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Abstract

It is known that for any Sobolev function in the spaéé-? (RN), p > 1, mp < N, wherem is
a nonnegative integer, the set of its singular points has Hausdorff dimension aivrmestp. We
show that forp > 1 this bound can be achieved. This is done by constructing a maximally singular
Sobolev function inw? (RY), that is, such that Hausdorff's dimension of its singular set is equal
to N —mp. An analogous result holds also for Bessel potential spa€e¥R"), providedap < N,
a > 0, andp > 1. The existence of maximally singular Sobolev functions has been announced in
[Chaos Solitons Fractals 21 (2004), p. 1287].
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction and the main result

Letu:RY — R be a measurable function. We say that RY is a singular point of:
if there exist positive constan®, C andy such that(x) > C|x — a|? for a.e.x in the
open ballBg(a). The set of all singular points of is denoted by Sing. If we consider
functionsu from the Sobolev spac#”-?(RV), it is of interest to know how large their
singular sets be in the sense of Hausdorff dimension (see, e.g., Falconer [4]), that is, how
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large the value of dim (Singu) can be. To this end we define the singular dimension of
the Sobolev space by

s-dimw™?(R") := sup{dimy (Singu): u € W™?([RY)}. (1)
It has been shown in [11, Theorem 1] that
s-dimw™?@RN) =N — mp, (2)

providedmp < N andp > 1. We recall that the inequality s-di#”-?(RY) < N —mp is
known, and follows from Reshetnyak [8, Corollary 2] (or Adams and Hedberg [2, Theo-
rem 5.1.3]), combined with [11, Theorem 4]. For more information about the role of the
limiting value N — mp see [11] and references therein. The aim of this article is to show
that the supremum in (1) is achieved. Here is the main result.

Theorem 1. Assume thainp < N, wherem is a nonnegative integer, angd > 1. There
exist Sobolev functionse W™?(RV) such that

dimg (Singu) = N — mp. 3)

Functions from the spac&”? (R") satisfying condition (3) will be called maximally
singular Sobolev functions.

Remark 1. The same result holds for Sobolev spa@é8-7(£2), wheres2 is an arbitrary
open set irR". This can be obtained using a slight modification in the proof.

Regarding Theorem 1 it is worth noting that due to the Sobolev imbedding theorem
no singularities can occur whenp > N, since in this case Sobolev functions possess a
Hélder continuous representative, see, e.g., Adams [1] or Gilbarg and Trudinger [5]. Also,
no singularities (in the strong sense introduced above) can occur mipea N either,
since in this cas&"? (R") is contained in all Lebesgue spadeqR"), g > 1. However,
singularities of weaker type (say logarithmarg possible in the latter case.

The existence of maximally singular Lebesgue integrable functions’iR"), 1 <
p < oo, has been shown in [13, Section 3]. More precisely, there exist functions
LP(RY) such that ding (Singu) = N. The proof was carried out by effective construc-
tion. This result is just a special case of Theorem lnfoe 0, except for the casp = 1.

We do not know if the statement of Theorem 1 holds also whea 1, with arbitrary
m € N. The result about the existence of maximally singular Sobolev functions stated in
Theorem 1 has been announced in [13, p. 1287].

We shall prove a more general result than in Theorem 1, involving Bessel potential

spaces

L*P@®RY):={Go x f: fe LF®RM)}, (4)

see Adams and Hedberg [2], Ziemer [10], or Stein [9] for definition of the Bessel potential
kernelG, and properties of these spaces.

Theorem 2. Assume tha&p < N, wherea > 0, and p > 1. There exist Sobolev functions
u € L%P(RN) such that

dimg (Singu) = N — ap. ©)
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Theorem 1 is indeed a special case of Theorem 2 due to the following important result of
Calderén (see, e.g., Ziemer [10, Theorem 2.6.1], or the original paper of Calder6n43]): if
is a positive integer and & p < oo, then WP (RN) = L™-P(RN). Calderdn’s theorem
does not hold fop = 1.

Proof of Theorem 2. Since s-dimL%?(RY) = N — ap, see [11, Theorem 2], there exists
an increasing sequence of positive real numbgssich that, — N — ap ask — oo, and

a sequence of nonnegative functiofiss L? (RY) such that fouy := G4 * fi € L% (RN)
we have

dimg (Singug) > s. (6)
Now define a functiom : RY — R by
o
u(@) =Yl fiell, ur (x), 7

k=1

where by]| fi || , we denoted.”-norm of fj.. Let us choose a sequence of positive numbers
cx such thad ", cx < 0o. Then

w=>Y_cllfil , " (Ga * f) = Gy x (chnfku,,lfk), ®)
k=1 k=1
thatis,u = G, * f, where
&)=Y all fill M fe). 9
k=1

To show that: € L*?(R"), by Calderon’s theorem it suffices to check thfat L? (RV):

o0
11, <Y cx <oo.
k=1

Since all functions in the series (7) @fare nonnegative (recall thgt > 0), it is clear that
(U, Singux < Singu. Using countable stability of Hausdorff's dimension, see Falconer
[4, p. 29], and (6), we obtain that

dimg (Singu) > dimg <U Singuk> = sup(dimg (Singuy)) > sups; = Ii]r(n Sk
P k k

=N —ap.

This together with dirg(Singu) < N — ap (see Reshetnyak [8, Corollary 21] or
Adams and Hedberg [2, Theorem 5.1.13], combined with [11, Theorem 4]) implies that
dimg (Singu) =N —ap. O

Remark 2. We do not know if Theorems 1 and 2 hold fpr=1 as well.
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2. Construction of maximally singular Sobolev functions

In the proof of Theorem 2 we have the liberty of choosing nonnegative functigrsee
the definition of maximally singular Sobolev functianin (7), with the sole requirement
that f; € L?(RV) and dimy (Sing(Gy, * fi)) — N —ap. We first recall the construction of
the sequencg; involving generalized Cantor sets, following the idea of the proof of [11,
Theorem 2], and then discuss some other possibilities.

Example 1. We can define functiong; : RV — R using fractal setsi; (to be specified
shortly) by

fe(x) :=d(x, Ay)™" for x € Ay (Ry) and f (x) = 0 otherwise, (20)

whered(x, A;) denotes the Euclidean distance franto the setA;, and Ay (Ry) iS Ry-
neighbourhood ofi; (the Minkowski sausage of radiug, > 0 aroundAy).

Let s; be an increasing sequence of positive real numbers convergiNg-tap. We
choose setd so that

(ﬁ"lBAk =dimyg Ay = s¢. (11)
We can defined, to be for example of the form of Cantor’s grill:
Ap = C%) % [0, 1], (12)

whereC @) is a generalized, uniform Cantor set with the paramater (0, 1/2) chosen so
that dimg C@) = dimy C*) = s, — my, with my := [s¢ ], see Falconer [4, Example 4.5
with m = 2 andA = g;], that isa;, = 2”5 (we may assume without loss of general-
ity that s; ¢ Z for all k). Here we have used the fact that ¢iifi) = dimy C) =
log 2/log(1/ax).

Also, we choose the exponentsso that

N —si

o< Yr <

Sincepyr < N —dimgAx, we can use the Harvey—Polking lemma, see [13, Lemma 1], to
obtain thatf; € L7 (RY).

From the proof of [11, Theorem 4, see (12)] we know tHat C Sing(Gy * fi).
Moreover, G, * fi has the order of singularity equal at leastytp— o on Ag, that
iS, (Gg * fr)(x) = Ci/d(x, Ap)V*— for all x € Ax(Ry) \ Ax, where C; > 0. Hence,
dimg (Sing(Gy, * fi)) = sk, so that (6) is fulfilled.

Remark 3. We can easily achieve that the singular setzah Theorem 2 is even dense
in RV . It suffices to takdx,} to be a countable, dense sefiff, and then to choose fractal
setsA; as above so that, € Ax. Hence{x;} is contained in Sing.

Remark 4. Itis clear that we can choose the sgjsand the value®; > 0 in the above con-
struction so that the family of Minkowski sausageg Ry), k € N, is disjoint. This implies
that the supports of functiong appearing in the series (9) are disjoint. Hence, assuming
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that p € N, p > 2 we conclude thal £, = Y, cx. Using the fact that thav:» (R")-
norm ofu := G,, % f, f € LP(RY), defined byll £l », is equivalent with the usual one,
see [9], we obtain thaku||,,, , = D ck-

Remark 5. Using scaling and translation we can easily achieve that the family of sets
Ax(Rp), k € N, is bounded, contained in a prescribed open ball having arbitrarily small
measure. Hence, there exist Sobolev functions that are maximally singular on a subset of a
prescribed open ball having arbitrarily small volume.

Of course, the setd in the above construction can be defined in many other ways
instead of (12). In order to be able to construct various examples of Sobolev functions in
the formu = G, * f, see (4), it is of interest to know examples of Lebesgue integrable
functions of the formf (x) := d(x, A)~" defined on a neighbourhood df, for various
setsA c RN andy > 0. The upper and lowef-dimensional Minkowski contents of
defined by (see, for example, [6])

|A()]
SN—d

ME(A) = liminf %, (13)

M*(A) :=limsup
r—0

are important tools to achieve this. B§(r)| we denoteV-dimensional Lebesgue measure

of the Minkowski sausage (). We shall need the following result, see [13, Theorem 2], in
which a nondegeneracy condition of Minkowski contents is crucial. It provides necessary
and sufficient conditions for the Lebesgue integrability/¢f, A)~ on a neighbourhood

of A. See also [12] for related results.

Theorem 3. Let A be a bounded setiR”, andd € [0, N). If the lower and upped-dimen-
sional Minkowski contents are nondegenerate, that is,

0< M4(A) < MM (A) < o0, (14)
(henced = dimg A), then for anyr > 0,

/d(x,A)_ydx<oo &  y<N-—dmgA. (15)
A(r)

In the rest of this paper we discuss integrability of the singular funetianS)~" gen-
erated by the Sierpinski carp&tin order to illustrate the complexity of possible Sobolev
functions inL%? (RY) whenap < N, orin W&?(RN) whenkp < N.

Theorem 4. Let S be the Sierpinski carpet.

(a) Then

log 8

d:= dimHS=dimB S=—,
log3
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andd-dimensional Minkowski contents §fare nondegeneratg.e., both are different
from0 andoo). Moreover, the values1?(S) and M*?(S) can be expressed explicitly,
see(17)and(18), and

M2(8)~1.3506702  M*(S)~ 13556171 (16)
(b) Singular integrall, := fs(r)d(x, $)~7dx, y > 0, is finite if and only ify <2 —d.
Furthermore, we have the following asymptotic behaviouk. @fsr — 0:

2— I, 2—d

d g
—_— S) <liminf < *(S).
—yM*( ) L L z_d_yM )

I <limsu
2—d v P

(c) Let f:RY — R be the function defined by (x) = d(x, S)~" for x € S(R), and
f(x) =0otherwise, wher® > Qisfixed. If0<a <y < %(N—d) thenf e LP(RV),
Go * f € L*P(RN), and A C Sing(G,, * f). Moreover, the Sobolev functiai, * f
has the order of singularity at least — « on S, that is,
Gy * fHx) = W fora.e.x € S(R),
whereC is a positive constant.

Proof. (a) The result about Hausdorff dimension is well known, and follows easily from
Falconer [4, Theorem 9.3].

Now we compute the-dimensional Minkowski contents ¢f. Let So be a closed (full)
unit square, divided into nine squares with sicgsln the first step of the construction,
we remove an open square with siée‘rom the centre of the unit square, and in that
way 8 squares with the si@are left behind (we denote their union y). Generally, in
the nth step we remove”8* squares with sidg%, while 8' squares are left behind (we
denote their union bys,). See Fig. 1. The Sierpinski carpg&tis obtained by continuing
this procedure ad infinitum, that iS,= (0,2 S,.

Now, we would like to compute the Lebesgue measure of theighbourhood of. Let
r > 0 be given. We look at the-neighbourhood of, denoted by5(r), from two sides of

Fig. 1. First and second step in the construction of the Sierpinski carpet.
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the unit square, and therefore we can divide it into two patt8: is ther-neighbourhood
of S inside the unit squargy (innerr-neighbourhood) an@ ) is ther-neighbourhood of
S outside the unit squarg (outerr-neighbourhood), which are defined by

AT .= S(r) N So, B™ :=5(r)\ So.

Note thatS(r) = A”) U B"). Furthermore, if we closely examine the inneneighbour-

hood A®, we could note that there is a step in the constructiors affter which the

inner r-neighbourhood covers all the squares (the removed ones as well). Hence, there
is the condition om such that a full square in theth generation is not contained in the

r-neighbourhood of its boundary:
1
=3
r< 2

It is easily shown that the largest suels given by

o |(2)}

Therefore, the inner-neighbourhood is changing in each step until#iieth step, so let

A(lr) = Afl’()r) \ Sn(rys WhereAff()r) is the innerr-neighbourhood of until then(r)th step.
After that step the inner-neighbourhood is constant and we denote m@? Actually,
A = Sy

First, we look at the case & k < n(r). We compute the area of the inner
neighbourhood of any square in théh generation to ber%lk — 4r2, so the measure of
the union of all inner-neighbourhoods of squares over generationgth 1 < k < n(r) is

n(r) 1 n(r)
)| _ k—1 2\ _ = _ T 2agn(r) _ -2
|A1 |—k218 <4r—k—4r)——r( ) regt’ r4=re.

After then(r)th step the area of the innemeighbourhoom(zr) is

2 r
|A(r)| — 8n(r)< 1 ) — (?)n '
2 3 9 ’

The area of outer-neighbourhoo®B " is |[B")| = 4r + r?z. Now we have

5] = 49|+ 47| +187)

4 ) 4 38 n(r) 38 n(r) 4 16
- 8n(r) - e e - 2 —
7r +5r(3) ~|—<9> +<7+n)r + 5r
Hence,

SO 4 gy 4 aa(8Y' (8" 4n, (4 g, 16 44
,,2——d=_?r 8" +§V 3 + 9 r + ?—I-T[ +€r .

We see that

S
e )
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where

4 4 n(r) n(r)
fr)= —7rd8”(r) + grd_l<g) + <g> rd=2,

Sinced = log3 8 > 1, we have thaD (r?~) = (4 + 7)rd + 2r?~1 - 0 asr — 0.
Now let us fix any natural numberand choose that satisfies

1
n<|Og32—<n+1,
r

that is,

1
rely, =[rpi1,rn), 1= 53_”.
For such- note thatu(r) = n.

We would like to find the points of minimum and maximum ip for the function
fu: 1, — R, defined byf, (r) = f(r). Itis easy to show that minimum. and maximum
ry are given by

1
ry = 3—ndi,
where

7 (d-1_ [@-12 dd-2
di_ﬁ( 5 jE\/ 25 T 7 )

An easy computation shows that the valuesi,gf-_) and f,,(r1) do not depend on.
Therefore,

M{($) = liminf 'S(f” =liminf £(r) = ()
d—2
_ - 4)1 (% + 2) ~ 1.350670209701 (17)
and
M (S) = I|m sup| ( N _ I|m supf(r) Fu(ry)
d-2
(di)l <% + 2) ~ 1.355617082261 (18)

Oscillating nature of the functiorf (r) nearr = 0 can nicely be seen by plotting its
graph, see Fig. 2.

(b) The first claim follows from Theorem 3, using nondegeneracy of Minkowski con-
tents in (a). The asymptotic behaviour Bffollows immediately from [11, estimate (3.4),
using (3.5)].

(c) This follows from the proof of [11, Theorem 2].0
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Fig. 2. Graph of the functiorf (r) nearr = 0.

Fig. 3. Distance function from the Sierpinski cargeftwo iterations are shown).

Remark 6. From (16) we can see that the Sierpinski carpet is not Minkowski measur-
able, that is,MZ(S) < M*4(S). This fact is known, see Lapidus and van Frankenhuysen
[7, p. 141].

It is interesting to visualize the distance function> d(x, A) from the Sierpinski car-
petA, see Fig. 3.

The graph of the corresponding singular functitiz, S)~" defined on the unit square
in R? is exhibited in Fig. 4. Visualization of the analogous graph of the funetian A) =7,
x € (0,1), whereA is Cantor’s set, can be seen in [13, p. 1286].

Example 2. In the construction of Sobolev functiag, * f € L*?(RY), p > 1,ap <N,
generated by (9), where the functioris are described in Example 1, instead of Cantor
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Fig. 4. The functionx — d(x, S)~" (only two iterations are shown) is Lebesgue integrable on the square
(0,1) x (0,1) ifand only if y <2 —log8/log 3.

grills Ay := C@) x [0, 1]™ generating functiong; we can consider for instance sets of
the form Ay := § x C) x [0, 1]”*. Here S is the Sierpinski carpet, ang, € (0,1/2),
my € N are suitably chosen constants, so tiiat L?(RY) and dimy (Sing(Gy * f)) =

N —ap.
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