
a

on

ace of

hy

by
eo-
J. Math. Anal. Appl. 300 (2004) 343–350

www.elsevier.com/locate/jma

Hyers–Ulam–Rassias stability of Cauchy equati
in the space of Schwartz distributions✩

Jaeyoung Chung

Department of Mathematics, Kunsan National University, Kunsan 573-701, South Korea

Received 8 March 2004

Submitted by T. Krisztin

Abstract

We reformulate and prove the Hyers–Ulam–Rassias stability of Cauchy equation in the sp
Schwartz tempered distributions and Fourier hyperfunctions.
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1. Introduction

Generalizing the stability theorem of D.H. Hyers [10,11] which was motivated
S.M. Ulam [17], Th.M. Rassias [15] and Z. Gajda [7] showed the following stability th
rem for the Cauchy equation:

Theorem 1.1 [7,15]. Let f :E1 → E2 with E1,E2 Banach spaces be an approximately
additive, that is, f satisfies∥∥f (x + y) − f (x) − f (y)

∥∥ � ε
(‖x‖p + ‖y‖p

)
, p �= 1, (1.1)
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for all x, y ∈ E1 (x �= 0 and y �= 0 if p < 0). Then there exists a unique mapping g :E1 →
E2 such that

g(x + y) − g(x) − g(y) = 0

and ∥∥f (x) − g(x)
∥∥ � 2ε

|2p − 2|‖x‖p (1.2)

for all x ∈ E1. Here the inequality (1.1)holds for x, y �= 0 and (1.2)for x �= 0 if p < 0.

The above stability theorem was firstly proved for the casep < 1 by Th.M. Rassias [15
and later it was proved for the casep > 1 by Z. Gajda [7].

In this paper, we reformulate and prove the above stability theorem in the spaces
eralized functions such as the spaceS ′ of Schwartz tempered distributions and the sp
F ′ of Fourier hyperfunctions for the case thatp is even integer grater than 2. Note th
the above inequality (1.1) makes no sense iff is a tempered distribution or Fourier hype
function. As in [1,2,5,6,13] making use of the pullbacks of generalized function we e
the inequality (1.1) to the spaces of tempereddistributions and Fourier hyperfunctions as
follows:

‖u ◦ A − u ◦ P1 − u ◦ P2‖ � ε
(‖x‖2p + ‖y‖2p

)
. (1.3)

Hereu◦A, u◦P1 andu◦P2 are the pullbacks ofu in S ′ orF ′ byA, P1 andP2, respectively,
whereA, P1 andP2 are the functionsA(x,y) = x + y, P1(x, y) = x andP2(x, y) = y,
x, y ∈ Rn. Also the inequality‖v‖ � ε(‖x‖2p + ‖y‖2p) in (1.3) means that|〈v,ϕ〉| �
ε
∫
(‖x‖2p + ‖y‖2p)|ϕ(x, y)|dx dy for all test functionsϕ ∈ S (respectivelyF ).
For the pullback of tempered distributions we refer to [9, Chapters V–VI]. As a m

of fact, the pullbacksu ◦ A, u ◦ P1, u ◦ P2 can be written in a transparent way as

〈
u ◦ A,ϕ(x, y)

〉 =
〈
u,

∫
ϕ(x − y, y) dy

〉
,

〈
u ◦ P1, ϕ(x, y)

〉 =
〈
u,

∫
ϕ(x, y) dy

〉
,

〈
u ◦ P2, ϕ(x, y)

〉 =
〈
u,

∫
ϕ(x, y) dx

〉

for all test functionsϕ ∈ S(R2n).
As a results, we prove that every solution of the inequality (1.3) can be approxim

by a linear function in the sense that there exists a uniquea ∈ Cn such that

‖u − a · x‖ � 2ε

4p − 2
‖x‖2p.

2. Distributions and hyperfunctions

We first introduce briefly some spaces of generalized functions such as the spS ′
of tempered distributions and the spaceF ′ of Fourier hyperfunctions which is a natur



J. Chung / J. Math. Anal. Appl. 300 (2004) 343–350 345

y

e

-

e

generalization ofS ′. Here we use the multi-index notations forx = (x1, . . . , xn) ∈ Rn,
α = (α1, . . . , αn) ∈ N

n
0,

|α| = α1 + · · · + αn, α! = α1! . . .αn!,
xα = x

α1
1 . . . xαn

n , ∂α = ∂
α1
1 . . . ∂αn

n ,

whereN0 is the set of non-negative integers and∂j = ∂/∂xj .

Definition 2.1 [3,8,9,16]. We denote byS or S(Rn) the Schwartz space of all infinitel
differentiable functionsϕ in Rn such that

‖ϕ‖α,β = sup
x

∣∣xα∂βϕ(x)
∣∣ < ∞ (2.1)

for all α,β ∈ N
n
0, equipped with the topology defined by the seminorms‖ · ‖α,β . The ele-

ments ofS are called rapidly decreasing functions and the elements of the dual spacS ′
are calledtempered distributions.

As a matter of fact, it is known in [3] that (2.1) is equivalent to

sup
x∈Rn

∣∣xαϕ(x)
∣∣ < ∞, sup

ξ∈Rn

∣∣ξβ ϕ̂(ξ)
∣∣ < ∞ (2.1′)

for all α,β ∈ N
n
0.

Imposing growth conditions on‖ · ‖α,β in (2.1) Sato and Kawai introduced the spaceF
of test functions for the Fourier hyperfunctions as follows:

Definition 2.2 [4,8,16]. We denote byF orF(Rn) the Sato space of all infinitely differen
tiable functionsϕ in Rn such that

‖ϕ‖A,B = sup
x,α,β

|xα∂βϕ(x)|
A|α|B |β|α!β! < ∞ (2.2)

for some positive constantsA,B.
We say thatϕj → 0 asj → ∞ if ‖ϕj‖A,B → 0 asj → ∞ for someA,B > 0, and

denote byF ′ the strong dual ofF and call its elementsFourier hyperfunctions.

It is known in [4] that the inequality (2.2) is equivalent to

sup
x∈Rn

∣∣ϕ(x)
∣∣expk|x| < ∞, sup

ξ∈Rn

∣∣ϕ̂(ξ)
∣∣exph|ξ | < ∞ (2.2′)

for someh, k > 0.
It is easy to see the following topological inclusions:

F ↪→ S, S ′ ↪→ F ′.

From now ona test function means an element in the Schwartz spaceS or the Sato spac
F anda generalized function meansa tempered distribution or a Fourier hyperfunction.
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3. Main theorems

We employ then-dimensional heat kernel, that is, the fundamental solutionEt(x) of
the heat operator∂t − ∆x in Rn

x × R
+
t given by

Et(x) =
{

(4πt)−n/2 exp(−|x|2/4t), t > 0,

0, t � 0.

Here the semigroup property

(Et ∗ Es)(x) = Et+s(x) (3.1)

of the heat kernel will be very useful later. Now let a tempered distributionu be given.
Then itsGauss transform

Gu(x, t) = (u ∗ Et)(x) = 〈
uy,Et (x − y)

〉
, x ∈ R

n, t > 0, (3.2)

is aC∞-function inRn × (0,∞). As a matter of fact we can represent tempered distr
tions via some solutions of the heat equation as follows:

Proposition 3.1 [14]. Let u ∈ S ′(Rn). Then its Gauss transform Gu(x, t) is a C∞-solution
of heat equation satisfying:

(i) There exist positive constants C, M and N such that∣∣Gu(x, t)
∣∣ � Ct−M

(
1+ |x|)N in R

n × (0, δ); (3.3)

(ii) Gu(x, t) → u as t → 0+ in the sense that for every ϕ ∈ S ,

〈u,ϕ〉 = lim
t→0+

∫
Gu(x, t)ϕ(x) dx.

Conversely, every C∞-solution U(x, t) of heat equation satisfying the growth condition
(3.3) can be uniquely expressed as U(x, t) = Gu(x, t) for some u ∈ S ′.

Similarly we can represent Fourier hyperfunctions as initial values of solutions of he
equation as a special case of the results in [12]. In this case, the estimate (3.3) is re
by the following: For everyε > 0 there exists a positive constantCε such that∣∣Gu(x, t)

∣∣ � Cε exp
(
ε
(|x| + 1/t

))
in R

n × (0, δ). (3.3′)

Definition 3.2. Let v be inS ′ orF ′. Then we denote by‖v‖ � ψ if∣∣〈v,ϕ〉∣∣ � ‖ψϕ‖L1 (3.4)

for all test functionsϕ.

Now we prove main theorems.

Theorem 3.3. Let u in S ′ or F ′ satisfy the inequality

‖u ◦ A − u ◦ P1 − u ◦ P2‖ � ε(x2γ + y2γ ) (3.5)
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for some γ ∈ N
n
0, |γ | > 1. Then there exists a unique a ∈ Cn such that

‖u − a · x‖ � 2ε

4|γ | − 2
x2γ . (3.6)

Proof. Convolving in each side of (3.5) the tensor productEt(x)Es(y) of n-dimensional
heat kernels as a function ofx, y the left-hand side of (3.5) can be written as[

(u ◦ A) ∗ (
Et(x)Es(y)

)]
(ξ, η) = 〈

u ◦ A,Et(ξ − x)Es(η − y)
〉

=
〈
ux,

∫
Et(ξ − x + y)Es(η − y) dy

〉

=
〈
ux,

∫
Et(ξ + η − x − y)Es(y) dy

〉

= 〈
ux, (Et ∗ Es)(ξ + η − x)

〉
= 〈

ux,Et+s(ξ + η − x)
〉

= Gu(ξ + η, t + s),

and similarly[
(u ◦ P1) ∗ (

Et(x)Es(y)
)]

(ξ, η) = Gu(ξ, t),[
(u ◦ P2) ∗ (

Et(x)Es(y)
)]

(ξ, η) = Gu(η, s),

whereGu(ξ, t) is the Gauss transform ofu.
Also the right-hand side of (3.5) can be written as[

ε(x2γ + y2γ ) ∗ (
Et(x)Es(y)

)]
(ξ, η) = ε

(
H2γ (ξ, t) + H2γ (η, s)

)
,

whereH2γ is the heat polynomial of degree 2γ which is given by

H2γ (ξ, t) = [
x2γ ∗ Et (x)

]
(ξ) = (2γ )!

∑
0�α�γ

t |α|ξ2γ−2α

α!(2γ − 2α)! .

Thus the inequality (3.5) is converted to the following stability problem involving
Gauss transform ofu:∣∣Gu(ξ + η, t + s) − Gu(ξ, t) − Gu(η, s)

∣∣ � ε
(
H2γ (ξ, t) + H2γ (η, s)

)
(3.7)

for all ξ, η ∈ Rn, t, s > 0.
Now we follow the same method as in [15]. Replacing bothξ andη by ξ/2, botht and

s by t/2 in (3.7) we have∣∣Gu(ξ, t) − 2Gu(2−1ξ,2−1t)
∣∣ � 2εH2γ (2−1ξ,2−1t)

for all ξ ∈ Rn, t > 0. Making use of the induction argument and triangle inequality w
have

∣∣Gu(ξ, t) − 2nGu(2−nξ,2−nt)
∣∣ � ε

n∑
j=1

2jH2γ (2−j ξ,2−j t)

� ε(2γ )!
∑

an,α
t |α|ξ2γ−2α

α!(2γ − 2α)! (3.8)

0�α�γ
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for all n ∈ N, ξ ∈ Rn, t > 0, wherean,α = 2|α|+1(1− 2(|α|−|2γ |+1)n)/(2|2γ | − 2|α|+1).
Replacingξ, t by 2−mξ,2−mt , respectively in (3.8) and multiplying 2m in the result it

follows easily from the fact|γ | > 1 that

Am(ξ, t) := 2nGu(2−mξ,2−mt)

is a Cauchy sequence which converges locally uniformly. Now let

A(ξ, t) = lim
m→∞Am(ξ, t).

ThenA(ξ, t) is the unique mapping inRn × (0,∞) satisfying

∣∣Gu(ξ, t) − A(ξ, t)
∣∣ � ε(2γ )!

∑
0�α�γ

aα
t |α|ξ2γ−2α

α!(2γ − 2α)! , (3.9)

A(ξ + η, t + s) − A(ξ, t) − A(η, s) = 0 (3.10)

for all ξ, η ∈ Rn, t, s > 0, whereaα = 2|α|+1/(2|2γ | − 2|α|+1). Indeed, the inequality (3.9
follows immediately from (3.8). To prove (3.10), replacingξ, η, t, s by 2−mξ,2−mη,2−mt,

2−ms in (3.7), respectively, multiplying 2m and lettingm → ∞ it follows immediately
from the fact|γ | > 1. To prove the uniqueness ofA(ξ, t), let B(ξ, t) be another function
satisfying (3.9) and (3.10). Then it follows from (3.9), (3.10) and the triangle inequ
that for alln ∈ N,

∣∣A(ξ, t) − B(ξ, t)
∣∣ � n

∣∣∣∣A
(

x

n
,

t

n

)
− B

(
x

n
,

t

n

)∣∣∣∣
� 2ε(2γ )!n1−|γ | ∑

0�α�γ

aα
t |α|ξ2γ−2α

α!(2γ − 2α)! . (3.11)

Letting n → ∞, we haveA(ξ, t) = B(ξ, t) for all ξ ∈ R
n, t > 0. This proves the unique

ness.
Now it is easy to see that every continuous solutionA(ξ, t) of the Cauchy equatio

(3.10) has the form

A(ξ, t) = a · ξ + bt

for somea ∈ C
n, b ∈ C. Letting t → 0+ in (3.9) we have

‖u − a · ξ‖ � 2ε

4|γ | − 2
ξ2γ .

This completes the proof.�
Now we consider the inequality

‖u ◦ A − u ◦ P1 − u ◦ P2‖ � ε
(‖x‖2p + ‖y‖2p

)
for some integerp > 1.

Theorem 3.4. Let u in S ′ or F ′ satisfy the inequality

‖u ◦ A − u ◦ P1 − u ◦ P2‖ � ε
(‖x‖2p + ‖y‖2p

)
(3.12)
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for some integer p > 1. Then there exists a unique a ∈ Cn such that

‖u − a · x‖ � 2ε

4p − 2
‖x‖2p. (3.13)

Proof. Note that we can write

‖x‖2p =
∑

|γ |=p

p!
γ !x

2γ .

Thus convolving in each side of (3.12) the tensor productEt(x)Es(y) of n-dimensional
heat kernels as a function ofx, y the inequality (3.12) is converted to the following i
equality as in the proof of Theorem 3.3:∣∣Gu(ξ + η, t + s) − Gu(ξ, t) − Gu(η, s)

∣∣
� ε

∑
|γ |=p

p!
γ !

(
H2γ (ξ, t) + H2γ (η, s)

)
(3.14)

for all ξ, η ∈ Rn, t, s > 0.
Now making use of the same approach asin the proof of above theorem we have

‖u − a · ξ‖ �
∑

|γ |=p

p!
γ !

(
2ε

4|γ | − 2
ξ2γ

)
= 2ε

4p − 2
‖ξ‖2p.

This completes the proof.�

References

[1] J.A. Baker, Distributional methods for functional equations, Aequationes Math. 62 (2001) 136–142.
[2] J. Chung, Stability of functional equations in the spacesof distributions and hyperfunctions, J. Math. An

Appl. 286 (2003) 177–186.
[3] J. Chung, S.-Y. Chung, D. Kim, Une caractérisation de l’espace de Schwartz, C. R. Acad. Sci. Paris Sé

Math. 316 (1993) 23–25.
[4] J. Chung, S.-Y. Chung, D. Kim, A characterization for Fourier hyperfunctions, Publ. Res. Inst. Math. Sci.

(1994) 203–208.
[5] J. Chung, S.Y. Lee, Some functional equations in the spaces of generalized functions, Aequationes Math. 6

(2003) 267–279.
[6] S.-Y. Chung, Reformulation of some functional equations in the space of Gevrey distributions and regula

of solutions, Aequationes Math. 59 (2000) 108–123.
[7] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991) 431–434.
[8] I.M. Gelfand, G.E. Shilov, Generalized Functions I, II, Academic Press, New York, 1968.
[9] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983.

[10] D.H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27 (1941) 22
224.

[11] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkh
1998.

[12] G. Isac, Th.M. Rassias, On the Hyers–Ulam stability ofψ -additive mappings, J. Approx. Theory 72 (199
131–137.

[13] E.L. Koh, The Cauchy functional equation in distributions, Proc. Amer. Math. Soc. 106 (1989) 641–6
[14] T. Matsuzawa, A calculus approach tohyperfunctions III, Nagoya Math. J. 118 (1990) 133–153.



350 J. Chung / J. Math. Anal. Appl. 300 (2004) 343–350

(1978)
[15] Th.M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72
297–300.

[16] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
[17] S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964, Chapter VI.


