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1. Introduction and main result

The probabilistic method is a useful tool in the study of basic hypergeometric functions. There are some works avail-
able in the literature. For example, KW.,]. Kadell [11] gave a probabilistic proof of Ramanujan’s 1¥; sum based on the
order statistics. ]. Fulman [7] presented a probabilistic proof of Rogers—-Ramanujan identity using Markov chain on the non-
negative integers. R. Chapman [6] extended ]. Fulman’s methods to prove the Andrews-Gordon identity. In particular, the
present author [19] established the following new probability distribution W (x; q):

o\ (=1 4k+1 nk+1. k
P(é;.:ank):( VT XTET @ ooq , (11)
(q,9/%,% Qoo

where x <0; 0<q<1; n=0,1; k=0,1,2,..., and gave some applications of this distribution in g-series. In this paper,
we derive an expectation formula of W (x;q) and provide some probabilistic derivations of g-identities which include an
extension of Sears’ 3¢, transformation formula.

We recall some definitions, notation and known results in [4,8] which will be used in this paper. Throughout the whole
paper, it is supposed that 0 < q < 1. The g-shifted factorials are defined as

n—1 00
@@o=1, @on=[[(01-ad"). @@Qe=]](1-ad"). (12)
k=0 k=0

We also adopt the following compact notation for multiple g-shifted factorials:

(ar,az, ..., am; Qn = (a1; Pn(az; Pn - - . (@m; Pn, (1.3)
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where n is an integer or co. We may extend the definition (1.2) of (a; q), to
(@; Qe

(@q%; Qoo

for any complex number «. In particular,

@ Qo =

@ Q) = (a_;q)oo _ _1 _ 40" oy
@™ P @@ @n  (q/aQn

Heine introduced the ,11¢, basic hypergeometric series, which is defined by

o0
ay,az,...,0r41 (ai,az,...,0r41; Qnx"
14 3 q,X ) = :
"~ ( b1, bz, ....by ) 2 @.b1,b2, .. by @

The g-binomial theorem

, Xl < 1.

i @ Onx" _ (a%: @)oo
5 @dn Qo

The g-Gauss summation formula
ab ¢ (c/a,c/b; Poo
201 S ) =
c ab (c,c/ab; @)oo
Sears’ 3¢, transformation formula

3¢2<a1,02,f13. b1by > (b2/az, b1ba/aray; CI)oo (bl/a] ,bi/az, a3

C

ab

bi.by 7 ajazas (b2, b1by/ajazas; Doo by, biby/a1az ’
b1b; b,
— | <1.
ajazas as

The bilateral basic hypergeometric series ;v is defined by

o
ap,az,...,ar (@,az,...,ar; Pn (s— r)n - (%) n
1q,2 ) = — 2 P (—1) 2z
rl/fs(bl,bz’---’bs 1 ) n;oo (b1,bz2,...,bs; Qn

The following is the well-known Ramanujan’s 14y summation formula

o0

Z (@ Dn . (q.b/a,az,q/az; @)oo
e G (b.q/a,z.b/az; q)oc ’

FH. Jackson defined the g-integral by [10]

|b/al < |z] < 1.

/f(t)dqt—d(l —0 f(dg')g

n=0

d d c
/f(t)dqt=/f(t)dqt—/f(t)dqt.
c 0 0

He also defined an integral on (0, co) by

/f(t)dqt—(l—cn Z fa

n=—oo

and

On the interval (—oo, 00) the bilateral g-integral is defined by

/ F®)dgt = (1—q) Z (—q")]q".

n=—o0

by
22
as

)

(14)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(111)

(112)

(113)

(1.14)

(1.15)
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The g-integral is important in the theory and applications of basic hypergeometric series. For example, the present author
gives some applications of the g-integral [14-18,20]. These papers can help the reader to understand the main idea of the
present paper. The following is the Andrews-Askey integral [2], which can be derived from Ramanujan’s 11y summation:

d
@gt/c.qt/d: Poo , . _ 4 —q)(q.dg/c.c/d, abed; )o
@, bt; os (ac, ad, b, bd; @)oo

, (1.16)

provided that no zero factors occur in the denominator of the integrals. Al-Salam and Verma gave an extension of the
Andrews-Askey integral, which is called the Al-Salam and Verma [1] g-integral

d
(gt/c.qt/d.et: Qoo , 41 —9)(q.dg/c.c/d. e/a.e/b.e/f: Do (117)
@at,bt, ft; Qo (ac, ad, be, bd, fc, fd; @)oo ’ '
provided that no zero factors occur in the denominator of the integrals, where e = abcdf.
The main result of this paper is the following theorem:
Theorem 1. Let & denote random variable having distribution W (x; q), —1 < x < 0, then we have
CXE; acx, bex, x; ab, c,cx
E (cX&; Poo _ ( Doo e q.x), (118)
(ag, b§, c&; Qoo (a,ax, b, bx, ¢, cx; )0 acx, bex

provided that max{|a|, |b|, |c|} < 1, where E(X) denotes expected value of the random variable X.

2. The proof of Theorem 1

In this section, we use the Al-Salam and Verma [1] g-integral to give the proof of Theorem 1. We also need to use the
following well-known theorems:

Analytic continuation theorem: If f and g are analytic at zg and agree at infinitely many points which include zp as an
accumulation point, then f =g.

Lebesgue’s dominated convergence theorem: Suppose that {X,, n > 1} is a sequence of random variables, that X; — X
pointwise almost everywhere as n — oo, and that |X;| <Y for all n, where random variable Y is integrable. Then X is
integrable, and

lim EX, = EX. (2.1)
n—oo

The analytic continuation theorem is useful in the study of basic hypergeometric functions. Two well-known examples
are, Ismail’s proof of the Ramanujan’s 111 sum [9] and the Askey-Ismail proof of Bailey’s sum of the very well poised

6¥s [5].

Now we give the proof.

Proof. Considering the following sequence of random variables (on a probability space):

_ (abexE Qoo < (@b, cE; Xt
(a8, bE, c&:1q)oc =2 (q, abeXE; Q)1

n
=0

wheren=0,1,2,....
Since,

(abcx£; @)oo Z (ab, c&; q)ix*
(a&,b&,c&;: ) (q, abexg; q)k

(1] =

k=0

_ Z (abexg“s: @)oo (ab; it
(@&, bg, cq*s: Poo (@3 Dk

k=0
. n

< (—labex|; ) Z

(lal, I, Icl; oo =

and the series

(ab; @)Xk
@ Dk
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i (ab; q)ix*

iz @Dk

converges absolutely. Using Lebesgue’s dominated convergence theorem obtains:

lim Erp = E( lim 7711)- (2.2)
n—oo n—-oo
Using the g-Gauss theorem (1.8), we have

. o . k
ll _ (abCXS’ q)OO Z (aba CSv Q)kx

m =
n00 " = (€, bE. &1 Qoo 2= (q.abCXE: )¢

(abcx§; Qoo (€XE, abX; @)oo
(a&, b€, c&; @)oo (abexg, X; @)oo
_@x o (X (23)
% @oo (@&, b&,¢5; Poo
Hence, we get the right-hand side of (2.2):

: (abx; @)oo { (CX&E; @)oo
E( 1 n) = E ) 24
<nl>n30 ) % Doo (a&,b&,ct;q) 24)

Now we begin to calculate the left-hand side of (2.2). Observe that

(@bex; @)oo < (ab, c&; @x* (ab; @)x* i (abexg*€; @)oo }
En,=E =
1 {(aé,bé,cé;q)oo g (g, abex€: q)i Z @@ | (a&.bg.cq*: @)oo

Employing the Al-Salam and Verma g-integral (1.17) gives

. 1 o0 — k+m. m
(abcxq*g; @)oo } (=" @1 gm X abex gk ) sog
| et el d_y >

(@.b6.cq'6:q)oc ) = (q.q/x.x.ax"q™ DX'QT, cqHHTX": @)oo
1 0 (qm+1 X, qurl’ abquk+m; q) qm
= . 1-q Z / m m k+m =
(1=, 9/% % P = (aq™, bq™, cq*™; @)oo

x(] ) i (qm+1’ qu-H , abcxzq"+m; q)ooqm
1 (axg™, bxq™, cq*tMx; @)oo

1
_ 1 (qt/x, qt, abexq*t; @)oo
T (-9 9/%% Do J (bt cqt: oo K

_ (abx, acxq®, bexq®; @)oo (2.6)
" (a,ax, b, bx, cqk, cxqk; @)oo | '
Substituting (2.6) into (2.5) yields

n
ab; q).xk abexghe: abx, acx, bex;
Enn=Z( Dk E= (abexq*E; @) o }_ ( Qoo

n
b, c, cx; q)xk
: _ Z (ab, ¢, cx; Q)X . 2.7)
k=0 (qv Q)k (ag’ b&_a Cq<$; Q)oo (a7 aX, ba bX! Cv CX; Q)oo k=0 (q! GCX, bCX; Q)k
Hence, we get the left-hand side of (2.2)
. (abx, acx, bcx; @)oo ab,c,cx
lim En, = 0 q, X 2.8
n—o0 Tin (a,ax, b, bx, c, cx; q)oo3 2 acx, bcx 1 (2:8)

Substituting (2.4) and (2.8) into (2.2) yields (1.18). O
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3. Some applications

465

The expectation formula (1.18) can be used to derive identities about the basic hypergeometric functions. In this section,
we show some applications of Theorem 1. The following transformation formula can be derived directly from Theorem 1

and g-binomial theorem.

Theorem 2. Let |a| < 1, |b| <1, |x| < 1and |z| < 1, then

o0

(a, ax; q)pz" azzq", b, bx (az,azx; q)oo b, bx
Yo g (qx ) = gy 14, x).

= (q.abx; @)n 3 abxgk,abz’ ~ (z,abzx; q)os abx

Proof. Rewrite g-binomial theorem (1.7) as
o

Zz" 1 1 1

@O @007 D Z Do (@ Do

Letting a = a& in (3.2) gives

o0

3 & 1 _1
—(@Dn (a9",028: o (ZiQPoo  (AE1Doo’

where & denotes random variable having distribution W (x; q) and —1 < x < 0. Multiplying both sides of (3.3) by

(bx&; q)oo
(b&; @)oo
and then applying the expectation operator E on both sides of (3.3), it follows that

4 (bX&; @)oo 1 { (bXE; @)oo }
{Z(q;q)n (aq”é,azabé;q)m} (Z: oo | (@5, bE; @)oo

n=0

Since,

‘Z” (X8 ‘< bl P 12"
(@G Qn  (ag"€,az&,b&; @)oo |  (lal, lazl, 1bl; Qoo (@5 @n
and the series

o

|z|"
Z (q; Dn

m=0

converges. Using Lebesgue’s dominated convergence theorem yields

- 2" (bXE; Qoo o 2" { (bx&; D)oo }
E . = E .
{Z (@ Qn  (aq"§, az§, bE; @)oo } 2 (@ @n 1 (aq"§, az§, bE; q)oo

n=0 n=0

Hence,
i z" Ei (bXE: @)oo }: 1 E{ (bxs;q)oo}
= (@ Dn | ("¢, azE, b8 oo ] (Z1 D)oo | (@8.DE Qoo |

Employing (1.18) gives

(bXE: @)oo ___ @l obzx X @zq"b,bx
(aq"€. azé . bé: Q)oo |  (aq".axq", az,azx.b.bx; Qe 2\ abxq",abz "

and

E[ (bX£: @)oo } @x % Do (b,bx. ,X>.

(@&, DE: Qoo | (@, 0X. b, bX: Q)og " abx 9

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.8)
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Substituting (3.7) and (3.8) into (3.6) yields

i(a,ax;q)nzn¢ @zq",b,bx_\ _ (02,02 ¢ o (% 0 (3.9)
o @.abx: ) >\ abxqr.abz * ) T @ abzx oo 20"\ abx 1Y) ‘

where —1 < x < 0. By analytic continuation, we may replace the assumption —1 < x < 0 by |x| < 1. Thus, we get (3.1). O
From the theorem, we can easily get the summation formula involving 3¢,:

Corollary 1. Let |a| < |b| < 1and |z| < 1, then

i(a,az/b;q)nZ” a,b,a’zq" a\ (az,a’z/b,a,d?/b;q)w (310)
~= (@.aqn abz,a?q" " 'b)  (z.a’z.a%,a/b; Qo '
Proof. Letting x=a/b in (3.1) gives
i(a,az/b;q)nZ" a.b,a’zq" a\ _ (az,a’z/b;q)wo O
g ahqn \abzaqn b)) T @ azge O\ @ Ty
_ (az, aZZ/b,a,az/b;q)oo’ 311)

(z,0%z,02,a/b; @)oo

as desired. O

Sears’ 3¢, transformation formula has been used by Andrews [3,12] in proving many of Ramanujan’s identities for
partial theta functions. Using the expectation formula (1.18), we can easily derive the following expansion of Sears’ 3¢,
transformation formula.

Theorem 3. Let |a| < |c| < |b] < 1,|d| <1, |x| <1and |z| < 1, then
o

Z (b, a, ax; Q)nz" a’bzq"/c,d, dx
(q, ¢, adx; q)n 3%2 adxq“,abdzx/c’q’

n=0
. 0 . n 2 n
_ (¢/b,bz; @) Z (b,abz/c,abzx/c; q)n(c/b) asbzq", d, dx 0.x (312)
(z,¢; Qoo = (q, bz, abdzx/c; q)n abdzxq"/c, adx
Proof. By the following Rogers’ iteration of Heine’s transformation formula [4,8]
a,b (c/b,bz; 9) o b,abz/c c
3,2 )=—————— 34, 7 s 3.13
2¢1< 4 Z) 2.6 Do 201 by 93 (313)
which can be rewritten as
0 n o n
3o i on”, 1 NGNS N ULINGI 1 (314)
= @cn (aghabz/ciQ)ee (2G5 @ bz@n  (a,abzq"/ci Qoo '
Letting a = a¢ in (3.14) and multiplying both sides of (3.14) by
(dx&; @)oo
(d&; Qoo
yields,
i (b; n2" (dx§; @)oo _ (c/b,bz;q)o i (bs @n(c/b)" (dXE; @)oo (315)
= (@.cqn (aq'§.abzE/c.dE: oo (2@ =5 @ bzi@n  (a§,abzq"§/c.dE: q)oo’

where & denotes random variable having distribution W (x; ¢) and —1 < x < 0. Applying the expectation operator E on both
sides of (3.15), it follows that
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o (b n2" G
E .
[n;] . ¢;@n (aq"§, abzé/c, d; @)oo ]
—E (c/b,bz;q>oo§:(b;q)n(c/b)". (dx8; D)oo
(.6 Qoo (@.bz;q)n  (a&,abzq"§/c.d&; @)oo |

Since,

(b; @)nz" (dx€; Qoo ‘< (=1d]; 9o (laf, b; @)n2"
(@.c;@n  (ag"€,abzé/c,dE; @)oo |  (lal, labz/cl,1d]; Qoo | (@, C; Dn

and the series

i (lal, b; @)nz"
q,¢; Dn

m=0

is convergent. Using Lebesgue dominated convergence theorem, we obtain

o (b; )nZ" (dXE; @)oo o (b; Q)nZ" { (dXE; D)oo }
{g(q,c;q)n (aq”é,abZS/c,dé;q)oo} g(q,c;q)n (aq"§, abz& /c, d&; Q)0

Employing (1.18) gives

(dxE; @)oo (adxq", abdzx/c, X; q)oo a’bzq"/c.d, dx
= iq
adxq", abdzx/c

(aq"&,abzg /c,d&; @)oo | (aq", axq", abz/c,abzx/c, d, dx; Do

Substituting (3.18) into (3.17), then we get the left-hand side of (3.16)

. i(b;q)nzn. (dXE; @)oo
= 4.6 9n (aq"&,abz& /c, d&; @)oo
B (adx, abdzx/c, x; @) o > (b, a,ax; Qnz" a2bzq”/c,d, dx
" (a,ax,abz/c,abzx/c,d, dx; ) oo e (q, c,adx; q)n 32 adxq™, abdzx/c’ "

Similarly, we can obtain the right-hand side of (3.16)

. (c/b,bz;q>oo§:<b;q)n(c/b)". (dXE; @)oo
(2,6 Qoo (q@.bz:q)n  (a§,abzq"§/c.d§; @)oo

_ (¢/b,bz; @) Z (b; q)n(C/b)" [ (dX€; oo }
(z,¢ Qoo q.bz; q)n (a&,abzq"& /c, d&; @)oo

n=0

B (adx, abdzx/c, X; Q) 0o (c/b,bz; @) i (b,abz/c,abzx/c; q)n(c/b)"
 (a,ax,abz/c,abzx/c,d, dx; oo (Z,C; Qoo (q, bz, abdzx/c; q)n

a’bzq™, d, dx
X 3¢2 ;q, X
abdzxq™ /c, adx

Substituting (3.19) and (3.20) into (3.17), we have

i (b, a, ax; q)nz” azbzq Jc,d, dx
< (q.¢,adx; @)~ \ adxq", abdzx/c’ 4

_ (¢/b,bz;)eo i (b,abz/c,abzx/c; q)n(c/b)" a’bzq", d, dx )
T (2,690 (q, bz, abdzx/c; q)n abdzxq" /c,adx’ V")’

where —1 < x < 0. By analytic continuation, we may replace the assumption —1 < x < 0 by |x| < 1. Thus,

)
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(3.16)

(317)

(3.18)

(3.19)

(3.20)

(3.21)

we get (3.12). O
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We point out that the two terms 3¢, transformation formula of Sears is a special case of (3.12). The two terms 3¢,
transformation formula of Sears [13] can be stated as

Corollary 2. We have

ai,az,as biby (b2/as, b1bz/a1az; @) o bi/ai,b1/az,a3 b2
3¢2 14, = : 362 g, — ). (3.22)
b1, b2 a1a,a3 (b2, b1by/a1a2a3; @) o by, b1by/ara; as
Proof. Letting d =0 in (3.12) and using g-binomial theorem (1.7) gives
i (b,a,ax; Qnz" (@*bzxq"/c; @)oo
= @cn (*; @)oo
_ (/b,bz; @) i (b, abz/c, abzx/c; q)n(c/b)" (azbzxq”;q)oo’ (3.23)
@D (g, bz; q)n *; @)oo
which can be rewritten as
b,a,ax (c/b,bz; q) b,abz/c,abzx/c c
S T ) I AL LR e abzxje. <y (324)
c,a’bzx/c (z,¢; Qoo bz,a’bzx/c b

After replacing (a, b, ax, ¢, z) by (a1, as, az, by, b1by/ai1aza3) in (3.23), we obtain the two terms 3¢, transformation formula
of Sears (3.22). O
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