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Abstract

It is known that for any Sobolev function in the spaceWm,p(RN), p � 1, mp � N , wherem is
a nonnegative integer, the set of its singular points has Hausdorff dimension at mostN − mp. We
show that forp > 1 this bound can be achieved. This is done by constructing a maximally sin
Sobolev function inWm,p(RN), that is, such that Hausdorff’s dimension of its singular set is e
to N −mp. An analogous result holds also for Bessel potential spacesLα,p(RN), providedαp < N ,
α > 0, andp > 1. The existence of maximally singular Sobolev functions has been announc
[Chaos Solitons Fractals 21 (2004), p. 1287].
 2004 Elsevier Inc. All rights reserved.
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1. Introduction and the main result

Let u :RN → R be a measurable function. We say thata ∈ R
N is a singular point ofu

if there exist positive constantsR, C andγ such thatu(x) � C|x − a|−γ for a.e.x in the
open ballBR(a). The set of all singular points ofu is denoted by Singu. If we consider
functionsu from the Sobolev spaceWm,p(RN), it is of interest to know how large the
singular sets be in the sense of Hausdorff dimension (see, e.g., Falconer [4]), that
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532 L. Horvat, D. Žubrinić / J. Math. Anal. Appl. 304 (2005) 531–541

n of

heo-
f the
how

y

orem
ss a
Also,

c-

ted in

ential

ential

s

large the value of dimH (Singu) can be. To this end we define the singular dimensio
the Sobolev space by

s-dimWm,p(RN) := sup
{
dimH (Singu): u ∈ Wm,p(RN)

}
. (1)

It has been shown in [11, Theorem 1] that

s-dimWm,p(RN) = N − mp, (2)

providedmp � N andp > 1. We recall that the inequality s-dimWm,p(RN) � N − mp is
known, and follows from Reshetnyak [8, Corollary 2] (or Adams and Hedberg [2, T
rem 5.1.3]), combined with [11, Theorem 4]. For more information about the role o
limiting valueN − mp see [11] and references therein. The aim of this article is to s
that the supremum in (1) is achieved. Here is the main result.

Theorem 1. Assume thatmp < N , wherem is a nonnegative integer, andp > 1. There
exist Sobolev functionsu ∈ Wm,p(RN) such that

dimH (Singu) = N − mp. (3)

Functions from the spaceWm,p(RN) satisfying condition (3) will be called maximall
singular Sobolev functions.

Remark 1. The same result holds for Sobolev spacesWm,p(Ω), whereΩ is an arbitrary
open set inRN . This can be obtained using a slight modification in the proof.

Regarding Theorem 1 it is worth noting that due to the Sobolev imbedding the
no singularities can occur whenmp > N , since in this case Sobolev functions posse
Hölder continuous representative, see, e.g., Adams [1] or Gilbarg and Trudinger [5].
no singularities (in the strong sense introduced above) can occur whenmp = N either,
since in this caseWm,p(RN) is contained in all Lebesgue spacesLq(RN), q � 1. However,
singularities of weaker type (say logarithmic)arepossible in the latter case.

The existence of maximally singular Lebesgue integrable functions inLp(RN), 1 �
p < ∞, has been shown in [13, Section 3]. More precisely, there exist functionsu ∈
Lp(RN) such that dimH (Singu) = N . The proof was carried out by effective constru
tion. This result is just a special case of Theorem 1 form = 0, except for the casep = 1.
We do not know if the statement of Theorem 1 holds also whenp = 1, with arbitrary
m ∈ N. The result about the existence of maximally singular Sobolev functions sta
Theorem 1 has been announced in [13, p. 1287].

We shall prove a more general result than in Theorem 1, involving Bessel pot
spaces

Lα,p(RN) := {
Gα ∗ f : f ∈ Lp(RN)

}
, (4)

see Adams and Hedberg [2], Ziemer [10], or Stein [9] for definition of the Bessel pot
kernelGα and properties of these spaces.

Theorem 2. Assume thatαp < N , whereα > 0, andp > 1. There exist Sobolev function
u ∈ Lα,p(RN) such that
dimH (Singu) = N − αp. (5)
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Theorem 1 is indeed a special case of Theorem 2 due to the following important re
Calderón (see, e.g., Ziemer [10, Theorem 2.6.1], or the original paper of Calderón [3]m

is a positive integer and 1< p < ∞, thenWm,p(RN) = Lm,p(RN). Calderón’s theorem
does not hold forp = 1.

Proof of Theorem 2. Since s-dimLα,p(RN) = N − αp, see [11, Theorem 2], there exis
an increasing sequence of positive real numberssk such thatsk → N − αp ask → ∞, and
a sequence of nonnegative functionsfk ∈ Lp(RN) such that foruk := Gα ∗fk ∈ Lα,p(RN)

we have

dimH (Singuk) � sk. (6)

Now define a functionu :RN → R by

u(x) :=
∞∑

k=1

ck‖fk‖−1
p uk(x), (7)

where by‖fk‖p we denotedLp-norm offk . Let us choose a sequence of positive numb
ck such that

∑
k ck < ∞. Then

u =
∞∑

k=1

ck‖fk‖−1
p (Gα ∗ fk) = Gα ∗

( ∞∑
k=1

ck‖fk‖−1
p fk

)
, (8)

that is,u = Gα ∗ f , where

f (x) :=
∞∑

k=1

ck‖fk‖−1
p fk(x). (9)

To show thatu ∈ Lα,p(RN), by Calderón’s theorem it suffices to check thatf ∈ Lp(RN):

‖f ‖p �
∞∑

k=1

ck < ∞.

Since all functions in the series (7) ofu are nonnegative (recall thatfk � 0), it is clear that⋃
k Singuk ⊆ Singu. Using countable stability of Hausdorff’s dimension, see Falco

[4, p. 29], and (6), we obtain that

dimH (Singu) � dimH

(⋃
k

Singuk

)
= sup

k

(
dimH (Singuk)

)
� sup

k

sk = lim
k

sk

= N − αp.

This together with dimH (Singu) � N − αp (see Reshetnyak [8, Corollary 21]
Adams and Hedberg [2, Theorem 5.1.13], combined with [11, Theorem 4]) implies
dimH (Singu) = N − αp. �

Remark 2. We do not know if Theorems 1 and 2 hold forp = 1 as well.
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2. Construction of maximally singular Sobolev functions

In the proof of Theorem 2 we have the liberty of choosing nonnegative functionsfk , see
the definition of maximally singular Sobolev functionu in (7), with the sole requiremen
thatfk ∈ Lp(RN) and dimH (Sing(Gα ∗fk)) → N −αp. We first recall the construction o
the sequencefk involving generalized Cantor sets, following the idea of the proof of
Theorem 2], and then discuss some other possibilities.

Example 1. We can define functionsfk :RN → R̄ using fractal setsAk (to be specified
shortly) by

fk(x) := d(x,Ak)
−γk for x ∈ Ak(Rk) andf (x) = 0 otherwise, (10)

whered(x,Ak) denotes the Euclidean distance fromx to the setAk , andAk(Rk) is Rk-
neighbourhood ofAk (the Minkowski sausage of radiusRk > 0 aroundAk).

Let sk be an increasing sequence of positive real numbers converging toN − αp. We
choose setsAk so that

dimBAk = dimH Ak = sk. (11)

We can defineAk to be for example of the form of Cantor’s grill:

Ak := C(ak) × [0,1]mk , (12)

whereC(ak) is a generalized, uniform Cantor set with the parameterak ∈ (0,1/2) chosen so
that dimB C(ak) = dimH C(ak) = sk − mk , with mk := �sk�, see Falconer [4, Example 4
with m = 2 andλ = ak ], that is ak = 2mk−sk (we may assume without loss of gener
ity that sk /∈ Z for all k). Here we have used the fact that dimB C(ak) = dimH C(ak) =
log2/ log(1/ak).

Also, we choose the exponentsγk so that

α < γk <
N − sk

p
.

Sincepγk < N − dimBAk , we can use the Harvey–Polking lemma, see [13, Lemma 1
obtain thatfk ∈ Lp(RN).

From the proof of [11, Theorem 4, see (12)] we know thatAk ⊆ Sing(Gα ∗ fk).
Moreover,Gα ∗ fk has the order of singularity equal at least toγk − α on Ak , that
is, (Gα ∗ fk)(x) � Ck/d(x,Ak)

γk−α for all x ∈ Ak(Rk) \ Ak , whereCk > 0. Hence,
dimH (Sing(Gα ∗ fk)) � sk , so that (6) is fulfilled.

Remark 3. We can easily achieve that the singular set ofu in Theorem 2 is even dens
in R

N . It suffices to take{xk} to be a countable, dense set inR
N , and then to choose fract

setsAk as above so thatxk ∈ Ak . Hence,{xk} is contained in Singu.

Remark 4. It is clear that we can choose the setsAk and the valuesRk > 0 in the above con
struction so that the family of Minkowski sausagesAk(Rk), k ∈ N, is disjoint. This implies

that the supports of functionsfk appearing in the series (9) are disjoint. Hence, assuming
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that p ∈ N, p � 2 we conclude that‖f ‖p = ∑
k ck . Using the fact that theWm,p(RN)-

norm of u := Gm ∗ f , f ∈ Lp(RN), defined by‖f ‖p, is equivalent with the usual on
see [9], we obtain that‖u‖m,p = ∑

k ck .

Remark 5. Using scaling and translation we can easily achieve that the family of
Ak(Rk), k ∈ N, is bounded, contained in a prescribed open ball having arbitrarily s
measure. Hence, there exist Sobolev functions that are maximally singular on a sub
prescribed open ball having arbitrarily small volume.

Of course, the setsAk in the above construction can be defined in many other w
instead of (12). In order to be able to construct various examples of Sobolev functi
the formu = Gα ∗ f , see (4), it is of interest to know examples of Lebesgue integr
functions of the formf (x) := d(x,A)−γ defined on a neighbourhood ofA, for various
setsA ⊂ R

N andγ > 0. The upper and lowerd-dimensional Minkowski contents ofA
defined by (see, for example, [6])

M∗d(A) := lim sup
r→0

|A(r)|
rN−d

, Md∗(A) := lim inf
r→0

|A(r)|
rN−d

, (13)

are important tools to achieve this. By|A(r)| we denoteN -dimensional Lebesgue measu
of the Minkowski sausageA(r). We shall need the following result, see [13, Theorem 2
which a nondegeneracy condition of Minkowski contents is crucial. It provides nece
and sufficient conditions for the Lebesgue integrability ofd(x,A)−γ on a neighbourhood
of A. See also [12] for related results.

Theorem 3. LetA be a bounded set inRN , andd ∈ [0,N). If the lower and upperd-dimen-
sional Minkowski contents are nondegenerate, that is,

0< Md∗(A) �M∗d(A) < ∞, (14)

(henced = dimB A), then for anyr > 0,∫
A(r)

d(x,A)−γ dx < ∞ ⇔ γ < N − dimB A. (15)

In the rest of this paper we discuss integrability of the singular functiond(x,S)−γ gen-
erated by the Sierpinski carpetS, in order to illustrate the complexity of possible Sobo
functions inLα,p(RN) whenαp < N , or in Wk,p(RN) whenkp < N .

Theorem 4. LetS be the Sierpinski carpet.

(a) Then

log8

d := dimH S = dimB S =

log3
,
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andd-dimensional Minkowski contents ofS are nondegenerate(i.e., both are differen
from0 and∞). Moreover, the valuesMd∗(S) andM∗d(S) can be expressed explicitl
see(17)and (18), and

Md∗(S) ≈ 1.3506702, M∗d(S) ≈ 1.3556171. (16)

(b) Singular integralIr := ∫
S(r)

d(x, S)−γ dx, γ > 0, is finite if and only ifγ < 2 − d .
Furthermore, we have the following asymptotic behaviour ofIr asr → 0:

2− d

2− d − γ
Md∗(S) � lim inf

r→0

Ir

rN−d−γ
� lim sup

r→0

Ir

rN−d−γ
� 2− d

2− d − γ
M∗d(S).

(c) Let f :RN → R̄ be the function defined byf (x) = d(x,S)−γ for x ∈ S(R), and
f (x) = 0 otherwise, whereR > 0 is fixed. If0< α < γ < 1

p
(N −d) thenf ∈ Lp(RN),

Gα ∗ f ∈ Lα,p(RN), andA ⊆ Sing(Gα ∗ f ). Moreover, the Sobolev functionGα ∗ f

has the order of singularity at leastγ − α onS, that is,

(Gα ∗ f )(x) � C

d(x,A)γ−α
for a.e.x ∈ S(R),

whereC is a positive constant.

Proof. (a) The result about Hausdorff dimension is well known, and follows easily f
Falconer [4, Theorem 9.3].

Now we compute thed-dimensional Minkowski contents ofS. Let S0 be a closed (full)
unit square, divided into nine squares with sides1

3. In the first step of the constructio
we remove an open square with side1

3 from the centre of the unit square, and in th
way 8 squares with the side13 are left behind (we denote their union byS1). Generally, in
the nth step we remove 8n−1 squares with side1

3n , while 8n squares are left behind (w
denote their union bySn). See Fig. 1. The Sierpinski carpetS is obtained by continuing
this procedure ad infinitum, that is,S = ⋂∞

n=0 Sn.
Now, we would like to compute the Lebesgue measure of ther-neighbourhood ofS. Let

r > 0 be given. We look at ther-neighbourhood ofS, denoted byS(r), from two sides of
Fig. 1. First and second step in the construction of the Sierpinski carpet.
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the unit square, and therefore we can divide it into two parts:A(r) is ther-neighbourhood
of S inside the unit squareS0 (innerr-neighbourhood) andB(r) is ther-neighbourhood o
S outside the unit squareS0 (outerr-neighbourhood), which are defined by

A(r) := S(r) ∩ S0, B(r) := S(r) \ S0.

Note thatS(r) = A(r) ∪ B(r). Furthermore, if we closely examine the innerr-neighbour-
hood A(r), we could note that there is a step in the construction ofS after which the
inner r-neighbourhood covers all the squares (the removed ones as well). Hence
is the condition onn such that a full square in thenth generation is not contained in th
r-neighbourhood of its boundary:

r <
1

2
3−n.

It is easily shown that the largest suchn is given by

n(r) =
⌊

log3

(
1

2r

)⌋
.

Therefore, the innerr-neighbourhood is changing in each step until then(r)th step, so le
A

(r)
1 := A

(r)
n(r) \ Sn(r), whereA

(r)
n(r) is the innerr-neighbourhood ofS until then(r)th step.

After that step the innerr-neighbourhood is constant and we denote it byA
(r)
2 . Actually,

A
(r)
2 = Sn(r).
First, we look at the case 1� k � n(r). We compute the area of the innerr-

neighbourhood of any square in thekth generation to be 4r 1
3k − 4r2, so the measure o

the union of all innerr-neighbourhoods of squares over generationsk with 1� k � n(r) is

∣∣A(r)
1

∣∣ =
n(r)∑
k=1

8k−1
(

4r
1

3k
− 4r2

)
= 4

5
r

(
8

3

)n(r)

− 4

7
r28n(r) − 4

5
r + 4

7
r2.

After then(r)th step the area of the innerr-neighbourhoodA(r)
2 is

∣∣A(r)
2

∣∣ = 8n(r)

(
1

3n(r)

)2

=
(

8

9

)n(r)

.

The area of outerr-neighbourhoodB(r) is |B(r)| = 4r + r2π . Now we have∣∣S(r)
∣∣ = ∣∣A(r)

1

∣∣ + ∣∣A(r)
2

∣∣ + |B(r)|

= −4

7
r28n(r) + 4

5
r

(
8

3

)n(r)

+
(

8

9

)n(r)

+
(

4

7
+ π

)
r2 + 16

5
r.

Hence,

|S(r)|
r2−d

= −4

7
rd8n(r) + 4

5
rd−1

(
8

3

)n(r)

+
(

8

9

)n(r)

rd−2 +
(

4

7
+ π

)
rd + 16

5
rd−1.

We see that
|S(r)|

r2−d

= f (r) + O(rd−1),
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f (r) = −4

7
rd8n(r) + 4

5
rd−1

(
8

3

)n(r)

+
(

8

9

)n(r)

rd−2.

Sinced = log3 8> 1, we have thatO(rd−1) = (4
7 + π)rd + 16

5 rd−1 → 0 asr → 0.
Now let us fix any natural numbern and chooser that satisfies

n < log3
1

2r
� n + 1,

that is,

r ∈ In := [rn+1, rn), rn := 1

2
3−n.

For suchr note thatn(r) = n.
We would like to find the points of minimum and maximum inIn for the function

fn : In → R, defined byfn(r) = f (r). It is easy to show that minimumr− and maximum
r+ are given by

r± = 1

3n
d±,

where

d± = 7

2d

(
d − 1

5
±

√
(d − 1)2

25
+ d(d − 2)

7

)
.

An easy computation shows that the values offn(r−) andfn(r+) do not depend onn.
Therefore,

Md∗(S) = lim inf
r→0

|S(r)|
r2−d

= lim inf
r→0

f (r) = fn(r−)

= (d−)d−2

d

(
4d−

5
+ 2

)
≈ 1.350670209701 (17

and

M∗d(S) = lim sup
r→0

|S(r)|
r2−d

= lim sup
r→0

f (r) = fn(r+)

= (d+)d−2

d

(
4d+

5
+ 2

)
≈ 1.355617082261. (18)

Oscillating nature of the functionf (r) nearr = 0 can nicely be seen by plotting i
graph, see Fig. 2.

(b) The first claim follows from Theorem 3, using nondegeneracy of Minkowski
tents in (a). The asymptotic behaviour ofIr follows immediately from [11, estimate (3.4
using (3.5)].
(c) This follows from the proof of [11, Theorem 2].�
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Fig. 2. Graph of the functionf (r) nearr = 0.

Fig. 3. Distance function from the Sierpinski carpetS (two iterations are shown).

Remark 6. From (16) we can see that the Sierpinski carpet is not Minkowski me
able, that is,Md∗(S) < M∗d(S). This fact is known, see Lapidus and van Frankenhuy
[7, p. 141].

It is interesting to visualize the distance functionx �→ d(x,A) from the Sierpinski car
petA, see Fig. 3.

The graph of the corresponding singular functiond(x,S)−γ defined on the unit squar
in R

2 is exhibited in Fig. 4. Visualization of the analogous graph of the functiond(x,A)−γ ,
x ∈ (0,1), whereA is Cantor’s set, can be seen in [13, p. 1286].

Example 2. In the construction of Sobolev functionGα ∗ f ∈ Lα,p(RN), p > 1, αp < N ,

generated by (9), where the functionsfk are described in Example 1, instead of Cantor
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Fig. 4. The functionx �→ d(x,S)−γ (only two iterations are shown) is Lebesgue integrable on the sq
(0,1) × (0,1) if and only if γ < 2− log 8/ log 3.

grills Ak := C(ak) × [0,1]mk generating functionsfk we can consider for instance sets
the formAk := S × C(ak) × [0,1]mk . HereS is the Sierpinski carpet, andak ∈ (0,1/2),
mk ∈ N are suitably chosen constants, so thatf ∈ Lp(RN) and dimH (Sing(Gα ∗ f )) =
N − αp.
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