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1. Introduction

The main concern in this paper is to find sufficient conditions for existence as well as nonexistence of nonconstant stable
stationary solutions (herein referred to as patterns, for short) to the diffusion problem

ut = divg
(
a(x)∇g u

) + f (u), (t, x) ∈R
+ ×M (1.1)

where M ⊂ R
3 is a surface of revolution without boundary with metric g . The case where M has boundary will also be

treated. The function a is smooth and positive and f is a function in C1(R), sometimes considered of bistable type.
This kind of problem appears as a mathematical model in many distinct areas and, roughly speaking, a solution models

the time evolution of the concentration of a diffusing substance in a heterogeneous medium whose diffusivity is given by a
positive function a, under the effect of a source or sink term f . Usually the diffusivity is a property of the material which
the surface is made of.

Our concern herein is to find mechanisms of interaction between the diffusivity function a and the geometry of the
domain so as to produce patterns to the problem (1.1) as well as those which do not produce patterns.

There is a vast literature addressing the question of nonexistence as well as existence of patterns to (1.1) in bounded
domains of Rn when diffusivity is constant. It seems to have been first addressed in [3] and [15] for problems with Neumann
boundary condition where it was proved that, for the case of constant diffusivity, no pattern exists if the domain is convex.
If a is a constant function, nonexistence of patterns to (1.1) on a Riemannian manifold without boundary with nonnegative
Ricci curvature was proved in [7], thus generalizing a similar result for surface of revolution found in [17]. In particular, if
M is a surface of revolution the authors in [1] show that there are no patterns if the sum of the Gaussian curvature in
every point p and the square of the geodesic curvature of the parallel passing through p is nonnegative.
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For bounded domains in R
N the question of how the diffusivity function can give rise to patterns, or not, has been

considered by some authors.
For one-dimensional domains, i.e., when M is an interval, subjected to zero Neumann boundary condition, a sufficient

condition for nonexistence of patterns was found to be a′′ < 0 in [4] and (
√

a )′′ < 0 in [19]. In domains with dimension
N � 2 this remains an open problem.

Still regarding one-dimensional domains, existence of a diffusivity function a which gives rise to patterns to (1.1) was
addressed in [10,12]. These results were generalized to two-dimensional domains in [5] and for any dimension in [6].

Let us briefly mention our main results. To this end consider a smooth curve C in R
3 parametrized by x = (x1, x2, x3) =

(ψ(s),0,χ(s)), s ∈ [0, l] with ψ(0) = ψ(l) = 0 and the borderless surface of revolution M generated by C . We suppose that
the diffusivity function does not depend on the angular variable θ , so that, abusing notation, we set a(x(s, θ)) = a(s).

Then regarding nonexistence of patterns to (1.1) a sufficient condition is found to be

K + (K g)
2 � (a′ψ)′

2aψ
in (0, l)

where K stands for the Gaussian curvature and K g for the geodesic curvature of M.
Note that this generalizes [4] since M with border under zero Neumann boundary condition is also allowed. This can

be seen by taking ψ ≡ 1, which would correspond to a finite right circular cylinder, and then the nonexistence condition
for patterns would read a′′ � 0, as found in [4].

As for existence of patterns, after introducing a positive small parameter in the equation, we found that a sufficient
condition is that the function

• √
aψ has a isolated local minimum somewhere in (0, l),

provided f is of bistable type and satisfies the equal-area condition ( f (u) = u−u3, for instance). In particular, if a ≡ constant
then the sufficient condition is satisfied as long as, roughly speaking, M has a neck.

The geometric profile of these patterns are also given. All these results remain true for a surface of revolution with
border under Neumann boundary condition.

Many examples of surfaces satisfying both conditions, namely, for existence as well as for nonexistence of patterns are
given.

This paper is divided as follows. In Section 2 we recall some material from stability of solution, differential geometry
and function of bounded variation. In Section 3 we will extend the nonexistence result of patterns given in [1] to the case
where a is nonconstant (see Remark 3.3(i)). In Section 4 we introduce a parameter ε > 0 in the problem (1.1) and give
sufficient conditions for existence of a family of stable stationary solution {vε}0<ε<ε0 , for some ε0 > 0, using Γ -convergence
techniques.

In order to utilize Γ -convergence results f has to be a function of bistable type that satisfies the equal-area condition,
sometimes also referred to as f being balanced. In Section 6 we prove that this condition is actually necessary in our
approach.

2. Preliminaries

We begin with some definitions and known results from Differential Geometry which will be used in the following
sections.

2.1. Surface of revolution

Consider M = (M, g) an n-dimensional Riemannian manifold with a metric given in local coordinates x = (x1, x2, . . . , xn)

given by (using Einstein summation convention)

ds2 = gij dxi dx j,
(

gij) = (
g−1

i j

)
, |g| = det(gij).

Given a smooth vector field X on M, the divergence operator of X is defined as

divg X = 1√|g|
∂

∂xi

(√|g|Xi)
and the Riemannian gradient, denoted by ∇g , of a sufficiently smooth real function φ defined on M, as the vector field

(∇gφ)i = gij∂ jφ.

We will see how the operator divg(a(x)∇g u) can be expressed for the particular case where M is a surface of revolution.
Let C be the curve of R3 parametrized by
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{ x1 = ψ(s)
x2 = 0
x3 = χ(s)

(
s ∈ I := [0, l])

where ψ,χ ∈ C2(I), ψ > 0 in (0, l) and (ψ ′)2 + (χ ′)2 = 1 in I . Moreover,

ψ(0) = ψ(l) = 0, (2.1)

and

ψ ′(0) = −ψ ′(l) = 1. (2.2)

Let M be the surface of revolution parametrized by{ x1 = ψ(s) cos(θ)

x2 = ψ(s) sin(θ)

x3 = χ(s)
(s, θ) ∈ [0, l] × [0,2π). (2.3)

Set x1 = s, x2 = θ , then the surface of revolution in R
3 with the above parametrization is a 2-dimensional Riemannian

manifold with metric

g = ds2 + ψ2(s)dθ2.

It follows from (2.1) and (2.2) that M has no boundary and we always assume that M and the Riemannian metric g
on it are smooth (see [2], for instance). The area element on M is dσ = ψ dθ ds and the gradient of u with respect to the
metric g is given by

∇g u =
(

∂su,
1

ψ2
∂θ u

)
.

Although the diffusivity function a may depend on (s, θ), throughout this work we suppose that it depends just on the
variable s. Thus abusing notation, for simplicity sake, we set

a
(
x(s, θ)

) = a(s), for x = (
ψ(s) cos(θ),ψ(s) sin(θ),χ(s)

) ∈ M (2.4)

and therefore

divg
(
a(x)∇g u

) = auss + (ψa)s

ψ
us + a

ψ2
uθθ . (2.5)

Hence throughout this text problem (1.1) on M reduces to

ut = auss + (ψa)s

ψ
us + a

ψ2
uθθ + f (u), (s, θ) ∈ (0, l) × [0,2π). (2.6)

Note that the Gaussian curvature of M is given by

K (s) = −ψ ′′(s)

ψ(s)

(
s ∈ (0, l)

)
(2.7)

and, for future reference,

K g(s) = ±ψ ′

ψ

(
s ∈ (0, l)

)
represents the geodesic curvature of the parallel circles s = constant on M. Here the sign depends on the orientation of the
parametrization.

2.2. Stability analysis

By a stationary solution of problem (1.1) we mean a solution to the problem

divg
(
a(x)∇g u

) + f (u) = 0, x ∈ M (2.8)

or equivalently, in our setting, a solution to (2.6) which does not depend on time. A stationary solution U of (2.6) is called
stable (in the sense of Lyapunov) if for every ε > 0 there exists δ > 0 such that ‖u(·, t) − U‖∞ < ε for all t > 0, whenever
‖u0 − U‖∞ < δ, where ‖ · ‖∞ stands for the norm of the space L∞(M). If there exists δ1 > 0 such that ‖u0 − U‖∞ < δ1
implies that ‖u(·, t)− U‖∞ → 0, as t → ∞, then U is called asymptotically stable. We say that U is unstable if it is not stable.

Regarding the linearized eigenvalue problem

divg(a∇gφ) + f ′(U )φ + λφ = 0 in M, (2.9)
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the first eigenvalue λ1 is given by

λ1 = min
{

RU (φ): φ ∈ H1(M), ‖φ‖L2(M) = 1
}

(2.10)

where

RU (φ) =
∫
M

{
a|∇gφ|2 − f ′(U )φ2}dσ .

It is well known that if λ1 > 0 then U is asymptotically stable and if λ1 < 0 then U is unstable. If λ1 = 0 then stability or
instability can occur.

2.3. BV-functions and Γ -convergence

We say that v is a function of essential bounded variation in an interval I ⊂ R (and write v ∈ BV(I)) if its partial derivatives
in the sense of distributions are measures with finite total variation in I . In the sense of distribution D v is a vector valued
Radon measure with finite total variation in I given by

|D v| = sup

{∫
I

vσ ′ ds: σ ∈ C∞
0 (I), |σ | � 1

}
.

The total variation |D v| is a Radon measure itself. We denote by BV(I; {α,β}) the class of all v ∈ BV(I) which take
values α and β only. If v ∈ BV(I), the integral of any positive continuous function h with respect to the measure |D v| can
be expressed as∫

I

h|D v| = sup

{∫
I

vσ ′ ds: σ ∈ C∞
0 (I), |σ | � h

}
.

Given u ∈ L1
loc(I), the jump set of u, denoted by Su , is the complement of the set of Lebesgue points of u, i.e., the set

of points where the upper and lower approximate limits of u differ or are not finite. If u ∈ BV(I, {α,β}) then H0(Su) < ∞
and (β − α)H0(Su) agrees with the total variation |Du| of the derivative Du. Here H0 stands for the Hausdorff counting
measure.

For details the reader is referred to [8,11], for instance.

Definition 2.1. A family {Eε}ε>0 of real-extended functionals defined in L1(I) is said to Γ -converge, as ε → 0, to a functional E0
and we write

Γ − lim
ε→0

Eε(v) = E0(v)

if:

(i) for each v ∈ L1(I) and for any sequence {vε} in L1(I) such that vε → v in L1(I), as ε → 0, implies E0(v) �
limε→0 inf Eε(vε);

(ii) for each v ∈ L1(I) there is a sequence {vε} in L1(I) such that vε → v in L1(I), as ε → 0, and E0(v) � limε→0 sup Eε(vε).

Definition 2.2. We shall call v0 ∈ L1(I) a L1-local minimizer of E0 if there is μ > 0 such that E0(v0) � E0(v) whenever
0 < ‖v − v0‖L1(I) < μ. Moreover if E0(v0) < E0(v) for 0 < ‖v − v0‖L1(I) < μ, then v0 is called an isolated L1-local minimizer
of E0.

3. Sufficient conditions for nonexistence of patterns

We start this section with a lemma concerning the characterization of stationary solutions of (1.1) under our hypotheses.
Next result was observed in [17] for a ≡ 1 and for convenience of the reader we will prove it in our case.

Lemma 3.1. Every stationary solution u of problem (1.1) on M, which depends on the angular variable θ , is unstable.

Proof. By (2.5) u satisfies the equation

auss + (ψa)s

ψ
us + a

ψ2
uθθ + f (u) = 0.

As the function a does not depend on θ we have that uθ is an eigenfunction of (2.9) with corresponding eigenvalue λ = 0.
Since uθ must change sign it cannot be the eigenfunction corresponding to the lowest eigenvalue. Hence λ1 < 0. �
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Next we state and prove the main result of this section.

Theorem 3.2. If

−
(

ψ ′

ψ

)′
(s) � (a′ψ)′(s)

2(aψ)(s)
, ∀s ∈ (0, l) (3.1)

then every nonconstant stationary solution of (1.1) is unstable.

Proof. If v is a nonconstant stationary solution by Lemma 3.1 we can assume that v = v(s). Thus by (2.5) v satisfies

avss + (ψa)s

ψ
vs + f (v) = 0 in (0, l). (3.2)

Differentiating with respect to s and setting ′ := d
ds , we have

a′v ′′ + av ′′′ +
(

(ψa)′

ψ

)′
v ′ + (ψa)′

ψ
v ′′ + f ′(v)v ′ = 0

in other words,

divg
(
a∇g v ′) + a′v ′′ +

(
(ψa)′

ψ

)′
v ′ + f ′(v)v ′ = 0.

Multiplying by v ′ and integrating over M we obtain∫
M

v ′ divg
(
a∇g v ′) + a′v ′′v ′ +

(
(ψa)′

ψ

)′(
v ′)2 + f ′(v)

(
v ′)2

dσ = 0.

It follows that∫
M

a
(

v ′′)2 − f ′(v)
(
v ′)2

dσ =
∫
M

v ′′a′v ′ dσ +
∫
M

(
(ψa)′

ψ

)′(
v ′)2

dσ .

Now, note that

∫
M

v ′′a′v ′ dσ =
2π∫
0

l∫
0

v ′′a′v ′ψ ds dθ

= −
2π∫
0

l∫
0

(
v ′)2(

a′ψ
)′

ds dθ −
2π∫
0

l∫
0

v ′′a′v ′ψ ds dθ

= −
2π∫
0

l∫
0

(
v ′)2(

a′ψ
)′

ds dθ −
∫
M

v ′′a′v ′ dσ

and thus

R v
(

v ′) =
∫
M

a
(

v ′′)2 − f ′(v)
(

v ′)2
dσ

=
∫
M

v ′′a′v ′ dσ +
∫
M

(
(ψa)′

ψ

)′(
v ′)2

dσ

=
2π∫
0

l∫
0

[
− (a′ψ)′

2
+ ψ

(
(ψa)′

ψ

)′](
v ′)2

ds dθ.

Finally, a simple calculation shows that

−
(

ψ ′ )′
� ψ ′a′ + ψa′′

⇒ − (a′ψ)′ + ψ

(
(ψa)′ )′

� 0.

ψ 2aψ 2 ψ
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Therefore R v(v ′) � 0 and by (2.10) we have that λ1 � 0. If R v(v ′) < 0 then λ1 < 0 and v is unstable. If λ1 = 0, since λ1 is a
simple eigenvalue we have that v ′ = cφ where φ is the eigenfunction corresponding to the eigenvalue λ1 = 0 and c �= 0. It
is well known that φ has no zeros in [0, l] and this gives a contradiction since v is assumed to be nonconstant on [0, l].

The theorem is proved. �
Remark 3.3.

(i) The left-hand side of inequality (3.1) has a geometrical meaning (see (2.7)) in the sense that

−
(

ψ ′

ψ

)′
= −ψ ′′

ψ
+

(
ψ ′

ψ

)2

= K + (K g)
2.

Also (3.1) generalizes the condition in [1], namely −(
ψ ′
ψ

)′ � 0, where the case a ≡ constant has been addressed.

(ii) Note that Theorem 3.2 is valid for any f ∈ C1(R). In the case the domain M has boundary with the Neumann boundary
condition (see (6.1)), ψ > 0 in [0, l] and a ≡ constant, the authors in [1], based on [19], showed that if −(

ψ ′
ψ

)′(s0) < 0

for some s0 ∈ (0, l) then there exists f ∈ C1(R) such that (1.1) possesses patterns. In the next section we take f ∈ C1(R)

bistable and give sufficient conditions for existence of patterns.

Example 3.4. If we take M to be the unit sphere then ψ(s) = sin(s), χ(s) = cos(s) and I = (0,π). In this case if a(s) =
sin2(s) + 1, i.e., a(x) = x2

1 + x2
2 + 1, x ∈M, a simple calculation shows that condition (3.1) is satisfied and therefore (1.1) has

no patterns.
On the other hand, if a(s) = sin2(2s) + 1, i.e., a(x) = 4x2

3(x2
1 + x2

2) + 1, x ∈ M then condition (3.1) is not satisfied on the
unit sphere. Hence there might exist f such that problem (1.1) would possess patterns. In fact, in the next section we will
see that this is actually the case when f is of bistable type.

4. Sufficient conditions for existence of patterns

The main concern in this section is to find sufficient conditions for existence of patterns for (1.1) with a small positive
parameter ε introduced

∂t uε = ε2 divg
(
a(x)∇g uε

) + f (uε), (t, x) ∈R
+ ×M, (4.1)

with M and a as in (2.6).
Here we assume that the function f satisfies:

( f1) f has three consecutive zeros α, θ and β , α < θ < β , satisfying f (α) = f (θ) = f (β) = 0 and f ′(α) < 0, f ′(β) < 0.
( f2)

∫ β

α f (ξ)dξ = 0 (the equal-area condition).
( f3) There exist positives constants c1, c2, s0 and a number p � 2 such that c1|s|p � F (s) � c2|s|p for |s| � s0, where

F (s) = −
s∫

α

f (ξ)dξ. (4.2)

The method used in this section to find stable stationary solutions using Theorem 4.1 below has been used in other
articles ([5,14], for instance) and it also provides the geometric qualitative structure of such solutions.

Note that under our hypotheses (4.1) becomes

ψ∂t uε = ε2∂s(ψa∂suε) + ψ f (uε), s ∈ (0, l). (4.3)

The family of functionals Eε : L1(I) → R ∪ {∞} with I = (0, l), whose critical points are stationary solutions to (4.3) is
given by

Eε(u) =
{∫ l

0[ εa(s)ψ(s)
2 (u′)2 + ψ(s)

ε F (u)]ds, u ∈ H1(I),

∞, otherwise.
(4.4)

Remark that due to ( f1) and ( f2), the potential F satisfies:

• F ∈ C2 and F � 0,
• F has exactly two roots α and β (α < β) and
• F ′(α) = F ′(β) = 0 and F ′′(α) > 0, F ′′(β) > 0.

These conditions are necessary in order to use the Γ -convergence technique below. As for ( f3), it is necessary in a com-
pactness argument, as will be explained later. Now our goal is to find local minimizers of Eε and for this purpose we will
use the following theorem which can be found in [14].
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Theorem 4.1. (See [14].) Suppose that a sequence of real-extended functionals {Eε}, Γ -converges to a real-extended functional E0 and
also that the following hypotheses are satisfied:

(i) Any sequence {vε}ε>0 such that Eε � C < ∞ for all ε > 0, is compact in L1 .
(ii) There exists an isolated L1-local minimizer u0 of E0 .

Then there exist an ε0 > 0 and a family {vε}0<ε<ε0 such that

• vε is an L1-local minimizer of Eε and
• ‖vε − v0‖L1 → 0, as ε → 0.

The computation of the Γ -limit of the family of functionals {Eε} for N-dimensional domains (N � 2) and a, ψ constant
functions can be found in [18] or [16], for instance. Essentially the same proof can be used to our case (the presence of the
positive functions a and ψ adds no additional difficulty) thus yielding

Theorem 4.2. Let E0 : L1(I) → R∪ {∞} be defined as

E0(u) =
{

γ
∫ l

0

√
a(s)ψ(s)|Dχ{u=α}|, u ∈ BV(I, {α,β}),

∞, otherwise,

where γ = ∫ β

α

√
F (s)ds. Then

Γ − lim
ε→0

Eε(u) = E0(u)

where Eε is given by (4.4).

Remark 4.3. By a result of Federer, Theorem 4.5.9 in [9], for u ∈ BV(I, {α,β}) above functional E0 can be written, except for
a multiplicative constant taken to be 1 for simplicity, in the form

E0(u) = γ

l∫
0

√
a(s)ψ(s)|Du|.

In order to apply Theorem 4.1 we need to find an isolated L1(I)-local minimizer of E0. Indeed condition (i) of Theorem 4.1
was proved in [18] and at this point the condition ( f3) on f is essential. In what follows χA denotes the characteristic
function of the set A.

Theorem 4.4. If the function
√

aψ : [0, l] → R assumes an isolated local minimum at s0 ∈ (0, l) then

u0 = αχ(0,s0) + βχ(s0,l) (4.5)

is an isolated L1(I)-local minimizer of E0 .

Proof. By hypothesis there exists δ0 > 0 such that

(
√

aψ)(s0) < (
√

aψ)(s)

for 0 < |s − s0| < δ0.
Take δ = 1

2 δ0|α − β| and u ∈ BV(I; {α,β}) such that

0 < ‖u − u0‖L1(I) < δ. (4.6)

Note that if u /∈ BV(I, {α,β}) then E0(u) > E0(u0). Let Su ⊂ (0, l) be the jump set of the function u. If Su ∩ (s0 − δ0,

s0 + δ0) = ∅, then

‖u − u0‖L1(I) =
∫
I

|u − u0|ds � |α − β|δ0 > δ

which contradicts (4.6). Thus Su ∩ (s0 − δ0, s0 + δ0) �= ∅ and there exists s1 ∈ Su ∩ (s0 − δ0, s0 + δ0).
If s1 �= s0 then by virtue of Remark 4.3 and using the co-area formula
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E0(u) = γ

∫
I

√
a(s)ψ(s)|Dχ{u=β}| = γ

∫
I

√
a(s)ψ(s)|Du|

= γ

∞∫
−∞

{ ∫
I∩∂{u>ξ }

√
a(s)ψ(s)dH0

}
dξ

= γ |β − α|
∫
Su

√
a(s)ψ(s)dH0

= γ |β − α|
∑
s∈Su

√
a(s)ψ(s)

� γ |β − α|(√aψ)(s1)

> γ |β − α|(√aψ)(s0) = E0(u0)

as desired.
If s1 = s0, there are two possibilities: either u ≡ u0 or u = βχ(0,s0) + αχ(s0,l) . The former one is ruled out since it is

required that 0 < ‖u − u0‖L1(I) < δ and the latter one based on the fact that in this case ‖u − u0‖L1(I) � 2δ0|α −β| > δ, thus
contradicting (4.6).

The theorem is proved. �
Theorem 4.5. Let {uε}0<ε�ε0 be the family of local minimizers of Eε provided by Theorems 4.1, 4.2 and 4.4. Then every uε is a stable
stationary solution to (4.1).

Proof. By (2.5) each stationary solution to (4.3) is also a stationary solution to (4.1). Consider the following eigenvalue
problem obtained by linearizing problem (4.1) around uε

ε2a∂2
s φ + ε2 ∂s(ψa)

ψ
∂sφ + ε2 a

ψ2
∂2
θ φ + f ′(uε)φ + λφ = 0. (4.7)

We claim that if φ1 is an eigenfunction corresponding to the first eigenvalue λ1 of problem (4.7) then φ1 is independent
of θ . It is easy to see that for any θ0 > 0, φ1(s, θ + θ0) is also an eigenfunction corresponding to λ1. Moreover we have that
φ1 is 2π -periodic in θ and

l∫
0

2π∫
0

φ2
1(s, θ)ψ dθ ds = 1. (4.8)

Since λ1 is a simple eigenvalue, there exist a constant k such that φ1(s, θ) = kφ1(s, θ + θ0).
It follows that

l∫
0

2π∫
0

φ2
1(s, θ + θ0)ψ dθ ds =

l∫
0

2π+θ0∫
θ0

φ2
1(s, θ)ψ dθ ds =

l∫
0

2π∫
0

φ2
1(s, θ)ψ dθ ds = 1,

then

1 =
l∫

0

2π∫
0

φ2
1(s, θ)ψ dθ ds = k2

l∫
0

2π∫
0

φ2
1(s, θ + θ0)ψ dθ ds = k2.

Hence k = ±1 for any θ0 > 0, 0 � s � 1 and 0 < θ < 2π which proves the claim.
Recall that uε is a local minimizer of Eε , then for all φ ∈ H1(I)

E ′′
ε(uε)(φ) =

l∫
0

{
εaψ

(
φ′)2 − ψ f ′(uε)φ

2

ε

}
ds � 0. (4.9)

Therefore, if φ1 is the eigenfunction corresponding to the first eigenvalue λ1, we have that

λ1 = Ruε (φ1) = 2π E ′′
ε(uε)(φ1) � 0.

If λ1 > 0 then uε is stable. If λ1 = 0 then stability also occurs. Indeed in this case 0 is a simple eigenvalue and therefore
there is a local one-dimensional critical invariant manifold W (uε) tangent to the eigenfunction φ1 such that if uε is stable
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in W (uε) then it also stable in H1(M) (see [13, Theorem 6.2.1], for instance). Now the claimed stability of uε in W (uε)

follows from the existence of a Lyapunov functional and the fact that W (uε) is one-dimensional. �
Summing up, combining Theorems 4.1, 4.2, 4.4 and 4.5, we can state the main result of this section.

Theorem 4.6. Suppose that f satisfies ( f1), ( f2), ( f3) and that

• the function
√

aψ assumes an isolated local minimum in (0, l).

Then

• ∃ε0 > 0 and a family {uε}0<ε�ε0 of nonconstant stable stationary solution to (4.1).
• Moreover ‖uε − u0‖L1(I) → 0, as ε → 0, where u0 is given by (4.5).

In particular this is the case if a ≡ constant and ψ assumes an isolated local minimum at some point, say, sm ∈ (0, l) (this corresponds
to a surface of revolution having a neck at height χ(sm)).

Remark 4.7.

(i) Standard bootstrap arguments ensure that each solution uε ∈ C2(M).
(ii) As expected, if

√
aψ assumes an isolated local minimum in (0, l) then the condition (3.1) is not satisfied. Indeed,

a simple computation shows that if (
√

aψ)′(s0) = 0 and (
√

aψ)′′(s0) > 0 for some s0 ∈ (0, l) then

−
(

ψ ′

ψ

)′
(s0) <

a′(s0)ψ
′(s0) + a′′(s0)ψ(s0)

2a(s0)ψ(s0)
.

(iii) For the case a ≡ constant the authors in [1] proved that if (
ψ ′
ψ

)′(s0) > 0, for some s0 ∈ (0, l), then there exists a

function f (depending on ψ ) such that (1.1) has a nonconstant stable solution. Instead we fix f , e.g., f (u) = u − u3,
and prove the same existence result provided ψ assumes an isolated local minimum at s0 ∈ (0, l). Note that the latter
assumption, by its turn, implies that (

ψ ′
ψ

)′(s0) > 0.

Example 4.8. As stated in Example 3.4 if M is the unit sphere and a(s) = sin2(2s) + 1, s ∈ [0,π ], then the function
√

aψ

assumes an isolated local minimum in s = π
2 and therefore there exists a family {uε}0<ε�ε0 of nonconstant stable stationary

solutions to (4.1).

5. The Neumann boundary condition case

In this section we discuss the case where the domain is a surface of revolution with boundary. Let the surface of
revolution M be as before and let D ⊂M be the domain delimited by two circles Cs1 and Cs2 , 0 < s1 < s2 < l, parametrized
in the local coordinates (s, θ) as follows:

Cs1 :
{

s(t) = s1
θ(t) = t

and Cs2 :
{

s(t) = s2
θ(t) = t

with t ∈ [0,2π).
Let ν be the outer normal vector of ∂ D lying in the tangent space T p(M) for any p ∈ ∂ D . We shall assume that ∂ D is

orientable so that the outer normal is well-defined and continuous.
The derivative of u in the direction of ν at ∂ D is given by

∂u

∂ν
= 〈∇g u, ν〉,

where ν = ν1
∂
∂s + ν2

∂
∂θ

and { ∂
∂s ,

∂
∂θ

} is the basis of T p(M).
Moreover it is supposed that

χ ′(s) � 0, s ∈ (s1, s1 + δ) ∪ (s2 − δ, s2) (5.1)

for some δ > 0. Thus there holds ν = ∂
∂s on Cs2 and ν = − ∂

∂s on Cs1 .
The following problem on the domain D ⊂M, described above, with Neumann boundary condition is considered⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
= div

(
a(x)∇u

) + f (u), (t, x) ∈R
+ × D,

∂u = 0, x ∈ ∂ D.

(5.2)
∂ν
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Except for a few natural changes the proofs of the following theorems are similar to those rendered for domains without
boundary.

Theorem 5.1. If

−
(

ψ ′

ψ

)′
(s) � (a′ψ)′(s)

2(aψ)(s)
(5.3)

for all s ∈ (s1, s2) then every nonconstant stationary solution to (5.2) is unstable. In particular this is the case if

• D is convex and
• a′ψ is a non-increasing function.

Theorem 5.2. If f satisfies ( f1), ( f2), ( f3) and
√

aψ assumes an isolated local minimum s0 ∈ (s1, s2), then there exists a family
{vε}0<ε�ε0 , for some ε0 > 0, of nonconstant stable stationary solution to the problem{

∂t vε = ε2 div
(
a(x)∇vε

) + f (vε), (t, x) ∈ R
+ × D,

∂ν vε = 0, x ∈ ∂ D.
(5.4)

Also in this case we will prove that the hypothesis ( f2) (the equal-area condition) is necessary for the conclusion of
Theorem 5.2.

As a consequence of the two theorems above many examples of existence and nonexistence of patterns can be created.
Here are some simple ones.

Example 5.3. For the sake o illustration let us consider the following surfaces

• D1 a cylindrical surface given by ψ1(s) = 1 and χ1(s) = s + 1, s ∈ [0,1],
• D2 a frustum of right circular cone given by ψ2(s) = −

√
2

2 s + 1 and χ2(s) =
√

2
2 s + 1, s ∈ [0,1],

• D3 given by ψ3(s) = s2

4 + 1
2 and χ3(s) = s

4

√
4 − s2 + arcsin( s

2 ), s ∈ (0, 1
2 ), which resembles a frustum of a hyperboloid.

As a consequence of the above theorems the following conclusions hold.

(i) In D1 if a(s) = s + 1 (a(x) = x3, x ∈ D1) or a(s) = −s2 − 2s + 4 (a(x) = −x2
3 + 5, x ∈ D1), s ∈ [0,1], then (5.3) is satisfied

since K ≡ 0 in D1 and a′ψ1 is non-increasing in both cases. Hence in these cases there are no patterns.
(ii) If a(x) = x2

3 then (5.3) is verified in D2 (K � 0 in D2 and a′ψ2 is non-increasing) but is not verified in D1. Hence there
are no patterns in D2 whereas the argument is inconclusive in D1.

(iii) Still in D1, if f satisfies ( f1), ( f2), ( f3) and a(s) = s2 − s + 2 with s ∈ [0,1] (a(x) = x2
3 − 3x3 + 4, x ∈ D1) then problem

(5.2) possesses patterns, since (ψ1
√

a )(·) assumes an isolated local minimum at s = 1
2 .

(iv) In D3 the Gaussian curvature K is negative and if a(s) = −s2 + 1
2 (a(x) = −4

√
x2

1 + x2
2 + 5

2 , x ∈ D3) then (5.3) is verified,

i.e., there are no patterns.

6. Necessity of the equal-area condition

Notice that the family of patterns to (1.1) found in Theorem 5.2 develops internal transition layer as ε → 0 (see definition
below).

Our goal in this section is to prove that the equal-area condition ( f2) is in fact a necessary condition for the development
of internal transition layer by the stationary solutions of (4.3), i.e.,

ε
(
ψau′

ε

)′ + ψ f (uε) = 0, s ∈ (0, l) (6.1)

where f satisfies ( f1), ψ(0) = ψ(l) = 0 and, for the sake of simplicity, ε2 has been replaced with ε since the scaling plays
no role here.

This setting corresponds to the case where M has no boundary. However for the case M has boundary, supplied with
Neumann boundary condition, the result still holds and the proof requires only a few minor and natural changes.

Definition 6.1. We will say that a family {vε}0<ε�ε0 of solutions to (6.1) in C2(I) develops inner transition layer, with interface
at a point p ∈ (0, l), as ε → 0, if

vε → v0 in L1(I), as ε → 0,

where v0 = αχ(0,p) + βχ(p,l) .
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We took just one point p ∈ (0, l) for the sake of simplicity but the result holds for a finite number of points in (0, l) as
well.

The following theorem would still remain valid had the convergence in L1(I) in Definition 6.1 been replaced with uniform
convergence on compacts sets in I − {p}. The proof still goes through without any change.

Theorem 6.2. Let {vε}0<ε�ε0 be a family of uniformly bounded (with respect to ε) solutions of (6.1) which develops inner transition
layer with interfaces in p. Then

β∫
α

f (ξ)dξ = 0.

Proof. We will drop the subindex ε in vε , in the next computations. Multiplying Eq. (6.1) by sv ′ we have

εsv ′(aψv ′)′ + sv ′ψ f (v) = 0.

Note that

(
sv ′aψv ′)′ = sv ′(aψv ′)′ + aψv ′(v ′ + sv ′′),

hence

sv ′(aψv ′)′ = (
sv ′aψv ′)′ − aψ

((
v ′)2 + s

[
(v ′)2

2

]′)
. (6.2)

Integrating over (0, l), we obtain

−ε

l∫
0

(
sv ′aψv ′)′

ds + ε

l∫
0

aψ

[(
v ′)2 + s

(
(v ′)2

2

)′]
ds

=
l∫

0

sv ′ψ f (v)ds =
l∫

0

s
(
ψ F (v)

)′
ds −

l∫
0

sψ ′ F (v)ds

where F (v) = ∫ v
θ

f (ξ)dξ and θ is any constant such that α < θ < β .
We also have

(
saψ

(
v ′)2)′ = saψ

[(
v ′)2]′ + (

v ′)2(
aψ + s(aψ)′

)
hence

−ε

l∫
0

saψ
[(

v ′)2]′ + (
v ′)2(

aψ + s(aψ)′
)

ds + ε

l∫
0

aψ
(

v ′)2 + aψs

[
(v ′)2

2

]′
ds

=
l∫

0

(
sψ F (v)

)′
ds −

l∫
0

ψ F (v)ds −
l∫

0

sψ ′ F (v)ds

on account that (sψ F (v))′ = ψ F (v) + s(ψ F (v))′ . It follows that

−ε

2

l∫
0

saψ
[(

v ′)2]′
ds − ε

l∫
0

(
v ′)2

s(aψ)′ ds

=
l∫

0

(
sψ F (v)

)′
ds −

l∫
0

ψ F (v)ds −
l∫

0

sψ ′ F (v)ds.

Integrating by parts we obtain
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−ε

2
saψ

(
v ′)2∣∣l

0 + ε

2

l∫
0

(
v ′)2

s(aψ)′ ds + ε

2

l∫
0

(
v ′)2

aψ ds − ε

l∫
0

(
v ′)2

s(aψ)′ ds

=
l∫

0

(
sψ F (v)

)′
ds −

l∫
0

ψ F (v)ds −
l∫

0

sψ ′ F (v)ds.

Finally, recovering the sub-script ε and recalling that ψ(0) = ψ(l) = 0, we have

−ε

2

l∫
0

(
v ′
ε

)2
s(aψ)′ ds + ε

2

l∫
0

(
v ′
ε

)2
aψ ds

=
l∫

0

(
sψ F (vε)

)′
ds −

l∫
0

ψ F (vε)ds −
l∫

0

sψ ′ F (vε)ds. (6.3)

We claim that the two terms on the left-hand side of the equation above approach zero, as ε → 0. Indeed, denote these
terms by I1, I2, respectively.

Multiplying Eq. (6.1) by vε and integrating by parts on (0, l), we obtain

ε

l∫
0

aψ
(

v ′
ε

)2
ds =

l∫
0

vεψ f (vε)ds,

i.e.,

2I2 = ε

l∫
0

aψ
(

v ′
ε

)2
ds =

l∫
0

vεψ f (vε)ds. (6.4)

Since by hypothesis |vε | � M , uniformly in ε , f is continuous and vε → v0 a.e. in I , an application of the Lebesgue
bounded convergence theorem yields that the right-hand side of (6.4) approach zero, as ε → 0 (recall that f (α) = f (β) = 0).
One now easily sees that I1 also approaches zero, as ε → 0.

From the fact that ψ(0) = ψ(l) = 0 we obtain

l∫
0

(
sψ F (vε)

)′
ds = 0.

Moreover, {vε} is bounded uniformly in ε and F is C1, then {F (vε)} is bounded in (0, l), uniformly in ε and so we can
use the Lebesgue bounded theorem to compute the limit, in (0, p) and in (p, l), of the terms on the right-hand side of
Eq. (6.3). Finally, as ε → 0, we obtain

0 =
p∫

0

ψ F (α)ds +
l∫

p

ψ F (β)ds +
p∫

0

sψ ′ F (α)ds +
l∫

p

sψ ′ F (β)ds

=
p∫

0

F (α)(sψ)′ ds +
l∫

p

F (β)(sψ)′ ds

= (
F (α) − F (β)

)
pψ(p).

On the account that pψ(p) �= 0 we obtain F (α) = F (β), i.e.,

β∫
α

f (ξ)dξ = 0

and the theorem is proved. �
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