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Abstract

In this paper, we give the definition of iterated order to classify functions of fast growth in the unit disc,
and investigate the growth of solutions of linear differential equations with analytic coefficients of iterated
order in the unit disc. We obtain several results concerning the iterated order of solutions.
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1. Definitions and introduction

In this paper, we assume that the reader is familiar with the fundamental results and the stan-
dard notations of the Nevanlinna value-distribution theory of meromorphic functions in the unit
disc ∆ = {z: |z| < 1} (see [3,6]). In addition, let us recall the following definitions.

Definition A. [4] The order of meromorphic function f in ∆ is defined by

σ(f ) = lim
r→1−

logT (r, f )

log 1
1−r

; (1.1)
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for an analytic function f in ∆, we also define

σM(f ) = lim
r→1−

log logM(r,f )

log 1
1−r

, (1.2)

where M(r,f ) is the maximum modulus function.

Remark 1.1. M. Tsuji [5, Theorem V.13] gives that if f is an analytic function in ∆, then

σ(f ) � σM(f ) � σ(f ) + 1. (1.3)

Observe that there exists f such that σ(f ) �= σM(f ); for example, a function g(z) =
exp{(1 − z)−a} (a > 1) satisfies σ(g) = a − 1 and σM(g) = a, see [5, p. 205]. From this, we see
that σ(f ) = σM(f ) if σ(f ) = ∞. So it is natural to ask the following question:

Question 1. How to describe precisely the fast growth of infinite order of functions in the ∆?

Definition B. [4] Let f be analytic in ∆, and let q ∈ [0,∞). Then f is said to belong to the
weighted Hardy space H∞

q provided that

sup
z∈∆

(
1 − |z|2)q ∣∣f (z)

∣∣ < ∞.

We say that f is an H -function when f ∈ H∞
q for some q .

Definition C. [2] Let f be an H -function and set

p = inf
{
q � 0: f ∈ H∞

q

}
.

Then f is said to belong to the space Gp .

We need to give some definitions and discussions. Firstly, let us give two definitions about the
degree of small growth order of functions in ∆ as polynomials on the complex plane C. There
are many types of definitions of small growth order of functions in ∆ (i.e., see [2,7]).

Definition 1.1. Let f be a meromorphic function in ∆, and

D(f ) = lim
r→1−

T (r, f )

log 1
1−r

= b. (1.4)

If b < ∞, we say that f is of finite b degree (or is nonadmissible); if b = ∞, we say that f is of
infinite degree (or is admissible), both defined by characteristic function T (r, f ).

Definition 1.2. Let f be an analytic function in ∆; if

DM(f ) = lim
r→1−

logM(r,f )

log 1
1−r

= a < ∞ (or = ∞), (1.5)

then we say that f is a function of finite a degree (or of infinite degree) defined by maximum
modulus function M(r,f ).

Remark 1.2. It can be deduced that the constant p in Definition C satisfies p = DM(f ) = a,

which is denoted as f ∈ Da in [7, Definition 5].



280 T.-B. Cao, H.-X. Yi / J. Math. Anal. Appl. 319 (2006) 278–294
Now we give the definitions of iterated order and growth index to classify generally the func-
tions of fast growth in ∆ as those in C (see [1,11]). Thus we answer Question 1 from the defini-
tions. Let us define inductively, for r ∈ [0,1), exp[1] r = er and exp[n+1] r = exp(exp[n] r), n ∈ N.
For all r sufficiently large in (0,1), we define log[1] r = log r and log[n+1] r = log(log[n] r),
n ∈ N. We also denote exp[0] r = r = log[0] r , log[−1] r = exp[1] r and exp[−1] r = log[1] r . More-
over, we denote by E and H subsets in [0,1) with

∫
E

dr
1−r

< ∞ and
∫
H

dr
1−r

= ∞, respectively.
They may be different in various instances.

Definition 1.3. The iterated n-order σn(f ) of a meromorphic function f (z) in ∆ is defined by

σn(f ) = lim
r→1−

log[n] T (r, f )

log 1
1−r

(n ∈ N); (1.6)

for an analytic function f in ∆, we also define

σM,n(f ) = lim
r→1−

log[n+1] M(r,f )

log 1
1−r

(n ∈ N), (1.7)

Remark 1.3. (1) If n = 1, then we denote σ1(f ) =: σ(f ), σM,1(f ) =: σM(f ).
(2) If n = 2, then denote by σ2(f ) the hyperorder (see [8]).

Definition 1.4. The growth index of the iterated order of a meromorphic function f (z) in ∆ is
defined by

i(f ) =



0 if f is nonadmissible,
min{n ∈ N: σn(f ) < ∞} if f is admissible,
∞ if σn(f ) = ∞ for all n ∈ N.

For an analytic function f in ∆, we also define

iM(f ) =



0 if f is nonadmissible,
min{n ∈ N: σM,n(f ) < ∞} if f is admissible,
∞ if σM,n(f ) = ∞ for all n ∈ N.

Remark 1.4. If σn(f ) < ∞ or i(f ) � n, then we say that f is of finite n-order; if σn(f ) = ∞ or
i(f ) > n, then we say that f is of infinite n-order. In particular, we say that f is of finite order if
σ(f ) < ∞ or i(f ) � 1; f is of infinite order if σ(f ) = ∞ or i(f ) > 1.

Now we give two propositions about the above defined characteristics.

Proposition 1.1. If f and g are meromorphic functions in ∆, n ∈ N, then we have

(i) σn(f ) = σn(1/f ), σn(a · f ) = σn(f ) (a ∈ C − {0});
(ii) σn(f ) = σn(f

′);
(iii) max{σn(f + g), σn(f · g)} � max{σn(f ), σn(g)};
(iv) if σn(f ) < σn(g), then σn(f + g) = σn(g), σn(f · g) = σn(g).

Proof. (i) By Definition 1.3 and the First Main Theorem in ∆, it holds obviously.
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(ii) Let r1 = r + 1−r
4 , r2 = r + 1−r

2 , r3 = r + 3(1−r)
4 ; similar discussion as to the inequality of

C.T. Chuang (see [6, Theorem 4.1] or [12]), one can see that: if f is meromorphic in ∆, then for
r → 1−, we have

T (r, f ) < O

(
T (r3, f

′) + log
1

1 − r

)
.

On the other hand,

T (r, f ′) = m(r,f ′) + N(r,f ′) � m(r,f ) + m

(
r,

f ′

f

)
+ 2N(r,f )

� 2T (r, f ) + m

(
r,

f ′

f

)
.

Hence σn(f ) = σn(f
′).

Considering that

T (r, f + g) � T (r, f ) + T (r, g), T (r, f · g) � T (r, f ) + T (r, g) + O(1),

and

T (r, g) = T

(
r,

f · g
f

)
, T (r, g) = T

(
r, (f + g) − f

)
,

we can obtain (iii) and (iv). �
Proposition 1.2. If f and g are analytic functions in ∆, n ∈ N, then we have

(i) σM,n(a · f ) = σM,n(f ) (a ∈ C − {0});
(ii) σM,n(f ) = σM,n(f

′);
(iii) max{σM,n(f + g), σM,n(f · g)} � max{σM,n(f ), σM,n(g)};
(iv) if σM,n(f ) < σM,n(g), then σM,n(f + g) = σM,n(g);
(v) D(f ) � DM(f );

(vi) if i(f ) = n = 1, then σ(f ) � σM(f ) � σ(f ) + 1; if i(f ) = n > 1, then σn(f ) = σM,n(f );
(vii) i(f ) = iM(f ).

Proof. By Definition 1.3, (i) holds obviously. From |f + g| � |f | + |g| � 2 max{|f |, |g|} and
|fg| � |f ||g| � max{|f |, |g|}2, we can get (iii) and (iv) considering that g = (f + g) − f . Now
we prove (ii) and (v)–(vii).

(ii) For |z| = r ∈ (0,1), take point z0 = reiθ satisfying |f ′(z0)| = M(r,f ′) and s(r) = 1 −
1
2 (1 − r), and a circle Cr = {ς : |ς − z0| = s(r) − r}. Since

f ′(z0) = 1

2π

∫
Cr

f (ς)

(ς − z0)2
dς and max

{|f |: ς ∈ Cr

}
� M

(
s(r), f

)
,

we deduce that

M(r,f ) = ∣∣f ′(z0)
∣∣ � 1

2π

2π∫
f (ς)

(ς − z0)2

(
s(r) − r

)
dθ � M(s(r), f )

s(r) − r
= M(s(r), f )

1
2 (1 − r)

.

0
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Hence

σM,n(f
′) = lim

r→1−
log[n+1] M(r,f ′)

log 1
1−r

� lim
r→1−

log[n+1] M(s(r), f )

log

{
1

1−s(r)

(
1 + log 1−s(r)

1−r

log 1
1−s(r)

)} = σM,n(f ).

On the other hand, from the formula

f (z) =
z∫

0

f ′(t) dt + f (0),

we obtain that

∣∣f (z)
∣∣ �

r∫
0

∣∣f ′(t)
∣∣dt + ∣∣f (0)

∣∣ �
r∫

0

M(t,f ′) dt + ∣∣f (0)
∣∣ � M(r,f ′) + ∣∣f (0)

∣∣
for |z| = r . Hence M(r,f ) � M(r,f ′) + |f (0)|, thus σM,n(f ) = σM,n(f

′). Therefore (ii) holds.
(v) From Nevanlinna’s theory, we know that if f (z) is analytic at |z| = r < 1, then

T (r, f ) � log+ M(r,f ) � 1 + r

1 − r

(
T (r, f )

)
. (1.8)

So D(f ) � DM(f ).
(vi) From (1.8), we get that

log[n] T (r, f )

log 1
1−r

� log[n+1] M(r,f )

log 1
1−r

�
log[n]{ 1+r

1−r
T (r, f )

}
log 1

1−r

.

Thus we can see that σ(f ) � σM(f ) � σ(f ) + 1 if n = 1, and that σn(f ) = σM,n(f ) if n > 1.
(vii) From (vi) and Definition 1.4, it is obvious that i(f ) = iM(f ). �

Remark 1.5. (i) We have σp(f ) = σM,p(f ) when i(f ) = iM(f ) = p > 1, which is the same as
the result of the iterated order (see [1,11]) of an entire function in the complex plane C.

(ii) We have D(f ) � DM(f ) if f is an analytic function in ∆. However it is not true that
“DM(f ) < ∞ if and only if D(f ) < ∞” (see [7, Proposition 1]). For example, for the analytic
function f (z) = eg(z) = e1/(1−z) in ∆, one can get that DM(f ) = ∞ and D(f ) < ∞.

2. Results of differential equations

Considering the growth of order of solutions of linear differential equations

f (k) + ak−1(z)f
(k−1) + · · · + a0(z)f = 0, (∗)

where the coefficients aj (z) (j = 0, . . . , k −1) are analytic functions in ∆, there exist few results
(see [4,8,9]) of precise estimation of the order of solutions of (∗) because the Wiman–Valiron
theory, which plays a very important role in the proof of estimations of order of solutions of
equations on the whole complex plane, does not hold in ∆.

Theorem A. [4] Let a0(z), . . . , ak−1(z) be the sequence of coefficients of (∗) analytic in ∆. Let
aj (z) be the last coefficient not being an H -function while the coefficients aj+1(z), . . . , ak−1(z)

are H -functions. Then (∗) possesses at most j linearly independent analytic solutions of finite
order of growth in ∆.
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Theorem B. [9] Let a0(z), . . . , ak−1(z) be the coefficients of (∗) analytic in ∆ satisfying that
either σ(aj ) < σ(a0) (j = 1, . . . , k − 1) or a0 is admissible, and aj (j = 1, . . . , k − 1) are non-
admissible. Then every solution f �≡ 0 is of infinite order.

Theorem C. [8] Consider equation

f ′′ + a1(z)f
′ + a0(z)f = 0, (∗∗)

where the coefficients ai(z) (i = 0,1) with σM(a1) < σM(a0) are analytic functions in ∆. Then
every non-trivial solution f satisfies

lim
r→1−

log logT (r, f )

log 1
1−r

� σM(a0).

Thus it is a natural question as follows:

Question 2. Can we get the result

lim
r→1−

log logT (r, f )

log 1
1−r

� σM(a0)

in Theorem C?

In 2004, Z.-X. Chen and K.H. Shon [7] obtained some results of the small growth of solutions
of (∗) and (∗∗) in ∆ when i(aj ) = 0 (j = 0,1, . . . , k − 1). Thus there exists a natural question
as follows:

Question 3. How about the iterated order of the fast growth of solutions of (∗) or (∗∗) in ∆?

Let us consider homogeneous linear differential equations of the form

L(f ) = f (k) + Ak−1(z)f
(k−1) + · · · + A0(z)f = 0 (k ∈ N), (2.1)

where the coefficients Aj(z) (j = 0, . . . , k − 1) are analytic functions in ∆, and at least one of
them not constant. We exclude the case Aj = constant (j = 0, . . . , k − 1) because it is very well
known. One knows that each solution of Eq. (2.1) is analytic in ∆. In what follows, we use the
following notations.

Notation 2.1.

δ = sup
{
i(f ): L(f ) = 0

}
,

γn = sup
{
σn(f ): L(f ) = 0

}
,

γM,n = sup
{
σM,n(f ): L(f ) = 0

}
,

p = max
{
i(Aj ): j = 0, . . . , k − 1

}
.

Notation 2.2. If 0 < p < ∞, then mark

α = max
{
σp(Aj ): j = 0, . . . , k − 1

}
,

αM = max
{
σM,p(Aj ): j = 0, . . . , k − 1

}
.
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Remark 2.1. By Proposition 1.2(vii), we see that

δ = sup
{
iM(f ): L(f ) = 0

}
,

p = max
{
iM(Aj ): j = 0, . . . , k − 1

}
.

Remark 2.2. By Proposition 1.2(vi), we see that γδ = γM,δ if δ > 1, and that γ1 � γM,1 � γ1 + 1
if δ = 1.

Remark 2.3. By Proposition 1.2(vi), we see that αM � α. In particular, αM = α if p > 1.

Now we give our main results as follows.

Theorem 2.1. For Eq. (2.1), the following conditions are satisfied:

(i) δ � 1 + p;
(ii) if 0 < p < ∞, then δ = 1 + p and αM � γM,p+1 = γp+1 � α;

(iii) if p = 0 and max{DM(Aj ): j = 0, . . . , k − 1} = m, then γ1 � γM,1 � 1 + m.

Corollary 2.1. For Eq. (2.1), if 1 < p < ∞, then δ = 1 + p and αM = γM,p+1 = γp+1 = α.

Theorem 2.2. If 0 < p < ∞ and j = max{n: i(An) = p,n = 1, . . . , k − 1}, then Eq. (2.1) pos-
sesses at most j linearly independent solutions f with i(f ) � p.

If the last coefficient A0(z) in Eq. (2.1) is the dominant coefficient, we know more about the
iterated order of the growth of the solutions.

Theorem 2.3. Let 0 < p < ∞ and i(A0) = p. If max{i(Aj ): j = 1, . . . , k − 1} < p or
max{σM,p(Aj ): j = 1, . . . , k−1} < σM,p(A0), then i(f ) = p+1 and σM,p+1(f ) = σp+1(f ) =
σM,p(A0) � σp(A0) hold for all solutions f �≡ 0 of Eq. (2.1).

Theorem 2.4. Let 0 < p < ∞ and i(A0) = p. If max{i(Aj ): j = 1, . . . , k − 1} < p or
max{σp(Aj ): j = 1, . . . , k − 1} < σp(A0), then i(f ) = p + 1 and σp(A0) � σM,p+1(f ) =
σp+1(f ) � αM hold for all solutions f �≡ 0 of Eq. (2.1).

Corollary 2.2. Let 1 < p < ∞ and i(A0) = p. If Ai (i = 0,1, . . . , k − 1) satisfy the conditions
of Theorem 2.3 or Theorem 2.4, then i(f ) = p + 1 and σM,p+1(f ) = σp+1(f ) = σp(A0) =
σM,p(A0) = α = αM hold for all solutions f �≡ 0 of Eq. (2.1).

Considering the second order equation

f ′′ + A1(z)f
′ + A0(z)f = 0, (2.2)

we have the following results.

Theorem 2.5. For Eq. (2.2), δ = 1 + p. In addition,

(i) γ1 + 1 � γM,1 � γ1 � D(A0)
4 − 2, if p = 0;

(ii) γ1 + 1 � γM,1 � γ1 � D(A1) − 2, if p = 0.
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Corollary 2.3. For Eq. (2.2), if ∞ > p > 1, then δ = 1 + p and αM = γM,p+1 = γp+1 = α.

3. Lemmas for the proofs of theorems

Lemma 3.1. [4] Let f be a meromorphic function in the unit disc and let k ∈ N. Then

m

(
r,

f (k)

f

)
= S(r, f ), (3.1)

where S(r, f ) = O(log+ T (r, f )) + O(log( 1
1−r

)), r /∈ E, where E ⊂ [0,1) with
∫
E

dr
1−r

< ∞. If
f is of finite order of growth, then

m

(
r,

f (k)

f

)
= O

(
log

(
1

1 − r

))
.

Lemma 3.2. [1] Assume that G = I × J ⊂ C is an open rectangle and |Aj(z)| < bj (j =
0, . . . , k − 1) for all z ∈ G. Define

M = 1

2

[
1 + max{2b0 + b1 + · · · + bk−1,1 + b2,1 + b3, . . . ,1 + bk−2}

]
.

Let z0 be a point in G and f be a solution of equation

L(f ) = f (k) + Ak−1(z)f
(k−1) + · · · + A0(z)f = 0 (k ∈ N),

where the coefficients Aj(z) (j = 0, . . . , k − 1) are analytic functions on G. Let∥∥f (z)
∥∥ = {∣∣f (z)

∣∣2 + ∣∣f ′(z)
∣∣2 + · · · + ∣∣f (k−1)

∣∣2}1/2
,

and h(z) = exp{M · (|Re z − Re z0| + | Im z − Im z0|)}. Then∥∥f (z0)
∥∥ · (h(z)

)−1 �
∥∥f (z)

∥∥ �
∥∥f (z0)

∥∥ · h(z) (3.2)

for every z ∈ G.

Lemma 3.3. Let E be a subset of [0,1) with
∫
E

dr
1−r

< ∞. If F,G : (0,1) → R are functions
satisfying

(i) F is nondecreasing and G is positive,
(ii) limr→1− G(s(r))/G(r) = 1 for all functions s : (0,1) → R such that 0 < s(r) − r < ε

(r > 0).

Then

lim
r→1−

F(r)

G(r)
= sup

{
lim

n→∞
F(rn)

G(rn)
: r1 < · · · < rn < · · · , rn → 1− and rn /∈ E (n = 1,2, . . .)

}
.

(3.3)

Proof. We have

lim−
F(r) = sup

{
lim

n→∞
F(rn) : {rn}∞n=1 ∈ D

}
,

r→1 G(r) G(rn)
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where D = {{rn}∞n=1: r1 < r2 < · · · , rn → 1−}. Take {rn}∞n=1 ∈ D such that limn→∞ F(rn)/

G(rn) = limr→1− F(r)/G(r). One can find a sequence {rn}∞n=1 and an integer n0 with s1 < s2 <

· · · < sn < · · ·, sn /∈ E for every n, and 0 < sn − rn < ε (n > n0), because
∫
E

dr
1−r

< ∞. Then
{sn}∞n=1 ∈ D and limn→∞ G(sn)/G(rn) = 1, so

lim
n→∞

F(rn)

G(rn)
= lim

n→∞
F(rn)

G(sn)
� lim

n→∞
F(sn)

G(sn)
� lim

r→1−
F(r)

G(r)
,

and then (3.3) holds. �
Lemma 3.4. Let f be an analytic function in ∆ for which: either (i) iM(f ) = b (0 < b < ∞)

and σM,b(f ) = σ , or (ii) iM(f ) = b = 0 and DM(f ) = σ . Then there exists a set H ⊂ [0,1)

with
∫
H

dr
1−r

= ∞, for r ∈ H , given ε > 0, we have

M(r,f ) � exp[b]
{(

1

1 − r

)σ−ε}
. (3.4)

Proof. Set β = σ − ε, τ = σ − ε/2; then there exists {rn} ⊂ [0,1) satisfying (1 − rn)
−ε/2 � nβ

and log[b] M(r,f ) � (1 − rn)
−τ . Hence for all n ∈ N, we have

log[b] M(r,f ) �
(

n

1 − rn

)β

.

Set H = ⋃
Hn, Hn = [

rn,1 − 1−rn
n

]
, if r ∈ H , then

log[b] M(r,f ) � log[b] M(rn,f ) �
(

n

1 − rn

)β

�
(

1

1 − rn

)β

and ∫
H

dr

1 − r
�

1−rn/n∫
rn

dr

1 − r
= logn → ∞ (n → ∞).

Thus the lemma holds. �
Lemma 3.5. [2] Let f be a meromorphic function in ∆. Let α ∈ (1,∞) and β ∈ (1,∞) be
constants, and k, j be integers satisfying k > j � 0. Assume that f (j) �≡ 0. Let {am} denote
the sequence of all the zeros and poles of f (j) listed according to multiplicities and ordered by
increasing moduli, and let nj (r) denote the counting function of the points {am}.

Then the following two statements holds:

(a) If {am} is a finite sequence, then there exist constants R ∈ (0,1) and C ∈ (0,∞), such that
for all z satisfying R < |z| < 1, we have (with r = |z|)∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ � C

[
T (1 − β(1 − r), f ) − log(1 − r)

(1 − r)2

]k−j

. (3.5)

(b) If {am} is an infinite sequence, then there exists an infinite sequence of discs Di = {z:
|z − ci | < Ri} ⊂ ∆ − {0} (i = 1,2, . . .), such that

∞∑ R

1 − |ci | < ∞,
i=1
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and there exist constants R ∈ (0,1) and C ∈ (0,∞), such that for all z satisfying z /∈ ⋃∞
i=1

and R < |z| < 1, we have (with r = |z|)∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ � C

[
T (1 − β(1 − r), f ) − log(1 − r)

(1 − r)2
+ W(r)

]k−j

, (3.6)

where

W(r) = nj (1 − β(1 − r))

1 − r

(
log

1

1 − r

)α

log+ nj

(
1 − β(1 − r)

)
.

(c) There exists a set E′ ⊂ [0,2π) which has linear measure zero, and a constant C > 0 such
that if θ ∈ [0,2π)−E′, then there is a constant R = R(θ) ∈ [0,1) such that for all z satisfy-
ing arg z = θ and R � |z| < 1, we have that (3.5) or (3.6) holds, depending on whether {am}
is a finite or infinite sequence, respectively.

Lemma 3.6. [2] Let f be a meromorphic function in ∆ of finite order σ . Let ε > 0 be a constant,
and k and j be integers satisfying k > j � 0. Assume that f (j) �≡ 0. Then the following two
statements holds:

(a) There exists a set E ⊂ [0,1) with
∫
E

dr
1−r

< ∞ such that for all z ∈ ∆ satisfying |z| /∈ E, we
have ∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ � 1

(1 − |z|)(k−j)(σ+2+ε)
. (3.7)

(b) There exists a set E′ ⊂ [0,2π) which has linear measure zero, such that if θ ∈ [0,2π) − E′,
then there is a constant R = R(θ) ∈ [0,1) such that for all z satisfying arg z = θ and R �
|z| < 1, we have that (3.7) holds.

4. Proof of Theorem 2.1

(i) Let f be a solution of (2.1). Set

M(r) = max
{∣∣f (z)

∣∣: |z| = r
}
, Mj (r) = max

{∣∣Aj(z)
∣∣: |z| = r

};
N(r) = sup

{∣∣f (z)
∣∣: |z| ∈ Gr

}
and Nj(r) = sup

{∣∣Aj(z)
∣∣: |z| ∈ Gr

}
,

where Gr = (−r, r) × (−r, r) ⊂ ∆, j = 0, . . . , k − 1. It is obvious that one can replace M(r) by
N(r), and Mj(r) by Nj(r) in the respective expressions of iterated n-order.

If p = ∞, then (i) is trivial. Otherwise, there exist real numbers 1 > r0 > 0, d0, . . . , dk−1 > 0
such that Nj(r) < exp[p]{( 1

1−r
)dj } (j = 0, . . . , k − 1), when 1 > r > r0. Apply Lemma 3.2 for

z0 and Gr to obtain∣∣f (z)
∣∣ �

∥∥f (z)
∥∥ �

∥∥f (0)
∥∥ · exp

{
2r + 2rN0(r) + · · · + 2rNk−1(r)

}
,

if z ∈ Gr and r > r0, because M � 1+N0(r)+· · ·+Nk−1(r). If d ∈ (1+max{d0, . . . , dk−1},∞),
one can find 1 > r1 > r0 with

2r + 2rN0(r) + · · · + 2rNk−1(r) < exp[p]
{(

1

1 − r

)d}
,

when 1 > r > r1. If s ∈ (d,∞), then there is 1 > r2 > r1 such that∥∥f (0)
∥∥ exp

{
2r + 2rN0(r) + · · · + 2rNk−1(r)

}
< exp[p+1]

{(
1

)s}
,

1 − r
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when 1 > r > r2. Thus

N(r) < exp[p+1]
{(

1

1 − r

)s}
and

log[p+2] N(r)

log 1
1−r

< s asymptotically.

Hence σM,p+1(f ) < ∞ and iM(f ) � 1 + p. So δ � 1 + p.
(ii) Set 0 < p < ∞. From the definition of αM , it is clear that, for any ε > 0, one has Nj(r) <

exp[p]{( 1
1−r

)αM+ε} for r > r0. But it is easily derived that there is 1 > r1 > r0 � 0 with

∥∥f (0)
∥∥ exp

{
2r + 2rN0(r) + · · · + 2rNk−1(r)

}
< exp[p+1]

{(
1

1 − r

)αM+2ε}

when 1 > r > r1. Hence N(r) < exp[p+1]{( 1
1−r

)αM+2ε} asymptotically. Hence

log[p+2] N(r)

log 1
1−r

< αM + 2ε asymptotically,

and σM,p+1(f ) � αM + 2ε for each ε > 0, i.e., σM,p+1(f ) � αM and γp+1 = γM,p+1 � αM .
On the other hand, let f1, . . . , fk be a solution base of Eq. (2.1). From the above discussion,

we know that i(fj ) � δ � p + 1. Then

σδ(fj ) < ∞ (j = 1, . . . , k). (4.1)

Hence, by Lemma 3.1, for some β < ∞,

m

(
r,

f
(n)
j

fj

)
= O

(
log+ T (r, fj )

) + O

(
log

1

1 − r

)
= O

(
exp[δ−2]

{(
1

1 − r

)β})
(j = 1, . . . , k), (4.2)

where n � 1 and r /∈ E.
We now follow closely the method by H. Wittich using the standard order reduction procedure

(see [10]); let us denote

υ1(z) = d

dz

(
f (z)

f1(z)

)
,

Ak = 1 and υ
(−1)
1 = f

f1
, i.e., (υ

(−1)
1 )′ = υ1. Hence

f (n) =
n∑

m=0

(
n

m

)
f

(m)
1 υ

(n−1−m)
1 (n = 0, . . . , k). (4.3)

Substituting (4.3) into (2.1) and using the fact that f1 solves (2.1), we obtain

υ
(k−1)
1 + A1,k−2(z)υ

(k−2)
1 + · · · + A1,0(z)υ1 = 0, (4.4)

where

A1,j = Aj+1 +
k−j−1∑
m=1

(
j + 1 + m

m

)
Aj+1+m

f
(m)
1

f1
(4.5)

for j = 0, . . . , k − 2. The meromorphic functions

υ1,j (z) = d
(

fj+1(z)
)

(j = 1, . . . , k − 1) (4.6)

dz f1(z)
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form a solution base to (4.4). By (4.1) and Proposition 1.1(ii), the functions υ1,j are of finite
δ-order.

By (4.1), (4.5) and Proposition 1.1(ii), one can see that

m(r,A1,j ) = O

(
exp[δ−2]

{(
1

1 − r

)β})
, r /∈ E, j = 0, . . . , k − 2, (4.7)

implies

m(r,Ai) = O

(
exp[δ−2]

{(
1

1 − r

)β})
, r /∈ E, i = 0, . . . , k − 1. (4.8)

We may now proceed as above to further reduce the order of (4.4). In each reduction step, we
obtain a solution base of meromorphic function of finite δ-order corresponding to (4.4), and the
reasoning corresponding to (4.7) and (4.8) remains valid. Hence, we finally obtain an equation
of type

υ ′ + A(z)υ = 0.

Since σδ(υ) < ∞,

m(r,A) = m

(
r,−υ ′

υ

)
= O

(
exp[δ−2]

{(
1

1 − r

)β})
, r /∈ E.

Observing the reasoning corresponding to (4.7) and (4.8) in each reduction step, we see that

m(r,Aj ) = O

(
exp[δ−2]

{(
1

1 − r

)β})
, r /∈ E (4.9)

holds for j = 0, . . . , k − 1. Since the coefficients Aj are analytic in ∆, we have T (r,Aj ) =
O(exp[δ−2]{( 1

1−r
)β}) outside a possible exceptional set E. By Lemma 3.3, we have for any

c > 1,

T (r,Aj ) = O

(
exp[δ−2]

{
c

(
1

1 − r

)β})
= O

(
exp[δ−2]

{(
1

1 − r

)β+ε})
. (4.10)

Hence, σδ−1(Aj ) < ∞, j = 0, . . . , k − 1. Now i(Aj ) � δ − 1 for all j = 0, . . . , k − 1 and so
p � δ − 1. Hence δ = p + 1.

Since δ = p + 1 < ∞, there exists a solution f of (2.1) such that σp+1(f ) = γp+1. Since
σp+1(f ) � γp+1 for all solutions f of (2.1), we may replace β in the above reasoning with
γp+1 + ε, where ε > 0. By (4.10), we get

T (r,Aj ) = O

(
exp[p−2]

{(
1

1 − r

)γp+1+2ε})
for all j = 0, . . . , k − 1. Hence α � γp+1.

Thus (ii) holds from the above discussion.
(iii) Set p = 0. Similar arguments to the first half of (ii), taking into account that 2r +

2rN0(r) + · · · + 2rNk−1(r) < ( 1
1−r

)m+1+ε for all 1 > r > r0(ε) > 0, hence (iii) holds.

5. Proof of Theorem 2.2

By our assumptions, σp(Aj ) < ∞ and σp−1(Aj ) = ∞. Furthermore σp−1(Ai) < ∞ for i =
j + 1, . . . , k − 1. Let f1, . . . , fj+1 be linearly independent solutions of (2.1) such that i(fn) � p.
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Table 1

k k − 1 · · · k − j · · · j j − 1 · · · 1 0 solutions

υ0 1 A0,k−1 · · · A0,k−j · · · A0,j A0,j−1 · · · A0,1 A0,0 υ0,1, . . . , υ0,j+1
υ1 1 · · · A1,k−j · · · A1,j A1,j−1 · · · A1,1 A1,0 υ1,1, . . . , υ1,j

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

υj−1 Aj−1,k−j · · · Aj−1,j Aj−1,j−1 · · · Aj−1,1 Aj−1,0 υj−1,1, υj−1,2
υj 1 · · · Aj,j Aj,j−1 · · · Aj,1 Aj ,0 υj,1

Hence σp(fn) < ∞, n = 1, . . . , j + 1. If j = k − 1, then δ = sup{i(f ): L(f ) = 0} � p, contra-
dicting Theorem 2.1(ii). Hence j < k − 1.

We now apply the same order procedure as in the proof of Theorem 2.1. Let use the notation υ0
instead of f and A0,0, . . . ,A0,k−1 instead of A0, . . . ,Ak−1. In the general reduction step, we
obtain an equation of type

υ(k−n)
n + An,k−n−1(z)υ

(k−n−1)
n + · · · + An,0(z)υn = 0, (5.1)

where

An,j = An−1,j+1 +
k−j−n∑
m=1

(j+1+m

m

)
An−1,j+1+m

υ
(m)
n−1,1

υn−1,1
(5.2)

and where the functions

υn,j (z) = d

dz

(
υn−1,j+1(z)

υn−1,1(z)

)
(j = 1, . . . , k − n)

determine a solution base of (5.1) in terms of the proceeding solution base.
We may express (2.1) and the j reduction steps by Table 1 as follows. The rows correspond

to (5.1) for υ0, . . . , υj , i.e., the first row corresponds to (2.1), and the column from k to 0 give
the coefficients of these equations, while the last column lists the solutions of finite p-order.

By Proposition 1.2 and (5.2), we see that in the second row corresponding to the first reduction
step, m(r,A1,t ) = O(exp[p−2]( 1

1−r
)β), r /∈ E, holds for t = j, . . . , k − 2, while i(A1,j−1) = p.

Similarly, in each reduction step, Eq. (5.1) implies that m(r,An,t ) = O(exp[p−2]( 1
1−r

)β), r /∈ E,
holds for t = j + 1 − n, . . . , k − (n + 1), i.e., for all coefficients to the left from the boldface co-
efficient An,j−n, while i(An,j−n) = p for n = 1, . . . , j . After j reduction steps, we have by (5.1)

Aj,0 = −υ
(k−j)

j,1

υj,1
− Aj,k−j−1

υ
(k−j−1)

j,1

υj,1
− · · · − Aj,1

υ ′
j,1

υj,1
.

Hence, m(r,Aj,0) = O(exp[p−2]( 1
1−r

)β), r /∈ E. Since Aj,0 is analytic in ∆, T (r,Aj,0) =
m(r,Aj,0) and by using Lemma 3.3 again, we obtain that σp−1(Aj,0) < ∞, contradicting
i(Aj,0) = p. Therefore, Theorem 2.2 follows.

6. Proofs of Theorem 2.3 and 2.4

Proof of Theorem 2.3. Denote σM,p(f ) = σ and let f �≡ 0 be a solution of Eq. (2.1), then by
(2.1), we have

−A0 = f (k)

+ Ak−1
f (k−1)

+ · · · + A1
f ′

. (6.1)

f f f
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Hence,

|A0| �
∣∣∣∣f (k)

f

∣∣∣∣ +
k−1∑
m=1

(
|Am|

∣∣∣∣f (m)

f

∣∣∣∣
)

. (6.2)

Hence, by Lemma 3.5, we have∣∣∣∣f (j)(z)

f (z)

∣∣∣∣ � O

(
T (1 − β(1 − r), f ) logs(1 − r)

(1 − r)t

)2j

, r /∈ E, (6.3)

where s, t are positive constants. By Lemma 3.4, there exists a set H ⊂ (0,1) with
∫
H

dr
1−r

= ∞,

for |z| = r ∈ H , given σ − b > 2ε > 0, where b = max{σM,p(Aj ): j = 1, . . . , k − 1}, then

M(r,A0) � exp[p]
{(

1

1 − r

)σ−ε}
. (6.4)

Now, by (6.2)–(6.4), and

|Aj | � exp[p]
{(

1

1 − r

)b+ε}
,

we have(
1 − o(1)

)
exp[p]

{(
1

1 − r

)σ−ε}
� O

(
T (1 − β(1 − r), f )

(1 − r)n

)m

, r ∈ H − E,

where m,n are positive constants. So, by Lemma 3.3, i(f ) � p + 1, and σp+1(f ) � σ . By
Theorem 2.1, we have i(f ) � p + 1, and σp+1(f ) � σ . Therefore, Theorem 2.3 follows. �
Proof of Theorem 2.4. Denote σp(A0) = σ and set f �≡ 0 be a solution of Eq. (2.1), then by
(6.1), we have

m(r,A0) �
k−1∑
j=1

m(r,Aj ) +
k∑

j=1

m

(
r,

f (j)

f

)
+ O(1). (6.5)

By Definition 1.3, we get that there exists {r ′
n} (r ′

n → 1−) such that

lim
r ′
n→1−

log[p] T (r ′
n,A0)

log 1
1−r ′

n

= σ.

Set
∫
E

dr
1−r

= log δ < ∞. Since

1−(1−r ′
n)/(δ+1)∫

r ′
n

dr

1 − r
= log(δ + 1),

there exists

rn ∈
[
r ′
n,1 − 1 − r ′

n

δ + 1

]
− E ⊂ [0,1)

such that

log[p] T (rn,A0)

log 1
� log[p] T (r ′

n,A0)

log
(

δ+1′
) = log[p] T (r ′

n,A0)

log 1 ′ + log(δ + 1)
.

1−rn 1−rn 1−rn
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Hence

lim
r→1−

log[p] T (rn,A0)

log 1
1−rn

� lim
r→1−

log[p] T (r ′
n,A0)

log 1
1−r ′

n
+ log(δ + 1)

= σ.

Therefore

lim
r→1−

log[p] T (rn,A0)

log 1
1−rn

= σ.

By the conditions of the theorem, for any given ε (0 < 2ε < σ −b), where b = max{σp(Aj ): j =
1, . . . , k − 1}, we have

T (rn,A0) � exp[p−1]
{(

1

1 − rn

)σ−ε}
, (6.6)

T (rn,Aj ) � exp[p−1]
{(

1

1 − rn

)b+ε}
. (6.7)

By Lemma 3.1,

m

(
rn,

f (j)

f

)
= O

(
log

(
1

1 − rn
T (r, f )

))
. (6.8)

Hence we get from (6.5)–(6.8) that i(f ) � p + 1 and σ = σp(A0) � σp+1(f ). By Theorem 2.1,
we know that i(f ) � p + 1 and αM � σp+1(f ). Therefore, Theorem 2.4 follows. �
7. Proof of Theorem 2.5

By Theorem 2.1, δ � 1 + p. Set f1, f2 to be a fundamental system of solutions of Eq. (2.2),
then the Wronskian W = f1f

′
2 − f ′

1f2 is analytic in ∆, and σn(W) � max{σn(f1), σn(f2)} by
Proposition 1.1. Then

A1(z) = −W ′

W
and A0(z) = −f ′′

f
− A1

f ′

f
= −f ′′

f ′ · f ′

f
− A1

f ′

f
. (7.1)

Furthermore, γn = max{σn(f1), σn(f2)} (because f = af1 + bf2, where f is a solution of (2.2),
a, b ∈ C). By (7.1), we obtain

m(r,A1) = m

(
r,

W ′

W

)
, (7.2)

m(r,A0) = m

(
r,

f ′′

f

)
+ 2m

(
r,

f ′

f

)
+ m(r,A1) + log 2. (7.3)

If δ = 0, then i(f ) = 0 for all solutions f , that is, every solution is a nonadmissible. But it is
well known that this is possible only if L(f ) = f ′′ and this case is excluded. Then δ = 1 + p is
trivial if p = 0.

Let p > 0. By contradiction, let us assume that 0 < δ < 1 + p, then δ � p and i(f ) � p.
Hence, σp(fj ) < ∞ (j = 1,2). So σp(W) < ∞. Then by Lemma 3.1 and (7.2), we get

T (r,A1) = m(r,A1) = m

(
r,

W ′ )
= O

(
log

(
1

T (r,W)

))
(r /∈ E). (7.4)
W 1 − r
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Since log[p] T (r,W) = O(log 1
1−r

),

log[p−1] T (r,A1) = O

(
log

(
1

1 − r
T (r,W)

))
= O

(
log

1

1 − r

)
(r /∈ E). (7.5)

By using Lemma 3.3 with F(r) = log[p−1] T (r,A1) and G(r) = log 1
1−r

, we conclude that
σp−1(A1) < ∞ if p > 1, and A1 is a nonadmissible if p = 1. But again from Lemma 3.1, by
(7.3), we have

T (r,A0) = m(r,A0)

= O

(
log

(
1

1 − r
T (r, f )

))
+ O

(
log

(
1

1 − r
T (r, f ′)

))

+ O

(
log

(
1

1 − r
T (r,A1)

))
+ O

(
log

(
1

1 − r

))
(r /∈ E). (7.6)

Since σp(f ′) = σp(f ) by Proposition 1.1, we derive as above that σp−1(A0) < ∞ if p > 0, or
A0 is nonadmissible if p > 1. Thus p = max{i(A0), i(A1)} � p − 1, this is a contradiction. Thus
δ = 1 + p.

(i) If p = 0, assume that γ1 < t , where t = D(A0)−8
4 , then D(A0) > 8, σ(f ′) = σ(f ) < d and

σ(W) < d for some d ∈ (0, t). Thus from (7.3) and Lemma 3.6, we get

T (r,A0) = m(r,A0)

= 1

2π

2π∫
0

log+
∣∣∣∣f ′′(reiθ )

f ′(reiθ )

∣∣∣∣dθ + 1

π

2π∫
0

log+
∣∣∣∣f ′(reiθ )

f (reiθ )

∣∣∣∣dθ

+ 1

2π

2π∫
0

log+
∣∣∣∣W ′(reiθ )

W(reiθ )

∣∣∣∣dθ + log 2

� 4 log+
{(

1

1 − r

)σ(f )+2+ε}
+ log 2.

By Lemma 3.3 again, we have D(A0) � 4d + 8 < 4t + 8 = D(A0), a contradiction. Thus γ1 +
1 � γM,1 � γ1 � D(A0)−8

4 , if p = 0.
(ii) If p = 0, assume that γ1 < s, where s = D(A1)−2 > 0, then by similar arguments as in (i),

from (7.2) and Lemma 3.6, we have a contradiction. Thus γ1 + 1 � γM,1 � γ1 � D(A0) − 2, if
p = 0.
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