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Abstract

In this article, we present the continuing work on a SARS model without quarantine by Hsu and Hsieh
[Sze-Bi Hsu, Ying-Hen Hsieh, Modeling intervention measures and severity-dependent public response
during severe acute respiratory syndrome outbreak, SIAM J. Appl. Math. 66 (2006) 627–647]. An “acting
basic reproductive number” ψ is used to predict the final size of the susceptible population. We find the
relation among the final susceptible population size S∞, the initial susceptible population S0, and ψ . If
ψ > 1, the disease will prevail and the final size of the susceptible, S∞, becomes zero; therefore, everyone
in the population will be infected eventually. If ψ < 1, the disease dies out, and then S∞ > 0 which means
part of the population will never be infected. Also, when S∞ > 0, S∞ is increasing with respect to the
initial susceptible population S0, and decreasing with respect to the acting basic reproductive number ψ .
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome (SARS) was first recognized as a global threat in mid-
March 2003. The first known cases and the last case of SARS occurred in November 2002 and
in July 2003. The international spread of SARS resulted in 8098 SARS cases in 26 countries,
with 774 deaths [6]. It is believed that the transmission of SARS can be effectively controlled
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by adhering to basic public health measures—rapid case detection, case isolation, contact trac-
ing, good infection control (hand-washing and the use of personal protective equipment), and
quarantine. Hsu and Hsieh [3] had modeled the SARS outbreak in Taiwan for year 2003 using
the general models that include two different levels of quarantines, level A for those who were
suspected of having close contact with a suspected SARS case and level B for those who traveled
from affected areas after April 28, 2003. Their model equations are as follows:

S′ = −λ(S,E, I,QA,QB,P,R,D)S,

E′ = λ(S,E, I,QA,QB,P,R,D)S − μE − q1E,

Q′
A = q1E − γ1QA,

Q′
B = Q(t) − γ2QB,

I ′ = μE + γ2QB − (σ1 + ρ1 + γ3)I,

P ′ = γ1QA + γ3I − (σ2 + ρ2)P,

R′ = σ1I + σ2P,

D′ = ρ1I + ρ2P, (1)

where λ function is the rate of incidence of infection and is given by

λ(S,E, I,QA,QB,P,R,D)

=
(

βc

1 + a(P + R + D)

)(
I + αAQA + αBQB + αP P

S + E + I + αAQA + αBQB + αP P

)
.

The variables at time t are defined as the following:

S—the number of susceptible individuals.
E—the number of infected asymptomatic persons not under any quarantine.
QA—the number of infected asymptomatic persons under level A quarantine.
QB—the number of imported asymptomatic infected persons.
I—the number of infective persons with onset of symptoms but not isolated or quarantined.
P —the number of isolated probable SARS cases.
D—the cumulative number of SARS deaths.
R—the cumulative number of discharged SARS patients.

For this model, the time unit is in days. The initial conditions are S(0) = S0 > 0,
I (0) = I0 > 0, E(0) = QA(0) = QB(0) = P(0) = R(0) = D(0) = 0. Since the duration of the
outbreak was a short time, the total population is assumed to be constant: S(t)+E(t)+QA(t)+
QB(t) + I (t) + P(t) + R(t) + D(t) ≡ N = S0 + I0.

The basic assumptions for the model are the following:

(1) A SARS-infective person is infective after onset of symptoms.
(2) A quarantined person is quarantined without symptoms (hence are not infective), becoming

infective with reduced contact rates due to quarantine, and is isolated upon diagnosis.
(3) An infective person can infect others unless isolated as probable case with reduced contact

rates depending on the effectiveness of isolation.
(4) A probable case is removed from isolation either by death or discharge.
(5) As people’s behavior change caused by public response to the outbreak, the contact rate

decreases with the increasing cumulated number of probable cases, deaths, and the removed.
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(6) Homogeneous mixing with quarantine-adjusted incidence is assumed.
(7) Quarantine for level A is proportional to the number of infected asymptomatic persons.
(8) Imported cases are a function of time (Q(t) = 0, 1, or 2).

The parameters are defined as follows:

β—the average number of susceptible individuals infected by one infective individual per effec-
tive contact per day.
c—the per-capita effective contact number in the absence of an outbreak.
a—the effect of behavior change in reduction of contact due to cumulative numbers of probable
cases, deaths, and the removed.
αA,αB , or αP —the proportional reduction in infectivity of quarantined persons due to levels A,
B quarantine (before isolation) and probable cases, respectively.
μ—the progression rate to onset of symptoms.
q1—the proportion of recruitment of asymptomatic infected persons for level A quarantine.
γ1, γ2—the isolation rates of QA and QB , respectively.
γ3—the isolation rate of infectives not under quarantine.
σ1, σ2—the respective discharged rate of infective cases and isolated probable cases.
ρ1, ρ2—the respective fatality rate of infective cases and isolated probable SARS patient.

For the general model of SARS (1), Hsu and Hsieh had derived the basic reproduction number
and the full description of its dynamics was provided in [3].

For the worse case scenario when there are no quarantines and the probable cases are not
isolated, i.e., αA = αB = αP = 0, then the model (1) becomes the following SARS model without
quarantine [3]:

S′ = −βIS

E + I + S

c

1 + a(P + R + D)
,

E′ = βIS

E + I + S

c

1 + a(P + R + D)
− μE,

I ′ = μE − (σ1 + ρ1 + γ3)I,

P ′ = γ3I − (σ2 + ρ2)P,

R′ = σ1I + σ2P,

D′ = ρ1I + ρ2P. (2)

Hsu and Hsieh [3] had done some analysis for this model. We will summarize their re-
sults. The equilibrium with the susceptible present for the system in (S,E, I,P,R,D) is
(S∗,0,0,0,R∗,D∗) with S∗ + R∗ + D∗ = N ; the equilibrium with no susceptible present is
(0,0,0,0,R#,D#) with R# + D# = N . The basic reproduction number R0 for this model is

R0 = βc

(σ1 + ρ1 + γ3)(1 + aN − aS∗)
.

If R0 < 1, the equilibrium with the susceptible present is locally asymptotically stable and if
R0 > 1, unstable. When S∗ = 0 in R0, we define

ψ = βc
. (3)
(σ1 + ρ1 + γ3)(1 + aN)
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Note that 0 < ψ � R0. If ψ > 1, then R0 > 1 and the disease prevails. We will show that this
is indeed the case. When ψ > 1, the final size S∞ of the susceptible becomes zero. Eventu-
ally, everyone will be infected and either dies or recovers. Hsu and Hsieh [3] had obtained the
following results relating to the parameter ψ .

Theorem 1. For the SARS model without quarantine (2), the solutions have the following asymp-
totic properties: S(t) → S∞ � 0, R(t) → R∞ > 0, D(t) → D∞ > 0, I (t) → 0, E(t) → 0, and
P(t) → 0 as t → ∞.

Theorem 2. Consider system (2). The parameter ψ is defined as in (3).

(i) If ψ < 1, then S(t) → S∞ > 0 as t → ∞.
(ii) If ψ > 1, then S(t) → 0 as t → ∞.

The above two theorems state that the asymptotic dynamics are actually global so that we
may write the equilibrium with the susceptible present or the equilibrium without the susceptible
present to be (S∞,0,0,0,R∞,D∞) and (0,0,0,0,R∞,D∞) depending on the parameter ψ .
We will show that although ψ is not a basic reproductive number, it acts like one. If ψ > 1, the
disease will prevail. When ψ > 1, the final size S∞ of the susceptible becomes zero. Eventually,
everyone will be infected and either dies or recovers. In the following section, we will give details
of the finding of the relation among S0, S∞, and ψ .

In the classical Kermack–Mckendric SIR model, the asymptotic state or the final size S∞ sat-
isfies a transcendental equation [4,5], so does S∞ obtained in system (2). Diekmann et al. [1] also
found the final size of epidemics in a closed population. Their model is described by a nonlinear
Volterra integral equation of convolution type, just as the general Kermack–McKendrick model.
Similar results that relate the final size and the basic reproductive number R0 can also be found
in the book by Diekmann and Heesterbeek [2].

2. The final sizes of S∞, R∞, and D∞

We can integrate the equations of P , R, and D in (2) from t = 0 to ∞. Since P(∞) = 0, we
have

γ3

∞∫
0

I (t) dt = (σ2 + ρ2)

∞∫
0

P(t) dt, (4)

R∞ = σ1

∞∫
0

I (t) dt + σ2

∞∫
0

P(t) dt, (5)

and

D∞ = ρ1

∞∫
I (t) dt + ρ2

∞∫
P(t) dt. (6)
0 0
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By substituting (4) into (5) and (6), we obtain

R∞ =
(

σ1 + σ2
γ3

(σ2 + ρ2)

) ∞∫
0

I (t) dt,

and

D∞ =
(

ρ1 + ρ2
γ3

(σ2 + ρ2)

) ∞∫
0

I (t) dt.

Let

r = σ1 + σ2
γ3

(σ2+ρ2)

ρ1 + ρ2
γ3

(σ2+ρ2)

. (7)

Then we have
R∞
D∞

= r.

Let V = S +E + I . Then P +R +D = N −V , and system (2) can be simplified so that the two
equations for S and V are

S′ = −βIS

V

c

1 + a(N − V )
,

V ′ = −(ρ1 + σ1 + γ3)I.

Then we have
dS

dV
= βc

ρ1 + σ1 + γ3

S

V (1 + a(N − V ))
.

Applying the method of separation of variables and integrating both sides of the equation from
t = 0 leads to

ln

(
S

S0

)
= ψ ln

(
V

V0(1 + a(N − V ))

)
,

where ψ is defined as in (3). Since V0 = S0 + E0 + I0 = N , and V∞ = S∞, S∞ satisfies the
following:

S∞
S0

=
(

S∞
N(1 + aN − aS∞)

)ψ

. (8)

We can show that the equation in x,

x

S0
=

(
x

N(1 + aN − ax)

)ψ

(9)

has only two roots at x = 0 and x = S∞ ∈ (0, S0) when ψ < 1, as seen in Fig. 1.

Theorem 3. Consider the equation in (9).

(i) If ψ < 1, this equation has a root at zero and a unique positive root x ∈ (0, S0).
(ii) If ψ � 1, this equation has a root at zero and no roots in (0, S0].
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Fig. 1. The asymptotic example for system (2). The top figure shows the susceptible population approaching
S∞ = 175.60 when ψ = 0.6768 < 1. The lower figure shows the graph of the function g(x) = ( x

N(1+aN−ax)
)ψ − x

S0
and

its two roots, 0 and S∞ = 175.60. We obtain the results by choosing the parameters β = 0.3 (person)(contact)−1(day)−1,
c = 2 (contact)(person)−1, a = 0.0013 (person)−1, μ = 0.14 (day)−1, σ1 = σ2 = 0.2 (day)−1, ρ1 = ρ2 = 0.1 (day)−1,
γ3 = 0.4 (day)−1, and the initial conditions S0 = 200, I0 = 5, and E0 = P0 = R0 = D0 = 0.

Proof. (i) ψ < 1. The roots of this equation are x = 0 and the roots of

N(1 + aN − ax) = S
1
ψ

0 x
1− 1

ψ . (10)

Write f (x) = S
1
ψ

0 x
1− 1

ψ , then d2f

dx2 = 1
ψ2 (1 − ψ)S

1
ψ

0 x
−1− 1

ψ > 0. So f is convex and hence in-
tersects each chord twice. When x � 0, Eq. (10) has a root in (0, S0) and a root in (S0,∞) so
cannot have any more positive roots. The statement (i) follows in this case.

(ii) ψ � 1. The roots of this equation are x = 0 and the roots of (10). But for x ∈ (0, S0],
N(1 + aN − ax) � N

(
1 + a(N − S0)

)
> S0 � S

1
ψ

0 x
1− 1

ψ .

The statement (ii) follows. �
In case (i) of Theorem 2, since S∞ + R∞ + D∞ = N , and R∞ and D∞ satisfy R∞/D∞ = r ,

we can find all three values, S∞, R∞, and D∞. In case (ii) of Theorem 2, all solutions approach
the equilibrium (0,0,0,0,R∞,D∞), that is to say that eventually everyone gets infected and
recovers or dies. Since R∞ + D∞ = N , it is also easy to find R∞ and D∞. Therefore, we have
the following results.

Theorem 4. Consider system (2). The parameters ψ and r are defined as in (3) and (7), respec-
tively.

(i) If ψ < 1, then

S∞ > 0, R∞ = r(N − S∞)
, and D∞ = N − S∞

.

1 + r 1 + r
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(ii) If ψ > 1, then

S∞ = 0, R∞ = rN

1 + r
, and D∞ = N

1 + r
.

3. S∞ decreases with ψ , increases with S0 and a

If ψ < 1, then S∞ > 0, we can show that S∞ decreases as the parameter ψ increases,
dS∞/dψ < 0. We can also show that S∞ increases as the parameter a increases or as S0 in-
creases. That is, we can show that dS∞/da > 0 and dS∞/dS0 > 0. Let

g = S∞
N(1 + aN − aS∞)

. (11)

Note that if ψ < 1, we have 0 < S∞ < N , so that 0 < g < 1. We will need the following lemma.

Lemma 1. Consider Eq. (8). If ψ < 1, then

1 − ψ(1 + aN)

1 + aN − aS∞
> 0.

Proof. From Eq. (10), we know that the function f = S
1
ψ

0 x
1− 1

ψ is convex and there is only one
positive root of Eq. (10), S∞, in (0, S0). Therefore,

f ′(S∞) <
d

dx

(
N(1 + aN − ax)

)∣∣
x=S∞ = −aN,

i.e.,
(

1

ψ
− 1

)(
S0

S∞

) 1
ψ

> aN.

Using Eq. (8), we obtain(
1

ψ
− 1

)
N(1 + aN − aS∞)

S∞
> aN

⇐⇒ (1 − ψ)(1 + aN − aS∞) > aψS∞
⇐⇒ 1 + aN − aS∞ − ψ(1 + aN) > 0

⇐⇒ 1 − ψ(1 + aN)

1 + aN − aS∞
> 0. �

When ψ < 1, S∞ > 0. If we consider S∞ as a function of ψ , then S∞ is a decreasing function.

Theorem 5. Consider Eq. (8). Let ψ < 1 and S∞ be a function of the parameter ψ . Then

dS∞
dψ

< 0.

Proof. Let S∞ = S∞(ψ) and g = g(ψ) be defined as in (11). Then we have

g′(ψ) = S′∞(ψ)(1 + aN)
. (12)
g(ψ) S∞(ψ)(1 + aN − aS∞(ψ))
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Equation (8) is now

S∞(ψ)

S0
= g(ψ)ψ .

Differentiating the equation with respect to the parameter ψ yields

S′∞(ψ)

S0
= g(ψ)ψ

(
lng(ψ) + ψ

g′(ψ)

g(ψ)

)

= S∞(ψ)

S0

(
lng(ψ) + ψ

g′(ψ)

g(ψ)

)
.

Applying g′/g in (12) and simplifying, we have

S′∞ = S∞ lng(ψ) + S′∞
ψ(1 + aN)

1 + aN − aS∞
,

i.e., (
1 − ψ(1 + aN)

1 + aN − aS∞

)
S′∞ = S∞ lng(ψ).

The right side of the equation is negative because 0 < g(ψ) < 1. By Lemma 1, we have
S′∞(ψ) < 0. �

The result in this theorem does not surprise us, since we have mentioned in the introduction
that the parameter ψ is acting like a basic reproductive number. Therefore, increasing ψ should
also increase the epidemic and hence it decreases the final size of the susceptible. Similarly, the
following theorem says that S∞ increases with the initial number of the susceptible.

Theorem 6. Consider Eq. (8). Let ψ < 1 and S∞ be a function of S0. Then

dS∞
dS0

> 0.

Proof. Assume that S∞ is a function of S0, then g = g(S0). Differentiating Eq. (8) with respect
to S0 yields

1

S2
0

(
S0S

′∞(S0) − S∞
) = ψ

(
S∞

N(1 + aN − aS∞)

)ψ−1( 1 + aN

N(1 + aN − aS∞)2

)
S′∞(S0)

= 1

S0

(
ψ(1 + aN)

1 + aN − aS∞

)
S′∞(S0).

The last equation comes from substituting Eq. (8) into the right-hand side. Therefore, we have(
1 − ψ(1 + aN)

1 + aN − aS∞

)
S′∞(S0) = S∞

S0
> 0.

Using Lemma 1, we have S′∞(S0) > 0. �
In the SARS model (2), the parameter a describes the effect of behavior change in reduction

of contact due to the cumulative number of probable cases. If a increases, number of contacts
will be reduced, the epidemic will be not as severe, and so the final size of the susceptible S∞
increases. The result is the following theorem.
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Theorem 7. Consider Eq. (8). Let ψ < 1 and S∞ be a function of the parameter a. Then

dS∞
da

> 0.

Proof. Let S∞ = S∞(a), ψ = ψ(a), and g = g(a). Then

g′(a)

g(a)
= S′∞(1 + aN) − S∞(N − S∞)

S∞(1 + aN − aS∞)
and

ψ ′(a)

ψ(a)
= − N

1 + aN
.

Then Eq. (8) is now

S∞(a)

S0
= g(a)ψ(a).

Differentiating the equation with respect to the parameter a yields

S′∞(a)

S0
= g(a)ψ(a)

(
ψ ′(a) lng(a) + ψ(a)

g′(a)

g(a)

)

= S∞(a)

S0

(
ψ ′(a) lng(a) + ψ(a)

g′(a)

g(a)

)
.

Substitute g′(a)/g(a) into the above equation and rearrange. We have(
1 − ψ(1 + aN)

1 + aN − aS∞

)
S′∞(a) = S∞ψ

(
ψ ′

ψ
lng − N − S∞

1 + aN − aS∞

)
.

If we can show that the right-hand side of the above equation is positive, and since by Lemma 1,
the factor in front of S′∞(a) is positive, then we should obtain the result that S′∞(a) > 0. There-
fore, we need to show that

ψ ′

ψ
lng − N − S∞

1 + aN − aS∞
> 0,

i.e.,

N

1 + aN
ln

S∞
N(1 + aN − aS∞)

+ N − S∞
1 + aN − aS∞

< 0. (13)

Let

h(x) = N

1 + aN
ln

x

N(1 + aN − ax)
+ N − x

1 + aN − ax
.

Then h(0+) = −∞ and h(N) = 0. We can show that

h′(x) = (1 + aN)(N − x)

x(1 + aN − ax)2
> 0, for all x ∈ (0,N).

The function h(x) is increasing on (0,N) from −∞ to 0, and therefore h(S∞) < 0 which is the
inequality (13). �
4. Conclusion

We consider the final size of a SARS epidemic model without quarantine. Our model is not
an integral equations model, unlike other papers [1,4,5] of similar results which describe the
epidemics using integral equations.
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We use an “acting basic reproductive number” ψ to predict the final size of the epidemics, and
there is a relation among the final size of the susceptible S∞, the initial susceptible S0, and the
parameter ψ . We show that if ψ > 1, the disease stays in the population until all population is
infected and recovers or dies. If ψ < 1, then the final size of the susceptible is greater than zero,
S∞ > 0. S∞ decreases with the parameter ψ , increases with the initial size of the susceptible S0,
and increases with the parameter a which is the measure of the effect of behavior change in
reduction of contact due to the cumulation number or probable cases.
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