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a b s t r a c t

There has been a longstanding interest in deriving conditions under which dynamic
optimization problems are normal, that is, the necessary conditions of optimality (NCO)
can bewritten with a nonzeromultiplier associated with the objective function. This paper
builds upon previous results on nondegenerate NCO for trajectory constrained optimal
control problems to provide even stronger, normal forms of the conditions. The NCO
developed may address problems with nonsmooth, less regular data. The particular case
of calculus of variations problems is here explored to show a favorable comparison with
existent results.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study Necessary Conditions of Optimality (NCO) for Dynamic Optimization Problems with pathwise
inequality constraints. In particular, we are interested in normal forms of the NCO, i.e., forms in which the scalar multiplier
associated with the objective function – here called λ – is nonzero. The normal forms of the NCO are guaranteed to supply
non-trivial information, in the sense that they guarantee that the objective function is taken into account when selecting
candidates to optimal processes.

Many important applications of NCO would benefit or even require normal forms. In engineering applications or in
decision making contexts, the NCO are used to select a candidate (or a small number of candidates) for optimal solution. If
we do not guarantee normality and allow λ = 0, then the NCO identify a set of candidates in which the objective function
is not used in the selection, and such an identified set is typically too large. This is even more critical in applications where
the NCO are used to find a solution without human intervention (e.g. synthesis of controls for autonomous vehicles), and
thus we have to guarantee that the NCO remain informative.

Normal forms of NCO are also important in establishing results on the regularity properties of optimal solutions and
to establish second-order conditions. In most results of such nature, the possibility of selecting λ ≠ 0 has to be assumed
(e.g. [1–5]) or conditions are imposed so as to guarantee that the system of first-order conditions is normal (e.g. [6,7]).

The importance of studying normal forms of NCO is well illustrated in the history of Mathematical Programming [8,9].
The Kuhn–Tucker conditions [10], one of the most cited results in optimization, are a strengthened, nondegenerate version
of some earlier conditions, now less known, of Fritz John [11].
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There has been a growing interest and literature on strengthened forms of NCO for Optimal Control Problems (OCP),
reporting both nondegenerate and normal forms of the maximum principle (MP). (See e.g. [12] for what appears to be
the first result on the subject, the recent works [13,14] and references therein, as well as [15] which provides references
to an extensive Russian literature on the subject.) The normality results reported in literature require different degrees
of regularity on the problem data [16–21]. Requiring very little regularity on the data, we can find strengthened NCO
in [22] which, although not ensuring normality, are able to avoid certain sets of degenerate multipliers. Building upon
the nondegeneracy results in [22], we develop here an even stronger form of NCO: a normal form. An advantage of our
result comparing with similar results in literature is the fact that it addresses problems with less regular, nonsmooth data.
However, the additional hypotheses under which our result is valid, known as constraint qualification (CQ), involve the
optimal control which we do not know in advance, and consequently, in general, it is not so easy to verify whether the CQ is
satisfied for the problemwe have in hands. Nevertheless, in some cases, the conditions we propose compare favorably with
existing results. One such case is the application of our result to calculus of variations problems (CVP). We study normality
of NCO for CVP as a consequence of the results on normality of NCO for OCP here developed. The special structure of CVP
permits the derivation of CQ that aremuch easier to verify than in the optimal control case. The conditions thereby obtained
generalize a result in [16] to the nonsmooth case.

This paper is organized as follows. In a brief Preliminaries section, we provide some of the concepts and notation that are
used throughout the paper. Section 3 describes the context of our results: optimal control problems with state constraints
and the nonsmooth maximum principle that is to be strengthened in later sections. We also describe the case of CVP with
inequality constraints and its necessary conditions of optimality. Section 4 provides a main result of this paper: a normal
form of NCO valid under a suitable constraint qualification. In Section 5, we apply the previous result to a CVP and deduce
CQs which are specific for this problem and have the advantage that they are easy to verify. In Section 6 we compare the
results obtained in the previous section with other results when applied to CVPs. Finally, in Sections 7 and 8, we prove the
main results and lemmas of this paper.

2. Preliminaries

Throughout,B denotes the closed unit ball, co S denotes the convex hull of a set S, supp{µ} denotes the support ofmeasure
µ, and δ{0} denotes the Dirac unit measure concentrated at 0. We also make reference to the space W 1,1 of absolutely
continuous functions, C∗ the dual space of continuous functions, and C1,1 the space of functions which are continuously
differentiable with locally Lipschitz continuous derivatives.

The limiting normal cone of a closed set C ⊂ Rn at x̄ ∈ C is defined to be

NL
C (x̄) := {η ∈ Rn

: ∃ sequences {Mi} ∈ R+, xi → x̄, ηi → η such that

xi ∈ C and ηi · (y − xi) ≤ Mi∥y − xi∥2 for all y ∈ Rn, i = 1, 2, . . .}.

Given a lower semicontinuous function f : Rn
−→ R ∪ {∞} the limiting subdifferential of f at a point x̄ ∈ Rn such that

f (x) < +∞ is the set

∂Lf (x̄) = {η ∈ Rn
: (η, −1) ∈ NL

epi f (x̄, f (x̄))};

where epi f := {(x, α) : α ≥ f (x)}. We also make use of the hybrid partial subdifferential of h in the x-variable defined as

∂>
x h(t, x) := co{ξ : there exist (ti, xi) → (t, x) s.t.

h(ti, xi) > 0, h(ti, xi) → h(t, x), and hx(ti, xi) → ξ}.

We refer to [23–25] for further concepts of nonsmooth analysis and optimal control. See also [26] for a review using a
notation similar to the one used here.

3. Context

Consider the fixed left-endpoint Optimal Control Problem (OCP) with inequality state constraints:

(OCP1)


Minimize g(x(1))
subject to

ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, 1]
x(0) = x0
u(t) ∈ Ω(t) a.e. t ∈ [0, 1]
h (t, x(t)) ≤ 0 for all t ∈ [0, 1].

The data for this problem comprise functions g : Rn
→ R, f : [0, 1] × Rn

× Rm
→ Rn, h : [0, 1] × Rn

→ R, an initial
state x0 ∈ Rn, and a multifunction Ω : [0, 1] ⇒ Rm.

The set of control functions for (OCP1), denoted U, is the set of measurable functions u : [0, 1] → Rm such that
u(t) ∈ Ω(t) a.e. t ∈ [0, 1]. A state trajectory is an absolutely continuous function which satisfies the differential equation in
the constraints for some control function u. The domain of the above optimization problem is the set of admissible processes,
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namely pairs (x, u) comprising a control function u and a corresponding state trajectory x which satisfy the constraints of
(OCP1). We say that an admissible process (x̄, ū) is a local minimizer if there exists δ > 0 such that

g(x̄(1)) ≤ g(x(1)),

for all admissible processes (x, u) satisfying

∥x(t) − x̄(t)∥L∞ ≤ δ.

We develop here refinements of the nonsmooth maximum principle below that is valid under the following hypotheses,
some of which refer to a minimizer (x̄, ū) or a δ′ neighborhood of it.

H1 The function (t, u) → f (t, x, u) is L × Bm measurable for each x. (L × Bm denotes the product σ -algebra generated
by the Lebesgue subsets L of [0, 1] and the Borel subsets of Rm.)

H2 There exists a L × Bm measurable function k(t, u) such that t → k(t, ū(t)) is integrable and

∥f (t, x, u) − f (t, x′, u)∥ ≤ k(t, u)∥x − x′
∥

for x, x′
∈ x̄(t) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, 1].

H3 The function g is Lipschitz continuous on x̄(1) + δ′B.
H4 The graph of Ω is L × Bm measurable.
H5 The function h is upper semicontinuous in t and there exists a scalar Kh > 0 such that the function x → h(t, x) is

Lipschitz of rank Kh for all t ∈ [0, 1].

Theorem 3.1 (Theorem 9.3.1 [26]). Let (x̄, ū) be a local minimizer for (OCP1). Assume hypotheses H1–H5. Then, there exist
p ∈ W 1,1([0, 1] : Rn), a measurable function γ , a non-negative measure µ in C∗([0, 1] : R) and a scalar λ ∈ {0, 1} such that

µ{[0, 1]} + ∥p∥L∞ + λ > 0, (1)

−ṗ(t) ∈ co ∂L
x (q(t) · f (t, x̄(t), ū(t))) a.e. t ∈ [0, 1], (2)

−q(1) ∈ λ∂Lg(x̄(1)),

γ (t) ∈ ∂>
x h(t, x̄(t)) µ-a.e.,

supp{µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0},

and, for almost every t ∈ [0, 1], ū(t) maximizes over Ω(t)

u → q(t) · f (t, x̄(t), u),

where

q(t) =


p(t) +


[0,t)

γ (s)µ(ds) t ∈ [0, 1)

p(t) +


[0,1]

γ (s)µ(ds) t = 1.

When the pathwise constraint is active at the initial instant of time, i.e. when

h(0, x0) = 0,

the set of multipliers (degenerate multipliers)

λ = 0, µ = βδt=0, p = −βγ with γ ∈ ∂>
x (0, x0) for some β > 0 (3)

satisfy the maximum principle (MP) for any admissible process (x, u). This can be easily seen by noting that the quantity

p(t) +


[0,t)

γ (s)µ(ds)

vanishes almost everywhere and all conditions of the MP, (Theorem 3.1), are satisfied independently of the value of x̄ or ū.
In this case, the NCO are said to degenerate.

In the literature, there exist strengthened forms of the MP to avoid this kind of degenerate multipliers, see for example
[15,22,27,28]. Here, we are interested in developments of the strengthened form introduced by Ferreira, Fontes and Vinter
in [22], which will be extended to guarantee normality.

The strengthened MP in [22], ensures that the nontriviality condition of the MP can be written as

µ{(0, 1]} + ∥q∥L∞ + λ > 0,
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in place of (1) µ{[0, 1]} + ∥p∥L∞ + λ > 0, eliminating in this way the degenerate multipliers (3). This nondegenerate result
holds when the data of the problem satisfies, besides the basic hypotheses, a slightly stronger form of H2, as follows:

H2′ there exist scalars Kf > 0 and ϵ′ > 0 such that

∥f (t, x, u) − f (t, x′, u)∥ ≤ Kf ∥x − x′
∥,

for x, x′
∈ x̄(0) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, ϵ′

]

and the constraint qualification:

CQ if h(0, x0) = 0, then there exist positive constants Ku, ϵ, ϵ1, δ, and a control û ∈ U such that for a.e. t ∈ [0, ϵ)

∥f (t, x0, ū(t))∥ ≤ Ku, (4)

∥f (t, x0, û(t))∥ ≤ Ku, (5)

and

ζ · [f (t, x0, û(t)) − f (t, x0, ū(t))] < −δ, (6)

for all ζ ∈ ∂>
x h(s, x), s ∈ [0, ϵ), x ∈ {x0} + ϵ1B.

Theorem 3.2 ([22]). Assume hypothesesH1–H5,H2′ and the constraint qualification CQ. Then, in Theorem 3.1, the nontriviality
condition (1) can be replaced by

µ{(0, 1]} + ∥q∥L∞ + λ > 0.

In a recent publication [13], we discuss this and other forms of constraint qualification that guarantee nondegeneracy. In
the next section, we provide an even stronger form of these necessary conditions: a form guaranteeing normality, i.e. λ > 0.

4. Normality in optimal control problems

Themain result here is that for all problems satisfying the constraint qualification CQn below, we can write the NCOwith
the assurance that the multiplier λ (the scalar associated with the objective function) can always be chosen to be positive.
First we provide themore general result and thenwe provide a corollary for which it is easier to verify whether the problem
satisfies the conditions for the result to be applied.

CQn (Constraint Qualification for Normality)
There exist positive constants ϵ, δ, Ku, and a control û ∈ U such that

∥f (t, x̄(t), ū(t)) − f (t, x̄(t), û(t))∥ ≤ Ku, (7)

and

ζ ·

f (t, x̄(t), û(t)) − f (t, x̄(t), ū(t))


< −δ, (8)

for all ζ ∈ ∂>
x h(s, x̄(s)), a.e. t, s ∈ (τ − ϵ, τ ] ∩ [0, 1] where τ is defined as

τ = inf

t ∈ [0, 1] :


[t,1]

µ(ds) = 0


.

Remark 4.1. Condition (7) is satisfied for all problems with Ω bounded and u → f (·, ·, u) continuous. The last condition
(8) in CQn says that there is a control that can pull the trajectory away from the boundary (faster than the optimal control)
near to the last instant, τ , in which the measure µ is active.

Theorem 4.2. Assume hypotheses H1 –H5 and H2′. Assume also that the constraint qualifications CQ and CQn hold. Then, the
conditions of Theorem 3.1 are satisfied with λ = 1.

A somewhat stronger but easier to verify constraint qualification is the following

CQ′

n There exist positive constants ϵ, δ, Ku and a control û ∈ U such that

∥f (t, x̄(t), ū(t)) − f (t, x̄(t), û(t))∥ ≤ Ku, (9)

and

ζ ·

f (t, x̄(t), û(t)) − f (t, x̄(t), ū(t))


< −δ, (10)

for all ζ ∈ ∂>
x h(s, x̄(s)), a.e. t, s ∈ (τ − ϵ, τ ] ∩ [0, 1], and for all

τ ∈ {σ ∈ [0, 1] : h(σ , x̄(σ )) = 0}.



F.A.C.C. Fontes, S.O. Lopes / J. Math. Anal. Appl. 399 (2013) 27–37 31

Note that in this case, the constraint qualification becomes independent of the multipliers, making the condition CQ′

n
much easier to verify a priori than CQn. Because the measure µ is supported on the set of points where the constraint is
active, the value of τ defined in CQn must be in the set {σ ∈ [0, 1] : h(σ , x̄(σ )) = 0}. Furthermore, assuming that the
trajectory does not enter and leave the boundary of the state constraints an infinite number of times in finite time, CQ′

n can
be even more simplified by considering ϵ = 0. We have proved the following corollary.

Corollary 4.3. Assume hypotheses H1–H5 and H2′. Assume also that the constraint qualifications CQ and CQ′

n hold. Then, the
conditions of Theorem 3.1 are satisfied with λ = 1.

5. Normality in calculus of variations

The main result in this section is a normal form of the NCO for the calculus of variations problem (CVP) with pathwise
inequality constraints. It improves on the result of [16] by allowing the data to be nonsmooth. It is valid under a condition
– a constraint qualification – that is much easier to verify than in the general case of optimal control problems.

Consider the problem

(CVP1)


Minimize J[x] =

 1

0
L(x(t), ẋ(t))dt

subject to

x(0) = x0
h(x(t)) ≤ 0 for all t ∈ [0, 1].

Assume that the following hypotheses are satisfied:

H1CV The function x → L(x, u) is locally Lipschitz continuous for all u ∈ Rn.
H2CV The function u → L(x, u) is convex and bounded for all x ∈ Rn.
H3CV There exists an increasing function θ : [0, ∞) → [0, ∞) such that

lim
α→∞

θ(α)

α
= +∞,

and a constant β such that L(x, v) > θ(∥v∥) − β∥v∥ for all x ∈ Rn, v ∈ Rn.
H4CV There exists a scalar Kh > 0 such that the function x → h(x) is Lipschitz continuous of rank Kh.

Consider also the following constraint qualification:

CQCV There exist positive constants δ, and ε such that
• If h(x̄(0)) = 0, then for all x1, x2 ∈ {x0} + εB

γ1 · γ2 > δ, (11)
for all γ1 ∈ ∂>

x h(x1) and all γ2 ∈ ∂>
x h(x2).

• For all τ ∈ {s : h(x̄(s)) = 0} and for all x1, x2 ∈ {x̄(s) : s ∈ (τ − ε, τ ] ∩ [0, 1]}
γ1 · γ2 > δ, (12)

for all γ1 ∈ ∂>
x h(x1) and all γ2 ∈ ∂>

x h(x2).

Theorem 5.1. Let (x̄, ū) be a local minimizer for (CVP1). Assume that hypotheses H1CV–H4CV and CQCV are satisfied. Then, there
exist p ∈ W 1,1([0, 1] : Rn), a measurable function γ and a nonnegative Radon measure µ ∈ C∗([0, 1], R) such that

ṗ(t) ∈ co ∂L
xL(x̄(t), ˙̄x(t)) and q(t) ∈ co ∂L

uL(x̄(t), ˙̄x(t)), (13)

q(1) = 0, (14)

γ (t) ∈ ∂>
x h(x̄(t)) µ-a.e., (15)

supp{µ} ⊂ {t ∈ [0, 1] : h(x̄(t)) = 0}, (16)

where

q(t) =


p(t) +


[0,t)

γ (s)µ(ds), t ∈ [0, 1)

p(1) +


[0,1]

γ (s)µ(ds), t = 1.

Remark 5.2. A major feature of this result is the nonexistence of a multiplier λ associated with the objective function
(i.e. λ = 1). In the case when h is continuously differentiable, the set ∂>

x h(x̄(s)) is a singleton. Therefore, the constraint
qualification reduces to hx(x̄(s)) ≠ 0, confirming the CQ and the result in [16].
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6. Comparison of normal forms of NCO applied to CVP

The normal form of NCO for CVP (Theorem 5.1) is a consequence of the normal form of theMP for OCP, using Corollary 4.3
and the fact that CVP can be seen as a particular case of OCP.

For that it is enough to consider a new absolutely continuous state variable

z(t) =

 t

0
L(x(s), ẋ(s))ds

and a change of variable ẋ(t) = u.
The (CVP1) can then be written as:

(OCP2)



Minimize z(1)

subject to

η̇(t) = f (η(t), u(t)) a.e. t ∈ [0, 1]

(x(0), z(0)) = (x0, 0)

u(t) ∈ Rn

h(x(t)) ≤ 0 for all t ∈ [0, 1]

with η(t) =


x(t)
z(t)


and f (η(t), u(t)) =


u(t)

L(x(t), u(t))


.

Since the special structure of CVP permits the derivation of CQ that can be much easier to verify than in the optimal
control case, the following question arises: if we apply the normal form of the MP, valid under a CQ that no longer involves
the minimizing ū, for a CVP, do we have weaker CQ?

Normal forms of MP for OCP valid under a CQ that no longer involves the minimizing ū appear in [17,19]. Such CQ are
typically of the form1:

CQ′′

n ∃ϵ > 0 and û(t) ∈ U:

hx(x̄(t)) · f (x̄(t), û(t)) < −δ,

for t ∈ (s − ϵ, s + ϵ) where s ∈ {t ∈ [0, 1] : h(x̄(t)) = 0}.

Applying the constraint qualification CQ′′

n to (OCP2), we conclude that ∃û ∈ Rn such that

hη(x̄) · f ((x̄, z), û) < −δ,

for a constant δ > 0.
Consequently,

(hx(x̄), 0) ·


û
L(x̄, û)


< −δ.

Considering û(t) = −hx(x̄(t)), we have hx(x̄) · (−hx(x̄)) = −∥hx(x̄)∥2.
It follows that, for CVP, the constraint qualification CQ′′

n reduces to

hx(x̄) ≠ 0.

Comparing this CQ with the CQCV, we conclude that the latter is more general; it can be applied to problems with less
regularity on the data.

In summary, we can say that, in the case of optimal control problems, the NCO of [17,19], when comparedwith the results
here, do not involve the control function explicitly, and therefore are easier to verify. However, in the special case of calculus
of variations problems, the CQCV proposed here and the corresponding result (obtained from the results in Corollary 4.3 for
OCP) can be applied to a wider class of problems, requiring less regularity.

7. Proof of Theorem 4.2

Expanding the internal product and applying a well-known nonsmooth calculus rule (see [23, Proposition 2.3.3]) to the
adjoint inclusion (2), we obtain

−ṗ(t) ∈ co ∂L
x


n

i=1

qi(t)fi(t, x̄(t), ū(t))


⊂

n
i=1

qi(t)co ∂L
x fi(t, x̄(t), ū(t)) a.e. t ∈ [0, 1].

1 In [17], this CQ also has to be satisfied on a neighborhood of the state constraint boundary.
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Define the matrix ξ(t) =


ξ1(t)
· · ·

ξn(t)


for some ξi(t) ∈ co ∂L

x fi(t, x̄(t), ū(t)) conveniently selected such that

−ṗ(t) = q(t) · ξ(t) a.e. t ∈ [0, 1].

It follows that

p(t) = p(1) +

 1

t
q(s)ξ(s)ds

or equivalently

q(t) = q(1) +

 1

t
q(s)ξ(s)ds −


[t,1]

γ (s)µ(ds).

We can establish the following necessary conditions of optimality:
if (x̄, ū) is an optimal process, then there exist a function q of bounded variation and continuous from left, a scalar λ ≥ 0,

and a nonnegative Radon measure µ ∈ C∗([0, 1], R) such that

µ{(0, 1]} + ∥q∥∞ + λ > 0, (17)

q(t) = q(1) +

 1

t
q(s)ξ(s)ds −


[t,1]

γ (s)µ(ds),

where γ (t) ∈ ∂>
x h(t, x̄(t)) µ-a.e.,

−q(1) ∈ λ∂L
xg(x̄(1)),

supp{µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0} ,

and

q(t) · [f (t, x̄(t), u) − f (t, x̄(t), ū(t))] ≤ 0, (18)

for all u ∈ Ω(t), a.e. t ∈ [0, 1].
Now suppose in contradiction that λ = 0. In this case we can write q(1) = 0 and

q(t) =

 1

t
q(s)ξ(s)ds −


[t,1]

γ (s)µ(ds).

Let τ = inf{t ∈ [0, 1] :

[t,1] µ(ds) = 0}. If τ = 0, then


(0,1] µ(ds) = 0. This implies that q(t) = 0 for all t ∈ [0, 1]. Hence

µ{(0, 1]} + ∥q∥∞ + λ = 0 and we arrive at a contradiction with the nontriviality condition (17).
It remains to consider the case when τ > 0. We show that when λ = 0 and CQn is verified, the maximization condition

(18) cannot be satisfied.
Defining Φ(t, s) as the transition matrix for the linear system ż(t) = ξ(t)z(t), the function q can be written as

q(t) = −


[t,1]

γ (s)Φ(s, t)µ(ds).

Let1f (t, x̄(t)) = f (t, x̄(t), û(t))− f (t, x̄(t), ū(t)), where û is the control function chosen in CQn for t ∈ (τ −ϵ, τ ]∩[0, 1]
and is equal to ū a.e. on [τ , 1]. We have

q(t) · 1f (t, x̄(t)) = −


[t,1]

γ (s)Φ(s, t)1f (t, x̄(t))µ(ds)

= −


[t,τ ]

γ (s)Φ(s, t)1f (t, x̄(t))µ(ds)

= −


[t,τ ]

γ (s)1f (t, x̄(t))µ(ds) −


[t,τ ]

γ (s)[Φ(s, t) − Φ(τ , τ )]1f (t, x̄(t))µ(ds)

> δµ{[t, τ ]} −


[t,τ ]

γ (s)[Φ(s, t) − Φ(τ , τ )]1f (t, x̄(t))µ(ds).

As Φ is continuous we can assure the existence of a positive scalar δ1 such that ∥Φ(s, t) − Φ(τ , τ )∥ < δ
2KuKh

for all (s, t)
satisfying ∥(s, t) − (τ , τ )∥ < δ1. Hence, for a.e. t ∈ (τ − ϵ, τ ] ∩ (τ − δ1, τ ] we have

q(t) · 1f (t, x̄(t)) > δµ{[t, τ ]} −
δ

2
µ{[t, τ ]} > 0

contradicting the maximization condition (18). �
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8. Proof of Theorem 5.1

As mentioned before, here we discuss the normality results of OCP, in the particular case of CVP. Therefore, we start by
seeing (CVP1) as a special case of (OCP1). For that, it is enough to consider a new absolutely continuous state variable

z(t) =

 t

0
L(x(s), ẋ(s))ds

and the dynamics ẋ(t) = u.
The (CVP1) can then be written as (OCP2). Recalling the problem formulation

(OCP2)


Minimize z(1)
subject to

η̇(t) = f (η(t), u(t)) a.e. t ∈ [0, 1]
(x(0), z(0)) = (x0, 0)
u(t) ∈ Rn

h(x(t)) ≤ 0 ∀t ∈ [0, 1]

with η(t) =


x(t)
z(t)


and f (η(t), u(t)) =


u(t)

L(x(t), u(t))


.

In order to apply Corollary 4.3, we need to verify CQ and CQ′

n. In Step 1 of the proof, below, we show that these constraint
qualifications are implied by CQCV. In Step 2, we apply Corollary 4.3 to (OCP2) and thereby obtain the assertions (13)–(16)
of Theorem 5.1.

Step 1. We start by establishing regularity of the minimizers for (CVP1). Although we consider that the minimizers are
arcs, we can conclude that they are actually Lipschitz continuous functions.

Lemma 8.1 (See Theorem 11.5.1 [26]). Let x̄ be a local minimizer for (CVP1). Assume that hypotheses H1CV–H4CV are satisfied.
Then x̄ is a Lipschitz continuous function.

The proof of this lemma can be found in [26, pp. 422–425].
So, we have that the minimizer x̄ for (CVP1) is a Lipschitz continuous function, or equivalently˙̄x(t) ≤ K1 a.e. t ∈ [0, 1], (19)

where K1 is any number strictly greater than
˙̄x

∞
.

By hypothesis, we have that the function u → L (·, u) is bounded and having in consideration condition (19), we conclude
that condition (4) is satisfied.

Let us define the following function and sets:

1fη,û(t) =

f

η(t), û(t)


− f (η(t), ū(t))


,

Aε = {x0 + εB : h(x0) = 0},
Γ = {τ ∈ [0, 1] : h(x̄(τ )) = 0},
Bε(τ ) = {x̄(s) : s ∈ (τ − ε, τ ] ∩ [0, 1]}.

Note that CQCV can be decomposed into the following conditions:

CQCV1 There exist positive scalars δ and ε such that for all x1, x2 ∈ Aε ,

γ1 · γ2 > δ, (20)

∀γ1 ∈ ∂>
x h(x1) and ∀γ2 ∈ ∂>

x h(x2).
CQCV2 There exist positive scalars δ and ε such that for all τ ∈ Γ and all x1, x2 ∈ Bε(τ ),

γ1 · γ2 > δ, (21)

∀γ1 ∈ ∂>
x h(x1) and ∀γ2 ∈ ∂>

x h(x2).

On the other hand, CQCV1 implies that

CQ′

CV1 ∃δ > 0, ε > 0 and ∃x2 ∈ Aε such that ∀x1 ∈ Aε ,

γ1 · γ2 > δ, (22)

∀γ1 ∈ ∂>
x h(x1) and ∀γ2 ∈ ∂>

x h(x2).
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We would like to stress that CQCV1 and CQ′

CV1 are trivially satisfied in the case of h(x0) ≠ 0, and so is CQ.
We now show that CQ′

CV1 implies (6) when h(x0) = 0.
Let γη be an element of the hybrid partial subdifferential

γη ∈ ∂>
η h (x1) .

From the definition, we have

∂>
η h (x1) = co {(ε1, ε2) : exist xi → x1 such as h (xi) > 0∀i, h (xi) → h(x1) and hη (xi) → (ε1, ε2)}

with x1 ∈ {x0} + εB.
Since hz (xi) = 0, we have

(hx(xi), 0) → (ε1, ε2) .

It follows that,

γη ∈ (co {ε1 : exist xi → x1 such as h(xi) > 0∀i, h (xi) → h(x1) and hx (xi) → ε1}, 0).

We conclude that

γη = (γ1, 0) , where γ1 ∈ ∂>
x h (x1)

with x1 ∈ {x0} + εB.
Therefore

γη · 1fη,û(t) = γ1 ·

û(t) − ˙̄x(t)


.

So, in the context of (OCP2), condition (6) is equivalent to: if h(x0) = 0, then there exist positive constants ε, ε1, δ and a
control û : [0, ε] → Rm such that

γ1 ·

û(t) − ˙̄x(t)


< −δ, (23)

for all γ1 ∈ ∂>
x h (x1) , x1 ∈ x0 + ε1B.

If inequality (22) holds, then we can consider the control function û(t) = ˙̄x(t) − ϱ1γ2, where γ2 ∈ ∂>
x h (x2) and ϱ1 is a

positive number chosen small enough to ensure that ∥û(t)∥ ≤ K2, for all t ∈ [0, 1], where K2 is constant. We have

γη · 1fη,û(t) = γ1 · (−ϱ1γ2).

From the inequality (22),

γη · 1fη,û(t) = −ϱ1γ1 · γ2 < −δ

for some δ > 0 and for any x1 ∈ {x0} + εB, we conclude that the inequality (6) is confirmed.
In a similar way, we prove that if CQCV2 holds, then condition (10) is satisfied.
Let Tε(τ ) = {s : s ∈ (τ − ε, τ ] ∩ [0, 1]}. Condition CQCV2 is then equivalent to:

CQ′

CV2 ∃δ > 0, ε > 0 such that ∀τ ∈ Γ and ∀t1, t2 ∈ Tε(τ )

γ1 · γ2 > δ, (24)

∀γ1 ∈ ∂>
x h(x̄(t1)) and ∀γ2 ∈ ∂>

x h(x̄(t2)).

Let γη be an element of the hybrid partial subdifferential

γη ∈ ∂>
η h (x̄(t1)) .

From the definition, we have

∂>
η h (x̄(t1)) = co {(ε1, ε2) : exist si → t1 such as h (x̄(si)) > 0∀i,

h (x̄(si)) → h(x̄(t1)) and hη (x̄(si)) → (ε1, ε2)}

with t1 ∈ (τ − ϵ, τ ] ∩ [0, 1], such that h(x̄(τ )) = 0.
Since hz (x̄(si)) = 0, we have

(hx(x̄(si)), 0) → (ε1, ε2) .

It follows that,

γη ∈ (co {ε1 : exist si → t1 such as h(x̄(si)) > 0∀i, h (x̄(si)) → h(x̄(t1)) and hx (x̄(si)) → ε1}, 0).

We conclude that

γη = (γ1, 0) , for all γ1 ∈ ∂>
x h (x̄(t1))

with t1 ∈ (τ − ϵ, τ ] ∩ [0, 1] such that h(x̄(τ )) = 0.
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Therefore,

γη · 1fη,û(t) = γ1 ·

û(t) − ˙̄x(t)


.

So, in the context of (OCP2), condition (10) is equivalent to: there exist positive constants ε, δ and a control function û
such that

γ1 ·

û(t2) − ˙̄x(t2)


< −δ, ∀γ1 ∈ ∂>

x h(x̄(t1)) (25)

for a.e. t1, t2 ∈ Tε(τ ) and all τ ∈ Γ .
If inequality (24) holds, then for any τ ∈ Γ and any t2 ∈ Tϵ(τ ) we can consider the control û(t2) = ˙̄x(t2) − ϱ2γ2, for

some γ2 ∈ ∂>
x h (x̄(t2)) where ϱ2 is a positive number chosen small enough to ensure that ∥û(t2)∥ ≤ K3, with K3 constant.

We have

γη(t1) · 1fη,û(t2) = γ1 · (−ϱ2γ2).

From inequality (24),

γη(t1) · 1fη,û(t2) = −ϱ2γ1 · γ2 < −δ

for some δ > 0 and any t1, t2 ∈ Tε , we conclude that inequality (10) holds.
Since

û(t) ≤ K for some positive, sufficiently small ϱ1 and ϱ2, and the function L(x(t), ẋ(t)) is bounded, the conditions
(5) and (9) are satisfied.

Consequently, we can apply Corollary 4.3.
Step 2. Let ((x̄(t), z̄(t)) , ū(t)) be a local minimizer for (OCP2). Then there exist two absolutely continuous functions,

p1 : [0, 1] → Rn and p2 : [0, 1] → R, a measurable function γ and a nonnegative Radon measure µ ∈ C∗ ([0, 1], R) such
that

(−ṗ1(t), −ṗ2(t)) ∈ co

∂L
η ((q1(t), q2(t)) · f (η̄(t), ū(t)))


a.e. t ∈ [0, 1], (26)

(−q1(1), −q2(1)) ∈ ∂L
η z̄(1), (27)

γ (t) ∈ ∂>
x h(x̄(t)) µ-a.e., (28)

supp{µ} ⊂ {t ∈ [0, 1] : h (x̄(t)) = 0}, (29)

a.e. t ∈ [0, 1], ū(t) maximize

u → (q1(t), q2(t)) · f (η̄(t), u) , (30)

where

q1(t) =


p1(t) +


[0,t)

γ (s)µ(ds), t ∈ [0, 1)

p1(1) +


[0,1]

γ (s)µ(ds), t = 1

and

q2(t) = p2(t), t ∈ [0, 1]. (31)

Applying a nonsmooth rule to the transversality condition (27), we obtain

(−q1(1), −q2(1)) ∈ ∂L
x z̄(1) × ∂L

z z̄(1). (32)

that implies:
q1(1) = 0
−q2(1) = 1 ⇐⇒

p1(1) +


[0,1]

γ (s)µ(ds) = 0

p2(1) = −1.
(33)

On the other hand, we can write condition (26), as

(−ṗ1(t), −ṗ2(t)) ∈ co ∂L
η (q1(t) · ū(t) + q2(t) · L(x̄(t), ū(t))) .

Using a nonsmooth calculus propriety, it follows that

(−ṗ1(t), −ṗ2(t)) ∈ q2(t)co ∂L
η (L (x̄(t), ū(t))) .

Consequently, we have

(−ṗ1(t), −ṗ2(t)) ∈ {q2(t)co ∂L
x (L (x̄(t), ū(t))) × 0},
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hence,
−ṗ1(t) ∈ q2(t)co ∂L

x (L (x̄(t), ū (t)))
ṗ2(t) = 0. (34)

By (31), (33) and (34), we know that q2(t) = −1, then the condition (30) can be written as:
˙̄x(t) maximize

u →


p1(t) +


[0,t)

γ (s)µ(ds)


· u − L (x̄(t), u)

a.e. t ∈ [0, 1].
H2CV is satisfied, the ‘‘maximization of the Hamiltonian’’ property implies

0 ∈ co ∂L
u


p1(t) +


[0,t)

γ (s)µ(ds)


· ˙̄x − L

x̄(t), ˙̄x(t)


.

By a nonsmooth calculus property, we have
p1(t) +


[0,t)

γ (s)µ(ds)


∈ co ∂L
u


L

x̄(t), ˙̄x(t)


. (35)

The conditions (28), (29) and (33)–(35) may be assembled to give the assertions (13)–(16) of the theorem. �
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