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Semi-Supervised Learning is a family of machine learning techniques that make use of
both labeled and unlabeled data for training, typically a small amount of labeled data with
a large number of unlabeled data. In this paper we propose a Semi-Supervised regression
algorithm by means of density estimator, generated by Parzen Windows functions under
the framework of Semi-Supervised Learning. We conduct error analysis by capacity
independent technique and obtain some satisfactory learning rates in terms of regularity of
the target function and the decay condition on the marginal distribution near the boundary.
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1. Introduction

Traditional learning from example uses only labeled data to train. However, in many real world application, it is relatively
easy to acquire a large amount of unlabeled data. For example, in phonological acquisition contexts, a child is exposed to
many acoustic utterances. These utterances do not come with identifiable phonological markers. Corrective feedback is the
main source of directly labeled examples. In many cases, a small amount of feedback is sufficient to allow the child to
master the acoustic-to-phonetic mapping of any language. Another instance is for a robot with a video camera. The robot
continuously takes high frame-rate video of its surroundings and seek to learn the names of various objects in the video,
but the robot stores names in designed system beforehand only very rarely. These phenomenon can be formulated as a
Semi-Supervised Learning situation: most objects are unlabeled, while only a few are labeled. Semi-Supervised Learning
addresses this problem by using large amount of unlabeled data, together with the labeled data, to build better learners.
Due to less human efforts and higher accuracy, Semi-Supervised Learning can be of great practical value.

At the first glance, the unlabeled data by itself does not carry any information on the mapping from the input space X
to output space Y . How can it help us learn a better predictor f : X → Y . Balcan and Blum pointed out in [1] that the key
lies in an implicit ordering of f ∈ F induced by the unlabeled data. Roughly speaking, if the implicit order happens to rank
the target predictor f ∗ near the top, then one needs less labeled data to learn f ∗ . This idea will be formalized on using
PAC learning bounds. In other context, the implicit ordering is interpreted as a prior over F or as a regularizer. Therefore,
finding the implicit order of input space and designing a good learning algorithm are both very critical in Semi-Supervised
Learning.

The history of Semi-Supervised Learning goes back to at least the 70s, when Self-training, transduction and Gaussian
mixtures with the EM algorithm first emerged. A variety of Semi-Supervised techniques have been developed, which all
can be classified into generative and discriminative methods. A straightforward, generative Semi-Supervised method is
the Expectation–Maximization (EM) algorithm. The EM approach for naive Bayes text classification models is discussed
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by Nigam [12]. Discriminative Semi-Supervised methods [9] include probabilistic and non-probabilistic approaches, such
as transductive or Semi-Supervised Support vector Machines (TSVMs, S3VMs) and a variety of other graph based meth-
ods [23,2]. Different learning methods for Semi-Supervised Learning are based on different assumptions. Fulfilling these
assumptions is crucial for the success of the methods. More discussions can be founded in [3,22].

From the learning kernel point of view, many existing structured learning algorithms (e.g. conditional random fields,
maximum margin Markov networks) can be endowed with a Semi-Supervised kernel. The key idea lies in that the graph
kernel can be constructed with all the unlabeled data, next one applies the graph kernel to a standard structured learning
kernel machine. Such kernel machines include the kernelized conditional random fields [10] and the maximum margin
Markov networks [17], which differ primarily by the loss function they use.

As is well known, Parzen Windows method [13] is a widely used technique for kernel density estimation and regression
(see e.g. [19]), and recently they are also applied to multi-classifier learning [14] and regression problem [21] in a general
subset of R

d by a decay condition near the boundary.
These motivate us to study Semi-Supervised regression integrated with density estimations using Parzen Windows. Intu-

itively, the unknown marginal distribution can be characterized well by Parzen Windows using amounts of unlabeled data.
This amounts to provide us some additional useful information for supervised learning.

Definition 1. We say that Φ : R
d × R

d → R is a basic window function if it is continuous and it satisfies:

(i)
∫

Rd Φ(x, y)dy = 1 for each x ∈ R
d;

(ii) there exist some q > d + 2 and constant cq > 0 such that∣∣Φ(x, y)
∣∣ � cq

(1 + |x − y|)q
, ∀x, y ∈ R

d. (1.1)

The decay condition (1.1) is reasonable since it is satisfied by many commonly used function in multivariate analysis and
learning theory.

Suppose that the input space X is a compact subset of R
d , and the output space Y ⊆ R. Let ρ be the probability measure

defined on X × Y . Given a sequence of sample z := {xi, yi}m
i=1 drawn independently according to ρ , and n unlabeled data

{xi}m+n
i=m+1 drawn from the marginal distribution denoted by ρX , often m � n. In our setting, the objective is to learn the

regression function

fρ(x) =
∫
Y

y dρ(y|x), x ∈ X,

where ρ(y|x) is the conditional probability measure at any given x induced by ρ .
We consider a learning algorithm in a reproducing kernel Hilbert space (RKHS) H K associated with a Mercer kernel K ,

where K : X × X → R is a continuous, symmetric and positive semi-definite function. Without loss of generality, assume
that supx,y∈X |K (x, y)| � κ .

On the basis of density estimator generated by Parzen Windows, we learn the regression function by

f σ
z,λ = arg min

f ∈H K

{
1

m(m + n)σ d

m∑
i=1

m+n∑
j=1

Φ

(
xi

σ
,

x j

σ

)(
f (xi) − yi

)2 + λ‖ f ‖2
K

}
, (1.2)

where σ = σ(m) > 0 is a scalar parameter and λ ∈ (0,1), a regularization parameter controlling the trade-off between the
empirical error and the penalty term ‖ f ‖2

K .
Since X is a compact subset of R

d , some regularity conditions on both the marginal distribution and the density are
required. Throughout the paper, we give the following assumption.

Assumption 1. Suppose that for some 0 < τ � 1, cp > 0, the marginal distribution ρX satisfies

ρX

({
x ∈ X: inf

u∈Rd\X
|u − x| � s

})
� c2

p s2τ , ∀s > 0, (1.3)

and the density p(x) of ρX satisfies

sup
x∈X

p(x) � cp,
∣∣p(x) − p(v)

∣∣ � cp|v − x|τ , v, x ∈ X . (1.4)

Denote L2
μ as the L2-space with the inner production 〈 f , g〉L2

μ
= ∫

X f (x)g(x)dμ. Our learning rates will be achieved

under the regularity assumption on the regression function that fρ lies in the range of Lr
K for some r > 0. Here LK is the

integral operator on L2
ν defined by
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LK ( f )(x) =
∫
X

K (x, y) f (y)dν(y), x ∈ X, f ∈ L2
ν,

where dν(x) = p(x)
V p

dρX (x) with V p := ∫
X p(x)2d(x) > 0. The operator LK is linear, compact, positive and can be also regarded

as a self-adjoint operator on H K . Since the measure dν(x) = p(x)
V p

dρX (x) is probability one on X and ‖p‖∞ � cp , we see

that the fractional operator Lr
K (0 < r � 1) is also well-defined on L2

ρX
in [4].

We can now state our learning rate for the Semi-Supervised regression algorithm which will be proved in Section 5.

Theorem 1. Assume |y| � M for some constant M > 0. Suppose Assumption 1 holds, and L−r
K fρ ∈ L2

ρX
with 0 < r � 1. Choose

λ = στ and λ =
(

1

m

) τ
2τ (r+1)+d

.

For any 0 < δ < 1, with confidence to 1 − δ, there holds

∥∥ f σ
z,λ − fρ

∥∥
L2
ρX

� C̃ log

(
2

δ

)(
1

m

) τ r
2τ (r+1)+d

,

where C̃ is a constant independent on m or δ.

The key technique behind the proof for the convergence of the learning scheme lies in the error decomposition, con-
sisting of a sample error term and an approximation error term. The first term, the sample error, is bounded using a
concentration inequality in a Hilbert space since it is a function of the sample z. On the other hand, the second term, the
approximation error, does not depend on the sample and we use approximation theory to attain the purpose.

The paper is organized as follows. In Section 2 a new Semi-Supervised regression algorithm is proposed based on density
estimations. Then we introduce a necessary concentration inequality in a Hilbert space and sample error in H K are esti-
mated in Section 3. In Section 4 we bound the approximation error under the condition of Assumption 1 and the regularity
of the regression function. Finally we obtain the learning rate by combining the sample error with approximation error.

2. Semi-Supervised algorithm with density estimators

Turn our attention to Parzen Windows again. Let (x1, x2, . . . , xn) be an i.i.d. sample drawn from some distribution with
an unknown density p. We are interested in estimating the shape of this function p. Its kernel density estimator by means
of Parzen Windows method is given as

px,σ = 1

nσ d

n∑
i=1

Φ

(
x

σ
,

xi

σ

)
, (2.1)

where σ > 0 is a smoothing parameter called the bandwidth. Parzen showed that px,σ converges to p(x) and σ = σ(n)

satisfies

lim
n→∞σ(n) = 0, lim

n→∞n
[
σ(n)

]d = ∞.

A kernel with subscript σ is called the scaled kernel and defined as Φσ (x) = 1/σΦ(x/σ ). Intuitively one wants to choose
σ as small as the data allows, however there is always a trade-off between the bias of the estimator and its variance. When
the boundary of X satisfies certain decay condition, by choosing a proper parameter σ(n), a standard convergence rate for
density estimation founded in [6,8] can be expressed as∥∥px,σ − p(x)

∥∥
L2(X)

= O
(
n−2/(d+4)

)
. (2.2)

Note that if the unknown density p is smooth enough, the convergence rate can be improved by using the higher order
Parzen Windows methods [21]. In this paper, our idea lies in that more accuracy should be given at sample point where
the density of the marginal distribution ρX is much larger than other field. In the classical regression algorithm, all the
sample points are equivalently treated and it may cause large violation when there exist some singular points among all the
sample data. Since an unseen data will appears with greater confidence in much denser fields, our efforts should focus on
there by using huge surplus unlabeled data. Considering the data structure of the input space, we propose the kernel-based
regression estimator with respect to density function as

fz,λ = arg min
f ∈H K

{
1

m

m∑
p(xi)

(
f (xi) − yi

)2 + λ‖ f ‖2
K

}
.

i=1
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As mentioned above, p(x) is usually unknown and we shall replace it with a density estimator. Here we make use of
Parzen Windows methods as the kernel density estimation. Thus, given a set of n unlabeled examples {xi}m+n

i=m+1, we get the
optimization problem (1.2).

The optimization method (1.2) looks like weighted least square regression (WLSR) in Supervised Learning [5,7]. But here
we are mainly concerned with underling data shape induced by large amounts of unlabeled data. In the classical WLSR
setting, there exists no surplus unlabeled data and estimation parameter may be sensitive to the weight function using only
a few observations.

By the reproducing property of RKHS, the Representer Theorem holds, which means that the minimizer can be obtained
in a finite dimensional space in terms of both labeled and unlabeled examples. As before, the Representer Theorem shows
that the solution has the form

f σ
z,λ(x) =

m∑
i=1

α∗
i K (x, xi).

Substituting this form in the problem above, we arrive at the following convex differentiable objective function of the
m-dimensional variable a = [a1, . . . ,am]T :

a∗ = arg min
1

m
(Y − Kxa)T Q (Y − Kxa) + λaT Kxa,

where Kx is the m × m gram matrix Ki, j = K (xi, x j), Q = diag(px,σ (x1), . . . , px,σ (xm)) and Y is the label vector Y =
[y1, . . . , ym]T . The derivative of the objective function vanishes at the minimizer, which leads to the following solution:

α∗ = (Q Kx + λmI)−1 Q Y .

3. Sample error estimate

In this section we investigate the approximation error of our proposed algorithm as the parameters σ and λ change.
To understand (1.2), denote by x the set of inputs {x1, . . . , xm}, and define the sampling operator Sx : H K → R

m as
Sx( f ) = ( f (xi))

m
i=1. The adjoint of the sampling operator, ST

x : R
m → H K , can be written as

ST
xc =

m∑
i=1

ci Kxi , c ∈ R
m.

A similar methods with [4] are applied to this algorithm (1.2), whose minimizer can be represented by

f σ
z,λ =

(
1

m(m + n)σ d
ST

xGSx + λI

)−1 1

m(m + n)σ d
ST

xGY , (3.1)

where G = diag{g(x1), . . . , g(xm)} with g(xi) = ∑m+n
j=1 Φ(

xi
σ ,

x j
σ ) (i = 1, . . . ,m) and Y is defined as above.

To study the limitation behavior of the function f σ
z,λ , the following notations play key role in our theoretical analysis.

Definition 2. The regularization error and the regularizing function of the triple (H K , fρ,ρX ) are defined respectively as

D(λ) = inf
f ∈H K

{
1

σ d

∫
X

∫
X

Φ

(
x

σ
,

t

σ

)(
f (x) − fρ(x)

)2
dρX (x)dρX (t) + λ‖ f ‖2

K

}
, (3.2)

and

f σ
λ = arg min

f ∈H K

{
1

σ d

∫
X

∫
X

Φ

(
x

σ
,

t

σ

)(
f (x) − fρ(x)

)2
dρX (x)dρX (t) + λ‖ f ‖2

K

}
, λ > 0. (3.3)

In order to obtain the explicit form of f σ
λ , we introduce the following definition Lσ

K : L2
ρX

→ L2
ρX

, given as

(
Lσ

K f
)
(u) = 1

σ d

∫
X

∫
X

Φ

(
x

σ
,

t

σ

)
f (x)Ku(x)dρX (x)dρX (t), for ∀ u ∈ X .

Taking the functional derivatives, we know that f σ
λ can be expressed associated with Lσ

K

f σ
λ = (

λI + Lσ
)−1

Lσ fρ. (3.4)
K K
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Intuitively, fixed f ∈ H K , there holds E( 1
l(l+u)σ d ST

xGSx) f = (Lσ
K ) f , and E( 1

l(l+u)σ d ST
xGY ) = Lσ

K fρ . Therefore, it seems that fx,σ

can approximate f σ
λ .

To bound the sample error ‖ f σ
z,λ − f σ

λ ‖, we need to introduce a McDiarmid–Bernstein type probability inequality for
vector-valued random variables, which appears in [15].

Lemma 1. Let x = {xi}m
i=1 be i.i.d. draws from a probability distribution ρ on X, (H,‖ · ‖) be a Hilbert space, and F : Xm → H be

measurable. If there exists M̃ � 0 such that ‖F (x) − Exi (F (x))‖ � M̃ for each 1 � i � m and almost x ∈ Xm, then for every ε > 0,

Probx∈Xm
{∥∥F (x) − Ex

(
F (x)

)∥∥ � ε
}

� 2 exp

{
− ε2

2(M̃ε + σ̃ 2)

}
, (3.5)

where σ̃ 2 := ∑m
i=1 supx\xi∈Xm−1 Exi {‖F (x) − Exi (F (x))‖2}. For any 0 < δ < 1, with confidence to 1 − δ, there holds∥∥F (x) − Ex

(
F (x)

)∥∥ � 2 log
2

δ

{
M̃ +

√
σ̃ 2

}
.

It is worth pointing out that though estimating the Sample Error is a standard method in learning theory [11,16], the
operator Lσ

K is not necessary in the Hilbert–Schmidt space and the corresponding skills are no longer applicable.

Proposition 1. Suppose that the density p(x) of ρX exists and satisfies supx∈X p(x) � cp , then for any 0 < σ � 1 and 0 < δ � 1, with
confidence 1 − δ, there holds∥∥ f σ

z,λ − f σ
λ

∥∥
K � log

(
2

δ

)
12cqκ(M + ‖ f σ

λ ‖K )√
mλσ d/2

(
1√

mσ d/2
+ cqcp

)
. (3.6)

Proof. By (3.1), we have

f σ
z,λ − f σ

λ =
(

1

m(m + n)σ d
ST

xGSx + λI

)−1{ 1

m(m + n)σ d

(
ST

xGY − ST
xGSx f σ

λ

) − λ f σ
λ

}
.

Define a function F : Zm × Xn → H K by

F (z,x) = 1

m(m + n)σ d

(
ST

xGY − ST
xGSx f σ

λ

)
= 1

m(m + n)σ d

{
m∑

i=1

m+n∑
j=1

Φ

(
xi

σ
,

x j

σ

)
yi Kxi −

m∑
i=1

m+n∑
j=1

Φ

(
xi

σ
,

x j

σ

)
Kxi f σ

λ (xi)

}
.

By independence, the expectation of F (z,x) equals

1

σ d

{∫
X

∫
X

Φ

(
x

σ
,

t

σ

)(
fρ(x) − f σ

λ (x)
)

Ku(x)dρX (x)dρX (t)

}
= (

Lσ
K

(
fρ − f σ

λ

))
(u).

By (3.4), we see that λ f σ
λ = Lσ

K ( fρ − f σ
λ ) = E(F (z,x)). Therefore,∥∥ f σ

z,λ − f σ
λ

∥∥
K � 1

λ

∥∥F (z,x) − E
(

F (z,x)
)∥∥

K .

When k ∈ {1, . . . ,m}, we see that F (z,x) − Ezk (F (z,x)) equals

1

m(m + n)σ d

{∑
j 
=k

Φ

(
xk

σ
,

x j

σ

)(
yk − f σ

λ (xk)
)

Ku(xk) −
∫
X

Φ

(
x

σ
,

x j

σ

)(
fρ(x) − f σ

λ (x)
)

Ku(x)dρX (x)

}

+ 1

m(m + n)σ d

∑
i 
=k

(
yi − f σ

λ (xi)
)

Ku(xi)

(
Φ

(
xi

σ
,

xk

σ

)
−

∫
X

Φ

(
xi

σ
,

x

σ

)
dρX (x)

)

+ 1

m(m + n)σ d

{
Φ

(
xk

σ
,

xk

σ

)(
yk − f σ

λ (xk)
)

Ku(xk) −
∫
X

Φ

(
x

σ
,

x

σ

)(
fρ(x) − f σ

λ (x)
)

Ku(x)dρX (x)

}
.

The reproducing property of RKHS implies that

‖ f ‖L2 � ‖ f ‖∞ � κ‖ f ‖K , for ∀ f ∈ H K . (3.7)

ρX
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Hence, when k ∈ {1, . . . ,m}, we have∥∥F (z,x) − Ezk

(
F (z,x)

)∥∥
K � M̃ := 6cqκ(M + ‖ f σ

λ ‖K )

mσ d
. (3.8)

Clearly, the same conclusion also holds for the case k ∈ {m + 1, . . . ,m + n}.
Next we need to estimate the variance σ̃ 2, ‖F (z,x) − Ezk (F (z,x))‖K can be bounded by

3cqκ(M + ‖ f σ
λ ‖K )

m(m + n)σ d

{
m+n∑
j=1

∣∣∣∣Φ(
xk

σ
,

x j

σ

)∣∣∣∣ +
∑
i 
=k

∣∣∣∣Φ(
xi

σ
,

xk

σ

)∣∣∣∣
}

.

Note that from Definition 1 of Parzen Windows, it follows that (Ek(‖F (z,x) − Ezk (F (z,x))‖2
K ))1/2 is bounded by

6cqκ(M + ‖ f σ
λ ‖K )

m(m + n)σ d

m+n∑
j=1

(∫
X

c2
q

(1 + |(x j − x)/σ |)2q
p(x)dx

)1/2

(3.9)

�
6c2

qκcp(M + ‖ f σ
λ ‖K )

mσ d/2
. (3.10)

It follows that for σ � 1,

σ̃ 2 �
36c4

qκ
2c2

p(M + ‖ f σ
λ ‖K )2

mσ d
.

Thus Proposition 3 follows from Lemma 1. �
4. Approximation error estimate

To estimate the approximation error, we need to consider the convergence of Lσ
K as σ → 0.

Proposition 2. Under Assumption 1, then V p � cp and for any 0 < σ � 1 we have∥∥Lσ
K − V p LK

∥∥
L2
ρX

→L2
ρX

� στ κ2cqcp(Mq+2 + Mq+τ + Mq).

Here Mq+2 , Mq+τ and Mq are constants independent of σ .

Proof. Let f ∈ L2
ρX

, by Definition 1 we see that ‖Lσ
K f − V p LK f ‖L2

ρX
is bounded by

κ2

σ d

{∫
X

∫
X

∣∣∣∣Φ(
x

σ
,

t

σ

)∣∣∣∣∣∣ f (x)
∣∣∣∣p(x) − p(t)

∣∣dρX (x)dt +
∫

Rd\X

∫
X

∣∣∣∣Φ(
x

σ
,

t

σ

)∣∣∣∣∣∣ f (x)
∣∣∣∣(p(x)

∣∣dρX (x)dt

}
,

and it follows that

κ2

σ d

∫
X

∫
X

∣∣∣∣Φ(
x

σ
,

t

σ

)∣∣∣∣∣∣ f (x)
∣∣∣∣p(x) − p(t)

∣∣dρX (x)dt � κ2

σ d

∫
X

∫
X

cpcq

(1 + |x − t|/σ )q
|x − t|τ ∣∣ f (x)

∣∣dt dρX (x)

� στ κ2cpcq Mq+τ ‖ f ‖L2
ρX

,

where Mq+τ is some constant independent of σ and the last inequality is obtained by the Cauchy–Schwartz inequality.
Separate the domain X into Xσ := {x ∈ X: infu∈Rd\X |u − x| � √

σ } and its complement X \ Xσ .

When x ∈ X \ Xσ , for any t ∈ Rd \ X , |t − x| � √
σ is satisfied, and thereby 1 � |t−x|2

σ . Hence

κ2

σ d

∫
X\Xσ

∫
Rd\X

∣∣∣∣Φ(
x

σ
,

t

σ

)∣∣∣∣∣∣ f (x)
∣∣∣∣p(x)

∣∣dρX (x)dt � σκ2cqcp Mq+2‖ f ‖L2
ρX

,

where Mq+2 is also a constant similar with Mq+τ .
For the subset Xσ , we use the Cauchy–Schwartz inequality and obtain

κ2

σ d

∫
Xσ

∫
d

∣∣∣∣Φ(
x

σ
,

t

σ

)∣∣∣∣∣∣ f (x)
∣∣∣∣p(x)

∣∣dρX (x)dt �
√

ρX (Xσ )κ2cqcp Mq‖ f ‖L2
ρX

.

R \X
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By (1.3), ρX (Xσ ) � c2
pσ

2τ . Thus, for any 0 < σ � 1, we have∥∥Lσ
K f − V p LK f

∥∥
L2
ρX

� στ κ2cqcp(Mq+2 + Mq+τ + Mq)‖ f ‖L2
ρX

.

This proves our desired result. �
Define the regularizing function independent on σ

fλ =
(

λ

V p
I + LK

)−1

LK fρ.

Proposition 3. Under the assumptions (1.3) and (1.4). When L−r
K fρ ∈ L2

ρX
with 0 < r � 1, we have∥∥ f σ

λ − fλ
∥∥

L2
ρX

� C0σ
τ λr−1,

where C0 = κ2cqcp V r−1
p (Mq+2 + Mq+τ + Mq)‖L−r

K fρ‖L2
ρX

.

Proof. Observe that

f σ
λ − fλ = λ

(
λI + Lσ

K

)−1(
Lσ

K − V p LK
)
(λI + V p LK )−1 fρ.

It follows that∥∥ f σ
λ − fλ

∥∥
L2
ν

�
∥∥Lσ

K − V p LK
∥∥∥∥(λI + V p LK )−1Lr

K

∥∥∥∥L−r
K fρ

∥∥
L2
ρX

� λr−1
∥∥Lσ

K − V p LK
∥∥∥∥L−r

K fρ
∥∥

L2
ρX

.

The desired result follows from Proposition 3. �
To get the total error ‖ f σ

z,λ − fρ‖ we need bounds for the approximation error ‖ fλ − fρ‖. The following result is well
known, proved by Smale and Zhou in [16].

Lemma 2. Define fλ as above. If L−r
K fρ ∈ L2

ρX
(X) with 0 < r � 1, then

‖ fλ − fρ‖2
L2
ρX

+ λ‖ fλ‖2
K � λ2r V −2r

p

∥∥L−r
K fρ

∥∥2
L2
ρX

, if 0 < r <
1

2
(4.1)

and

‖ fλ − fρ‖K � λr− 1
2 V

1
2 −r
p

∥∥L−r
K fρ

∥∥
L2
ρX

, if
1

2
� r � 1. (4.2)

Moreover, for 0 < r � 1, there holds

| fλ − fρ‖L2
ρX

� λr V −r
p

∥∥L−r
K fρ

∥∥
L2
ρX

. (4.3)

Following Proposition 3 and (4.3), the approximation error can be stated as follows.

Proposition 4. Under the assumptions (1.3) and (1.4). When L−r
K fρ ∈ L2

ρX
with 0 < r � 1, we have∥∥ f σ

λ − fρ
∥∥

L2
ρX

�
(
στ λr−1 + λr)(C0 + V −r

p

∥∥L−r
K fρ

∥∥
L2
ρX

)
, (4.4)

where C0 is defined as in Proposition 3.

5. Learning rate and conclusion

We are now in a position to derive the learning rate of Semi-Supervised Learning algorithm (1.2).

Proof of Theorem 1. Following Propositions 3 and 4, with confidence to 1 − δ,∥∥ f σ
z,λ − fρ

∥∥
L2
ρX

�
∥∥ f σ

z,λ − f σ
λ

∥∥
L2
ρX

+ ∥∥ f σ
λ − fρ

∥∥
L2
ρX

� log

(
2

δ

)
12cqκ

2(M + ‖ f σ
λ ‖K )√

mλσ d/2

(
1√

mσ d/2
+ cqcp

)
+ (

στ λr−1 + λr)(C0 + V −r
p

∥∥L−r
K fρ

∥∥
L2
ρX

)
� C̃ log

(
2

δ

)(
1

m

) τ r
2τ (r+1)+d

,

provided that λ = σ τ and λ = ( 1 )
τ

2τ (r+1)+d , where C̃ is a constant independent on m or δ.
m
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We introduce a Semi-Supervised Learning algorithm with density estimators, generated by Parzen Windows functions.
The main difference from Weighted Supervised Learning is that large amounts of unlabeled data are employed in density
estimations. Thus estimation parameter may be less sensitive than the case where only a few observations are used, such as
Weighted Least Squared Regression. An error analysis is given for the convergence of the learner to the regression function.
The technique we use here is capacity independent one. Considering the complexity of hypothesis space such as Rademacher
complexity [18] and various covering numbers [20], we are sure that the convergence rate can be improved greatly if the
hypothesis space is good enough. �
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