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Abstract

We reformulate and prove the Hyers—Ulam—Rassias stability of Cauchy equation in the space of
Schwartz tempered distributions and Fourier hyperfunctions.
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1. Introduction

Generalizing the stability theorem of D.H. Hyers [10,11] which was motivated by
S.M. Ulam [17], Th.M. Rassias [15] and Z. Gajda [7] showed the following stability theo-
rem for the Cauchy equation:

Theorem 1.1 [7,15]. Let f: E1 — Ep with E1, E2 Banach spaces be an approximately
additive, that is, f satisfies

[fx+y)— f) = fO| <e(lxlI” +1ylI7), p#1, (1.1)
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forall x,y e E1 (x #0and y # 0 if p < 0). Then there exists a unique mapping g : £1 —
E» such that

glx+y)—glx)—g(y)=0
and

2
[Fe0 =5 < 15—

for all x € E1. Heretheinequality (1.1)holdsfor x, y £ 0 and (1.2)for x #0if p <O.

llx]1” (1.2)

The above stability theorem was firstly proved for the gasel by Th.M. Rassias [15]
and later it was proved for the cape- 1 by Z. Gajda [7].

In this paper, we reformulate and prove the above stability theorem in the spaces of gen-
eralized functions such as the spateof Schwartz tempered distributions and the space
F’ of Fourier hyperfunctions for the case thatis even integer grater than 2. Note that
the above inequality (1.1) makes no sensg i§ a tempered distribution or Fourier hyper-
function. Asin [1,2,5,6,13] making use of the pullbacks of generalized function we extend
the inequality (1.1) to the spaces of tempedéstributions and Fouer hyperfunctions as
follows:

luo A —woPr—uo Pall <e(llx|? + [IyII?). (1.3)

Hereuo A, uo Py anduo P> are the pullbacks af in S’ or 7' by A, P1 andP,, respectively,
where A, P; and P; are the functionsA(x, y) = x + y, Pi(x,y) =x and Pz(x,y) = y,
x,y € R". Also the inequality||v| < e(||x]|?” + [|l¥[I??) in (1.3) means thakv, ¢)| <
e [UIx112? + 1y I12P)|@(x, y)| dx dy for all test functionse € S (respectivelyF ).

For the pullback of tempered distributions we refer to [9, Chapters V-VI]. As a matter
of fact, the pullbacks o A, u o Py, u o P> can be written in a transparent way as

(qu,w(x,y))=<u,/<p(x—y,y)dy>,
(uoP1,<p(x,y))=<u,/<p(x,y)dy>,

(uo Pa,p(x, )= <u,/¢(x, ) dX>

for all test functionsy € S(R%").

As a results, we prove that every solution of the inequality (1.3) can be approximated
by a linear function in the sense that there exists a uniga€” such that

2¢
4 — 2

2
lu—a- x| < [l

2. Distributions and hyperfunctions

We first introduce briefly some spaces of generalized functions such as the&pace
of tempered distributions and the spagéof Fourier hyperfunctions which is a natural
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generalization ofS’. Here we use the multi-index notations for= (x1, ..., x;) € R",
o= (o1,...,an) € NG,

le| = a1+ - + o, al=a1!. .. a,!,

(o2 § ap o __ 01 ap
XU =xq000x,", 0" =0,"...9,",

whereNp is the set of non-negative integers ahd= 9/dx;.

Definition 2.1 [3,8,9,16] We denote byS or S(R") the Schwartz space of all infinitely
differentiable functiong in R”" such that

lplla,s = supx®dPp(x)| < 0o 2.1)
X

for all o, B € Njj, equipped with the topology defined by the seminoiimg, . The ele-
ments ofS are called rapidly deeasing functions and the elements of the dual sgce
are calledempered distributions.
As a matter of fact, it is known in [3] that (2.1) is equivalent to
sup|x®p(x)| < oo, s%pls%(s)l <00 (2.7)
§eR"

xeR"

forall &, B € N.

Imposing growth conditions ojf- |l¢, in (2.1) Sato and Kawai introduced the sp&e
of test functions for the Fourier hyperfunctions as follows:

Definition 2.2 [4,8,16] We denote byF or F(R") the Sato space of all infinitely differen-
tiable functionsy in R”" such that

|x%8P p(x)]

AlelBlBlg1 B! = (2.2)

lella,z = sup

x,a,B

for some positive constants, B.
We say thatp; — 0 asj — oo if ||¢;lla,p — 0 asj — oo for someA, B > 0, and
denote byF’ the strong dual ofF and call its elementBourier hyperfunctions.

It is known in [4] that the inequality (2.2) is equivalent to

sup|e(x) | expklx| < oo, ESlﬁgp|¢)(§)| exphl&| < oo (2.2)
E n

xeR"

for someh, k > 0.
Itis easy to see the following topological inclusions:

F— S, S — F.

From now ora test function means an elementin the Schwartz spSce the Sato space
F anda generalized function meansa tempered distribution or a Fourier hyperfunction.
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3. Main theorems

We employ thez-dimensional heat kernel, that is, the fundamental solufipfx) of
the heat operatd; — A, in R? x R;" given by

—n/2 Ciy2
E(r) = { (4r )% exp(—|x|%/4t), t >0,
0, t<0.
Here the semigroup property
(Er* Es)(x) = Er45(x) (3.1)

of the heat kernel will be very useful later. Now let a tempered distributidre given.
Then itsGauss transform

Gu(x,t) = (u* E)(x)=(uy, E;(x —y)), xeR", t>0, (3.2)
is aC>-function inR” x (0, co). As a matter of fact we can represent tempered distribu-
tions via some solutions of the heat equation as follows:

Proposition 3.1[14]. Let u € S'(R"). Thenits Gausstransform Gu(x, t) isa C*°-solution
of heat equation satisfying:
(i) Thereexist positive constants C, M and N such that

|Gux,n| <cr™@+1x)" inR" x (0,5); (3.3)

(i) Gu(x,t) — u ast — 0T inthe sensethat for every ¢ € S,

(u, ) /Gu(x,t)fp(x)dx.

= lim

t—0t
Conversely, every C*°-solution U (x, t) of heat equation satisfying the growth condition
(3.3) can be uniquely expressed as U (x, 1) = Gu(x, t) for someu € S'.

Similarly we can represent Fourier hyperftioas as initial values of solutions of heat
equation as a special case of the results in [12]. In this case, the estimate (3.3) is replaced
by the following: For every > O there exists a positive constaiyt such that

|Gu(x,1)| < Ceexple(lx] +1/7)) inR" x (0,9). (3.3)

Definition 3.2. Letv be inS’ or 7. Then we denote bijv| < v if

|(v, )| < Yol (3.4)
for all test functionsp.

Now we prove main theorems.

Theorem 3.3. Let u in & or F' satisfy the inequality
luoA—uoPL—uo Pl <e(x? +y%) (3.5)
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for somey € N7, || > 1. Then there exists a unique a € C" such that

2¢
||u—a'x||<mx2y. (36)

Proof. Convolving in each side of (3.5) the tensor prodBetx) Es(y) of n-dimensional
heat kernels as a function of y the left-hand side of (3.5) can be written as

[(uoA)x (E/(x)Es(»)] €, m)=(uoA, E/(§ —x)Es(n—y))

<ux,/Et(é—x+y)Es(n—y)dy>
<MXa/Et(§+77_x_y)Es(y)dy>

= {ttx, (B¢ E)(§ + 71— X))
:(ux, Ei s +n —x)>
=Gu +n,t+s),

and similarly

[ o P1) x (E:(x)Es()](E, m) = Gu(§, 1),
[ o Pp) % (E:(x)Es()](§, 1) = Gu(n, s),
whereGu (&, t) is the Gauss transform af
Also the right-hand side of (3.5) can be written as
[ +y27) % (E:(x) Es(1))](€, n) = €(Hay (€, 1) + Hay (1, 9)),
whereH>, is the heat polynomial of degreg 2vhich is given by
tlelg2y =2

Hay (6.0) = [x¥ « E,(0)]¢) = 2y)! ) By 2l

O<a<sy
Thus the inequality (3.5) is converted to the following stability problem involving the
Gauss transform af:
|Gu(& +n.1+s) — Gu(E, 1) — Gu(n,s)| < €(Hay (§,1) + H2y, (1, 5)) (3.7)
forall&,n e R, ¢, s > 0.
Now we follow the same method as in [15]. Replacing bpt#mdn by &£/2, bothr and
s byt/2in (3.7) we have
|Gu(&, 1) — 2Gu(27 Y, 27| < 2eHoy (271, 2711)

for all £ € R", r > 0. Making use of the induction gument and triangle inequality we
have

n
|Gu(s. 1) —2"Gu(27"6,27"1)| <e Y 2/ Hp (277£,2771)
j=1
tla\g_—Zy—Zoc

<e@n)! Y na—m—m— (3.8)

' _ |
0Sasy al(2y — 2a)!



348 J. Chung / J. Math. Anal. Appl. 300 (2004) 343-350

foralln eN, £ eR", 1 > 0, wherea, , = 21*/T1(1 — 2(lel=12yI+Dny s 2l2y| _ Dlel+1y,
Replacingg, t by 27&, 27¢, respectively in (3.8) and multiplying’2in the result it
follows easily from the facly| > 1 that

AnE, 1) :=2"Gu(27"E,27™)
is a Cauchy sequence which converges locally uniformly. Now let
AE, )= lim A, 1).
m— o0

ThenA(§, r) is the unique mapping iR"” x (0, co) satisfying

Gue.n) — AE. D <e@n! Y autir (3.9)

ul,t) — D] < e@y)! o ——F7—F7 7> .
0casy al(2y — 2a)!

A +n,t+s)— A, 1) —A(n,5)=0 (3.10)

forall £€,7 € R", t,s > 0, whereq, = 2/*1+1/(2/2v| — 2lel+1y ‘|ndeed, the inequality (3.9)
follows immediately from (3.8). To prove (3.10), replacing;, ¢, s by 27&, 27"y, 27"t

275 in (3.7), respectively, multiplying 2 and lettingm — oo it follows immediately
from the fact|y| > 1. To prove the uniqueness af&, r), let B(&, t) be another function
satisfying (3.9) and (3.10). Then it follows from (3.9), (3.10) and the triangle inequality

that for alln € N,
x t x t
A<_,_>_B(_,_>
n n n n

< 2e(2y)nt 1! Z a
0<a<y

|A(g.) — B, 1)| <n

t\angnya

“al2y — 2a)! (3.11)

Lettingn — oo, we haveA(&,r) = B(&,¢) for all £ e R”, ¢ > 0. This proves the unique-
ness.

Now it is easy to see that every continuous soluti, ) of the Cauchy equation
(3.10) has the form

AE,t)=a-E+bt

for somea € C*, b € C. Lettingt — 07 in (3.9) we have

2¢
4yl — 2
This completes the proof.O

2
lu—a-&| < £

Now we consider the inequality
luoA—uoPr—uo Pl <e(lxI?” +IlyI?)

for some integep > 1.

Theorem 3.4. Let u in &’ or F' satisfy the inequality
luoA—uoPr—uo Pall <e(llx|? + [IyI?) (3.12)
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for someinteger p > 1. Then there exists a unique a € C" such that

2¢

2p
yrarl A (3.13)

lu—a- x| <

Proof. Note that we can write

|
2p _ P 2y
[lx]] —E y!x .
lyl=p

Thus convolving in each side of (3.12) the tensor produick) E;(y) of n-dimensional
heat kernels as a function af y the inequality (3.12) is converted to the following in-
equality as in the proof of Theorem 3.3:

‘Gu(é +n,t+s5)—Gué,t)— Gu(n,s)|

|
<€ D0 i (Hay 6.0+ Hay.9) (3.14)
YI=p

forall&,neR”, r,s > 0.
Now making use of the same approachrathe proof of above theorem we have

! 2¢ 2¢
lu —a-&| < Z P (T_zézy)zmllé||2p.

1
lyl=p 4

This completes the proof.O0
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