.9)

by Lemma 3.1, Eq. (3.9) has at least one positiveω-periodic solution, denoted asz∗
1(k).

Let

y(k) = ln
(
z∗

1(k)
)
, (3.10)

then

x(k + 1) − x(k) � b1(k) − α1(k)

2m

− a1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}
exp

{
x(k)

}
,

and

y(k + 1) − y(k) = b1(k) − α1(k)

2m

− a1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}
exp

{
y(k)

}
.

Denoteu(k) = x(k) − y(k), then

u(k + 1) − u(k)

� −a1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}

× exp
{
y(k)

}[
exp

{
u(k)

} − 1
]
. (3.11)

If u(k) does not oscillate, then by a similar analysis as that in Proposition 3.1, we

lim inf
k→∞ N1(k) �

(
z∗

1(k)
)L

.

Either if u(k) oscillates about zero, by (3.11), we know that ifu(k) < 0, then
u(k + 1) � u(k). Thus, if we let{u(l)} be a subsequence of{u(k)} in which u(l) will
be the first element of thelth negative semicycle of{u(k)}, then lim infk→∞ u(k) =
lim inf l→∞ u(l). From

u(l) � u(l − 1) − a1(l − 1)exp

{
−

l−2∑
i=l−1−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}

× exp
{
y(l − 1)

}[
exp

{
u(l − 1)

} − 1
]

andu(l − 1) > 0, we know
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u(l) � a1(l − 1)exp

{
−

l−2∑
i=l−1−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}

× exp
{
y(l − 1)

}[
1− exp

{
u(l − 1)

}]
� −a1(l − 1)exp

{
−

l−2∑
i=l−1−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)}
exp

{
y(l − 1)

}

�
(

−a1(l − 1)z∗
1(l − 1)exp

{
−

l−2∑
i=l−1−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)})L

.

Therefore

lim inf
l→∞ u(l) �

(
−a1(l − 1)z∗

1(l − 1)

× exp

{
−

l−2∑
i=l−1−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)})L

.

By the medium of (3.10), we have

lim inf
k→∞ N1(k) �

(
z∗

1(k)
)L exp

{(
−a1(l − 1)z∗

1(l − 1)

× exp

{
−

l−2∑
i=l−1−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)})L}
,

therefore lim infk→∞ N1(k) � k1, where

k1 = (
z∗

1(k)
)L exp

{(
−a1(k)z∗

1(k)

× exp

{
−

k−1∑
i=k−[τ1]

(
b1(i) − α1(i)

2m
− a1(i)K1

)})L }
. �

Proposition 3.3. If (3.5), then there exists a positive constantK2 such that

lim sup
k→∞

N2(k) � K2.

Proof. Given any positive solution(N1(k),N2(k)) of (2.4), letN2(k) = 1/w(k), from the
second equation of (2.4), we have

w(k + 1) = w(k)exp

{
b2(k) − α2(k)N2

1(k − [τ2])w2(k − [τ2])
N2

1(k − [τ2])w2(k − [τ2]) + m2

}
,

then

w(k + 1) � w(k)exp
{
b2(k) − α2(k)

}
, (3.12)
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and by the inequalitya2 + b2 � 2ab, we have

w(k + 1) � w(k)exp

{
b2(k) − α2(k)K1w(k − [τ2])

2m

}
. (3.13)

Let y(k) = ln(w(k)), then from (3.12), we have

y(k + 1) − y(k) � b2(k) − α2(k),

thus
k−1∑

i=k−[τ2]

(
y(i + 1) − y(i)

)
�

k−1∑
i=k−[τ2]

(
b2(i) − α2(i)

)
,

which is equivalent to

y
(
k − [τ2]

)
� y(k) −

k−1∑
i=k−[τ2]

(
b2(i) − α2(i)

)
,

then

w
(
k − [τ2]

) = exp
{
y
(
k − [τ2]

)}
� exp

{
y(k) −

k−1∑
i=k−[τ2]

(
b2(i) − α2(i)

)}

= w(k)exp

{
−

k−1∑
i=k−[τ2]

(
b2(i) − α2(i)

)}
.

Therefore by (3.13), we have

w(k + 1) � w(k)exp

{
b2(k) − w(k)

α2(k)K1

2m
exp

{
−

k−1∑
i=k−[τ2]

(
b2(i) − α2(i)

)}}

� w(k)exp

{
b2(k)

−
(

α2(k)K1

2m
exp

{
−

k−1∑
i=k−[τ2]

(
b2(i) − α2(i)

)})M

w(k)

}
.

Consider the following auxiliary equation:

z(k + 1) = z(k)exp

{
b2(k) −

(
α2(k)K1

2m
exp

{
−

k−1∑
i=k−[τ2]

(
b2(i) − α2(i)

)})M

z(k)

}
,

(3.14)

by Lemma 3.1, Eq. (3.14) has at least one positiveω-periodic solution, denoted asz∗
3(k).

Also in view of (3.5), by Lemma 2.2 and part (c) of Lemma 3.1, we knoww(k) � z∗
3(k).

Therefore

lim inf w(k) �
(
z∗

3(k)
)L

.

k→∞
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of
If we choose

K2 = 1

(z∗
3(k))L

,

then by the medium ofN2(k) = 1/w(k), we have lim supk→∞ N2(k) � K2. �
Proposition 3.4. Under the condition(H2), there exists a positive constantk2 such that

lim inf
k→∞ N2(k) � k2.

Proof. Given any positive solution(N1(k),N2(k)) of (2.4), from the second equation
(2.4), we have

N2(k + 1) = N2(k)exp

{
−b2(k) + α2(k)N2

1 (k − [τ2])
N2

1(k − [τ2]) + m2N2
2(k − [τ2])

}

= N2(k)exp

{
α2(k) − b2(k)

+ α2(k)

[
N2

1(k − [τ2])
N2

1(k − [τ2]) + m2N2
2(k − [τ2])

− 1

]}

= N2(k)exp

{
α2(k) − b2(k)

− α2(k)

[
m2N2

2 (k − [τ2])
N2

1(k − [τ2]) + m2N2
2(k − [τ2])

]}
,

by the inequalitya2 + b2 � 2ab, we have

N2(k + 1) � N2(k)exp

{
α2(k) − b2(k) − α2(k)mN2(k − [τ2])

2k1

}
. (3.15)

In view of

N2(k + 1) = N2(k)exp

{
−b2(k) + α2(k)N2

1 (k − [τ2])
N2

1(k − [τ2]) + m2N2
2(k − [τ2])

}

� N2(k)exp
{−b2(k)

}
,

if we let y(k) = ln{N2(k)}, then we can obtainy(k + 1) − y(k) � −b2(k). Thus

k−1∑
i=k−[τ2]

(
y(i + 1) − y(i)

)
�

k−1∑
i=k−[τ2]

(−b2(i)
)
,

that is,

y
(
k − [τ2]

)
� y(k) +

k−1∑
i=k−[τ2]

(
b2(i)

)
,

then
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d

have
N2
(
k − [τ2]

) = exp
{
y
(
k − [τ2]

)}
� exp

{
y(k) +

k−1∑
i=k−[τ2]

(
b2(i)

)}

= N2(k)exp

{
k−1∑

i=k−[τ2]

(
b2(i)

)}
.

Therefore from (3.15), we have

N2(k + 1) � N2(k)exp

{
α2(k) − b2(k) − N2(k)

α2(k)m

2k1
exp

{
k−1∑

i=k−[τ2]

(
b2(i)

)}}
.

Consider the auxiliary equation

z(k + 1) = z(k)exp

{
α2(k) − b2(k) − z(k)

α2(k)m

2k1
exp

{
k−1∑

i=k−[τ2]

(
b2(i)

)}}
, (3.16)

by Lemma 3.1 and (H2), Eq. (3.16) has at least one positiveω-periodic solution, denote
asz∗

2(k).
Let

x(k) = ln
(
z∗

2(k)
)
, (3.17)

then

y(k + 1) − y(k) � α2(k) − b2(k) − α2(k)m

2k1
exp

{
k−1∑

i=k−[τ2]

(
b2(i)

)}
exp

{
y(k)

}
,

x(k + 1) − x(k) = α2(k) − b2(k) − α2(k)m

2k1
exp

{
k−1∑

i=k−[τ2]

(
b2(i)

)}
exp

{
x(k)

}
.

Denoteu(k) = y(k) − x(k), then

u(k + 1) − u(k) � −α2(k)m

2k1
exp

{
k−1∑

i=k−[τ2]

(
b2(i)

)}
exp

{
x(k)

}[
exp

{
u(k)

} − 1
]
.

(3.18)

If u(k) does not oscillate, then by a similar analysis as that in Proposition 3.1, we

lim inf
k→∞ N2(k) �

(
z∗

2(k)
)L

.

Either if u(k) oscillates about zero, by (3.18), we know that ifu(k) < 0, thenu(k +1) �
u(k). Thus, if we let{u(l)} be a subsequence of{u(k)} in which u(l) will be the first
element of thelth negative semicycle of{u(k)}, then lim infk→∞ u(k) = lim inf l→∞ u(l).
From

u(l) � u(l − 1) − α2(l − 1)m

2k1
exp

{
l−2∑

i=l−1−[τ2]

(
b2(i)

)}

× exp
{
x(l − 1)

}[
exp

{
u(l − 1)

} − 1
]
,
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tem

2.4) in
s sys-
riodic
ame as
crete
t not be
hold

cal be-
an the
view.
all as
exist
andu(l − 1) > 0, we know

u(l) � α2(l − 1)m

2k1
exp

{
l−2∑

i=l−1−[τ2]

(
b2(i)

)}
exp

{
x(l − 1)

}[
1− exp

{
u(l − 1)

}]

� −α2(l − 1)m

2k1
exp

{
l−2∑

i=l−1−[τ2]

(
b2(i)

)}
exp

{
x(l − 1)

}

�
(

−mα2(l − 1)z∗
2(l − 1)

2k1
exp

{
l−2∑

i=l−1−[τ2]

(
b2(i)

)})L

.

Therefore

lim inf
l→∞ u(l) �

(
−mα2(l − 1)z∗

2(l − 1)

2k1
exp

{
l−2∑

i=l−1−[τ2]

(
b2(i)

)})L

.

By the medium of (3.17), we have

lim inf
k→∞ N1(k) �

(
z∗

2(k)
)L exp

{(
−mα2(l − 1)z∗

2(l − 1)

2k1
exp

{
l−2∑

i=l−1−[τ2]

(
b2(i)

)})L}
,

therefore lim infk→∞ N1(k) � k2, where

k2 = (
z∗

2(k)
)L exp

{(
−mα2(k)z∗

2(k)

2k1
exp

{
k−1∑

i=k−[τ2]

(
b2(i)

)})L}
. �

Proof of Theorem 3.1. From the Propositions 3.1–3.4, we can easily know that sys
(2.4) is permanent. The proof is complete.�

4. Discussion

In what above we have obtained sufficient conditions for the permanence of Eq. (
which the coefficients are periodic. For the system with the corresponding continuou
tem, in [27], Wang and Li established verifiable criteria for the permanence of the pe
system (1.3) and found that for (1.3), the criteria for the permanence is exactly the s
that for the existence of the positive periodic solution. But for the corresponding dis
system (2.4), to make the system be permanent, the death rate of the predator mus
too large except that the conditions for the existence of the positive periodic solution
true. Just as pointed out in [10], even if the coefficients are constants, the asymptoti
havior of the discrete system is rather complex and contains more rich dynamics th
continuous one. Our investigation gives an affirmative explanation for this point of
By intuition, we should believe that when the death rate of the predator is rather sm
well as the intrinsic growth rate of the prey is relatively large, the two species could co
in the long run. The conclusion we obtain here exactly confirm this.
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