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Abstract

Norm-convergent martingales on tensor products of Banach spaces are considered in a measure-free
setting. As a consequence, we obtain the following characterization for convergent martingales on vector-
valued Lp-spaces: Let (Ω,Σ,μ) be a probability space, X a Banach space and (Σn) an increasing sequence
of sub σ -algebras of Σ . In order for (fn,Σn)∞

n=1 to be a convergent martingale in Lp(μ,X) (1 � p < ∞)

it is necessary and sufficient that, for each i ∈ N, there exists a convergent martingale (x
(n)
i

,Σn)∞
n=1 in

Lp(μ) and yi ∈ X such that, for each n ∈ N, we have

fn(s) =
∞∑
i=1

x
(n)
i

(s)yi for all s ∈ Ω,

where ‖∑∞
i=1 | limn→∞ x

(n)
i

|‖Lp(μ) < ∞ and limi→∞ ‖yi‖ → 0.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Classical martingale theory in vector-valued Lp-spaces has proved to be a useful tool in the
study of the geometry of Banach spaces (see [4–6]). In this work, we are concerned with provid-
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ing a representation of convergent vector-valued martingales in terms of convergent scalar-valued
martingales and constant sequences from the underlying Banach space.

Let (Ω,Σ,μ) denote a probability space. Then, for 1 � p < ∞ and X a Banach space, let
Lp(μ,X) denote the space of (classes of a.e. equal) Bochner p-integrable functions f :Ω → X

and denote the Bochner norm on Lp(μ,X) by Δp , i.e.,

Δp(f ) =
(∫

Ω

‖f ‖p
X dμ

)1/p

.

If Σ1 is a sub σ -algebra of Σ, the conditional expectation of f ∈ Lp(μ,X) relative to Σ1,

denoted by E(f | Σ1), is a Σ1-measurable element of Lp(μ,X) which is given by∫
A

E(f | Σ1) dμ =
∫
A

f dμ for all A ∈ Σ1. (1.1)

A monotone increasing sequence (Σn) of sub σ -algebras of Σ is called a filtration. For a fil-
tration (Σn) and n � m, it follows from (1.1) that

E( · | Σn) = E
(
E( · | Σm) | Σn

) = E
(
E( · | Σn) | Σm

)
,

which implies R(E( · | Σn)) ⊆ R(E( · | Σm)). Here, we use the notation R(T ) to denote the
range of a function T .

If (Σn) is a filtration, a sequence (fn) in Lp(μ,X) is called a martingale relative to (Σn) if
each fn is Σn-measurable and

E(fm | Σn) = fn for all n � m.

A martingale (fn) is norm-convergent if there exists f ∈ Lp(μ,X) such that Δp(f −fn) → 0 as
n → ∞. From this point on we shall simply refer to a norm-convergent martingale as convergent.

Our aim is to prove the following result which describes convergent martingales on Lp(μ,X).

Theorem 1.1. Let (Ω,Σ,μ) denote a probability space, (Σn)
∞
n=1 a filtration, X a Banach space

and 1 � p < ∞. Then, in order for (fn,Σn)
∞
n=1 to be a convergent martingale in Lp(μ,X), it is

necessary and sufficient that, for each i ∈ N, there exists a convergent martingale (x
(n)
i ,Σn)

∞
n=1

in Lp(μ) and yi ∈ X such that, for each n ∈ N, we have

fn(s) =
∞∑
i=1

x
(n)
i (s)yi for all s ∈ Ω,

where∥∥∥∥∥
∞∑
i=1

∣∣∣ lim
n→∞x

(n)
i

∣∣∣∥∥∥∥∥
Lp(μ)

< ∞ and lim
i→∞‖yi‖ → 0.

Theorem 1.1 is a special case of Theorem 5.3 below, and its proof is given at the end of
Section 5.

2. Preliminaries

It is well known that Lp(μ,X) is isometrically isomorphic to the norm completion
Lp(μ) ⊗̃Δp X of Lp(μ) ⊗Δp X. An isometric isomorphism can be established in the follow-
ing way (see [1–4]): Define ψ :Lp(μ) × X → Lp(μ,X) by ψ(g,x)(s) = g(s)x for all s ∈ Ω .
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Then ψ is bilinear. Hence, there is a unique linear map Ψ :Lp(μ) ⊗ X → Lp(μ,X) for which
Ψ ◦ ⊗ = ψ . The image of the step functions

S(μ) ⊗ X =
{

n∑
k=1

χAk
⊗ xk: n ∈ N, χAk

integrable, xk ∈ X

}
under Ψ is the set of X valued step functions in Lp(μ,X), denoted by

Sp(X) :=
{

n∑
k=1

xkχAk
: n ∈ N, χAk

integrable, xk ∈ X

}
.

Consequently, Lp(μ) ⊗ X is dense in Lp(μ,X); i.e., the continuous extension Ψ̃ :Lp(μ) ⊗̃Δp

X → Lp(μ,X) of Ψ is a surjective isometry.
For the convenience of the reader, we recall the construction of a conditional expectation on

Lp(μ,X), as can be found in [4], in terms of the above completed tensor product. Let Σ1 be a
sub σ -algebra of Σ . Define E( · | Σ1) :Sp(X) → Sp(X) by

E

(
n∑

i=1

χAi
⊗ xi

∣∣∣ Σ1

)
= (

E( · | Σ1) ⊗ idX

)( n∑
i=1

χAi
⊗ xi

)
,

where E(χAi
| Σ1) denotes the conditional expectation of χAi

∈ Lp(μ). By Jensen’s inequality,
it can be shown that

Δp

(
E

(
n∑

i=1

χAi
⊗ xi

∣∣∣ Σ1

))
� Δp

(
n∑

i=1

χAi
⊗ xi

)
.

The conditional expectation E( · | Σ1) :Lp(μ,X) → Lp(μ,X), of f ∈ Lp(μ,X) relative to Σ1,

is defined as the continuous extension of the operator E( · | Σ1) ⊗ idX on Sp(X) to Lp(μ,X);
it satisfies (1.1) and is a contractive projection.

We assume that the reader is familiar with the basic concepts and notation of Banach spaces,
Banach lattices, vector-valued Lp-spaces and Riesz spaces as can be found in [4,13–15,17].

3. Martingales on Banach spaces

A measure-free approach to martingales on Banach lattices is studied in [16], where it is
observed that if F is a Banach lattice, then Lp(μ,F ) is also a Banach lattice, which grants access
to this approach. However, for a general Banach space X, Lp(μ,X) is not a Banach lattice, in
which case, a large portion of [16] is not applicable. We introduce the notion of a martingale on
a Banach space and present a characterization of norm-convergence of such martingales.

Motivated by the above discussion and the measure-free approaches to martingales on Banach
lattices and Riesz spaces given in [10,16], we introduce the following.

Definition 3.1. Let X be a Banach space.

(a) If Ti :X → X is a contractive projection and Ti∧j = TiTj for each i, j ∈ N, then the sequence
of projections (Ti) is called a BS-filtration on X.

(b) If (Ti) is a BS-filtration on X, then (fi, Ti) is called a martingale on X if Tifj = fi for all
i � j.
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Notice in the above definition, for i � j , we have that R(Ti) ⊆ R(Tj ). If X is a Banach space
and (Ti) a BS-filtration on X, let

M(X,Ti) = {
(fi, Ti): (fi, Ti) is a martingale on X

}
.

Then M(X,Ti) is a vector space if we define (fi, Ti) + (gi, Ti) = (fi + gi, Ti) and λ(fi, Ti) =
(λfi, Ti) for all λ ∈ R. The map Θ :M(X,Ti) → XN, defined by Θ((fi, Ti)) = (fi), is a linear
injection. It is well known that the space of all norm bounded sequences on X, denoted by
�∞(X) := {(xi) ∈ XN: sup‖xi‖ < ∞}, is a Banach space with respect to the norm ‖(xi)‖ :=
supi ‖xi‖. Define ‖ · ‖ on M(X,Ti) by ‖(fi, Ti)‖ = supi ‖fi‖ and let M(X,Ti) denote the space
of norm bounded martingales on X; i.e.,

M(X,Ti) = {
(fi, Ti) ∈ M(X,Ti):

∥∥(fi, Ti)
∥∥ < ∞}

.

Then M(X,Ti) is a normed space with respect to ‖ · ‖. It is readily verified that Θ is an isometry
from M(X,Ti) into �∞(X) and that M(X,Ti) is norm complete.

Let Ii = idX for all i ∈ N, where idX denotes the identity map on X. Then (Ii) is a BS-
filtration on X and

(fi, Ii) ∈M(X, Ii) ⇐⇒ (fi) is a constant sequence in X.

If we define Ψ :X → M(X, Ii) by Ψ (f ) = (fi, Ii), where f = fi for all i ∈ N, then X is
isometrically isomorphic to M(X, Ii).

Let Mnc(X,Ti) denote the space of norm convergent martingales on X; i.e.,

Mnc(X,Ti) = {
(fi, Ti) ∈ M(X,Ti): (fi) is norm convergent in X

}
.

To describe Mnc(X,Ti), we use the following analogue of a familiar result from the vector-
valued Lp-setting (see [4, Chapter 5, §2, Corollary 2]).

Proposition 3.2. Let X be a Banach space and let (Ti) be a BS-filtration on X. Then f ∈⋃∞
i=1 R(Ti) if and only if ‖Tif − f ‖ → 0, where

⋃∞
i=1 R(Ti) denotes the norm closure of⋃∞

i=1 R(Ti) in X.

Proof. Suppose that limi→∞ Tif = f . It is evident that Tif ∈ R(Ti) for each i ∈ N so that
f ∈ ⋃∞

i=1 R(Ti). Conversely, suppose that f ∈ ⋃∞
i=1 R(Ti). Then there exists a sequence

(fn) ⊆ ⋃∞
i=1 R(Ti) such that limn→∞ fn = f . Thus, for each ε > 0, there exists n ∈ N so that

‖fn − f ‖ < ε/2. Since (Ti) is a filtration on X, there exists an In ∈ N such that i � In im-
plies fn ∈ R(Ti). Hence, ‖Tif − f ‖ � ‖Tif − fn‖ + ‖fn − f ‖ = ‖Ti(f − fn)‖ + ‖fn − f ‖ �
‖f − fn‖ + ‖fn − f ‖ < ε/2 + ε/2 = ε completes the proof. �
Corollary 3.3. Let X be a Banach space and let (fi, Ti) be a martingale in X. Then (fi, Ti)

converges to f if and only if f ∈ ⋃∞
i=1 R(Ti) and fi = Tif for all i ∈ N.

Proof. Suppose (fi, Ti) converges to f , then it is clear that f ∈ ⋃∞
i=1 R(Ti). Also, for i � j,

we have Tifj = fi so that limj→∞ Tifj = Tif = fi . Conversely, by the above proposition, we
have ‖Tif − f ‖ = ‖fi − f ‖ → 0, which completes the proof. �
Proposition 3.4. Let X be a Banach space, (Ti) be a BS-filtration on X. Then L :Mnc(X,Ti) →⋃∞

i=1 R(Ti), defined by L((fi, Ti)) = limi fi , is a surjective isometry.
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Proof. It follows easily that L is well defined, linear and

‖L‖ = sup
{∥∥L(fi, Ti)

∥∥:
∥∥(fi, Ti)

∥∥ � 1
}

� 1.

To see that L is a surjection, let f ∈ ⋃∞
i=1 R(Ti). Then Tif → f in norm and (Tif,Ti) is a

martingale on X such that L((Tif,Ti)) = f . Also, L((fi, Ti)) = 0 implies that limi fi = 0 and
Corollary 3.3 assures us that fi = Ti0 = 0 for each i ∈ N. Thus, it follows that L is injective.
Furthermore,∥∥L−1

∥∥ = sup
{∥∥L−1f

∥∥: ‖f ‖ � 1
} = sup

{
sup

i

‖Tif ‖: ‖f ‖ � 1
}

� 1,

which completes the proof that L is a surjective isometry. �
Corollary 3.5. Let (Ti) be a BS-filtration on a Banach space X. Then

⋃∞
i=1 R(Ti) = X if and

only if Mnc(X,Ti) is isometrically isomorphic to M(X, Ii) where Ii = idX for all i ∈ N.

Proof. This can easily been seen from the fact that
⋃∞

i=1 R(Ti) = Mnc(X,Ti) and X =
M(X, Ii). �

We define an ordering on the space of martingales defined on a Banach lattice.

Definition 3.6. Let E be a Banach lattice. If (Ti) is a BS-filtration on a Banach lattice E such
that each Ti � 0 and (fi, Ti) is a martingale, define

(fi, Ti) � 0 ⇐⇒ fi � 0 for all i ∈ N.

Proposition 3.7. Let E be a Banach lattice and (Ti) a BS-filtration on E for which each Ti � 0
and

⋃∞
i=1 R(Ti) is a closed Riesz subspace of E. If L :Mnc(E,Ti) → ⋃∞

i=1 R(Ti) is defined by

L((fi, Ti)) = limi fi, then Mnc(E,Ti) is a Banach lattice and L :Mnc(E,Ti) → ⋃∞
i=1 R(Ti)

is a surjective Riesz isometry.

Proof. It was shown in Proposition 3.4 that L is a surjective isometry. To see that L is positive
is trivial, because if (fi, Ti) � 0, then fi � 0 for each i ∈ N and limi fi � 0. Similarly, L−1

is positive, because if 0 � f ∈ ⋃∞
i=1 R(Ti) then Tif � 0 for each i ∈ N; hence, L−1(f ) =

(Tif,Ti) � 0.

Since
⋃∞

i=1 R(Ti) is a Riesz space, it follows that Mnc(E,Ti) is also a Riesz space. Indeed,
for f,g ∈ Mnc(E,Ti), it is readily verified that L−1(L(f ) ∨ L(g)) is the least upper bound in
Mnc(E,Ti) of {f,g}.

Thus, by the preceding part, L is a surjective Riesz isometry. Since ‖ · ‖E is a Riesz norm,
the martingale norm is also a Riesz norm. Furthermore, since

⋃∞
i=1 R(Ti) is a Banach lattice,

Mnc(E,Ti) is a Banach lattice. �
For further reading on the space of bounded martingales defined on a Banach lattice, see [16].

4. Filtrations on the l-tensor product

If X and Y are Banach spaces and α is a norm on X ⊗ Y , we denote the normed space
(X ⊗ Y,α) by X ⊗α Y , its norm completion by X ⊗̃α Y and its continuous dual by (X ⊗α Y )′.
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The norm of an element u ∈ X ⊗̃α Y will be denoted αX,Y (u) when there is a need to distinguish
the Banach spaces involved or simply α(u) if there is no risk of ambiguity. A norm α on X ⊗ Y

is called a reasonable cross norm (cf. [2–4,9]) if α satisfies the conditions:

(a) For x ∈ X and y ∈ Y , α(x ⊗ y) � ‖x‖‖y‖.
(b) For x′ ∈ X′ and y′ ∈ Y ′, x′ ⊗ y′ ∈ (X ⊗α Y )′ and ‖x′ ⊗ y′‖ � ‖x′‖ ‖y′‖.

It is well known that the inequalities in (a) and (b) may be replaced by equality.
Let X, X0, Y and Y0 be Banach spaces. If S :X0 → X and T :Y0 → Y are bounded linear

maps, then a reasonable cross norm α is called a uniform cross norm if S ⊗ T :X0 ⊗α Y0 →
X ⊗α Y satisfies

‖S ⊗ T ‖ � ‖S‖‖T ‖.
Since the inequality ‖S ⊗ T ‖ � ‖S‖‖T ‖ holds for all reasonable cross norms α, equality holds
in the definition of uniform cross norms. In the case where X0 is a closed subspace of X, Y0 is
a closed subspace of Y and α is a uniform cross norm, we have that αX0,Y0(u) � αX,Y (u). This
inequality can be strict and thus E0 ⊗̃α Y0 need not be a subspace of E ⊗̃α Y . A uniform cross
norm for which αX0,Y0(u) = αX,Y (u) holds for each closed subspace X0 of X and Y0 of Y is
called injective.

Pisier noted that the Bochner norm Δp is not an injective uniform cross norm for 1 < p < ∞
(see [2, p. 147]). However, for 1 � p < ∞, it is known the Bochner norm Δp on Lp(μ,X) has the
property that if 0 � S :Lp(μ) → Lp(μ) (note that any positive operator between Banach lattices
is bounded, thus S is also bounded) and T :X → X is a bounded map, then S ⊗ T :Lp(μ,X) →
Lp(μ,X) has the property that

‖S ⊗ T ‖ = ‖S‖‖T ‖ (4.1)

(see [4,12]).
Chaney and Schaefer extended the Bochner norm to the tensor product of a Banach lattice and

a Banach space (see [1,15]). If E is a Banach lattice and Y is a Banach space, then the l-norm of
u = ∑n

i=1 xi ⊗ yi ∈ E ⊗ Y is given by

‖u‖l = inf

{∥∥∥∥∥
n∑

i=1

‖yi‖ |xi |
∥∥∥∥∥: u =

n∑
i=1

xi ⊗ yi

}
.

Furthermore, if E = Lp(μ) where (Ω,Σ,μ) is a σ -finite measure space, then we have that
E ⊗̃l Y is isometric to Lp(μ,Y ).

If X is a Banach space and F is a Banach lattice, then the transpose of the l-norm is called
the m-norm and is given by the formula

‖u‖m = inf

{∥∥∥∥∥
n∑

i=1

‖xi‖ |yi |
∥∥∥∥∥: u =

n∑
i=1

xi ⊗ yi

}
for all u = ∑n

i=1 xi ⊗ yi ∈ X ⊗ F .
Property (4.1) extends to the l-tensor and the m-tensor products as stated below; proofs of

which may be found in [12]:
Let E1 and E2 be Banach lattices and Y1 and Y2 Banach spaces. If S :E1 → E2 is a positive

linear operator and T :Y1 → Y2 a bounded linear operator, then∥∥(S ⊗ T )u
∥∥ � ‖S‖‖T ‖‖u‖l for all u ∈ E1 ⊗ Y1.
l
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Let X1 and X2 be Banach spaces and F1 and F2 Banach lattices. If S :X1 → X2 is a bounded
linear operator and T :F1 → F2 a positive linear operator, then∥∥(S ⊗ T )u

∥∥
m

� ‖S‖‖T ‖‖u‖m for all u ∈ X1 ⊗ F1.

In [12] it is shown that if E and E0 are Banach lattices, Y and Y0 are Banach spaces,
S :E0 → E is a Riesz isometry and T :Y0 → Y is an isometry, then both S ⊗l idY :E0 ⊗̃l Y →
E ⊗̃l Y and idE ⊗l T :E ⊗̃l Y0 → E ⊗̃l Y are isometries. It now follows from the fact that
S ⊗l idY0 :E0 ⊗̃l Y0 → E ⊗̃l Y0 is an isometry that the composition

S ⊗l T = (idE ⊗l T )(S ⊗l idY0) :E0 ⊗̃l Y0 → E ⊗̃l Y

is also an isometry. Thus the l-norm exhibits a weaker form of injectivity: if E0 is a closed Riesz
subspace of E and Y0 is a closed subspace of Y, then E0 ⊗̃l Y0 is a closed subspace of E ⊗̃l Y .

A symmetrical statement also holds for the m-norm. These properties motivate the following
definition.

Definition 4.1. If E and E0 are Banach lattices, Y and Y0 are Banach spaces, 0 � S :E0 → E

and T :Y0 → Y are bounded linear maps, then a reasonable cross norm α is called

(a) left order uniform (or in short, left uniform) if ‖S ⊗ T ‖ � ‖S‖‖T ‖;
(b) left order injective (or in short, left injective) if S ⊗ T :E0 ⊗̃α Y0 → E ⊗̃α Y is an isometry,

provided that S is a Riesz isometry and T is an isometry.

The notions of a right order uniform cross norm and a right order injective cross norm are
defined in a symmetrical manner.

Lemma 4.2.

(a) Let E be a Banach lattice and Y a Banach space. If α is a left uniform, left injective cross
norm on E ⊗ Y , 0 � S :E → E and T :Y → Y are bounded projections respectively and
R(S) is a (closed) Riesz subspace of E, then S ⊗α T :E ⊗̃α Y → E ⊗̃α Y is a bounded
projection with range S(E) ⊗̃α T (Y ), which is a closed subspace of E ⊗̃α Y.

(b) A symmetrical result holds if α is a right uniform, right injective cross norm on E ⊗ Y .

Proof. Since α is a left order uniform cross norm, it follows that ‖S ⊗ T ‖ = ‖S‖‖T ‖; conse-
quently, the continuous extension S ⊗α T :E ⊗̃α Y → E ⊗̃α Y is bounded. To see that S ⊗α T

is a projection, let u ∈ E ⊗̃α Y . Then there exists a sequence (uj ) ⊆ E ⊗ Y such that uj → u in

norm. Representing each uj as
∑nj

i=1 x
(j)
i ⊗ y

(j)
i , we conclude that

(S ⊗α T )2(uj ) =
nj∑
i=1

S2(x(j)
i

) ⊗ T 2(y(j)
i

) =
nj∑
i=1

S
(
x

(j)
i

) ⊗ T
(
y

(j)
i

) = (S ⊗α T )(uj ).

By the continuity of S ⊗α T , it follows that (S ⊗α T )2(u) = (S ⊗α T )(u). As S(E) is a closed
Riesz subspace of E and T (Y ) a closed subspace of Y , the left order injectivity of the α-norm
gives

(S ⊗α T )(E ⊗ Y) = S(E) ⊗ T (Y ) ⊆ S(E) ⊗̃α T (Y ) ↪→ E ⊗̃α Y (isometrically).

Thus, S(E) ⊗ T (Y ) ⊆ (S ⊗α T )(E ⊗̃α Y ) ⊆ S(E) ⊗̃α T (Y ). As S ⊗α T is a bounded projection
and thus has closed range, it follows that (S ⊗α T )(E ⊗̃α Y ) = S(E) ⊗̃α T (Y ). �
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The preceding lemma and the fact that the range of a classical conditional expectation on
Lp(μ) is a closed Riesz subspace motivates the following definition.

Definition 4.3. Let E be a Banach lattice. A BS-filtration (Ti) on E for which each Ti � 0 and
R(Ti) is a closed Riesz subspace of E is called a BL-filtration on E.

Theorem 4.4.

(a) Let E be a Banach lattice and Y a Banach space. If α is a left uniform, left injective cross
norm on E ⊗ Y , (Si) is a BL-filtration on E and (Ti) is a BS-filtration on Y , then (Si ⊗α Ti)

is a BS-filtration on E ⊗̃α Y.

(b) A symmetrical result holds if α is a right uniform, right injective cross norm on E ⊗ Y .

Proof. The proof is a simple application of Lemma 4.2. �
Our development of filtrations on tensor products of Banach lattices uses properties of Frem-

lin’s tensor product of Archimedean Riesz spaces. Thus, we give a brief account of it, as required
in the sequel.

Let E and F be Archimedean Riesz spaces. We denote the projective cone of E ⊗ F by

E+ ⊗ F+ :=
{

n∑
i=1

xi ⊗ yi : (xi, yi) ∈ E+ × F+, n ∈ N

}
.

D.H. Fremlin [7] constructed an Archimedean Riesz space E ⊗ F with the following proper-
ties:

(RBi) If (x, y) ∈ E × F , then |x| ⊗ |y| = |x ⊗ y| in E ⊗ F .
(F) If G is any Archimedean Riesz space such that E ⊗ F is a vector subspace of G and

|x| ⊗ |y| = |x ⊗ y| in G for all (x, y) ∈ E × F , then E ⊗ F is the Riesz subspace of G

generated by E ⊗ F .
(SS) If E0 and F0 are Riesz subspaces of E and F respectively, then E0 ⊗ F0 is a Riesz

subspace of E ⊗ F.

(ru-D)+ If z ∈ (E ⊗ F)+, then there exists (x, y) ∈ E+ × F+ with the property that for each
ε > 0 there exists vε ∈ E+ ⊗ F+ such that |z − vε| � εx ⊗ y; moreover, vε ∈ E+ ⊗ F+
may be chosen such that vε � z (see [8]).

Let E and F be Banach lattices. We are interested in those reasonable cross norms α on E⊗F

which have extensions to E⊗F in such a way that (the extension of) α is a Riesz norm on E⊗F.

Such reasonable cross norms are called order reasonable cross norms. It is known that if α is
an order reasonable cross norm on E ⊗ F, then E ⊗ F is a dense Riesz subspace of the Banach
lattice E ⊗̃α F with positive cone (E ⊗̃α F )+, which is the α-closure of E+ ⊗ F+ (see [11]).

A left (right) uniform cross norm that is also an order reasonable cross norm will be referred
to as a left (right) uniform Riesz cross norm. A left (right) injective cross norm that is also an
order reasonable cross norm will be referred to as a left (right) injective Riesz cross norm.

The l-norm (m-norm) is an example of a left (right) uniform, left (right) injective Riesz cross
norm (see [12]).
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Lemma 4.5.

(a) Let E and F be Banach lattices. If α is a left uniform, left injective Riesz cross norm on
E ⊗ F , S :E → E and T :F → F are positive contractive projections with ranges (closed)
Riesz subspaces of E and F respectively, then (S ⊗α T ) :E ⊗̃α F → E ⊗̃α F is a posi-
tive contractive projection with range S(E) ⊗̃α T (F ), which is a closed Riesz subspace of
E ⊗̃α F .

(b) A symmetrical result holds if α is a right uniform, right injective Riesz cross norm on E ⊗F .

Proof. By Lemma 4.2, it suffices to show that S ⊗α T � 0 with range S(E) ⊗̃α T (F ) a Riesz
subspace of E ⊗̃α F.

Since α is an order reasonable cross norm, it follows that E ⊗̃α F is a Banach lattice with
E+ ⊗ F+ α-dense in (E ⊗̃α F )+. Since (S ⊗ T )(E+ ⊗ F+) ⊆ E+ ⊗ F+ and S ⊗ T :E ⊗α F →
E ⊗α F is continuous, in fact ‖S ⊗T ‖ = ‖S‖‖T ‖, we get that 0 � S ⊗α T :E ⊗̃α F → E ⊗̃α F .

By the left order injectivity of α, we have that S(E) ⊗̃α T (F ) is a closed subspace of E ⊗̃α F.

Also, by property (SS), we get that S(E) ⊗ T (F ) is a Riesz subspace of E ⊗ F and is thus also
a Riesz subspace of E ⊗̃α F . Since S(E) ⊗ T (F ) is dense in S(E) ⊗̃α T (F ), it follows that
S(E) ⊗̃α T (F ) is a closed Riesz subspace of E ⊗̃α F . �

As an easy consequence of the above lemma, we obtain the following proposition.

Proposition 4.6.

(a) Let E and F be Banach lattices. If α is a left uniform, left injective Riesz cross norm on
E⊗F , (Si) and (Ti) BL-filtrations on E and F respectively, then (Si ⊗α Ti) is a BL-filtration
on E ⊗̃α F.

(b) A symmetrical result holds if α is a right uniform, right injective Riesz cross norm on E ⊗F .

5. Convergent martingales on the l-tensor product

To prove Theorem 1.1, we first derive:

Lemma 5.1.

(a) If (Si) is a BL-filtration on the Banach lattice E and (Ti) is a BS-filtration on the Banach
space Y, then

⋃∞
i=1 R(Si) ⊗̃l

⋃∞
i=1 R(Ti) = ⋃∞

i=1 R(Si ⊗l Ti).
(b) If (Ji) is a BS-filtration on the Banach space X and (Ki) is a BL-filtration on the Banach

lattice F, then
⋃∞

i=1 R(Ji) ⊗̃m

⋃∞
i=1 R(Ki) = ⋃∞

i=1 R(Ji ⊗m Ki).

Proof. We will prove the first equality, the second is derived similarly.
(⊇): Let y ∈ ⋃∞

i=1 R(Si ⊗l Ti) and ε > 0 be given. Select y0 ∈ R(Si ⊗l Ti) for some
i ∈ N such that ‖y − y0‖l < ε. Since R(Si ⊗l Ti) = Si(E) ⊗̃l Ti(Y ) and Si(E) ⊗̃l Ti(Y ) ⊆⋃∞

i=1 R(Si) ⊗̃l

⋃∞
i=1 R(Ti) by the left order injectivity of the l-norm, it follows that y ∈⋃∞

i=1 R(Si) ⊗̃l

⋃∞
i=1 R(Ti).
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(⊆): Let y ∈ ⋃∞
i=1 R(Si) ⊗̃l

⋃∞
i=1 R(Ti) and ε > 0 be given. Select y0 ∈ ⋃∞

i=1 R(Si) ⊗⋃∞
i=1 R(Ti) such that ‖y − y0‖l < ε/2. Let y0 = ∑n0

i=1 ai ⊗ yi, where ai ∈ ⋃∞
i=1 R(Si) and

yi ∈ ⋃∞
i=1 R(Ti). Select vi ∈ ⋃∞

i=1 R(Ti) such that

‖yi − vi‖Y <
ε

4
∑n0

i=1 ‖ai‖

and select bi ∈ ⋃∞
i=1 R(Si) such that

‖ai − bi‖E <
ε

4
∑n0

i=1 ‖vi‖ .

Let z1 = ∑n0
i=1 bi ⊗ vi. Then z1 ∈ ⋃∞

i=1 R(Si ⊗l Ti),

y0 − z1 =
n0∑
i=1

(
ai ⊗ (yi − vi) + (ai − bi) ⊗ vi

)
,

‖y0 − z1‖l �
∥∥∥∥∥

n0∑
i=1

(‖yi − vi‖|ai | + ‖vi‖|ai − bi |
)∥∥∥∥∥

E

< ε/4 + ε/4 = ε/2,

and

‖y − z1‖l � ‖y − y0‖l + ‖y0 − z1‖l � ε/2 + ε/2 = ε.

Thus, y ∈ ⋃∞
i=1 R(Si ⊗l Ti). �

Thus, one has the following distributive property:

Corollary 5.2.

(a) If (Si) is a BL-filtration on the Banach lattice E and (Ti) is a BS-filtration on the Banach
space Y, then Mnc(E ⊗̃l Y, Si ⊗l Ti) = Mnc(E,Si) ⊗̃l Mnc(Y,Ti).

(b) If (Ji) is a BS-filtration on the Banach space X and (Ki) is a BL-filtration on the Banach
lattice F, then Mnc(X ⊗̃m F,Ji ⊗m Ki) = Mnc(X,Ji) ⊗̃m Mnc(F,Ki).

Proof. We only prove (a), since the proof for (b) is similar.
By Propositions 3.4, 3.7 and Theorem 4.4, we have that

⋃∞
i=1 R(Si) is Riesz isometric to

Mnc(E,Si),
⋃∞

i=1 R(Ti) is isometric to Mnc(Y,Ti) and Mnc(E ⊗̃l Y, Si ⊗l Ti) is isometric to
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⋃∞
i=1 R(Si ⊗l Ti). By Lemma 5.1, we have

∞⋃
i=1

R(Si ⊗l Ti) =
∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti),

from which the above assertion is now clear. �
It is shown in [12] that, if E is a Banach lattice and Y a Banach space, then u ∈ E ⊗̃l Y if and

only if u = ∑∞
i=1 xi ⊗ yi, where∥∥∥∥∥

∞∑
i=1

|xi |
∥∥∥∥∥

E

< ∞ and lim
i→∞‖yi‖Y = 0. (5.1)

As an easy consequence of this result and Lemma 5.1, we obtain the following main result of
this section.

Theorem 5.3. Let (Sn) be a BL-filtration on a Banach lattice E and (Tn) a BS-filtration on a
Banach space Y . Then, in order for M = (fn, Sn ⊗l Tn)

∞
n=1 to be a convergent martingale in

E ⊗̃l Y, it is necessary and sufficient that, for each i ∈ N, there exist convergent martingales
(x

(n)
i , Sn)

∞
n=1 and (y

(n)
i , Tn)

∞
n=1 in E and Y respectively such that, for each n ∈ N, we have

fn =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i ,

where∥∥∥∥∥
∞∑
i=1

∣∣∣ lim
n→∞x

(n)
i

∣∣∣∥∥∥∥∥ < ∞ and lim
i→∞

∥∥∥ lim
n→∞y

(n)
i

∥∥∥ → 0.

Proof. Let M = (fn, Sn ⊗l Tn)
∞
n=1 be a convergent martingale in E ⊗̃l Y. Then by Lemma 5.1,

M corresponds to an element

f ∈
∞⋃
i=1

R(Si ⊗l Ti) =
∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti)

and thus, by the remark preceding this theorem, we have f = ∑∞
i=1 xi ⊗ yi where (5.1) holds.

Then for each n ∈ N, we have fn = (Sn ⊗l Tn)(
∑∞

i=1 xi ⊗ yi). Now let x
(n)
i := Sn(xi) and

y
(n)
i := Tn(yi) for each i ∈ N. Then

fn =
∞∑
i=1

Sn(xi) ⊗ Tn(yi) =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i ,

where (x
(n)
i , Sn)

∞
n=1 and (y

(n)
i , Tn)

∞
n=1 are convergent martingales in E and Y with limits xi and

yi respectively, so that ‖∑∞
i=1 | limn→∞ x

(n)
i |‖ < ∞ and limi→∞ ‖ limn→∞ y

(n)
i ‖ → 0 hold.

Conversely, for each i ∈ N, let xi = limn→∞ x
(n)
i and yi = limn→∞ y

(n)
i . Then the sequences

(xi) and (yi) satisfy (5.1) so that Lemma 5.1 implies

f :=
∞∑

xi ⊗ yi ∈
∞⋃

R(Si) ⊗̃l

∞⋃
R(Ti) =

∞⋃
R(Si ⊗l Ti).
i=1 i=1 i=1 i=1
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Then, for each n ∈ N, we have

fn =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i =

∞∑
i=1

Sn(xi) ⊗ Tn(yi) = (Sn ⊗l Tn)f.

It now follows that M := (fn, Sn ⊗l Tn)
∞
n=1 is a convergent martingale. �

Note that a symmetrical result holds for the m-norm.

Proof of Theorem 1.1. In the case where E = Lp(μ) (1 � p < ∞), Sn = E( · | Σn) (where
(Σn) is a filtration in the classical sense) and Tn = idX for each n ∈ N, the proof of Theorem 1.1
now follows as a simple consequence of Theorem 5.3. �
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