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1. Introduction

Given a measurable function p(·) : Rn
→ [1, ∞), hereafter referred to simply as an exponent, we define the variable

Lebesgue space Lp(·) to be the set of measurable functions on Rn such that for some λ > 0,

ρp(·)(f ) = ρ(f /λ) =


Rn

|f (x)/λ|
p(x) dx < ∞.

This is a Banach space (see [1–4]) when equipped with the norm

∥f ∥p(·) = inf{λ > 0 : ρ(f /λ) ≤ 1}.

The variable Lebesgue spaces are a special case of the Musielak–Orlicz spaces [5] and generalize the classical Lebesgue
spaces: when p(x) = p0 is constant, Lp(·) = Lp0 .

Variable Lebesgue spaces were first studied by Orlicz [6] in 1931, but in the past two decades there has been a great deal
of interest in them, particularly for their applications to partial differential equations with non-standard growth conditions
and to modeling electrorheological fluids. See [7,8] for the history and references.

Much attention has been focused on finding conditions on the exponent function p(·) so that the Hardy–Littlewood
maximal operator is bounded on Lp(·). Recall that given a locally integrable function f on Rn, the maximal function Mf is
defined on Rn by

Mf (x) = sup
Q∋x

1
|Q |


Q

|f (y)| dy = sup
Q∋x

−


Q

|f (y)| dy,
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where the supremum is taken over all cubes Q containing x whose sides are parallel to the coordinate axes. The following
result first proved by the authors and their collaborators (see [9–11]) is nearly optimal. Hereafter, given a set E, let

p−(E) = ess inf
x∈E

p(x), p+(E) = ess sup
x∈E

p(x).

If E = Rn, for brevity we will write simply p− and p+.

Theorem 1.1. Given p(·) : Rn
→ [1, ∞), suppose that 1 ≤ p− ≤ p+ < ∞ and that p(·) satisfies the local log-Hölder

continuity condition

LH0 : |p(x) − p(y)| ≤
C

− log |x − y|
, x, y ∈ Rn, |x − y| < 1/2, (1.1)

and is log-Hölder continuous at infinity: there exists p∞, 1 ≤ p∞ < ∞, such that

LH∞ : |p(x) − p∞| ≤
C

log(e + |x|)
, x ∈ Rn. (1.2)

Then the Hardy–Littlewood maximal operator satisfies the weak-type inequality

∥tχ{x∈Rn:Mf (x)>t}∥p(·) ≤ C∥f ∥p(·), t > 0.

If p− > 1, then it is bounded on Lp(·):

∥Mf ∥p(·) ≤ C∥f ∥p(·).

Theorem 1.1 was first proved by Diening [12] assuming that p(·) is constant outside of a large ball. It was proved
independently by Nekvinda [13] (see also [9]) with (1.2) replaced by a somewhat more general condition. The log-Hölder
continuity conditions are not necessary; see Lerner [14]. However, if they are relaxed it is possible to construct counter-
examples: see [11,15].

In this paper we generalize Theorem 1.1 to variable Lebesgue spaces with weights. For classical Lebesgue spaces the
following result is due to Muckenhoupt [16] (see also [17,18]). Hereafter, we use the notation −


Q f (x) dx = |Q |

−1

Q f (x) dx.

Theorem 1.2. Given p, 1 ≤ p < ∞, and a locally integrable function w such that 0 < w(x) < ∞ almost everywhere, the
following are equivalent:
(a) w ∈ Ap: for every cube Q

−


Q

w(x) dx


−


Q

w(x)1−p′

dx
p−1

≤ K < ∞, (1.3)

if p > 1, and

−


Q

w(x) dx ≤ Kw(y),

for almost every y ∈ Q if p = 1.
(b) The maximal operator is weak (p, p): for every t > 0,

w({x ∈ Rn
: Mf (x) > t}) ≤

C
tp


Rn

|f (x)|pw(x) dx. (1.4)

(c) If p > 1, the maximal operator is strong (p, p):
Rn

Mf (x)pw(x) dx ≤ C


Rn
|f (x)|pw(x) dx. (1.5)

Remark 1.3. In the definition of Ap, the smallest constant K is referred to as the Ap constant of w.

There are two possibleways to generalize Theorem1.2 to variable Lebesgue spaces. Oneway is to treatw dx as ameasure,
and define the weighted variable Lebesgue space Lp(·)(w) with respect to this measure. This approach is in one respect a
natural generalization of Theorem 1.2 and was adopted by Diening and Hästo [19]. They proved that if 1 < p− ≤ p+ < ∞

and p(·) is log-Hölder continuous locally and at infinity, then the maximal operator is bounded on Lp(·)(w) if and only if
|Q |

−p−(Q )w(Q )∥w−1χQ∥p′(·)/p(·) ≤ K < ∞.

Here, p′(·) is the conjugate exponent, defined pointwise by
1

p(x)
+

1
p′(x)

= 1,

where we let p′(x) = ∞ if p(x) = 1. The second norm is defined as before even if p′(·)/p(·) is less than 1.
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We take a different approach: we recast the inequalities so that the weight w acts as a multiplier. More precisely, in
inequalities (1.4) and (1.5) we replace the weight w by wp and rewrite the integrals in terms of Lp norms to get

∥tχ{x∈Rn:Mf (x)>t}w∥p ≤ C∥fw∥p,

∥(Mf )w∥p ≤ C∥fw∥p.

Similarly, with w replaced by wp, the Ap condition can be rewritten as

∥wχQ∥p∥w
−1χQ∥p′ ≤ K |Q |. (1.6)

While this is not the standard way to write either the Ap condition or weighted norm inequalities for the maximal operator,
it is the natural way to write the off-diagonal weighted inequalities for fractional integrals (see, for example, Muckenhoupt
and Wheeden [20]) and has also been used in the study of two-weight norm inequalities (see [21]).

Definition 1.4. Given an exponent function p(·) : Rn
→ [1, ∞) and a weight w–that is, a locally integrable function such

that 0 < w(x) < ∞ a.e.–we say that w ∈ Ap(·) if there exists a constant K such that for every cube Q ,

∥wχQ∥p(·)∥w
−1χQ∥p′(·) ≤ K |Q |.

Our main result is the following weighted norm inequality.

Theorem 1.5. Let p(·) : Rn
→ [1, ∞). If 1 < p− ≤ p+ < ∞ and p(·) satisfies the LH0 and LH∞ conditions (1.1) and (1.2),

then given any w ∈ Ap(·),

∥(Mf )w∥p(·) ≤ C∥fw∥p(·).

If p− ≥ 1, then

∥tχ{x∈Rn:Mf (x)>t}w∥p(·) ≤ C∥fw∥p(·).

Conversely, given a weight w and an exponent function p(·) such that the maximal operator satisfies the strong or weak-type
inequality, then w ∈ Ap(·).

Remark 1.6. While this paper was in preparation, the strong-type inequality Theorem 1.5 when p− > 1 was proved using
a very different approach by the first author, Diening, and Hästö [22]. That proof, while straightforward, depends heavily on
the sophisticated machinery developed by Diening [23] (see also [2]) to give the necessary and sufficient condition for the
boundedness of themaximal operator. Our approach here has two advantages: it is direct, and it makes clear the connection
between the Ap(·) condition and the classical Muckenhoupt Ap condition.

Remark 1.7. Separately, Diening andHästö [19] provedwhen p− > 1 that theAp(·) condition is necessary for the strong-type
inequality.

Remark 1.8. Particular results of this type for power weights (and generalizations of power weights) have been proved by
Kokilashvili et al. [24–28] and Khabazi [29]. Other authors have also consideredweighted norm inequalities for themaximal
operator on variable Lebesgue spaces. See, for instance, [30–33].

In Theorem 1.5 the necessity of the Ap(·) condition is proved without using any continuity assumptions on the exponent
function p(·). Given that the classical Ap condition is necessary and sufficient for the maximal operator to be bounded on
weighted Lebesgue spaces, it was extremely tempting to conjecture that the Ap(·) condition, without additional continuity
assumptions on p(·), is sufficient for themaximal operator to be bounded on variable Lebesgue spaces. However, evenwhen
w = 1 this is false; a counter-example is due independently to Diening [34] and Kopaliani [35].

There is a connection between the variable Ap(·) condition and the classical Ap condition: if w ∈ Ap(·), then wp(·)
∈ A∞—

see Section 3—and this plays a critical role in our proofs. Earlier, Lerner [36] showed that there is a connection between the
classical Ap condition and the boundedness of the maximal operator on Lp(·)(Ω) for bounded Ω . A deeper understanding of
the inter-relationship between weights and variable Lebesgue spaces remains to be elucidated.

Recently, there has been a great deal of interest in the sharp constant (in terms of the constant in the Ap condition) in
weighted norm inequalities for various operators: see, for example, [37] and the references it contains. The sharp constant
for the maximal operator in Theorem 1.2 is due to Buckley [38]; also see Lerner [39]. An open (and difficult) question is to
determine the corresponding results in the variable Lebesgue spaces. For a discussion of a related problem, see [19].

Organization

The remainder of this paper is organized as follows. In Section 2 we gather together some basic results about variable
Lebesgue spaces. In Section 3 we prove some basic properties of the Ap(·) condition. Finally, in Sections 4 and 5 we prove
Theorem 1.5.
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Throughout this paper all notation is standard or will be defined as needed. In order to emphasize that we are dealing
with variable exponents, we will always write p(·) instead of p to denote an exponent function. Unless otherwise specified,
C and c will denote positive constants which will depend only on the dimension n, any underlying sets (such as a fixed cube
Q ), and the exponent p(·). If wewrite A ≈ B, thenwemean that there exist positive constants c and C such that cA ≤ B ≤ CA.
By cubeswewill alwaysmean cubeswhose sides are parallel to the coordinate axes. Given a cubeQ and r > 0, let rQ denote
the cubewith the same center asQ and such that ℓ(rQ ) = rℓ(Q ). A weightw will always be assumed to be locally integrable
and positive almost everywhere.

2. Variable Lebesgue spaces

In this section we gather some basic results on variable Lebesgue spaces. Unless otherwise noted, proofs of these results
can be found in [1–4].

Lemma 2.1. Given p(·) : Rn
→ [1, ∞) such that p+ < ∞, then ∥f ∥p(·) ≤ C1 if and only if

Rn
|f (x)|p(x) dx ≤ C2.

Moreover, if either constant equals 1 we can take the other equal to 1 as well.

Lemma 2.2. Let p(·) : Rn
→ [1, ∞) be such that p+ < ∞. Then given any set Ω ,

(a) if ∥fχΩ∥p(·) ≤ 1, ∥fχΩ∥
p+(Ω)

p(·) ≤


Ω
|f (x)|p(x) dx ≤ ∥fχΩ∥

p−(Ω)

p(·) .

(b) if ∥fχΩ∥p(·) ≥ 1, ∥fχΩ∥
p−(Ω)

p(·) ≤


Ω
|f (x)|p(x) dx ≤ ∥fχΩ∥

p+(Ω)

p(·) .

In particular, if ∥f ∥p(·) ≤ 1,
Rn

|f (x)|p(x) dx ≤ ∥f ∥p(·).

Lemma 2.3. If p+ < ∞ and ∥f ∥p(·) = 1, then
Rn

|f (x)|p(x) dx = 1.

Lemma 2.4. If p+ < ∞, bounded functions of compact support are dense in Lp(·).

When the exponent p(·) equals +∞ on a set of positive measure, we modify the definition of the norm as follows. Let
Ω∞ = {x ∈ Rn

: p(x) = ∞}, and redefine the modular ρ by

ρ(f ) =


Rn\Ω∞

|f (x)|p(x) dx + ∥f ∥L∞(Ω∞).

With this definition ∥·∥p(·) is still a norm and Lp(·) a Banach space.Moreover, we have the following generalization of Hölder’s
inequality and an equivalent expression for the norm.

Lemma 2.5 (Hölder’s Inequality). Given an exponent p(·), there exists a constant C such that
Rn

|f (x)g(x)| dx ≤ C∥f ∥p(·)∥g∥p′(·).

Lemma 2.6. Given an exponent p(·) and f ∈ Lp(·), there exists g ∈ Lp
′(·), ∥g∥p′(·) ≤ 1, such that

∥f ∥p(·) ≈


Rn

f (x)g(x) dx.

The next two lemmas were proved in [9, Lemmas 2.7, 2.8] for Lebesgue measure. The exact same proofs work in general
for non-negative measures µ. They are central to applying the LH∞ condition.

Lemma 2.7. Given a set G and two exponent s(·) and r(·) such that

|s(y) − r(y)| ≤
C0

log(e + |y|)
,
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and given a non-negative measure µ, then for every t ≥ 1 there exists a constant C = C(t, C0) such that for all functions f with
|f (y)| ≤ 1,

G
|f (y)|s(y) dµ(y) ≤ C


G
|f (y)|r(y) dµ(y) +


G

1
(e + |y|)tnr−(G)

dµ(y). (2.1)

Lemma 2.8. Given a set G and two exponent s(·) and r(·) such that

0 ≤ r(y) − s(y) ≤
C0

log(e + |y|)
,

and given a non-negative measure µ, then for every t ≥ 1 there exists a constant C = C(t, C0) such that for all functions f ,
inequality (2.1) holds.

The final lemma is due to Diening [12] and is a crucial tool for applying the LH0 condition. His result is for balls instead
of cubes, but the proof is essentially the same, changing only the dependence of the constant on the dimension n.

Lemma 2.9. Given an exponent p(·), the following are equivalent:
(a) p(·) satisfies the LH0 condition (1.1);
(b) There exists a constant C such that for every cube Q ,

|Q |
p−(Q )−p+(Q )

≤ C .

3. The variable Ap condition

In this section we prove some basic properties of the weights in Ap(·). We begin with some equivalent definitions of A∞;
for a proof of this well-known result, see [17,18].

Lemma 3.1. Given a weight W, the following are equivalent:
(a) W ∈ A∞ =


p≥1 Ap;

(b) There exist constants 0 < α, β < 1 such that given any cube Q and measurable set E ⊂ Q , if |E| > α|Q |, then W (E) >
βW (Q );

(c) There exist constants δ > 0 and C1 > 1 such that given any cube Q and any measurable set E ⊂ Q ,

W (E)

W (Q )
≤ C1


|E|

|Q |

δ

;

(d) There exist constants ϵ > 0 and C2 > 1 such that given any cube Q and measurable set E ⊂ Q ,

|E|

|Q |
≤ C2


W (E)

W (Q )

ϵ

.

Weights in Ap(·) satisfy an A∞-type condition in terms of the variable Lebesgue space norm.

Lemma 3.2. Given an exponent p(·), if w ∈ Ap(·), then there exists a constant C depending on p(·) and w such that given any
cube Q and measurable set E ⊂ Q ,

|E|

|Q |
≤ C

∥wχE∥p(·)

∥wχQ∥p(·)
.

Proof. Fix Q and E ⊂ Q ; then by Hölder’s inequality (Lemma 2.5) and the Ap(·) condition,

|E| =


Rn

w(x)χEw(x)−1χQ dx

≤ C∥wχE∥p(·)∥w
−1χQ∥p′(·) ≤ C∥wχE∥p(·)∥wχQ∥

−1
p(·)|Q |. �

The Ap(·) condition and log-Hölder continuity together imply that a weighted version of Lemma 2.9 holds.

Lemma 3.3. Given an exponent p(·) such that (1.1) and (1.2) hold, if w ∈ Ap(·), then there exists a constant C0 depending on
p(·) and w such that for all cubes Q ,

∥wχQ∥
p−(Q )−p+(Q )

p(·) ≤ C0. (3.1)

Proof. Fix Q . Clearly it suffices to assume that ∥wχQ∥p(·) ≤ 1. Let Q0 = Q (0, 1). The proof of (3.1) depends on the relative
size of Q and Q0 and their distance from one another. We will consider the case |Q | ≤ |Q0|; the case when |Q | > |Q0| is
proved in the same way, exchanging the roles of Q and Q0.
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Suppose dist(Q ,Q0) ≤ ℓ(Q0). Then Q ⊂ 5Q0, and so by Hölder’s inequality (Lemma 2.5) and the Ap(·) condition,

|Q | =


Q

w(x)w(x)−1 dx ≤ C∥wχQ∥p(·)∥w
−1χQ∥p′(·)

≤ C5n
∥wχQ∥p(·)|5Q0|

−1
∥w−1χ5Q0∥p′(·) ≤ C∥wχQ∥p(·)∥wχ5Q0∥

−1
p(·).

If we rearrange terms and raise both sides to the power p+(Q ) − p−(Q ), by Lemma 2.9 we have that

∥wχQ∥
p−(Q )−p+(Q )

p(·) ≤ C |Q |
p−(Q )−p+(Q )

∥wχ5Q0∥
p−(Q )−p+(Q )

p(·) ≤ C(1 + ∥wχ5Q0∥
−1
p(·))

p+−p− .

The right-hand side is a constant independent of Q and so we get (3.1).
Now suppose that dist(Q ,Q0) ≥ ℓ(Q0). Then there exists a cube Q̃ such that Q , Q0 ⊂ Q̃ and ℓ(Q̃ ) ≈ dist(Q ,Q0) ≈

dist(Q , 0) = dQ . If argue as we did above, with 5Q0 replaced by Q̃ , we get that

|Q | ≤ C |Q̃ |∥wχQ∥p(·)∥wχQ̃∥
−1
p(·) ≤ C |Q̃ |∥wχQ∥p(·)∥wχQ̃∥

−1
p(·).

We could continue the above argument and get (3.1) provided that

|Q̃ |
p+(Q )−p−(Q )

≤ C . (3.2)

To see that this is the case: by the LH0 condition, p(·) is continuous, so p−(Q ) = p(x1) and p+(Q ) = p(x2)where x1, x2 ∈ Q .
(More precisely, they may be in the closure of Q , but this makes no difference.) Since |x1|, |x2| ≈ dQ , by the LH∞ condition,

p+(Q ) − p−(Q ) ≤ |p(x2) − p∞| + |p(x1) − p∞| ≤
C

log(e + dQ )
.

If we combine this with the fact that |Q̃ | ≤ C(e + dQ )n, we get (3.2). �

Lemma 3.4. Given an exponent p(·) such that (1.1) and (1.2) hold, if w ∈ Ap(·), then W (·) = w(·)p(·) ∈ A∞.

Proof. Fix a cube Q and let E ⊂ Q be a measurable set. We will show that there exists a constant C (independent of E and
Q ) such that

|E|

|Q |
≤ C


W (E)

W (Q )

1/p+

;

it will then follow at once from Lemma 3.1 thatW ∈ A∞.
We consider three cases. If ∥wχQ∥p(·) ≤ 1, then by Lemmas 3.2 and 2.2 (applied twice) and Lemma 3.3,

|E|

|Q |
≤ C

∥wχE∥p(·)

∥wχQ∥
p−(Q )/p+(Q )

p(·) ∥wχQ∥
1−p−(Q )/p+(Q )

p(·)

≤ C


W (E)

W (Q )

1/p+(Q )

∥wχQ∥
p−(Q )/p+(Q )−1
p(·) ≤ C


W (E)

W (Q )

1/p+

.

If ∥wχE∥p(·) ≤ 1 ≤ ∥wχQ∥p(·), then again by Lemmas 3.2 and 2.2 we get that

|E|

|Q |
≤ C


W (E)

W (Q )

1/p+(Q )

≤ C


W (E)

W (Q )

1/p+

.

Finally, suppose ∥wχQ∥p(·) ≥ ∥wχE∥p(·) ≥ 1. Let λ = ∥wχQ∥p(·). Since p(·) satisfies the LH∞ condition, by Lemma 2.7 with
dµ = w(·)p(·) dx, for all t > 1,

Q
λ−p∞w(x)p(x) dx ≤ Ct


Q


w(x)

λ

p(x)

dx +


Q

w(x)p(x)

(e + |x|)tnp−
dx.

By Lemma 2.3, the first integral on the right-hand side equals 1. We claim that there exists t > 1 independent of Q such
that the second integral is less than 1. To see this, let Qk = Q (0, 2k). Then by Lemma 2.2,

Rn

w(x)p(x)

(e + |x|)tnp−
dx ≤ e−ntp−W (Q0) +

∞
k=1


Qk\Qk−1

w(x)p(x)

(e + |x|)tnp−
dx

≤ e−ntp−W (Q0) + C
∞
k=1

2−ktnp−W (Qk)

≤ e−ntp−W (Q0) + C
∞
k=1

2−ktnp− max

∥wχQk∥

p−

p(·), ∥wχQk∥
p+

p(·)


.
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By Lemma 3.2,

∥wχQk∥p(·) ≤ C
|Qk|

|Q0|
∥wχQ0∥p(·) ≤ C2nk.

Combining these two estimates we have that
Rn

w(x)p(x)

(e + |x|)tnp−
dx ≤ e−ntp−W (Q0) + C

∞
k=1

2nkp+−ktnp− . (3.3)

For t > p+/p− the sum converges, and by choosing t sufficiently large (depending only on w and p(·)) we can make the
right-hand side less than 1. This gives us the desired bound. It follows from this that

W (Q )1/p∞ ≤ (Ct + 1)1/p∞∥wχQ∥p(·).

We now repeat the above argument, replacing Q with E and exchanging the roles of p∞ and p(·). By Lemma 2.3,

1 =


E
λ−p(x)w(x)p(x) dx ≤ Ct


E
λ−p∞w(x)p(x) dx +


E

w(x)p(x)

(e + |x|)tnp−
dx.

Arguing as before we can make the second term on the right less than 1/2; if we rearrange terms, we get that

∥wχE∥p(·) ≤ CW (E)1/p∞ .

Therefore, by Lemma 3.2

|E|

|Q |
≤ C

∥wχE∥p(·)

∥wχQ∥p(·)
≤ C


W (E)

W (Q )

1/p∞

≤ C


W (E)

W (Q )

1/p+

This completes the proof. �

As corollaries to the proof of Lemma 3.4 we get two lemmas that we will use repeatedly below.

Lemma 3.5. Given an exponent p(·) such that (1.1) and (1.2) hold, if w ∈ Ap(·),Q is a cube and E ⊂ Q is such that ∥wχE∥p(·)
≥ 1, then

|E|

|Q |
≤ C


W (E)

W (Q )

1/p∞

.

Lemma 3.6. Given an exponent p(·) such that (1.1) and (1.2) hold, if w ∈ Ap(·) and Q is a cube such that ∥wχQ∥p(·) ≥ 1, then
∥wχQ∥p(·) ≈ W (Q )1/p∞ .

The Ap(·) condition can be characterized in terms of averaging operators. Given any cube Q , define the operator AQ by

AQ f (x) = −


Q

|f (y)| dyχQ (x).

Proposition 3.7. Given an exponent p(·) and a weight w, w ∈ Ap(·) if and only if

sup
Q

∥(AQ f )w∥p(·) ≤ C∥fw∥p(·).

Proposition 3.7 is implicit in [2]. When p(·) is constant this is a lesser known property of the Muckenhoupt Ap weights;
it was first given by Jawerth [40]. For completeness we sketch the short proof.
Proof. First suppose that w ∈ Ap(·). Then given any cube Q , by Hölder’s inequality (Lemma 2.5),

∥(AQ f )w∥p(·) = −


Q

|f (x)| dx∥wχQ∥p(·)

≤ C |Q |
−1

∥fw∥p(·)∥w
−1χQ∥p′(·)∥wχQ∥p(·) ≤ C∥fw∥p(·).

Since the constant C is independent of Q , we have that the AQ are uniformly bounded.
Now assume that the AQ are uniformly bounded. Fix a cube Q ; then by Lemma 2.6 (exchanging the roles of p(·) and p′(·))

there exists a function g with ∥gw∥p(·) ≤ 1 such that

∥wχQ∥p(·)∥w
−1χQ∥p′(·) ≤ C∥wχQ∥p(·)


Rn

χQ g(x) dx

= C |Q |∥(AQ g)w∥p(·) ≤ C |Q |∥gw∥p(·) ≤ C |Q |.

It follows that w ∈ Ap(·). �
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Finally, we note that when w ≡ 1, the log-Hölder continuity conditions LH0 and LH∞ imply the Ap(·) condition. This
follows from the necessity in Theorem 1.5 but it is also possible to give a direct proof. This is done, for instance, in [2]; for
the convenience of the reader we sketch the details.

Proposition 3.8. Suppose the exponent p(·) satisfies (1.1) and (1.2) and p− > 1. Then 1 ∈ Ap(·): there exists K such that

∥χQ∥p(·)∥χQ∥p′(·) ≤ K |Q |.

Proof. Fix a cube Q . If |Q | ≤ 1, then by Lemma 2.2,

∥χQ∥p(·) ≤ C |Q |
1/p+(Q ), ∥χQ∥p′(·) ≤ C |Q |

1/p′
+

(Q )
= C |Q |

1−1/p−(Q ).

Therefore,

∥χQ∥p(·)∥χQ∥p′(·) ≤ C |Q | |Q |
1/p+(Q )−1/p−(Q )

≤ K |Q |,

where the last inequality follows from Lemma 2.9.
Now suppose that |Q | > 1. Then by an argument that is essentially the same as that in the proof of Lemma 3.4, by

Lemma 2.7 we have that

∥χQ∥p(·) ≤ K |Q |
1/p∞ , ∥χQ∥p′(·) ≤ K |Q |

1/p′
∞ .

Multiplying the two inequalities we get the desired result. �

4. The necessity of the Ap(·) condition

In this section we show that the Ap(·) condition is necessary in Theorem 1.5.

Proposition 4.1. Given an exponent p(·) and a weight w, if the maximal operator satisfies the strong-type inequality ∥Mfw∥p(·)
≤ C∥fw∥p(·) or the weak-type inequality ∥tχ{x:Mf (x)>t}w∥p(·) ≤ C∥fw∥p(·), t > 0, then w ∈ Ap(·).

Proof. Since the strong-type inequality implies the weak-type inequality, it will suffice to show that the latter implies the
Ap(·) condition. Our proof is modeled on the proof of necessity in Theorem 1.2.

Fix a cube Q ; since the weak-type inequality and the Ap(·) condition are both homogeneous, wemay assumewithout loss
of generality that ∥w−1χQ∥p′(·) = 1. Define the sets

F0 = {x ∈ Q : p′(x) < ∞}, F∞ = {x ∈ Q : p′(x) = ∞},

and fix λ, 1/2 < λ < 1. Then by the definition of the norm,

1 < ρp′(·)


w−1χQ

λ


=


F0


w(x)−1

λ

p′(x)

dx + λ−1
∥w−1χF∞∥∞.

We consider two cases. First suppose that

λ−1
∥w−1χF∞∥∞ >

1
2
.

Fix s, s > ∥w−1χF∞∥
−1
∞

= ess infx∈F∞w(x) (where we take 1/∞ = 0). Then there exists a set E ⊂ F∞, |E| > 0, such that for
all x ∈ E, w(x) ≤ s. Define f = χE . Since p(x) = 1 on F∞,

∥fw∥p(·) = ∥wχE∥p(·) = w(E).

Further, for all x ∈ Q ,

Mf (x) ≥
|E|

|Q |
.

Fix t < |E|/|Q |. Then by the weak-type inequality,

Cw(E) = C∥fw∥p(·) ≥ t∥wχ{x:Mf (x)>t}∥p(·) ≥ t∥wχQ∥p(·).

Taking the supremum over all such t and re-arranging terms, we get that

|Q |
−1

∥wχQ∥p(·) ≤ C
w(E)

|E|
≤ Cs.

If we now take the infimum over all such swe get

|Q |
−1

∥wχQ∥p(·) ≤ C∥w−1χF∞∥
−1
∞

≤
2C
λ

≤ 4C .

Since ∥w−1χQ∥p′(·) = 1, we get that the Ap(·) condition holds on Q .
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Now suppose
F0


w(x)−1

λ

p′(x)

dx > 1/2.

If p′(·) is unbounded, this integral could be infinite. To avoid this complication, define

FR = {x ∈ F0 : p′(x) < R}, R > 1.

Then there exists R such that

1/2 <


FR


w(x)−1

λ

p′(x)

dx < ∞.

(The lower bound is gotten by taking R sufficiently large. The upper bound comes from the fact that by Lemma 2.1,w−p′(·)χFR
is integrable.) We claim that there exists E ⊂ FR such that

E


w(x)−1

λ

p′(x)

dx ≈ 1/2,

and indeed this integral can bemade as close to 1/2 as desired. To see this, fix ϵ > 0; then by the continuity of the integral (cf.
Rudin [41, Theorem 6.11]) we can decompose FR into a finite number of disjoint sets such that the integral of (w(x)−1/λ)p

′(x)

on each set is less than ϵ. We can take E to be the union of some collection of these sets.
Now define the function

f (x) =
w(x)−p′(x)

λp′(x)−1
χE .

Then

ρp(·)(fw) =


E


w(x)−1

λ

p′(x)

dx ≈ 1/2 < 1.

Hence, ∥fw∥p(·) ≤ 1. On the other hand, for all x ∈ Q ,

Mf (x) ≥ −


Q
f (x) dx =

λ

|Q |


E


w(x)−1

λ

p′(x)

dx ≈
λ

2|Q |
.

Fix t < λ
2|Q |

. Then we can argue as before using the weak-type inequality to get

C ≥ C∥fw∥p(·) ≥ t∥wχQ∥p(·);

if we take the supremum over all such t , we get the Ap(·) condition as desired. �

5. The sufficiency of the Ap(·) condition

In this section we prove that the Ap(·) condition is sufficient in Theorem 1.5.Wewill consider the proof of the strong-type
inequality in detail; the proof of the weak-type inequality is very similar but simpler at key steps, and we will sketch the
changes at the end of the section.

We begin with several lemmas. The first two give the essential properties of the Calderón–Zygmund decomposition. For
a proof see [42, Appendix A].

Lemma 5.1. Given a function f such that −


Q |f (y)| dy → 0 as |Q | → ∞, then for each λ > 0 there exists a set of pairwise

disjoint dyadic cubes {Qj} (called the Calderón–Zygmund (CZ) cubes of f at height λ) such that

Ωλ = {x ∈ Rn
: Mf (x) > 4nλ} ⊂


j

3Qj.

Further, these cubes have the property that for all j,

λ < −


Qj

|f (x)| dx ≤ 3n
−


3Qj

|f (x)| dx.

Lemma 5.2. Given any a > 2n, let {Q k
j }, k ∈ Z, be the CZ cubes of a function f at height ak. Then for each j and k there exists a

set Q k
j ⊂ Q k

j such that the setsQ k
j are pairwise disjoint (for all j and k), and there exists α, 0 < α < 1, such that |Q k

j | ≥ α|Q k
j |.
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The final lemma generalizes the classical inequalities for the Hardy–Littlewood maximal operator. For a proof, see
[18, p. 146].

Definition 5.3. Given a weight σ and a locally integrable function f , define the maximal operatorMσ by

Mσ f (x) = sup
Q∋x

1
σ(Q )


Q

|f (y)|σ(y) dy,

where the supremum is taken over all cubes containing x.

Lemma 5.4. Given a weight σ ∈ A∞, for 1 < p < ∞ and f ∈ Lp(σ ),
Rn

Mσ f (x)p σ(x) dx ≤ C


Rn
|f (x)|p σ(x) dx.

The constant depends on p, n and σ .

Our proof of sufficiency is loosely adapted from the proof of Theorem 1.2 due to Christ and Fefferman [43]. Fix f ; without
loss of generalitywemay assume that f is non-negative and ∥fw∥p(·) = 1.Wewant to form the Calderón–Zygmund cubes of
f ; in order to do so, we need to show that −


Q f (y) dy → 0 as |Q | → ∞. By Lemma 3.4,W (x) = w(x)p(x) is in A∞. Therefore,

given cubes Q1 ⊂ Q2, |Q2| = r|Q1|, by Lemma 3.1 we have that for some δ > 0,

W (Q2) ≥ crδW (Q1).

Therefore, it follows that W (Q ) → ∞ as |Q | → ∞. Hence, by Hölder’s inequality (Lemma 2.5) the Ap(·) condition and
Lemma 2.2, for all cubes sufficiently large

−


Q
f (y) dy ≤ C∥fw∥p(·)|Q |

−1
∥w−1χQ∥p′(·) ≤ C∥wχQ∥

−1
p(·) ≤ CW (Q )−1/p+ .

This gives us the desired limit.
Define σ(x) = w(x)−p′(x). If we write f = f1 + f2, where f1 = fχ{f σ−1>1} and f2 = fχ{f σ−1≤1}, then Mf ≤ Mf1 + Mf2 and

for i = 1, 2, by Lemma 2.2,
Rn

|fi(x)|p(x)w(x)p(x) dx ≤ ∥fiw∥p(·) ≤ ∥fw∥p(·) = 1. (5.1)

Hence, by Lemma 2.1, to prove the desired inequality it will suffice to show that there exists a constant C depending on p(·)
and w such that

Rn
Mfi(x)p(x)w(x)p(x) dx ≤ C, i = 1, 2. (5.2)

Estimate (5.2) for f1. Let a = 4n and for each k ∈ Z let

Ωk = {x ∈ Rn
: Mf1(x) > ak+1

}.

Since f ∈ L1loc and −


Q f (y) dy → 0 as |Q | → ∞, 0 < Mf1(x) < ∞ a.e., and Rn

=


k Ωk \ Ωk+1 (up to a set of measure 0).
By Lemma 5.1, let {Q k

j } be the CZ cubes of f1 at height ak. Then for all k,

Ωk ⊂


j

3Q k
j .

For each k define the sets Ek
j inductively: Ek

1 = Ωk \Ωk+1 ∩ 3Q k
1 , Ek

2 = (Ωk \Ωk+1 ∩ 3Q k
2 ) \ Ek

1, E
k
3 = (Ωk \Ωk+1 ∩ 3Q k

3 ) \

(Ek
1 ∪ Ek

2), etc. The sets Ek
j are pairwise disjoint for all j and k and Ωk \ Ωk+1 =


j E

k
j . We now estimate as follows:

Rn
Mf1(x)p(x)w(x)p(x) dx =


k


Ωk\Ωk+1

Mf1(x)p(x)w(x)p(x) dx

≤ a2p+


k


Ωk\Ωk+1

akp(x)w(x)p(x) dx

≤ C

k,j


Ekj


1

|3Q k
j |


3Q k

j

f1(y) dy

p(x)

w(x)p(x) dx

= C

k,j


Ekj


3Q k

j

f1(y)σ (y)−1σ(y) dy

p(x)

|3Q k
j |

−p(x)w(x)p(x) dx.
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Since f1σ−1
≥ 1 or f1σ−1

= 0, by (5.1),
3Q k

j

(f1(y)σ (y)−1)
p(y)/p−(3Q k

j )
σ(y) dy ≤


3Q k

j

(f1(y)σ (y)−1)p(y)σ(y) dy =


3Q k

j

f1(y)p(y)w(y)p(y) dy ≤ 1.

Therefore, we can first raise f1σ−1 to the power p(y)/p−(3Q k
j ) and then decrease the exponent of the whole integral to

p−(3Q k
j ) to get


k,j


Ekj


3Q k

j

f1(y)σ (y)−1σ(y) dy

p(x)

|3Q k
j |

−p(x)w(x)p(x) dx

≤


k,j


3Q k

j

(f1(y)σ (y)−1)
p(y)/p−(3Q k

j )
σ(y) dy

p−(3Q k
j ) 

Ekj

|Q k
j |

−p(x)w(x)p(x) dx. (5.3)

If we multiply and divide by σ(3Q k
j ) and then apply Hölder’s inequality, we get

≤


k,j


1

σ(3Q k
j )


3Q k

j

(f1(y)σ (y)−1)
p(y)/p−(3Q k

j )
σ(y) dy

p−(3Q k
j ) 

Ekj

σ(3Q k
j )

p−(3Q k
j )

|Q k
j |

−p(x)w(x)p(x) dx

≤


k,j


1

σ(3Q k
j )


3Q k

j

(f1(y)σ (y)−1)p(y)/p−σ(y) dy

p− 
Ekj

σ(3Q k
j )

p−(3Q k
j )

|Q k
j |

−p(x)w(x)p(x) dx. (5.4)

Assume for the moment that
Ekj

σ(3Q k
j )

p−(3Q k
j )

|Q k
j |

−p(x)w(x)p(x) dx ≤ Cσ(3Q k
j ). (5.5)

By Lemma 3.4 applied to w−1
∈ Ap′(·), σ ∈ A∞, so by Lemmas 3.1 and 5.2,

σ(3Q k
j ) ≤ Cσ(Q k

j ) ≤ Cσ(Q̃ k
j ). (5.6)

Therefore, (5.4) is bounded by

C

k,j


1

σ(3Q k
j )


3Q k

j

(f1(y)σ (y)−1)p(y)/p−σ(y) dy

p−

σ(Q̃ k
j ) ≤ C


k,j


Q̃ k
j

Mσ ((f1σ−1)p(·)/p−)(x)p−σ(x) dx

≤ C


Rn
Mσ ((f1σ−1)p(·)/p−)(x)p−σ(x) dx;

by Lemma 5.4 and (5.1),

≤ C


Rn
f1(x)p(x)σ(x)−p(x)σ(x) dx

= C


Rn
f1(x)p(x)w(x)p(x) dx

≤ C .

We will now show that (5.5) holds for all j and k. If p(·) = p is constant, then this reduces to the Ap condition (1.6). We
will show that given our hypotheses it is implied by the Ap(·) condition. For brevity, let Q = 3Q k

j . Since w ∈ Ap(·), we have
that

∥(C |Q |)−1
∥w−1χQ ∥p′(·) wχQ∥p(·) ≤ 1,

so 
Q

∥w−1χQ∥
p(x)
p′(·)

|Q |
−p(x)w(x)p(x) dx ≤ C . (5.7)

The left-hand side of (5.5) is dominated by
σ(Q )

∥w−1χQ∥p′(·)

p−(Q ) 
Q

∥w−1χQ∥
p−(Q )−p(x)
p′(·)

∥w−1χQ∥
p(x)
p′(·)

|Q |
−p(x)w(x)p(x) dx,
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so by (5.7) it will suffice to show that
σ(Q )

∥w−1χQ∥p′(·)

p−(Q )

≤ Cσ(Q ) (5.8)

and

∥w−1χQ∥
p−(Q )−p(x)
p′(·)

≤ C . (5.9)

We first show (5.9); we may assume that ∥w−1χQ∥p′(·) ≤ 1 since otherwise the inequality is trivial with C = 1. Let (p′)+ be
the supremum of p′(·) and (p′)− be the infimum. By the definition of p′(·),

p(x) − p−(Q ) =
p′(x)

p′(x) − 1
−

(p′)+(Q )

(p′)+(Q ) − 1

=
(p′)+(Q ) − p′(x)

[p′(x) − 1][(p′)+(Q ) − 1]
≤

(p′)+(Q ) − (p′)−(Q )

[(p′)− − 1]2
. (5.10)

Therefore, by Lemma 3.3 (applied to w−1
∈ Ap′(·)) we have that (5.9) holds.

We now prove (5.8). If ∥w−1χQ∥p′(·) > 1, then by Lemma 2.2,
σ(Q )

∥w−1χQ∥p′(·)

p−(Q )

≤


σ(Q )1−1/(p′)+(Q )

p−(Q )

= σ(Q ).

If ∥w−1χQ∥p′(·) ≤ 1, then by Lemma 2.2 (applied twice) and Lemma 3.3,
σ(Q )

∥w−1χQ∥p′(·)

p−(Q )

≤


∥w−1χQ∥

(p′)−(Q )−1
p′(·)

p−(Q )

≤


C∥w−1χQ∥

(p′)−(Q )−1+(p′)+(Q )−(p′)−(Q )

p′(·)

p−(Q )

≤ C

∥w−1χQ∥

(p′)+(Q )−1
p′(·)

p−(Q )

≤ C


σ(Q )

(p′)+(Q )−1
(p′)+(Q )

p−(Q )

= C


σ(Q )

p−(Q )′−1
p−(Q )′

p−(Q )

= Cσ(Q ).

This completes the proof of (5.5) and so the proof of (5.2) for f1.
Estimate (5.2) for f2. This argument is considerably more technical. We begin with a geometric observation. Since by

Lemma 3.4, σ and W = w(·)p(·) are in A∞, by the properties of A∞ weights given in Lemma 3.1, we can find a cube

P =

2n
i=1

Pi

that is the union of 2n dyadic cubes adjacent to the origin and such that for each i, |Pi| ≥ C,W (Pi) ≥ C , and σ(Pi) ≥ C ,
where C > 1 is chosen so that if Q is any cube adjacent to one of the Pi and the same size, thenW (Q ), σ (Q ) ≥ 1. Belowwe
will make repeated use of the fact thatW , σ ∈ A∞ without further reference.

We now decompose the integral ofMf2 as we did above forMf1 to get, with the same notation as before,
Rn

Mf2(x)p(x)w(x)p(x) dx ≤ C

k,j


Ekj


1

|3Q k
j |


3Q k

j

f2(y) dy

p(x)

w(x)p(x) dx

= C

 
(k,j)∈F

+


(k,j)∈G

+


(k,j)∈H


= C(I1 + I2 + I3),

where
F = {(k, j) : Q k

j ⊂ P},

G = {(k, j) : Q k
j ⊄ P, dist(0, 3Q k

j ) = 0},

H = {(k, j) : Q k
j ⊄ P, dist(0, 3Q k

j ) > 0}.
We estimate each sum in turn, which is also in order of increasing difficulty.
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Estimate of I1. As before, let Q̃ k
j be the pairwise disjoint sets associated with the cubes Q k

j (by Lemma 5.2). If (k, j) ∈ F ,
then 3Q k

j ⊂ 3P . Therefore, since f2σ−1
≤ 1, by inequalities (5.5) and (5.6),

I1 ≤


(k,j)∈F


Ekj


−


3Q k

j

σ(y) dy

p(x)

w(x)p(x) dx

≤


(k,j)∈F


Ekj

σ(3Q k
j )

p(x)−p−(3Q k
j )

σ(3Q k
j )

p−(3Q k
j )

|3Q k
j |

−p(x)w(x)p(x) dx

≤


(k,j)∈F

(1 + σ(3Q k
j ))

p+(3Q k
j )−p−(3Q k

j )


Ekj

σ(3Q k
j )

p−(3Q k
j )

|3Q k
j |

−p(x)w(x)p(x) dx

≤ C(1 + σ(3P))p+−p−


(k,j)∈F

σ(3Q k
j )

≤ C(1 + σ(3P))p+−p−


(k,j)∈F

σ(Q̃ k
j )

≤ C(1 + σ(3P))p+−p−σ(3P).

The last term is a constant depending only on w and p(·) as required.
Estimate of I2. Since the cubes Q k

j are dyadic, either dist(Q k
j , 0) = 0 or dist(Q k

j , 0) ≥ ℓ(Q k
j ). Hence, if (k, j) ∈ G, then

we must have that for some i, Pi ⊂ 3Q k
j . In particular, we have that W (3Q k

j ), σ (3Q k
j ) ≥ 1. Hence, by Lemmas 3.5 and 3.6

(applied to w−1
∈ Ap′(·))

|3Q k
j |

−1
≤ C |Pi|−1σ(Pi)1/p

′
∞σ(3Q k

j )−1/p′
∞ ≤ C∥w−1χ3Q k

j
∥

−1
p′(·)

. (5.11)

The final constant C depends on σ and Pi, and so on w and p(·). Hence, by Hölder’s inequality (Lemma 2.5),

−


3Q k

j

f2(y) dy ≤ C∥w−1χ3Q k
j
∥

−1
p′(·)


3Q k

j

f2(y) dy

≤ C∥w−1χ3Q k
j
∥

−1
p′(·)

∥f2w∥p(·)∥w
−1χ3Q k

j
∥p′(·) ≤ C .

Therefore, by Lemma 2.7 we can estimate as follows:

I2 ≤ C


(k,j)∈G


Ekj


C−1

−


3Q k

j

f2(y) dy

p(x)

w(x)p(x) dx

≤ Ct


(k,j)∈G


Ekj


−


3Q k

j

f2(y) dy

p∞

w(x)p(x) dx +


(k,j)∈G


Ekj

w(x)p(x)

(e + |x|)ntp−
dx.

Arguing exactly as in the proof of Lemma 3.4, inequality (3.3), since the sets Ek
j are disjoint we can choose t > 1 (depending

only on p(·) and w) so that
(k,j)∈G


Ekj

w(x)p(x)

(e + |x|)ntp−
dx ≤


Rn

w(x)p(x)

(e + |x|)ntp−
dx ≤ 1. (5.12)

Therefore, to complete the estimate of I2 we only have to show that the first sum is bounded by a constant. But we have that


(k,j)∈G


Ekj


−


3Q k

j

f2(y) dy

p∞

w(x)p(x) dx

=


(k,j)∈G


1

σ(3Q k
j )


3Q k

j

f2(y)σ (y)−1σ(y) dy

p∞


σ(3Q k
j )

|3Q k
j |

p∞

W (Ek
j ).

Again by Lemma 3.6 and by the Ap(·) condition,

σ(3Q k
j )p∞−1

= σ(3Q k
j )p∞/p′

∞ ≤ C∥w−1χ3Q k
j
∥
p∞

p′(·)
≤ C


|3Q k

j |

∥wχ3Q k
j
∥p(·)

p∞

≤ C
|3Q k

j |
p∞

W (3Q k
j )

.
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Therefore, if we apply this estimate, by Lemmas 5.4 and 2.7 and inequality (5.6),
(k,j)∈G


1

σ(3Q k
j )


3Q k

j

f2(y)σ (y)−1σ(y) dy

p∞


σ(3Q k
j )

|3Q k
j |

p∞

W (Ek
j )

≤ C


(k,j)∈G


1

σ(3Q k
j )


3Q k

j

f2(y)σ (y)−1σ(y) dy

p∞

σ(3Q k
j )W (3Q k

j )−1W (Ek
j )

≤ C


(k,j)∈G


1

σ(3Q k
j )


3Q k

j

f2(y)σ (y)−1σ(y) dy

p∞

σ(Q̃ k
j )

≤ C


(k,j)∈G


Q̃ k
j

Mσ (f2σ−1)(x)p∞σ(x) dx

≤ C


Rn
Mσ (f2σ−1)(x)p∞σ(x) dx

≤ C


Rn
(f2(x)σ−1(x))p∞σ(x) dx

≤ Ct


Rn

(f2(x)σ−1(x))p(x)σ(x) dx +


Rn

σ(x)
(e + |x|)tnp−

dx

≤ Ct


Rn

f2(x)w(x)p(x) dx +


Rn

σ(x)
(e + |x|)tnp−

dx. (5.13)

By inequality (5.1), the first term is bounded by a constant; using an argument identical to that used to prove (5.12), replacing
wp(·) by σ , we can find t so that the second term is bounded by 1. This completes the estimate of I2.

Estimate of I3. If (k, j) ∈ H , because the cubesQ k
j are dyadic, since 3Q k

j is not adjacent to the origin, dist(3Q k
j , 0) ≥ ℓ(Q k

j ).
Therefore, |x| is essentially constant on 3Q k

j : more precisely, there exists a constant R > 1 independent of (k, j) such that

sup
x∈3Q k

j

|x| ≤ R inf
x∈3Q k

j

|x|. (5.14)

To estimate I3 we actually need to divide H into two subsets:

H1 = {(k, j) ∈ H : σ(3Q k
j ) ≤ 1}, H2 = {(k, j) ∈ H : σ(3Q k

j ) > 1}.

We will estimate the sum in I3 by first summing over H1 and then over H2.
For the first estimate, wewant to apply Lemma 2.8 to replace p(·) by p+(3Q k

j ). Since p(·) is continuous (as a consequence
of the LH0 condition) there exists x+ ∈ 3Q k

j such that p(x+) = p+(3Q k
j ). (More precisely, x+ is in the closure of 3Q k

j , but this
has no effect since we may replace all the cubes by their closures.) Hence, by the LH∞ condition and (5.14), for all x ∈ 3Q k

j ,

|p+(3Q k
j ) − p(x)| ≤ |p(x+) − p∞| + |p(x) − p∞| ≤

C∞

log(e + |x+|)
+

C∞

log(e + |x|)
≤

C
log(e + |x|)

.

Therefore, we can estimate as follows: by Lemma 2.8 and (5.12),
(k,j)∈H1


Ekj


−


3Q k

j

f2(y) dy

p(x)

w(x)p(x) dx

≤ Ct


(k,j)∈H1


Ekj


−


3Q k

j

f2(y) dy

p+(3Q k
j )

w(x)p(x) dx +


(k,j)∈H1


Ekj

w(x)p(x)

(e + |x|)tnp−
dx

≤ Ct


(k,j)∈H1


Ekj


−


3Q k

j

f2(y) dy

p+(3Q k
j )

w(x)p(x) dx + 1.

To estimate the sum, by Lemma 2.9 we have that


(k,j)∈H1


Ekj


−


3Q k

j

f2(y) dy

p+(3Q k
j )

w(x)p(x) dx ≤ C


(k,j)∈H1


Ekj


1

σ(3Q k
j )


3Q k

j

f2(y)σ (y)−1σ(y) dy

p+(3Q k
j )

× σ(3Q k
j )

p+(3Q k
j )

|3Q k
j |

−p(x)w(x)p(x) dx;
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since f2σ−1
≤ 1, by Lemma 2.7 we have that

≤ C


(k,j)∈H1


Ekj


1

σ(3Q k
j )


3Q k

j

f2(y)σ (y)−1σ(y) dy

p∞

σ(3Q k
j )

p+(3Q k
j )

|3Q k
j |

−p(x)w(x)p(x) dx

+


(k,j)∈H1


Ekj

σ(3Q k
j )

p+(3Q k
j )

|3Q k
j |

−p(x) w(x)p(x)

(e + |x|)tnp−
dx

= J1 + J2.

To estimate J2 we use (5.14) (since Ek
j ⊂ 3Q k

j ), the fact that σ(3Q k
j ) ≤ 1, (5.5) and (5.6) to get

J2 ≤


(k,j)∈H1

sup
x∈Ekj

(e + |x|)−tnp−


Ekj

σ(3Q k
j )

p−(3Q k
j )

|3Q k
j |

−p(x)w(x)p(x) dx

≤ C


(k,j)∈H1

sup
x∈Ekj

(e + |x|)−tnp−σ(3Q k
j )

≤ C


(k,j)∈H1


Q̃ k
j

σ(x)
(e + |x|)tnp−

dx

≤ C;

the last inequality follows as it did above at the end of the estimate for I2.
To estimate J1 we again use the fact that σ(3Q k

j ) ≤ 1 and (5.5) to get

J1 ≤


(k,j)∈H1


1

σ(3Q k
j )


3Q k

j

f2(y)σ (y)−1σ(y) dy

p∞ 
Ekj

σ(3Q k
j )

p−(3Q k
j )

|3Q k
j |

−p(x)w(x)p(x) dx

≤ C


(k,j)∈H1


1

σ(3Q k
j )


3Q k

j

f2(y)σ (y)−1σ(y) dy

p∞

σ(3Q k
j ). (5.15)

The final sum is bounded by a constant.We can show this arguing exactly as we did in the estimate for I2: use (5.6) to replace
σ(3Q k

j ) with σ(Q̃ k
j ) and then argue as we did from (5.13). This completes the bound for the sum over H1.

Finally, we estimate the sum over H2. By Hölder’s inequality (Lemma 2.5),
3Q k

j

f2(y) dy ≤ c∥f2w∥p(·)∥w
−1χ3Q k

j
∥p′(·) ≤ c∥w−1χ3Q k

j
∥p′(·).

Therefore, by Lemma 2.7,
(k,j)∈H2


Ekj


−


3Q k

j

f2(y) dy

p(x)

w(x)p(x) dx ≤ C


(k,j)∈H2


Ekj


c∥w−1χ3Q k

j
∥

−1
p′(·)


3Q k

j

f2(y) dy

p(x)

×


∥w−1χ3Q k

j
∥p′(·)

|3Q k
j |

p(x)

w(x)p(x) dx

≤ C


(k,j)∈H2


Ekj


∥w−1χ3Q k

j
∥

−1
p′(·)


3Q k

j

f2(y) dy

p∞

×


∥w−1χ3Q k

j
∥p′(·)

|3Q k
j |

p(x)

w(x)p(x) dx

+


(k,j)∈H2


Ekj


∥w−1χ3Q k

j
∥p′(·)

|3Q k
j |

p(x)
w(x)p(x)

(e + |x|)ntp−
dx

= K1 + K2.

To estimate K2, note that since σ(3Q k
j ) ≥ 1, by (5.6), σ(Q̃ k

j ) > ϵ > 0, where ϵ does not depend on (k, j). Therefore, by
(5.7) and (5.14) we have that

K2 ≤


(k,j)∈H2

sup
x∈Q k

j

(e + |x|)−ntp−


3Q k

j


∥w−1χ3Q k

j
∥p′(·)

|3Q k
j |

p(x)

w(x)p(x) dx
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≤ C


(k,j)∈H2

sup
x∈Q k

j

(e + |x|)−ntp−σ(Q̃ k
j )

≤ C


Rn

σ(x)
(e + |x|)ntp−

dx

≤ C;

the final bound is gotten as in the estimate of J2 above.
To estimate K1, we use Lemma 3.6 to get

∥w−1χ3Q k
j
∥

−p∞

p′(·)
σ(3Q k

j )p∞ ≤ Cσ(3Q k
j )−p∞/p′

∞+p∞ = Cσ(3Q k
j ).

Therefore, by (5.7) and (5.6) we have that

K1 =


(k,j)∈H2


Ekj


1

σ(3Q k
j )


3Q k

j

f2(y) dy

p∞

∥w−1χ3Q k
j
∥
p(x)−p∞

p′(·)

σ(3Q k
j )p∞

|3Q k
j |p(x)

w(x)p(x) dx

≤ C


(k,j)∈H2


1

σ(3Q k
j )


3Q k

j

f2(y) dy

p∞

σ(3Q k
j )


3Q k

j

∥w−1χ3Q k
j
∥
p(x)
p′(·)

|3Q k
j |

−p(x)w(x)p(x) dx

≤ C


(k,j)∈H2


1

σ(3Q k
j )


3Q k

j

f2(y) dy

p∞

σ(Q̃ k
j ).

We can estimate the final term as we did in the estimate for J1, inequality (5.15). This completes the bound for the sum over
H2, and so gives us the desired estimate for I3. This completes the estimate for f2 and so the proof of the sufficiency of the
Ap(·) condition for the strong-type inequality.

The weak-type inequality

The proof of the weak-type inequality is very similar to the proof of the strong-type inequality. In the proof of the latter
we use that p− > 1 only to apply the strong-type norm inequality forMσ . We can readily modify the proof to avoid this.

Define f1 and f2 as before. Then for all t ,

{x ∈ Rn
: Mf (x) > t} ⊂ {x ∈ Rn

: Mf1(x) > t/2} ∪ {x ∈ Rn
: Mf2(x) > t/2}.

Therefore, it will suffice to prove that f1 and f2 each satisfy the weak-type inequality.
We first consider f1. Fix t > 0 and form the CZ cubes {Qj} of f at height t/4n. Then

{x ∈ Rn
: Mf1(x) > t} ⊂


j

3Qj,

and by Lemma 5.1 we have that
Rn

tp(x)χ{x∈Q0:Mf1(x)>t}(x)w(x)p(x) dx ≤ C


j


3Qj


−


Qj

f1(y) dy

p(x)

w(x)p(x) dx.

We can then modify the integral of f1 as in (5.3) (here using p− = 1) and then use inequality (5.5) (again with p− = 1), the
fact that σ ∈ A∞, and the fact that the cubes Qj are disjoint to get that


j


3Qj


−


Qj

f1(y) dy

p(x)

w(x)p(x) dx ≤ C


j


3Qj


1

σ(Qj)


Qj

(f1(y)σ (y)−1)p(y)σ(y) dy


× σ(3Qj)|3Qj|

−p(x)w(x)p(x) dx

≤


j


1

σ(Qj)


Qj

(f1(y)σ (y)−1)p(y)σ(y) dy


σ(3Qj)

≤ C


Rn
f1(y)p(y)w(y)p(y) dy

≤ C .

The estimates for f2, though longer, can be adapted in exactly the same way to complete the proof of the weak-type
inequality.
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