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Pavle Mladenović ∗, Jovan Vukmirović
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Let X∗
n1, . . . , X∗

nn be independent random variables with the common negative binomial
distribution with parameters r > 0 and 1/n, where r is not necessarily an integer. We deter-
mine the limiting distribution of the random variable M∗

n = max{X∗
n1, . . . , X∗

nn} as n → ∞,
corresponding normalizing constants and the rate of convergence. For an integer r the con-
nection with certain waiting time problems is indicated.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Negative binomial distribution appears naturally in connection with the number of independent trials necessary to obtain
r occurrences of an event that has the same probability p of occurring in each trial. It is well known that negative binomial
distribution does not belong to any of maximum domains of attraction of extreme value distributions. But if there is n
possible outcomes of each trial and the probability p of occurring of each outcome in every trial is equal to 1/n, then the
number of trials needed to obtain all outcomes at least r times is the maximum of n dependent random variables with
the same negative binomial distribution which limiting distribution is the Gumbel double exponential distribution. This
problem and some of its variations have been considered by many authors and different methods were employed. See, for
example, Erdös and Rényi [2], Baum and Bilingsley [1], Holst [6–8], Johnson and Kotz [10], Flato [4], Mladenović [13–15].
All employed methods are based significantly on the fact that the parameter r of the corresponding negative binomial
distribution is an integer. Some approaches involved in consideration independent random variables with the same negative
binomial distribution also.

It is well known that the negative binomial distribution can be defined for any positive r, not necessarily being an
integer. For the genesis of the negative binomial distribution, historical remarks, some properties and applications see
Johnson and Kotz [9] and Feller [3]. In this paper we shall determine the limiting distribution of the random variable
M∗

n = max{X∗
n1, . . . , X∗

nn} as n → ∞, where X∗
n1, . . . , X∗

nn are independent random variables with the common negative bi-
nomial distribution with parameters r > 0 and p = 1/n. Corresponding normalizing constants for the maximum Mn and the
rate of convergence are also determined. This will give a new insight to different rates of convergence in the cases r = 1 and
r �= 1. Rates of convergence in limit theorems for maxima have been studied by many authors, see Leadbetter and Rootzén
[12] and references therein.
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2. Some preliminaries and notation

Let X∗
n1, X∗

n2, . . . , X∗
nn be independent random variables with the common negative binomial distribution with parameters

r > 0 and p ∈ (0,1), where r is not necessarily an integer, that is

P
{

X∗
nj = k

} =
(

r + k − 1

k

)
(1 − p)k pr, k = 0,1,2, . . . , (2.1)

where(
r + k − 1

k

)
= Γ (r + k)

Γ (r)Γ (k + 1)
, (2.2)

and Γ (r) is the Gamma function given by

Γ (r) =
∞∫

0

tr−1e−t dt, r > 0. (2.3)

We shall use Stirling’s formula and its consequence, see Graham et al. [5]:

Γ (x + 1) = √
2πx

(
x

e

)x

·
{

1 + 1

12x
+ 1

288x2
+ o

(
1

x2

)}
, x → ∞, (2.4)

Γ (x + t)

Γ (x)
= xt ·

{
1 + t2 − t

2x
+ o(

1

x
)

}
, x → ∞ (t > 0 fixed). (2.5)

The following property of the Gamma function will also be used:

Γ (x)Γ (a − x) � Γ (y)Γ (a − y), for 1 < x � y � a

2
, (2.6)

where a > 2 is a constant. In order to clarify the property (2.6), define the function b(x) = Γ (x)Γ (a−x)
Γ (a)

, 0 < x < a. Then,

b(x) = B(x,a − x) = ∫ 1
0 tx−1(1 − t)a−x−1dt , where B(·,·) is the usual notation for the Beta function. Obviously b(x) = b(a − x)

for 0 < x < a. It is easy to check that b′′(x) > 0 for 1 < x < a −1. Hence, the function b(x) is convex on the interval (1,a −1),
decreases on (1,a/2], and the property (2.6) follows easily.

3. Results

Theorem 3.1. Let M∗
n = max{Xn1, . . . , X∗

nn}, where X∗
n1, . . . , X∗

nn are independent random variables with the common negative bi-
nomial distribution with parameters r > 0 and p = 1/n, and let un(x) = n(x + ln n + (r − 1) ln ln n − ln Γ (r)). For any x ∈ R the
following equality then holds

lim
n→∞ P

{
M∗

n � un(x)
} = exp

(−e−x). (3.1)

Let us denote �n(r, x) = P {M∗
n � un(x)} − exp(−e−x). The rate of convergence of the maximum M∗

n , as n → ∞, is given by:

�n(r, x) ∼ e−x exp(−e−x)

2

lnn

n
, if r = 1, (3.2)

�n(r, x) ∼ −(r − 1)2e−x exp
(−e−x) ln lnn

ln n
, if r �= 1. (3.3)

Remark 3.2. For positive integers r relations (3.2) and (3.3) were proved by Mladenović [13,14] in i.i.d. settings as well as
for dependent random variables that appeared in connection with the coupon collector’s problem. The techniques employed
there used significantly the fact that r is a positive integer and combinatorial interpretation of the corresponding negative
binomial distribution, and it cannot be applied if r is not an integer.

4. Proof of Theorem 3.1

Let Fn,r(x) be the distribution function of a random variable X with the negative binomial distribution with parameters
r > 0 and p = 1/n. For any positive integer m the tail P {X > m} is then given by

1 − Fn,r(m) =
∞∑

k=m+1

Γ (r + k)

Γ (r)Γ (k + 1)

(
1 − 1

n

)k(1

n

)r

. (4.1)
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Lemma 4.1. Let x be a real number and r > 0. The asymptotic equality

m = n
(
ln n + (r − 1) ln lnn + x − lnΓ (r) + o(1)

)
, n → ∞, (4.2)

is the necessary and sufficient condition for the asymptotic relation

∞∑
k=m+1

Γ (r + k)

Γ (r)Γ (k + 1)

(
1 − 1

n

)k(1

n

)r

∼ e−x

n
, as n → ∞. (4.3)

Proof. (a) Let l = n[ln ln n]. We shall first prove the following statement: if (4.3) holds, then m � l.
(a1) Case r � 1. Suppose that m < l. Note that the inequalities

Γ (r + k)

Γ (k + 1)
� Γ (r + l)

Γ (1 + l)
for k ∈ {l, l + 1, . . . ,2l},

hold as consequences of (2.6) and the facts 1 + l = min{r + k, r + l,k + 1,1 + l} and (r + k) + (1 + l) = (r + l) + (k + 1). Now,
it follows that

∞∑
k=m+1

Γ (r + k)

Γ (r)Γ (k + 1)

(
1 − 1

n

)k 1

nr
�

2l∑
k=l

Γ (r + k)

Γ (r)Γ (k + 1)

(
1 − 1

n

)k 1

nr

� 1

Γ (r)

(
1 − 1

n

)2l 1

nr

2l∑
k=l

Γ (r + k)

Γ (k + 1)
� 1

Γ (r)

(
1 − 1

n

)2l l + 1

nr
· Γ (r + l)

Γ (1 + l)

� 1

Γ (r)

(
1 − 1

n

)2l n + 1

nr
· Γ (r + l)

Γ (1 + l)
∼ 1

Γ (r)
· 1

ln2 n
· 1

nr−1
· lr−1 � 1

Γ (r) ln2 n
,

and consequently (4.3) does not hold.
(a2) Case 0 < r < 1. Suppose that m < l. In this case we shall use the inequalities

Γ (r + k)

Γ (k + 1)
� Γ (r + l + n)

Γ (1 + l + n)
for k ∈ {l, l + 1, . . . , l + n},

that are consequences of (2.6) and the facts r +k = min{r +k, r + l +n,k + 1,1 + l +n} and (r +k)+ (1 + l +n) = (r + l +n)+
(k + 1). It follows that

l+n∑
k=l

Γ (r + k)

Γ (r)Γ (k + 1)

(
1 − 1

n

)k 1

nr
� 1

Γ (r)

(
1 − 1

n

)l+n 1

nr

l+n∑
k=l

Γ (r + k)

Γ (k + 1)

� 1

Γ (r)

(
1 − 1

n

)l+n n + 1

nr
· Γ (r + l + n)

Γ (1 + l + n)
∼ 1

Γ (r)
· 1

e lnn
· 1

nr−1
· (l + n)r−1

� 1

eΓ (r) ln n
· lr−1

nr−1
∼ 1

eΓ (r) lnn
· 1

(ln lnn)r−1
,

and again (4.3) does not hold.

(b) Next, we shall prove the following statement: if (4.3) holds, then m � 2n ln n.
(b1) Case r � 1. Suppose that m > 2n ln n. Since

1

Γ (r)
< 2,

(
1 − 1

n

)n

<
1

e
,

Γ (r + k)

Γ (k + 1)
< 2kr−1 for k � k0,

we obtain that

∞∑
k=m+1

Γ (r + k)

Γ (r)Γ (k + 1)

(
1 − 1

n

)k

� 4
∑

k>2n lnn

kr−1
(

1 − 1

n

)k

= 4

{ ∑
2n ln n<k�2n ln(2n)

kr−1
(

1 − 1

n

)k

+
∑

2n ln(2n)<k�2n ln(4n)

kr−1
(

1 − 1

n

)k

+
∑

kr−1
(

1 − 1

n

)k

+ · · ·
}

2n ln(4n)<k�2n ln(8n)
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� 4

{(
2n ln(2n)

)r−1
(

1 − 1

n

)2n lnn

(2n ln 2 + 1)

+ (
2n ln(4n)

)r−1
(

1 − 1

n

)2n ln(2n)

(2n ln 2 + 1) + · · ·
}

� 4(2n)r−1(2n ln 2 + 1)

{
(ln(2n))r−1

e2 lnn
+ (ln(4n))r−1

e2 ln(2n)
+ · · ·

}
= 4(2n)r−1(2n ln 2 + 1)

n3/2

{
(ln(2n))r−1

n1/2
+ (ln(4n))r−1

(2n)1/2 · 23/2
+ (ln(8n))r−1

(4n)1/2 · 43/2
+ · · ·

}
� 4K1(2n)r−1(2n ln 2 + 1)

n3/2

(
1 + 1

23/2
+ 1

43/2
+ · · ·

)
� K2nr

n3/2
,

for sufficiently large n and some constants K1 > 0 and K2 > 0. Consequently (4.3) does not hold for m > 2n ln n.
(b2) Case 0 < r < 1. Suppose that m > 2n ln n. Using similar arguments as in the case (b1) we obtain that

∞∑
k=m+1

Γ (r + k)

Γ (r)Γ (k + 1)

(
1 − 1

n

)k

� 4

{
(2n ln n)r−1

(
1 − 1

n

)2n lnn

(2n ln 2 + 1)

+ (
2n ln(2n)

)r−1
(

1 − 1

n

)2n ln(2n)

(2n ln 2 + 1) + · · ·
}

� 4(2n)r−1(2n ln 2 + 1)

n3/2

{
(ln n)r−1

n1/2
+ (ln(2n))r−1

(2n)1/2 · 23/2
+ (ln(4n))r−1

(4n)1/2 · 43/2
+ · · ·

}
� K3nr

n3/2
,

for sufficiently large n and some constant K3 > 0. Consequently (4.3) does not hold for m > 2n ln n.

(c) We shall use the following notation: 1 − 1
n = q, r − 1 = s, m + 1 = p, k − 1 = i, k + 1 = j, s − [s] = r − [r] = ϑ ,

l = n[ln ln n] and

Ψ (p, s) =
∞∑

k=p

Γ (s + k + 1)qk

Γ (s + 1)Γ (k + 1)
.

Relation (4.3) can be equivalently rewritten as follows:

Ψ (p, s) ∼ nse−x, as n → ∞. (4.4)

Since 1 − q = 1
n , we obtain for r � 1,

Ψ (p, s)

n
= Ψ (p, s) − qΨ (p, s)

= Γ (s + p + 1)qp

Γ (s + 1)Γ (p + 1)
+

{ ∞∑
k=p+1

Γ (s + k + 1)qk

Γ (s + 1)Γ (k + 1)
−

∞∑
k=p

Γ (s + k + 1)qk+1

Γ (s + 1)Γ (k + 1)

}

= Γ (s + p + 1)qp

Γ (s + 1)Γ (p + 1)
+

{ ∞∑
i=p

Γ (s + i + 2)qi+1

Γ (s + 1)Γ (i + 2)
−

∞∑
k=p

Γ (s + k + 1)qk+1

Γ (s + 1)Γ (k + 1)

}

= Γ (s + p + 1)qp

Γ (s + 1)Γ (p + 1)
+

∞∑
k=p

Γ (s + k + 1)qk+1

Γ (s + 1)Γ (k + 1)

(
s + k + 1

k + 1
− 1

)

= Γ (s + p + 1)qp

Γ (s + 1)Γ (p + 1)
+

∞∑
j=p+1

Γ (s + j)q j

Γ (s)Γ ( j + 1)
,

and consequently
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Ψ (p, s) = nqpΓ (s + p + 1)

Γ (s + 1)Γ (p + 1)
+ nΨ (p + 1, s − 1),

Ψ (p + 1, s − 1) = nqp+1Γ (s + p + 1)

Γ (s)Γ (p + 2)
+ nΨ (p + 2, s − 2),

...

Ψ
(

p + [s] − 1,1 + ϑ
) = nqp+[s]−1Γ (s + p + 1)

Γ (2 + ϑ)Γ (p + [s]) + nΨ
(

p + [s],ϑ)
.

Multiplying previous equations by 1, n, . . . ,n[s]−1 respectively, and summing them we obtain the following statement: for
r � 1 the relation (4.3) is equivalent to the following two relations:

Ψ (p, s) = (n − 1)m+1Γ (r + m + 1)

nm

{
1

Γ (r)Γ (m + 2)
+ n − 1

Γ (r − 1)Γ (m + 3)
+ · · · + (n − 1)[r]−2

Γ (2 + ϑ)Γ (m + [r])
}

+ n[r]−1Ψ
(
m + [r],ϑ) ∼ nr−1e−x, n → ∞, (4.5)

Γ (r + m + 1)

Γ (r)Γ (m + 2)
+ (n − 1)Γ (r + m + 1)

Γ (r − 1)Γ (m + 3)
+ · · · + (n − 1)[r]−2Γ (r + m + 1)

Γ (2 + ϑ)Γ (m + [r])
+ nm+[r]−1Ψ (m + [r],ϑ)

(n − 1)m+1
∼ nm+r−1e−x

(n − 1)m+1
, n → ∞. (4.6)

Note also the following: if 1 � r < 2, then the left-hand side of Eq. (4.6) reduces to the last addend only.

(d) Next, we shall prove that the left-hand side of Eq. (4.6) is asymptotically equivalent to the addend Γ (r+m+1)
Γ (r)Γ (m+2)

. The
proof will be given separately in the cases r � 2 and r ∈ [1,2). We suppose that n[ln ln n] � m � 2n ln n.

(d1) Case r � 2. Using (2.5) we obtain that Γ (n+ϑ)
Γ (n)

� 2nϑ for sufficiently large n, say n � n0. Now, we obtain

Ψ
(
m + [r],ϑ) =

∞∑
k=m+[r]

Γ (ϑ + k + 1)qk

Γ (ϑ + 1)Γ (k + 1)
� 2

Γ (ϑ + 1)

∞∑
k=m+[r]

(k + 1)ϑqk

= 2

Γ (ϑ + 1)

∞∑
k=m+[r]

(k + 1)qk

(k + 1)1−ϑ
� 4

∞∑
k=m+[r]

(k + 1)qk

(m + [r])1−ϑ

= (1 − 1
n )m+[r](m + [r] + n)

(m + [r])1−ϑ · n
�

C(1 − 1
n )mmϑ

n
,

for some C > 0 and n � n0. For the last addend on the left-hand side of (4.6) we obtain the following bound:

nm+[r]−1Ψ (m + [r],ϑ)

(n − 1)m+1
� nm+[r]−1C(n − 1)mmϑ

(n − 1)m+1nm+1
= Cn[r]−2mϑ

n − 1
. (4.7)

Since

Γ (r + m + 1)

Γ (r)Γ (m + 2)
∼ mr−1

Γ (r)
and

n[r]−2mϑ

n
= o

(
mr−1), as n → ∞,

it follows that

nm+[r]−1Ψ (m + [r],ϑ)

(n − 1)m+1
= o

(
Γ (r + m + 1)

Γ (r)Γ (m + 2)

)
, as n → ∞. (4.8)

For ν ∈ {1,2, . . . , [r] − 2} the following relations hold:

(n − 1)νΓ (r + m + 1)

Γ (r − ν)Γ (m + 2 + ν)
·
{

Γ (r + m + 1)

Γ (r)Γ (m + 2)

}−1

= Γ (r)

Γ (r − ν)
· (n − 1)νΓ (m + 2)

Γ (m + 2 + ν)
∼ Γ (r)

Γ (r − ν)
· nν

mν
= o(1), as n → ∞. (4.9)

It follows from (4.8) and (4.9) that the left-hand side of (4.6) is asymptotically equivalent to Γ (r+m+1)
Γ (r)Γ (m+2)

for r � 2.
(d2) Case r ∈ [1,2). Eq. (4.6) can be rewritten as follows

nmΨ (m + 1, r − 1)

m+1
∼ nm+r−1e−x

m+1
, n → ∞.
(n − 1) (n − 1)
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The next goal is to prove the following relation:

Γ (r + m + 1)

Γ (r)Γ (m + 2)
∼ nmΨ (m + 1, r − 1)

(n − 1)m+1
, as n → ∞,

or, equivalently,

Γ (r + m + 1)

Γ (m + 2)
∼ nm

(n − 1)m+1

∞∑
k=m+1

Γ (r + k)qk

Γ (k + 1)
, as n → ∞. (4.10)

Using (2.5) we obtain that

Γ (r + k)

Γ (k + 1)
= (k + 1)r−1

(
1 + ψ

k + 1

)
, where |ψ | � Q ,

for some constant Q and sufficiently large k, say k > k0. For m > k0 we obtain

∞∑
k=m+1

Γ (r + k)qk

Γ (k + 1)
=

∞∑
k=m+1

(k + 1)r−1qk +
∞∑

k=m+1

(k + 1)r−2ψqk

∼
∞∑

k=m+1

(k + 1)r−1qk =
∞∑

k=m+1

(k + 1)qk

(k + 1)2−r
� 1

(m + 1)2−r

∞∑
k=m+1

kqk

= 1

(m + 1)2−r

{
n(m + 1)qm+1 + n2qm+2} ∼ nmqm+1

(m + 1)2−r
∼ nmr−1qm+1.

On the other hand we obtain
∞∑

k=m+1

(k + 1)r−1qk � (m + 2)r−1
∞∑

k=m+1

qk = (m + 2)r−1 qm+1

1 − q
∼ nmr−1qm+1.

All asymptotic relations hold as n → ∞. It follows that

∞∑
k=m+1

(k + 1)r−1qk ∼ nmr−1qm+1 = nmr−1 (n − 1)m+1

nm+1
.

Consequently

nm

(n − 1)m+1

∞∑
k=m+1

Γ (r + k)qk

Γ (k + 1)
∼ nm

(n − 1)m+1
· nmr−1(n − 1)m+1

nm+1
= mr−1 ∼ Γ (r + m + 1)

Γ (m + 2)
, n → ∞.

Hence, for r � 1 relation (4.3) is equivalent to the following one

Γ (r + m + 1)

Γ (r)Γ (m + 2)
∼ nm+r−1e−x

(n − 1)m+1
, as n → ∞. (4.11)

(e) Let 0 < r < 1. Relation (4.3) can be rewritten equivalently as follows

∞∑
k=m+1

Γ (r + k)qk

Γ (k + 1)
∼ e−xnr−1Γ (r), as n → ∞.

Note that

Γ (r + k)

Γ (k + 1)
= Γ (r + k)

kΓ (k)
= kr−1

{
1 + r2 − r

2k
+ o

(
1

k

)}
, k → ∞.

The asymptotic behavior of the sum
∑∞

k=m+1
Γ (r+k)qk

Γ (k+1)
∼ ∑∞

k=m+1 kr−1qk can be determined as follows:

∞∑
k=m+1

kr−1qk =
∞∑

k=m+1

kqk

k2−r
� 1

(m + 1)2−r

∞∑
k=m+1

kqk ∼ mnqm+1

(m + 1)2−r
,

∞∑
kr−1qk =

∞∑ krqk

k
� (m + 1)r

∞∑ qk

k
.

k=m+1 k=m+1 k=m+1
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Let U = ∑∞
k=m+1

qk

k . Then the following relations hold as n → ∞:

U − qU = qm+1

m + 1
+

{
qm+2

(m + 1)(m + 2)
+ qm+3

(m + 2)(m + 3)
+ · · ·

}
� qm+1

m + 1
+ 1

(m + 1)2

(
qm+2 + qm+3 + · · ·)

= qm+1

m + 1
+ qm+2n

(m + 1)2
= qm+1

m + 1

(
1 + o(1)

)
.

It follows that

U − qU ∼ qm+1

m + 1
, U ∼ nqm+1

m + 1
,

∞∑
k=m+1

kr−1qk ∼ mnqm+1

(m + 1)2−r
.

Hence, for 0 < r < 1 relation (4.3) is equivalent to the relation

mnqm+1

(m + 1)2−r
∼ e−xnr−1Γ (r), as n → ∞. (4.12)

It is easy to check that (4.12) is equivalent to (4.11). Hence, relation (4.3) is equivalent to (4.12) for all r > 0.

(f) Relation (4.12) can be rewritten equivalently as follows(
m

n

)r−1

n

(
n − 1

n

)m

→ e−xΓ (r), as n → ∞, (4.13)

(r − 1) ln
m

n
+ lnn − m ln

(
1 + 1

n − 1

)
→ ln Γ (r) − x, as n → ∞. (4.14)

Using conclusions from points (a) and (b) we get that ln m
ln n → 1 as n → ∞. It follows from (4.14) that

(r − 1)
ln m − ln n

ln n
+ lnn

lnn
− m

lnn
ln

(
1 + 1

n − 1

)
→ 0, as n → ∞,

1 − m

n ln n
→ 0, and m ∼ n ln n, as n → ∞.

Consequently (4.14) can be rewritten equivalently as follows

(r − 1)

(
ln

m

n ln n
+ ln lnn

)
+ lnn − m

n
+ m

{
1

n
− ln

(
1 + 1

n − 1

)}
→ lnΓ (r) − x, as n → ∞,

(r − 1) ln ln n + lnn − m

n
= lnΓ (r) − x + o(1), as n → ∞,

m = n
(
ln n + (r − 1) ln lnn + x − lnΓ (r) + o(1)

)
, as n → ∞,

and the proof of Lemma 4.1 is completed. �
Lemma 4.2. Let un(x) = n(ln n + (r − 1) ln ln n + x − ln Γ (r)), m = [un(x)], rn = un(x)−m ∈ [0,1) and τn,r = n{1 − Fn,r(un(x))} =
n{1 − Fn,r(m)}.

If r ∈ (0,∞) \ {1}, then the following asymptotic relation holds:

τn,r = e−x
{

1 + (r − 1)2 ln lnn

ln n
+ o

(
ln lnn

lnn

)}
, n → ∞. (4.15)

Proof. Case r � 2. Note that the following relations hold:(
1 − 1

n

)m+1

= e{n(ln n+(r−1) ln lnn+x−lnΓ (r))−rn+1} ln(1− 1
n ) = e

{n(ln n+(r−1) ln ln n+x−lnΓ (r))−rn+1}{− 1
n − 1

2n2 +o( 1
n2 )}

= e− ln n−(r−1) ln lnn−x+lnΓ (r)− ln n
2n +o( ln n

n ) = Γ (r)e−x

n(ln n)r−1

{
1 − lnn

2n
+ o

(
lnn

n

)}
, (4.16)

(
m + k

n

)r−1

= (
lnn + (r − 1) ln lnn + o(ln lnn)

)r−1

= (lnn)r−1
{

1 + (r − 1)2 ln lnn + o

(
ln lnn

)}
, where k = const., (4.17)
lnn lnn
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Ψ (m + [r],ϑ)

nϑ
� C

n

(
m

n

)ϑ(
1 − 1

n

)m

= C

n

(
m

n

)ϑ
Γ (r)e−x

n(ln n)r−1

{
1 − ln n

2n
+ o

(
lnn

n

)}
∼ CΓ (r)e−x

n2(lnn)r−ϑ−1
, n → ∞. (4.18)

Using (4.16)–(4.18) and expression for Ψ (p, s) from (4.5), we obtain

τn,r = Ψ (p, s)

nr−1
= (n − 1)m+1Γ (r + m + 1)

nm+r−1Γ (r)Γ (m + 2)

{
1 + (n − 1)Γ (r)Γ (m + 2)

Γ (r − 1)Γ (m + 3)

+ (n − 1)2Γ (r)Γ (m + 2)

Γ (r − 2)Γ (m + 4)
+ · · · + (n − 1)[r]−2Γ (r)Γ (m + 2)

Γ (2 + ϑ)Γ (m + [r])
}

+ Ψ (m + [r],ϑ)

nϑ

=
(

1 − 1

n

)m+1(m + 2

n

)r−1 n

Γ (r)

{
1 + (r − 1)2 − (r − 1)

2(m + 2)
+ o

(
1

m

)}
×

{
1 + Γ (r)

Γ (r − 1) ln n
+ o

(
1

lnn

)}
+ Ψ (m + [r],ϑ)

nϑ

= e−x
{

1 + (r − 1)2 ln lnn

lnn
+ o

(
ln lnn

lnn

)}
, n → ∞.

Case 1 < r < 2. Using some calculations from Lemma 4.1, relations (4.16)–(4.17) and equalities

1 + n

m
= 1 + 1

lnn + o(lnn)
= 1 + 1

lnn
+ o

(
1

lnn

)
, n → ∞,

τn,r = Ψ (p, s)

nr−1
= 1

nr−1Γ (r)

∞∑
k=m+1

Γ (r + k)qk

Γ (k + 1)
,

we obtain the following relations:

τn,r � 1

nr−1Γ (r)

∞∑
k=m+1

(k + 1)r−1qk
(

1 + Q

m

)
� 1

nr−1Γ (r)

(
1 − 1

n

)m+1 n(m + 1) + n2 − n

(m + 1)2−r

(
1 + Q

m

)

� n

Γ (r)

(
1 − 1

n

)m+1(m + 1

n

)r−1(
1 + n

m

)(
1 + Q

m

)
= e−x

{
1 + (r − 1)2 ln lnn

lnn
+ o

(
ln lnn

lnn

)}
, n → ∞,

τn,r � 1

nr−1Γ (r)

∞∑
k=m+1

(k + 1)r−1qk
(

1 − Q

m

)
�

(
m + 2

n

)r−1 n

Γ (r)

(
1 − 1

n

)m+1(
1 + Q

m

)

= e−x
{

1 + (r − 1)2 ln lnn

lnn
+ o

(
ln lnn

lnn

)}
, n → ∞,

and consequently relation (4.15) follows.
Case 0 < r < 1. Now the following relations hold:

τn,r � 1

nr−1Γ (r)

∞∑
k=m+1

kr−1qk
(

1 + Q

m

)
� 1

nr−1Γ (r)(m + 1)2−r

∞∑
k=m+1

kqk
(

1 + Q

m

)

= n(m + 1)qm+1 + n2qm+2

nr−1Γ (r)(m + 1)2−r

(
1 + Q

m

)
= n

Γ (r)

(
m + 1

n

)r−1(
1 − 1

n

)m+1(
1 + n − 1

m + 1

)(
1 + Q

m

)
= e−x

{
1 + (r − 1)2 ln lnn

lnn
+ o

(
ln lnn

lnn

)}
, n → ∞,

τn,r � 1

nr−1Γ (r)

∞∑
k=m+1

kr−1qk
(

1 − Q

m

)
� (m + 1)r

nr−1Γ (r)

∞∑
k=m+1

qk

k

(
1 − Q

m

)

� (m + 1)r

nr−1Γ (r)

nqm+1

m + 1

(
1 − Q

m

)
= n

Γ (r)

(
1 − 1

n

)m+1(m + 1

n

)r−1(
1 − Q

m

)
= e−x

{
1 + (r − 1)2 ln lnn

lnn
+ o

(
ln lnn

lnn

)}
, n → ∞,

and again relation (4.15) follows immediately. �
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Proof of Theorem 3.1. Let un(x) = n(x + ln n + (r − 1) ln ln n − ln Γ (r)). Using Lemma 4.1 we obtain that n{1 − Fn,r(un(x))} →
e−x as n → ∞. Equality (3.1) follows then from Leadbetter et al. [11], Theorem 1.5.1.

According to Remark 3.2 it remains to prove relation (3.3) for non-integer r > 0. For such values of r let τ = e−x and
τn,r = n{1 − Fn,r(un(x))}. Note that

�n(r, x) = P
{

M∗
n � un(x)

} − e−τn,r + e−τn,r − e−τ . (4.19)

Using Leadbetter et al. [11], Theorem 2.4.2, we obtain that

P
{

M∗
n � un(x)

} − e−τn,r ∼ e−2x exp(−e−x)

2n
, n → ∞. (4.20)

It follows from (4.15) that

e−τn,r − e−τ = −(r − 1)2e−x exp
(
e−x) ln lnn

lnn
+ o

(
ln lnn

lnn

)
, n → ∞. (4.21)

Finally, relation (3.3) is a consequence of relations (4.19)–(4.21). �
Remark 4.3. For ũn(x) = n(ln n + (r − 1) ln ln n + x − ln Γ (r) + (r−1)2 ln ln n

lnn ), and m̃ = [̃un(x)], τ̃n,r = n{1 − Fn,r (̃un(x))} one can
obtain the following asymptotic relations as n → ∞:(

1 − 1

n

)m̃+1

= Γ (r)e−x

n(ln n)r−1

{
1 − (r − 1)2 ln lnn

lnn
+ o

(
ln lnn

lnn

)}
,

τ̃n,r
(
un(x)

) = e−x
{

1 + O

(
1

ln n

)}
,

and consequently P {M∗
n � ũn(x)} − e−τ ∼ O ( 1

lnn ) as n → ∞.
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