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1. Introduction

In soliton theory solutions to soliton equations have been given in many ways such as by means of Wronskians [1],
Grammians [2], Pfaffians [3,13], etc. The diversity of expressing solutions reflects the richness of algebraic structures which
the soliton equations possess in common. It is Sato [7] that unveiled the structures by means of the method of algebraic
analysis in the study of the Kadomtsev-Petviashvili (KP) hierarchy.

The study of algebraic structure of soliton equations give rise to solutions in terms of fermion particles [9]. These particles
can either be charged or neutral [10,15], and they can have one component structure or they can have more than one,
depending on the structure of the equation. The algebraic structure of soliton equations for the charged fermion particles
has been studied in [15]. In this paper we are interested in the solution of the soliton equations in terms of neutral free
fermions. An example of their fermionic structure is shown, both in charged and neutral case, in Table 1 for KP, Davey-
Stewartson (DS), BKP and Novikov-Veselov-Nizhnik (NVN) equations.

We write the t-function [6] for neutral free fermions in terms of pfaffians, in the following form

74 = Pf(A) Pf(A' + V),

where A, A’ are constant triangular matrices, A’ is the analogue of the inverse A and V is also a triangular matrix with
the entries of neutral fermions. These are explained in more detail in the later sections. This 7,-function in pfaffian form is
analogue to 7y -function in determinant form for the charged fermions (see [15]).

This paper is organized as follows. In Section 2, we introduce some properties of pfaffians. In Section 3, we recall some
results from [9] and apply Wick’s theorem to compute the expectation values of fermions. In Section 4, we give time evolution
to the fermions via Hamiltonian in order to use fermion particles with time variable. Next we introduce a polynomial t (x, g)
function in (4), where x is time variable and g represents fermions. As a new result the 7 (x, g) function in terms of Schur’s
Q-functions give rational solutions of the BKP equation. In Section 5 we derive a new general formulae for the neutral free
fermions from which the one-component or two-component fermion solutions can be obtained. We give general formulae
for the soliton solutions of the 1-component and 2-component BKP hierarchies. Examples of how to get the soliton solution
to BKP equation and dromion solution to NVN equations, from t-functions are also given.
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Table 1

Fermions 1 component 2 component
charged () KP DS
neutral (¢;) BKP NVN

2. Pfaffians

Let
A= (ajj)
be an n x n skew-symmetric matrix (i.e. a;; = —aj; and consequently a;; =0 for i, j=1,2,...,n). It is known that if n is

odd, then det(A) is zero, but if n is even det(A) is a perfect square of a polynomial in the entries a;j, called the pfaffian of
A and denoted by Pf(A). Roughly speaking, a pfaffian is the square root of the determinant of a skew-symmetric matrix. To
be precise, for even n

aiz a3 -+ dip
azz .-+ Q2
Pf(A) = . .= 26(0)00(1),0(2) Ao (n—1),0(n)s
. : p
an—1,n
where o runs over the permutations of {1,...,n} such that

o) <o0@),03)<0@),...,.on—1) <o(n), ol <oB)<---<om-—1),
and €(0)(= £1) is the parity of this permutation. For example, we have Pf(A) = ay, for n =2 and

a2 a13 414
a3 a4
Qas,

Pf(A) = = (12034 — 013024 + 014023

for n=4. The a;; is taken to be skew-symmetric, and therefore a;; = —aj;.
A classical notation for the pfaffian of A [4] is

Pf(A)=(1,2,...,n),

where (i, j) = a;;. One expansion rule for pfaffians is given by

(1,2,...,n):Z(—l)i(1,i)(2,3,...,?,...,n),
i=2

where
tation as

(1,2,3,4)=(1,2)3,4) - (1,3)2,4) + (1,42, 3).

indicates that the index underneath should be deleted. For example for n =4 we can write the pfaffian represen-

(See [14] for more information on pfaffians.)
3. Preliminaries

We recall some results from [9]. Let A be an associative algebra over C with generators ¢, (n € Z). In [15] we constructed
charged free fermions ¥, and y,; (n € Z) for the KP-hierarchy. Here we exploit neutral free fermions ¢, (n € Z) [8], for the
BKP-hierarchy, satisfying the anti-commutator relation

[¢m,¢’n]+ = (—1)m5m,—n (1)

where [X, Y] = XY + YX. The generators ¢, ¢, (m,n € Z) will be referred to as free fermions.
The charged free fermions introduced in [15] can be split into two sets of neutral free fermions. Namely, if we set

_Um GO = DM,

¢m \/z ) ¢m - ﬁ

(me Z),

we have

[m, nle = (D) 8m—n,  [Pms Pnls = (=1)™8m, —n
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and

[Pm, (ign]-f- =0.
The expectation values of neutral free fermions are defined by
(_1)m8m,—na n>0,

{men) = { 10m.0. n=0,
0, n <0,

where () denotes a linear form on A, called the (vacuum) expectation value.
For a general product wq ---w; of free fermions w;, we apply Wick’s theorem to compute the expectation values

0 (r odd),
Y5 S8 (Wo(1yWo(2) -+ (Wor—1)Wo ()  (reven),

(Wl"'Wr>={

where o runs over the permutations such that (1) <o (2),...,0(0r—1) <o) and 6(1) <5(3),...,0@0 —1). We see
that this theorem gives the expectation value of the general product of free fermions wq---w;, in terms of a pfaffian [14].
Therefore, Wick’s theorem can be expressed in terms of pfaffians in the following way

0 (r odd),
Pf(w;w;)) (reven).

-+ wr) = |

4. Neutral free fermions

It is convenient to use the generating functions for neutral free fermions ¢, ¢y, defined as follows

¢ =) ¢, @)=Y ¢ (2)

i€Z ieZ
Theorem 4.1. The expectation values for the generating functions ¢ (p), ¢ (q) are given by

1 pi bi—4q;

(P @)))= s (6(Pido) = 5
Proof. From the definition (2)
1 p;
DB @D = 3 (o pla] = 5 + 3 1"dm up['e] = —+Z( 1" < ) ol
m,nez n>0 n>0 bi bi +q]

and similarly

(6(P)po) = ) ($mbo)p Z ~dm.opft = 1. O

m,nez m>0

Next we wish to express the time evolution for the neutral free fermions by the following Hamiltonian

1
Ho=2 Y D" Xigndny
A5

where x is the time variable.
Note first of all that

[H<>_<>,¢(p>]=% > xn[2¢,~¢f+n,¢k]p"= xnp"<26k,,-+n¢,~>= > xap-n
Z

n>1,keZ i€Z n>1,ke i€Z n>1,keZ
=Y xap"$(p) =X, ) (D),
n>1

where §(x, p) ==} ;51 Xap".
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Then
p(x, p)) =P (ppe W = @H® g (p;) = (1 +adH(x) + %(ad H)  + - -)«ﬁ(pi),
where (ad H(x))X = [H(x), X] and so (ad H(x))¢ (pi) = (§(x, pi))¢(pi), hence

o (x, pi) = eEEP g (p)). 3)

Later we will use e¥®Pi) to generate polynomials.
Next we call a polynomial t(x) a T-function if it is representable in the following form for some g:

T(x, 8 ={gW), (4)
where we choose
g=¢ (1) - ¢(p2r), (5)
for some r.
From Wick’s theorem we write the following expectation value
(@(p1)¢(p2)) (Pp(PDP(P3)) - (PP (P2r)

ot 9 e g) = (s GRG0

(@ (p2r-1)9 (P2r))

and using Theorem 4.1, we get
Ty Pi—Pi s e
To = (@ p1) -k pan)) = 55 [ T e s er” (6)
i J

i<j

and expand the entries of the determinant in (6), in the following way:

1pi—pi 1 00 pi n+1 00
i ji_ J E(x,pi) _ k
S =5+ -—— . e =2 a™p;, (7)
2pi+p; 2 ,12:(:,( Pi) ,; o

where gy (x) are the complete symmetric functions.
Now we wish to express the 7-function 7, in terms of another class of symmetric functions, Schur’s Q-functions [5,10,
12]. In general, for a partition A = (A1, ..., Am), a Q-function is defined by

m
Qulx;t) = l_[ (a(i) - 8(1))(8(i) - ta(j))_1 l_[in (X(i); t)‘x(;‘) =X
1<i<j<m i=1
which reduces to the Schur function S, (x) when t =0, so that Q; (x; 0) = S, (x). In particular we have the Q-function for
the partition A = (ij), namely
j—1
Qip =aidj +2 ) (=D gipk1dj 11 (8)
k=0
For a general A, we define a triangular matrix A = (Qag)- Then, if A has even number of parts Q; = Pf(A), and if A has
odd number of parts then
qxq
A qy,
Qr= .
qrm
The element g is given by (5) can be written as
g= >  py--pEg.

i1,...,i2r€Z
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Thus (6) can be used as a generating function to determine 74 (x, g’) by looking at the coefficients of p p'zzrr where
i1 > iy > --- > iy € Z, and the (i, j)th entry in (6) can be written as

1pi—p
(0 P09 p) = 5 L eFuPIHEER)
iTPj

<+Z< ) )qu(X)p > ap]

1 o0
5 Z kCIlP Pj + Z Z( 1)n+1qulp£< n— 1pl]+n+]
k=0 k=0 n=0
1=0 1=0
1 ad e} 00
=5 Z qkqlpkpl]—i— Z Z(_l)n+]QIc+n+1Q1_n_1pﬁ‘p’j
k=—1 k=—1 n=0
=0 1=0
1 & 00
2 Z (ql{ql+22(_l)n+lqk+n+1mn1>P£<Ply 9)
k 1 n=0

indll
ol

where ¢;j(x) =0 for i <0 and qo(x) = 1. The coefficients of pé‘plj in (9) are the Q-functions defined in (8). Therefore, we can
write the (i, j)th entry of neutral free fermions in terms of Q-functions as follows:

(¢, pi)o X, p))) Z Qua P} P
k_—l
=0

Hence the t-function in (6) can be written in the following form:

oo oo
- ki lj - k T T
Tp(X,8) =2 rPf( Y Quiyp; P]-]) =27 > PRQuuy)p; Py pi - ph
kl‘=—1 kq
1=0 I,y =0

and
75(x, 8") = 27" P(Qij).
Hence by (8) each 74 is a Q-function. These give rational solutions [8] of the BKP equation, where u = 29x(log 7).
5. Neutral free fermions in general
We wish to express g more generally for the neutral free fermions in the following form:
g= eZ?ijlaU(bi(pj,
where ¢!, ¢/ (i <j=1,...,2N) can be either one- component or two-component fermions. For example we will take ¢l =

¢(p;) for the one-component case and ¢! = ¢ (pM) or ¢! = @ (p@) for the two-component case. Then the T-function
is

2N 2N
={g@)=1+ D (el + D a0l ¢ eRe) +
i1<ji1=1 i1<j1,i2<j2=1
2N o ) )
D D AR M R (10)

i] <j1 ..... iN <jN=l
Next we define the following expectation value
(¢',0'):=0. (11)

Using the definition of the expectation value in (11) and Wick's theorem, the 7,4 function in (10) can be written in the
following pfaffian form
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74 = P(A) Pf(S), (12)

where A is constant tri-angular matrix with the entries A;.; = [a;;] and S is the tri-angular matrix with the entries S;; =
laj; + (¢', 7)1, and Ai_;=laj;] is the analogue constant tri-angular matrix of the inverse A. Namely A and A’ have the
relation (Pf(A))~! = Pf(A).

Consider a triangular array A = [ajjli<j=1,...n Of size n, i.e.

ap a13 - QA1n
azy .- Qzn

A=
an—1,n

this relation A = Pf(A)(A")'. To be precise aZ, is the pfaffian of the array obtained by deleting the kth and Ith lines in A.
Now we define

T
= A
P(A)

Note that this array is the analogue of the inverse of a matrix; for a matrix M,

A/

1 T
M= M.
det(M)

Indeed if W and W' are the skew-symmetric matrices whose upper triangles are A and A’ respectively, then W’/ = W 1.
For example, for N =2 from (10) we have the following solution:

4 4
=14 ) @@l )+ Y (et e eeR)
i1<ji1=1 i1<ji1,i2<j2=1

=1+a12(p'¢%) +a13(¢'¢>) + a1a(p' ¢?) + ax3(p20>) + aza(p?e®) + aza(p>¢?)
+ (012034 — 013024 + 014023) (0" 6°)(#° %) — (8" 0% )0 0*) + (0" 07)(0°0°))

— L R b 43 1,143 144 2,3
=002 s * s ¢ a9+ a4+ ey )

azs
Pf(A2)

a14
Pf(A2)

a a
+ 6+ i (%0 + 0102020~ 01087 + (010 Yo%) )
= Pf(A2) (PF(A)) + a34(0" %) — a0 ¢°) + a0 0%) + 014(6°9°) — a15(9%67)
+d),(0°0%) +(816%) 07 0") — (010°)0? %) + (0 0")(0%4°)). (13)
where
raix a13 dig4 a3, —0y, Gy
Ay = azs a24i| = Pf(Az) a/]4 —0/13
N 34 a;
and
raj, i3 dy
Ay = ay; ayy
- a3,

Now we can write the expression 7y, in (13) in the form of (12)

T4, = Pf(A2) PE(S2), (14)
where
aj, +(@'9%) di5+(9'¢?) di,+ (916
Sy= ahs + (9*9%)  db, + (P%9?)
ay, + (*9*)
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Example 5.1. For the soliton solution for the one-component case, we put ¢! = ¢ (p1), ¢% = ¢ (q1), ¢°> = ¢ (p2), ¢* = d(q2)
and choose a = 221+0 a3, =2 22482 q.0 — gy, =ay3 = ayy4 = 0. The T-function from (14) is

P1—q1’ P2—q2°’
1+ap{d(pe(q)) ani{e(@eP2)) an2{d(P1)¢(q2))
T= a34(¢ (@) (p2))  a34(d(q1)9P(q2))

1+ a34(p(p2)9(q2))
=1+ an(p(P1)d(q1)) + a3a{d (P2)¢ (2)) + a12a34 ({6 (p1)d (q1))(d (P2)P (q2))

— (e (PP (@ (@2)) + (@ (P1)P(a2))d (@) (2)))
=1+e" +e™ 4 BypeM*P,
where n; = £(x, pi) +§(x,qi) (i=1,2) and
_(p1 = p2)(@1 —q2)(p1 — q2)(q1 — p2)

12= .
(p1+ p2)(@1 +q2)(p1 +42)(q1 + p2)
Hence u = 20dy(log t) gives the 2-soliton solution [11,12] for the BKP equation

(ue + 15uus, + 15u3 — 15u,u, +”5X)x + 5u3y,y — Suyy = 0.

Example 5.2. For the two-component case, we put ¢! = @D (pD), $2 = D (D), $> = p@ (p?), ¢* = ¢@ (¢?) in (14).
Then the t-function from (14) is

1+ai2P(MeP@") az@P @M @) as@P M) @"))

T= a3(p@ (p@)pP @?))  a(d@ (p@)p@ (q?))
1+a33(6? (p)9? @)
= 14 an(V (M) (@D)) + asa{p? (1)@ ()

+ (a12a34 — 413624 + a14023) (¢ (V) P (q))6 @ (p?) 9 (¢?))

1p0 =g 0 1p@—q@

=1Hany E M B4 0D 1 q@°

+ Bge? 1Y,
where n® = g(x®, p») + £(x®,qD) (i=1,2) and

1 p(l) — q(1)p(2) — q(z)
B12 = (a12a34 — a13024 + Cl14£123):l P 1 @ @

Hence u = dyy(log 7) gives the 1-dromion solution [3] for the NVN equations

Up = Uxxx + Uyyy + 3(Pxxlh) + 3(Pyylt)y, U= Dyy.

We note that the 7-function in (12) for neutral fermions is the pfaffian analogue of the 7-function in [15] for charged
fermions in determinantal form, namely from (12) T can be written in the following form

T = Pf(A) Pf(S) = Pf(A) Pf(A" + V),

where Vi_j = [(¢'¢I)] and the corresponding determinantal form for the charged fermions in [15] can be written in the
following form

T =det(I + AV) =det(A(A™" + V)) = det(A) det(A~" + V).
6. Conclusion

In this paper, we have elucidated the role of pfamans in determining new solutions by using neutral fermion particles.
We have presented rational and soliton solutions to the BKP equation and dromion solution to the NVN equations by using
the 7-function in terms of pfaffians. We have showed that each 7, function is a Schur’s Q-function. We have derived new
general formulae (12) for neutral fermions, from which higher order t-functions and hence soliton solutions and dromion
solutions for the BKP-hierarchy can be obtained.
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