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We consider the three-dimensional inverse scattering with fixed energy in the spherically
symmetrical case. We give a characterization of the sequences of phase shifts for two
potentials which can be different only in a ball of radius a. In other words we study how
the large distance interaction influences the asymptotical behavior of the phase shifts. We
also characterize the tail of the potential by the growth order of the scattering amplitude
F (t) for large t.
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1. Introduction

It is known (see e.g. [5] or [6]) that the three-dimensional inverse scattering with fixed energy in the case when the
potential is spherically symmetrical, is described by the following system of equations

ϕ′′
n (r) − n(n + 1)

r2
ϕn(r) − q(r)ϕn(r) + k2ϕn(r) = 0, r � 0 (1.1)

with real-valued potential function q(r), rq(r) ∈ L1(0,∞) and fixed energy k2 = 1. It is known that there exists a unique
solution of (1.1) with

ϕn(r) = γnrn+1(1 + o(1)
)
, r → 0+ (1.2)

and

ϕn(r) = sin(r − nπ/2 + δn) + o(1), r → +∞. (1.3)

The quantities δn are called phase shifts.
The inverse scattering problem investigated here consists of the recovery of the potential q from the phase shifts δn .
Sometimes it is useful to extend the system (1.1) to noninteger λ, �λ > 0 as follows:

ϕ′′(r, λ) − λ2 − 1/4

r2
ϕ(r, λ) + (

1 − q(r)
)
ϕ(r, λ) = 0, r � 0, (1.4)

ϕ(r, λ) = γ (λ)rλ+1/2(1 + o(1)
)
, r → 0+, (1.5)

ϕ(r, λ) = sin
(
r − π/2(λ − 1/2) + δ(λ)

) + o(1), r → +∞. (1.6)

Then δn = δ(n + 1/2) and γn = γ (n + 1/2) for n � 0.
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The scattering amplitude F (t) can be expressed by the phase shifts:

F (t) =
∞∑

n=0

(2n + 1)Fn Pn(t), Fn = eiδn · sin δn. (1.7)

Here the functions Pn(t) are the Legendre polynomials, see (2.16) below. The scattering amplitude has a physical interpreta-
tion only for t ∈ [−1,1], however the formula (1.7) can be extended to any t ∈ C in case of convergence. For example if the
potential is compactly supported then the phase shifts have a more than exponential decay, hence (1.7) defines an entire
function F (t). In the next statement, which is the main result of this paper we characterize the knowledge of the tail of the
potential by the asymptotical behavior of the scattering amplitude.

Theorem 1.1. Let rq(r), rq∗(r) ∈ L1(0,∞) and let 0 < a < ∞.

(a) If q = q∗ a.e. on (a,∞) then F (t) − F ∗(t) is entire and

∣∣F (t) − F ∗(t)
∣∣ � c

(
1 + |t|)exp

(
a
√

2|t| ). (1.8)

(b) Conversely, if q and q∗ have compact support, F (t) − F ∗(t) is an entire function and

F (t) − F ∗(t) = O
(
exp

(
a1

√
2|t| )) (1.9)

holds for all a1 > a, then q = q∗ a.e. on (a,∞).

Concerning the characterization by the decay of δn − δ∗
n we have

Theorem 1.2. Let rq(r), rq∗(r) ∈ L1(0,∞).

(a) If q = q∗ a.e. on (a,∞), then for all sufficiently large n

∣∣δn − δ∗
n

∣∣ � c

n2

(
ae

2n

)2n

. (1.10)

(b) Conversely, if q and q∗ have compact support and

δn − δ∗
n = O

((
a1e

2n

)2n)
, n → ∞ (1.11)

holds for all a1 > a, then q = q∗ a.e. on (a,∞).

Remark that in the special case q∗ = 0 a statement similar to part (a) is given in Ramm et al. [16]; they proved that if
q(r) = 0 for a.e. r > a and q has constant sign in some interval (a − ε,a) then

lim
n→∞n|δn|1/(2n) = ae

2
.

Remark. The reconstruction of the potential from the phase shifts may be not unique. For example there are nontrivial
potentials, oscillating and of order r−3/2 at infinity for which all the phase shifts vanish, see e.g. Newton [10], Chapter 20.4.
However, for potentials of compact support, uniqueness is already proved in the paper of Loeffel [9] in 1968. In this case
very sparse subsequences of δn are enough for the unique reconstruction of the potentials, see Ramm [17]. If the potentials
are not spherically symmetrical, uniqueness is given in Ramm [14] for the case of compact support and in Novikov [11] for
bounded potentials with some exponential decay.

The inverse scattering is only weakly stable. Examples for very different stepfunction potentials with almost the same
phase shifts are given e.g. in [13]. The idea that the error in the output can be estimated by the reciprocal of the logarithm of
the input error, appears in Alessandrini [2] for the stability of the inverse conductivity problem. Similar results are obtained
by Stefanov [19] for the inverse scattering with fixed energy. A logarithmic bound for the Fourier transform of the potential
perturbation is given in Ramm [15]. If only finitely many phase shifts are available with some error, a logarithmic estimate
can be found in Horváth and Kiss [8].
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2. Preliminaries

In this section we prove three results we need in the later parts of the paper. The first one is a collection of uniform
estimates of ϕ(r, λ) for large λ. The second one is a characterization of even entire functions F (z2) of exponential type
� A through the coefficients of the expansion of F (z) by the Legendre polynomials; the third one is a “discrete” uniqueness
result for the Laplace transform of a function in L1(0,a).

It is known that for q = 0 we have ϕ(r, λ) = u(r, λ), u(r, λ) =
√

πr
2 Jλ(r). Another solution of (1.4) in case q = 0 is the

function w(r, λ) = −i
√

πr
2 H(1)

λ (r), see e.g. [5]. The following uniform estimates are necessary for later purposes:

Lemma 2.1. Suppose that λ > 0 is sufficiently large to satisfy[
π

∞∫
0

r
∣∣q(r)

∣∣dr

]4

+ 1

16
< λ2. (2.1)

Then ∣∣ϕ(r, λ)
∣∣ �

√
2πr, (2.2)

∣∣ϕ(r, λ)w
(
r∗, λ

)∣∣ � π
√

rr∗
(

λ2 − 1

16

)−1/4

, if 0 � r � r∗ < ∞, (2.3)

∣∣ϕ(r, λ)
∣∣ � 2

√
2π

2λΓ (λ + 1)
rλ+1/2. (2.4)

Proof. We know e.g. from Alfaro and Regge [3, p. 84] that

ϕ(r, λ) = e−iδ(λ)u(r, λ) +
∞∫

0

K
(
r, r′)q

(
r′)ϕ(

r′, λ
)

dr′ (2.5)

with kernel function

K
(
r, r′) = u(r<,λ)w(r>,λ), r< = min

(
r, r′), r> = max

(
r, r′). (2.6)

In [3, Appendix D] the estimate∣∣K
(
r, r′)∣∣ � π

2

√
rr′(λ2 − 1/16

)−1/4
(2.7)

is proved. Putting this into (2.5) gives (we omit the second components λ)

∣∣ϕ(r)
∣∣ �

∣∣u(r)
∣∣ + π

2

(
λ2 − 1/16

)−1/4
∞∫

0

√
rr′∣∣q(

r′)∣∣∣∣ϕ(
r′)∣∣dr′. (2.8)

The estimate | Jλ(r)| � 1 (see [1, 9.1.60]) implies |u(r)| �
√

π/2
√

r. We are looking for a similar estimate |ϕ(r)| � c
√

r. For
fixed λ such a constant c exists, see (1.5) and (1.6). To check that c is independent also of λ return to (2.8), we obtain

∣∣ϕ(r)
∣∣ �

√
πr/2 + π

2

√
r
(
λ2 − 1/16

)−1/4
∞∫

0

√
r′∣∣q(

r′)∣∣c√r′ dr′ (2.9)

or

∣∣ϕ(r)
∣∣/√r �

√
π/2 + c

π

2

(
λ2 − 1/16

)−1/4
∞∫

0

r′∣∣q(
r′)∣∣dr′. (2.10)

If c = sup(|ϕ(r)|/√r) then

c �
√

π/2 + c
π

2

(
λ2 − 1/16

)−1/4
∞∫

r′∣∣q(
r′)∣∣dr′ �

√
π/2 + c/2. (2.11)
0
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That is, c �
√

2π and this proves (2.2). To check (2.3) define

c = sup
(∣∣ϕ(r)w

(
r∗)∣∣/√rr∗) if 0 � r � r∗ < ∞. (2.12)

This constant is finite: near the origin ϕ/
√

r and w/
√

r∗ have the order rλ and (r∗)−λ , so their product is bounded; if
r∗ → ∞ then w(r∗) and ϕ(r) are bounded. So c is finite indeed. Multiplying (2.5) by w(r∗) gives

ϕ(r)w
(
r∗) = e−iδ(λ)u(r)w

(
r∗) +

r∫
0

u
(
r′)w(r)q

(
r′)ϕ(

r′)w
(
r∗)dr′ +

∞∫
r

u(r)w
(
r∗)q

(
r′)ϕ(

r′)w
(
r′)dr′. (2.13)

Applying here (2.7) three times and (2.12) two times we obtain

∣∣ϕ(r)w
(
r∗)∣∣ � c0

√
rr∗ +

r∫
0

c0
√

r′r
∣∣q(

r′)∣∣c√r′r∗ dr′ +
∞∫

r

c0
√

rr∗∣∣q(
r′)∣∣cr′ dr′ (2.14)

with c0 = π/2(λ2 − 1/16)−1/4. Thus, dividing by
√

rr∗ we finally get

c � c0

[
1 + c

∞∫
0

r
∣∣q(r)

∣∣dr

]
� c0 + c/2 (2.15)

which means c � 2c0 and this proves (2.3). Finally let

c = sup
(
ϕ(r)/rλ+1/2).

From [1, 9.1.62] we infer

∣∣u(r)
∣∣ � c0rλ+1/2, c0 =

√
π

2

1

2λΓ (λ + 1)
.

Putting all the above considered inequalities into (2.13) gives

∣∣ϕ(r)
∣∣ � c0rλ+1/2 +

r∫
0

π/2
(
λ2 − 1/16

)−1/4√
rr′∣∣q(

r′)∣∣crλ
√

r′ dr′ +
∞∫

r

c0rλ+1/2
∣∣q(

r′)∣∣πr′(λ2 − 1/16
)−1/4

dr′.

After dividing by rλ+1/2 and extending both integrals from zero to infinity it follows that c � c0 + c/2 + c0, that is c � 4c0
which proves (2.4). �

Our next statement gives a characterization of even entire functions F (z2) of exponential type � A in terms of the
coefficients of the expansion of F (z) with respect to the Legendre polynomials

Pn(z) = 1

2nn!
[(

z2 − 1
)n](n)

. (2.16)

Introduce the Legendre functions

Q n(z) = 1

2

1∫
−1

Pn(y)
dy

z − y
. (2.17)

If F (z) is an entire function, it can be expanded into a series

F (z) =
∞∑

n=0

an Pn(z), an = 2n + 1

2π i

∮
G

F (t)Q n(t)dt,

where G is any ellipse with foci ±1, see [20, 15.4].
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Lemma 2.2.

(a) If F (z) is an entire function satisfying∣∣F (z)
∣∣ � ce A

√|z|, z ∈ C (2.18)

then

F (z) =
∞∑

n=0

an Pn(z) with |an| � c
√

n

(
e A

2
√

2n

)2n

for n � 1. (2.19)

(b) Conversely, if (2.19) holds then F (z) is entire and∣∣F (z)
∣∣ � c

(
1 + √|z| )e A

√|z|. (2.20)

The constants c can be different in different occurrences.

Proof. Substituting (2.16) into (2.17) gives after n integrations by parts that

Q n(z) = 1

2n+1n!
1∫

−1

[(
y2 − 1

)n](n) dy

z − y
= 1

2n+1

1∫
−1

(
1 − y2)n dy

(z − y)n+1
.

If the parameter of the ellipse G is 2R + 2 then |z − y| � R for z ∈ G and y ∈ [−1,1], hence

∣∣Q n(z)
∣∣ � 1

(2R)n+1

1∫
−1

(
1 − y2)n

dy � c√
n

1

(2R)n+1
. (2.21)

Now if (2.18) holds then

|an| � cn

∮
|t−1|+|t+1|=2R+2

∣∣F (t)
∣∣∣∣Q n(t)

∣∣dt � cn

∮
e A

√
R+1 1√

n(2R)n+1
dt � c

√
ne A

√
R 1

(2R)n
.

The right-hand side is minimal at
√

R = 2n/A and this gives (2.19). To prove the converse we will use the bound [12, 8.21]

∣∣Pn(z)
∣∣ � c(δ)√

n
|z|−1/2(|z| + √∣∣z2 − 1

∣∣ )n+1/2
, dist

(
z, [−1,1]) > δ (2.22)

to obtain

∣∣F (z)
∣∣ � |a0| +

∞∑
n=1

c
√

n

(
e A

2
√

2n

)2n

· 1√
n

(|z| + √∣∣z2 − 1
∣∣ )n+1/2

� |a0| + c
∞∑

n=1

(
e2 A2

8n2

(|z| + √∣∣z2 − 1
∣∣ ))n

� |a0| + c
∞∑

n=1

√
n

[
A

√
|z|+

√
|z2−1|

2

]2n

(2n)!

� |a0| + c
∞∑

n=1

√|z|
[

A

√
|z|+

√
|z2−1|

2

]2n−1

(2n − 1)!

� |a0| + c
∞∑

n=1

√|z| exp

(
A

√
|z| + √|z2 − 1|

2

)

� c
(
1 + √|z| )e A

√|z|,

which is (2.20). �
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Corollary 2.3. The even and entire function F (z2) is of exponential type � σ if and only if

F (z) =
∞∑

n=0

an Pn(z), lim sup
(
n 2n

√|an|
)
� eσ

2
√

2
. (2.23)

The third topic considered is the following uniqueness result concerning the Laplace transform:

Proposition 2.4. Let f ∈ L1(0,a). If for all ε > 0

a∫
0

f (y)e−ny dy = O
(
e−an(1−ε)

)
, n → ∞ (2.24)

then f = 0 a.e., in particular in all Lebesgue points of f .

The continuous version, where (2.24) holds also for noninteger n, is proved in Simon [18].
To verify Proposition 2.4, we need

Lemma 2.5. In all Lebesgue points r of f ∈ L1(0,a) we have

a∫
0

[
f (y)

1 − ei(ε−ir)−y
− f (y)

1 − ei(−ε−ir)−y

]
dy → 2π i f (r), ε → 0+. (2.25)

Proof. Remark first that (2.25) is valid for f = 1, that is,

a∫
0

[
1

1 − ei(ε−ir)−y
− 1

1 − ei(−ε−ir)−y

]
dy → 2π i, ε → 0+. (2.26)

Indeed, for w = ±ε − ir

a∫
0

dy

1 − eiw−y
=

ea∫
1

dt

t − eiw
= log

(
ea − eiw) − log

(
1 − eiw)

(2.27)

and the imaginary part on the right of (2.27) tends to ±π for w = ±ε − ir. This verifies (2.26). Thus for the proof of (2.25)
it is enough to check that

a∫
0

(
f (y) − f (r)

)[ 1

1 − ei(ε−ir)−y
− 1

1 − ei(−ε−ir)−y

]
dy → 0,

that is,

a∫
0

(
f (y) − f (r)

) sinε

cosh(y − r) − cosε
dy → 0, ε → 0+. (2.28)

Since

cosh(y − r) − cosε = (y − r)2 + ε2

2
+ O

(
(y − r)4 + ε4)

hence

sinε

cosh(y − r) − cosε
=

{
O
( 1
ε

)
if |y − r| < ε,

O
(

ε
(y−r)2

)
if |y − r| > ε.

Introduce the function

F (y) =
y∫ ∣∣ f (t) − f (r)

∣∣dt,
r
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then F (r + t) − F (r − t) = o(t) if t → 0 since r is a Lebesgue point. In (2.28) the following estimates can be applied:∫
|y−r|<ε

= O
(

1

ε

∫
|y−r|<ε

∣∣ f (y) − f (r)
∣∣dy

)
→ 0, ε → 0+,

∫
|y−r|>ε

= O
(
ε

∫
|y−r|>ε

| f (y) − f (r)|
(y − r)2

dy

)
= O

(
ε

∫
|y−r|>ε

F ′(y)

(y − r)2
dy

)

= O

(
ε

[
F (y)

(y − r)2

]r−ε

y=r+ε

+ 2
∫

|y−r|>ε

F (y)

(y − r)3
dy

)
= o(1).

This proves Lemma 2.5 �
Proof of Proposition 2.4. Define

gn =
a∫

0

f (y)e−ny dy.

The uniform convergence of the series

∞∑
n=0

e−n(y−iw) = 1

1 − eiw−y
, 	w > 0

in y ∈ [0,a] implies that

h(w) =
∞∑

n=0

gneinw =
a∫

0

f (y)

∞∑
n=0

e−n(y−iw) dy =
a∫

0

f (y)

1 − eiw−y
dy, 	w > 0. (2.29)

From (2.24) it follows that the sum in the left-hand side of (2.29) has a regular extension to 	w > −a, while the integral
on the right of (2.29) is regular on w ∈ C \ [0,−ia]. Thus the sum and the integral are equal for 	w > −a, w /∈ [0,−ia], in
particular for w = ±ε − ir where r is a Lebesgue point of f . Consequently

h(ε − ir) − h(−ε − ir) =
a∫

0

[
f (y)

1 − ei(ε−ir)−y
− f (y)

1 − ei(−ε−ir)−y

]
dy.

Here the right-hand side tends to 2π i f (r) by Lemma 2.5 while the left-hand side tends to zero by the continuity of h
at −ir. Proposition 2.4 is proved. �
3. Proof of the theorems

Consider the Schrödinger operator Ly = −y′′ + Q (x)y on the half-line x ∈ [0,∞) with the potential Q ∈ L1(0,∞). It is
known that for λ ∈ C \ (β,∞) the solution y ∈ L2(0,∞) of −y′′ + Q (x)y = λy is unique up to a constant factor. Using this
solution we can define the m-function as

m(λ) = y′(0)

y(0)
.

Let Q ∗ ∈ L1(0,∞) be another potential. In Simon [18] it is proved that Q = Q ∗ on (0,a) if and only if

m
(−τ 2) − m∗(−τ 2) = O

(
e−2τa(1−ε)

)
, τ → +∞

holds for all ε > 0. We show below that it is enough to verify this condition for the discrete values τ = n + 1/2:

Proposition 3.1. Let Q , Q ∗ ∈ L1(0,∞). Then Q = Q ∗ on (0,a) if and only if

m
(−(n + 1/2)2) − m∗(−(n + 1/2)2) = O

(
e−2na(1−ε)

)
, n → ∞ (3.1)

holds for all ε > 0.
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Proof. It is known from [18] that

m
(−τ 2) = −τ −

∞∫
0

A(α)e−2τα dα, τ >
1

2

∞∫
0

|Q |

with a function A such that A − Q is continuous and |A(α) − Q (α)| � c exp(α‖Q ‖1). The estimate (3.1) means that

∞∫
0

[
A(α) − A∗(α)

]
e−2(n+1)α dα = O

(
e−2na(1−ε)

)

for sufficiently large n. Here
∫ ∞

0 can be substituted by
∫ a

0 , thus by Proposition 2.4 it follows that A = A∗ a.e. on [0,a] and
then Q = Q ∗ a.e. on [0,a], see [18]. �
Proof of Theorem 1.2. From the estimate (2.4) it follows that

∣∣ϕn(r)
∣∣ � c

rn+1

2nΓ (n + 3/2)
� c

rn+1

2n
(n+1/2

e

)n+1/2√
n

� c
r

n

(
er

2n

)n

for large n. Recall the variational formula

δ̇n = −
∞∫

0

q̇ϕ2
n ,

see [7]. Using the linear deformation q(r, t) = tq(r) + (1 − t)q∗(r) we get

δ∗
n − δn =

1∫
0

∞∫
0

(
q∗(r) − q(r)

)
ϕ2

n (r, t)dr dt.

If q∗ = q on (a,∞), this implies

∣∣δ∗
n − δn

∣∣ � c

n2

(
ea

2n

)2n a∫
0

r
∣∣q∗(r) − q(r)

∣∣dr

which proves the part (a) of Theorem 1.2. To verify part (b), fix a number 0 < a < b < ∞ such that both q and q∗ are
supported in [0,b]. After the variable substitution x = log(b/r) the new functions yn(x) = r−1/2ϕn(r), 0 < r � b satisfy
yn ∈ L2(0,∞) and −yn′′ + Q (x)yn = −(n + 1/2)2 yn with the new potential Q (x) = r2(q(r) − 1), Q ∈ L1(0,∞), see [6].
Clearly q = q∗ on (a,∞) if and only if Q = Q ∗ on (0, log(b/a)) if and only if the difference of their m-functions satisfy

m
(−(n + 1/2)2) − m∗(−(n + 1/2)2) = O

((
a

b

)2n(1−ε))
, n → ∞

for all ε > 0 by Proposition 3.1. Taking into account the formula

m
(−(n + 1/2)2) = y′

n(0)

yn(0)
= 1

2
− b

ϕ′
n(b)

ϕn(b)
= −b

J ′
n+1/2(b) − tan δnY ′

n+1/2(b)

Jn+1/2(b) − tan δnYn+1/2(b)

from [6] or [4] we have to prove that

J ′
n+1/2(b) − tan δ∗

n Y ′
n+1/2(b)

Jn+1/2(b) − tan δ∗
n Yn+1/2(b)

− J ′
n+1/2(b) − tan δnY ′

n+1/2(b)

Jn+1/2(b) − tan δnYn+1/2(b)
= O

((
a

b

)2n(1−ε))
, n → ∞. (3.2)

The estimate

|δn| � c

n2

(
eb

2n

)2n

for large n can be verified as above in part (a). From the known asymptotics [1, 9.3.1]
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Jn+1/2(b) ≈ 1√
(2n + 1)π

(
eb

2n + 1

)n+1/2

,

Yn+1/2(b) ≈ −
√

2

(n + 1/2)π

(
eb

2n + 1

)−n−1/2

we infer that

∣∣ Jn+1/2(b) − tan δnYn+1/2(b)
∣∣ � c

∣∣ Jn+1/2(b)
∣∣ � c

n

(
eb

2n

)n

.

Consequently the derivative of the map

H : t �→ J ′
n+1/2(b) − tY ′

n+1/2(b)

Jn+1/2(b) − tYn+1/2(b)

for t between tan δn and tan δ∗
n satisfies

H ′(t) = J ′
n+1/2(b)Yn+1/2(b) − Jn+1/2(b)Y ′

n+1/2(b)

( Jn+1/2(b) − tYn+1/2(b))2
= O

(
1

J 2
n+1/2(b)

)
= O

(
n2

(
2n

eb

)2n)

(we used the Wronskian [1, 9.1.16]). Thus, using (1.11) the left-hand side of (3.2) can be estimated by

O
((

tan δn − tan δ∗
n

)
n2

(
2n

eb

)2n)
= O

(
n2

(
a1

b

)2n)
= O

((
a

b

)2n(1−ε))

for all ε > 0 if a1 is sufficiently close to a. So (3.2) is verified and then the proof of Theorem 1.2 is complete. �
Proof of Theorem 1.1. We know that

F (t) − F ∗(t) =
∞∑

n=0

an Pn(t) with an = (2n + 1)
e2iδn − e2iδ∗

n

2i
.

Now if q = q∗ a.e. on (a,∞) then (1.10) implies

|an| � c

n

(
ea

2n

)2n

for large n hence for all n � 1 with another constant. Now Lemma 2.2 says that (1.8) is valid. Conversely if we have (1.9)
then Lemma 2.2 implies

e2iδn − e2iδ∗
n = O

(
ea1

2n

)2n

∀a1 > a

and a similar estimate is valid for δn − δ∗
n . Thus by Theorem 1.2 q = q∗ a.e. on (a,∞). �
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