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The phenomena of concentration and cavitation and the formation of δ-shocks and
vacuum states in solutions to the isentropic Euler equations for a modified Chaplygin
gas are analyzed as the double parameter pressure vanishes. Firstly, the Riemann
problem of the isentropic Euler equations for a modified Chaplygin gas is solved
analytically. Secondly, it is rigorously shown that, as the pressure vanishes, any two-
shock Riemann solution to the isentropic Euler equations for a modified Chaplygin
gas tends to a δ-shock solution to the transport equations, and the intermediate den-
sity between the two shocks tends to a weighted δ-measure that forms the δ-shock;
any two-rarefaction-wave Riemann solution to the isentropic Euler equations for a
modified Chaplygin gas tends to a two-contact-discontinuity solution to the trans-
port equations, the nonvacuum intermediate state between the two rarefaction waves
tends to a vacuum state. Finally, some numerical results exhibiting the formation
of δ-shocks and vacuum states are presented as the pressure decreases.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

As to our knowledge, the investigation of delta shock waves has been increasingly active in the past over
two decades. The delta shock wave, as a generalization of an ordinary shock wave, is a kind of discontinuity,
on which at least one of the state variables may develop an extreme concentration in the form of a weighted
Dirac delta function with the discontinuity as its support. Physically, the delta shock wave represents the
process of concentration of the mass, and may be interpreted as the galaxies in the universe. See the results
in [18,19,33,34,23,38,13,25,40] and the references cited therein.

In related researches of the delta-shocks, one very interesting topic is to explore the phenomena of
concentration and cavitation and the formation of δ-shock waves and vacuum states in solutions. In earlier
paper [9], Chen and Liu considered the Euler equations of isentropic gas dynamics in Eulerian coordinates
which read
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{
ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + P

)
x

= 0,
(1.1)

where ρ � 0, u, P denote the density, the velocity and the pressure, respectively. The scalar pressure P (ρ, ε)
satisfies

lim
ε→0

P (ρ, ε) = 0, (1.2)

where ε > 0 is a small parameter.
When ε → 0, obviously, system (1.1)–(1.2) formally becomes the transport equations{

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2)

x
= 0,

(1.3)

which are also called the zero-pressure gas dynamics, or Euler equations for pressureless fluids, and can be
obtained from Boltzmann equations [5] and the flux-splitting scheme of the full compressible Euler equations
[1,21]. The transport equations (1.3) are also used to model the motion of free particles which stick under
collision [7] and the formation of large-scale structures in the universe [37,29].

Since 1994, a great many authors have extensively studied the transport equations (1.3). Bouchut [5] first
established the existence of measure solutions of the Riemann problem. E, Rykov and Sinai [37] studied
the existence of global weak solution and the behavior of such global solution with random initial data.
Sheng and Zhang [31] solved the 1-D and 2-D Riemann problems with the characteristic analysis and the
vanishing viscosity method. Huang and Wang [17] proved the uniqueness of the weak solution for the case
when the initial data is a Radon measure. Also see [33,22,11,39] for related results. In these papers it has
been proved that δ-shock waves and vacuum states do occur in the Riemann solutions.

In their works, in (1.1) Chen and Liu [9] took the prototypical pressure functions for polytropic gas

P (ρ, ε) = εp(ρ), p(ρ) = ργ/γ, γ > 1. (1.4)

They identified and analyzed the phenomena of concentration and cavitation and the formation of δ-shock
waves and vacuum states in solutions to the system (1.1) with (1.4) as ε → 0. Further, they also obtained
this same results for the Euler equations for nonisentropic fluids in [10]. Specially, for γ = 1 in (1.4), the
pressure vanishing limit had been studied by Li [20]. Besides, the results were extended to the relativistic
Euler equations for polytropic gases by Yin and Sheng [41], the perturbed Aw–Rascle model by Shen and
Sun [30], etc.

In 2002, Benaoum [2] proposed the modified Chaplygin gas

P = Aρ− B

ρα
, 0 � α � 1, (1.5)

where two parameters A,B > 0. As an exotic fluid, such a gas can describe the current accelerated expansion
of the universe. In this regard, just for their discovery of the accelerating expansion of the universe through
observations of distant supernovae, Saul Perlmutter, Brian P. Schmidt and Adam G. Riess won the 2011
Nobel Prize in Physics. Usually, it is thought that the source of this acceleration is attributed to an exotic
type of fluid with negative pressure called commonly dark energy. With the introduction of dark energy, the
search began for different candidates that can effectively play the role of dark energy. Up to now, various
kinds of theoretical models have been proposed to interpret the behavior of dark energy. Among them, the
Chaplygin gas and modified Chaplygin gas are plausible. See [3,26,14,24] for more demonstrations.

Especially, one can easily see that, in (1.5), when B = 0, P = Aρ is just the standard equation of state of
perfect fluid. Whereas when A = 0, P = −B/ρα called as the generalized Chaplygin gas [27]. Further, when
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α = 1, it corresponds to an exotic background fluid P = −B/ρ called as the (pure) Chaplygin gas which was
introduced by Chaplygin [8], Tsien [35] and von Karman [36] as a suitable mathematical approximation for
calculating the lifting force on a wing of an airplane in aerodynamics. Such a gas owns a negative pressure
and occurs in certain theories of cosmology. It has been also advertised as a possible model for dark energy
[4,12,15,28].

With regard to the isentropic Euler equations for a Chaplygin gas (1.1) and (1.5), Brenier [6] considered
the one-dimensional Riemann problem and obtained the solutions with concentration when initial data
belong to a certain domain in phase plane. Guo, Sheng and Zhang [16] studied the one-dimensional Riemann
problems and obtained the general solutions. They also systematically solved the two-dimensional Riemann
problem. It has been shown that, in their results, δ-shock waves do occur in the Riemann solutions, and
vacuum states do not.

In view of the above analysis, one can observe that, in (1.5), when two parameters A,B → 0, system
(1.1) with (1.5) formally also changes into the transport equations (1.3). In the present paper, we focus on
the double parameter pressure function for modified Chaplygin gas

P = Aρ− B

ρ
, (1.6)

as α = 1. The rest cases will be further discussed in the future. The system (1.1) with (1.6) is called as the
isentropic Euler equations for a modified Chaplygin gas which shows that the matter is taken to be a perfect
fluid obeying an exotic equation of state. In the sense the system (1.1) and (1.6) can be used to understand
the mysterious nature of the dark sector of the universe (i.e., dark energy and dark matter) (see [3]).

The main objective of this paper is to analyze the phenomena of concentration and cavitation and the
formation of δ-shock waves and vacuum states in solutions to the isentropic Euler equations for a modified
Chaplygin gas as the double parameter pressure vanishes, which corresponds to a two-parameter limit of
solutions in contrast to previous works in [9,10,20,41,30].

We first solve the Riemann problem of (1.1) and (1.6) with Riemann initial data. By means of the analysis
method in phase plane, we establish the existence and uniqueness of Riemann solutions with four different
structures: ←−

R + −→
R, ←−

R + −→
S, ←−

S + −→
R and ←−

S + −→
S.

Then we rigorously prove that, as the two-parameter pressure vanishes, any two-shock Riemann solution
to the isentropic Euler equations for a modified Chaplygin gas tends to a δ-shock solution to the transport
equations, and the intermediate density between the two shocks tends to a weighted δ-measure that forms
the δ-shock; any two-rarefaction-wave Riemann solution to the isentropic Euler equations for a modified
Chaplygin gas tends to a two-contact-discontinuity solution to the transport equations, the nonvacuum
intermediate state between the two rarefaction waves tends to a vacuum state, even when the initial data
stays away from the vacuum. As a result, the δ-shocks for the transport equations result from a phenomenon
of concentration, while the vacuum states result from a phenomenon of cavitation in the vanishing pressure
limit process. These results are in completely coincident with that in [9].

In addition, employing the fifth-order weighted essentially non-oscillatory scheme and third-order Runge–
Kutta method [32], we produce some numerical experiments to examine the phenomena of concentration
and cavitation and the formation process of δ-shocks and vacuum states in the level of the isentropic Chap-
lygin Euler equations (1.1) and (1.6) as the pressure decreases, which completely confirm the theoretical
analysis.

The plan of this paper is organized as follows. In Section 2, we restate the δ-shocks and vacuums for
(1.3). In Section 3, we solve the Riemann problem and examine the dependence of the Riemann solutions
on the two parameters A,B > 0 for system (1.1) and (1.6). Sections 4 and 5 analyze the limit behavior of a
two-shock solution and a two-rarefaction solution of system (1.1) and (1.6) in the process of the vanishing
pressure limit. In Section 6, we present some representative numerical results to demonstrate the validity
of the theoretical analysis in Sections 4 and 5.
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2. δ-shocks and vacuums for the transport equations

For completeness, this section briefly recalls δ-shocks and vacuum states in the Riemann solutions to the
transport equations (1.3). See [31] for more details.

System (1.3) has a double eigenvalue λ = u with the associated eigenvector r = (0, 1)T satisfying
∇λ · r = 0, which means the system (1.3) is nonstrictly hyperbolic and λ linearly degenerate.

Consider the Riemann problem of (1.3) with initial conditions

(u, ρ)(0, x) =
{

(u−, ρ−), x < 0,
(u+, ρ+), x > 0, (2.1)

where (u±, ρ±) are arbitrary constants and ρ± > 0. By seeking self-similar solution (u, ρ)(t, x) = (u, ρ)(ξ)
(ξ = x/t), it is easy to find that, besides the constant state and singular solution u = ξ, ρ = 0 (called vacuum
states), the elementary waves of (1.3) are nothing but contact discontinuities. The Riemann problem (1.3)
and (2.1) can be solved by the following two cases.

For the case u− < u+, the solution includes two contact discontinuities and a vacuum state besides
constant states. That is,

(u, ρ)(ξ) =

⎧⎪⎨⎪⎩
(u−, ρ−), −∞ < ξ � u−,

(u(ξ), 0), u− < ξ < u+,

(u+, ρ+), u+ � ξ < +∞.

(2.2)

For the case u− > u+, a solution containing a weighted δ-measure (i.e., δ-shock) supported on a line will
develop in solutions due to the overlap of characteristic lines.

In order to define the measure solutions, a two-dimensional weighted δ-function w(s)δS supported on a
smooth curve S parameterized as t = t(s), x = x(s) (c � s � d) can be defined by

〈
w
(
t(s)

)
δS , ϕ

(
t(s), x(s)

)〉
=

d∫
c

w
(
t(s)

)
ϕ
(
t(s), x(s)

)√
x′(s)2 + t′(s)2 ds (2.3)

for all the test functions ϕ(t, x) ∈ C∞
0 (R+ ×R1).

With this definition, a δ-shock solution can be introduced to construct the solution of (1.3), which is

ρ(t, x) = ρ0(t, x) + w(t)δS , u(t, x) = u0(t, x), (2.4)

where S = {(t, σt): 0 � t < ∞},

ρ0(t, x) = ρ− + [ρ]χ(x− σt), u0(t, x) = u− + [u]χ(x− σt), w(t) = t√
1 + σ2

(
σ[ρ] − [ρu]

)
, (2.5)

in which [g] = g+ − g− denotes the jump of function g across the discontinuity, σ is the velocity of the
δ-shock, and χ(x) the characteristic function that is 0 when x < 0 and 1 when x > 0.

As shown in [31], for any ϕ(t, x) ∈ C∞
0 (R+ ×R1), the δ-shock solution constructed above satisfies

〈ρ, ϕt〉 + 〈ρu, ϕx〉 = 0,

〈ρu, ϕt〉 +
〈
ρu2, ϕx

〉
= 0, (2.6)

where
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〈ρ, ϕ〉 =
+∞∫
0

+∞∫
−∞

ρ0ϕdx dt + 〈wδS , ϕ〉,

〈ρu, ϕ〉 =
+∞∫
0

+∞∫
−∞

ρ0u0ϕdx dt + 〈σwδS , ϕ〉. (2.7)

Furthermore, substituting (2.4) and (2.5) into (2.6) under the condition (2.3) and (2.7), we can get the
generalized Rankine–Hugoniot relation

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx

dt
= σ,

d(w(t)
√

1 + σ2 )
dt

= σ[ρ] − [ρu],

d(w(t)σ
√

1 + σ2 )
dt

= σ[ρu] −
[
ρu2],

(2.8)

which reflects the relationship between the limit states on two sides of a δ-shock wave and the relations
among the location, weight and propagation speed of the δ-shock wave.

To guarantee the uniqueness, the entropy condition is supplemented as

u− > σ > u+, (2.9)

which means that all the characteristic lines on both sides of the discontinuity are not out-going. So it is a
overcompressive condition.

Then solving the generalized Rankine–Hugoniot relation (2.8) with initial data x(0) = 0 and w(0) = 0
under the entropy condition (2.9) yields

σ =
√
ρ+u+ + √

ρ−u−√
ρ+ + √

ρ−
and w(t) =

√
ρ+ρ−(u− − u+)t√

1 + σ2
. (2.10)

Therefore, a δ-shock solution defined by (2.4) with (2.5) and (2.10) is obtained.

3. Riemann solutions to system (1.1) and (1.6)

In this section, we first solve the elementary waves and construct solutions to the Riemann problem of
(1.1), (1.6) with (2.1), and then examine the dependence of the Riemann solutions on the two parameters
A,B > 0 for the Euler equations (1.1) and (1.6).

The system has two eigenvalues

λ1 = u−
√

A + B

ρ2 , λ2 = u +

√
A + B

ρ2 , (3.1)

and the corresponding right eigenvectors

�r1 =
(√

A + B

ρ2 ,−ρ

)T

, �r2 =
(√

A + B

ρ2 , ρ

)T

,

satisfying
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∇λi · �ri = A√
A + B

ρ2

	= 0 (i = 1, 2). (3.2)

Therefore, both the characteristic fields are genuinely nonlinear and the elementary waves consist of shock
waves and rarefaction waves.

Consider the self-similar solution (u, ρ)(t, x) = (u, ρ)(ξ)(ξ = x/t). Then Riemann problem (1.1) and (1.6)
with (2.1) is reduced to a two-point boundary value problem of first-order ordinary differential equations⎧⎨⎩

−ξρξ + (ρu)ξ = 0,

−ξ(ρu)ξ +
(
ρu2 + P

)
ξ

= 0, P = Aρ− B

ρ

(3.3)

and

(u, ρ)(±∞) = (u±, ρ±). (3.4)

Any smooth solution of (3.3) satisfies(
ρ u− ξ

u− ξ
A+ B

ρ2

ρ

)(
du

dρ

)
= 0.

It provides either the general solution (constant state)

(u, ρ)(ξ) = constant,

or the backward rarefaction wave

←−
R:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξ = λ1 = u−

√
A + B

ρ2 ,

du +

√
A + B

ρ2

ρ
dρ = 0,

(3.5)

or the forward rarefaction wave

−→
R:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξ = λ2 = u +

√
A + B

ρ2 ,

du−

√
A + B

ρ2

ρ
dρ = 0.

(3.6)

From (3.5) and (3.6), we obtain that

dλ1

dρ
= ∂λ1

∂u

du

dρ
+ ∂λ1

∂ρ
= −

√
A + B

ρ2

ρ
+ B

ρ3
√

A + B
ρ2

= − A

ρ
√

A + B
ρ2

< 0 (3.7)

and

dλ2

dρ
= ∂λ2

∂u

du

dρ
+ ∂λ2

∂ρ
=

√
A + B

ρ2

ρ
− B

ρ3
√

A + B
2

= A

ρ
√

A + B
2

> 0. (3.8)

ρ ρ
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which imply the velocity of backward (forward) rarefaction wave λ1 (λ2) is monotonic decreasing (increasing)
with respect to ρ.

With the requirement λ1(u, ρ) > λ1(u−, ρ−) and λ2(u, ρ) > λ2(u−, ρ−), noticing (3.7) and (3.8), we
integrate the second equations of (3.5) and (3.6), respectively, and get that

←−
R:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ξ = λ1 = u−

√
A + B

ρ2 ,

u = u− −
ρ∫

ρ−

√
A + B

s2

s
ds, ρ < ρ−,

(3.9)

and

−→
R:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ξ = λ2 = u +

√
A + B

ρ2 ,

u = u− +
ρ∫

ρ−

√
A + B

s2

s
ds, ρ > ρ−,

(3.10)

where

ρ∫
ρ−

√
A + B

s2

s
ds = −

√
A + B

ρ2 +
√
A ln

(√
A + B

ρ2 +
√
A

)
+
√
A ln ρ

+

√
A + B

ρ2
−

−
√
A ln

(√
A + B

ρ2
−

+
√
A

)
−

√
A ln ρ−. (3.11)

The curves defined by the second equations of (3.9) and (3.10) in the phase plane (u, ρ) are respectively
called the backward rarefaction wave curve and forward rarefaction wave curve. Further, consider the prop-
erties of these curves. From the second equation of (3.5), a regular calculation gives uρ < 0 and uρρ > 0,
which mean that the backward rarefaction wave curve is monotonic decreasing and convex. Similarly, from
the second equation of (3.6), we have uρ > 0 and uρρ < 0, which mean that the forward rarefaction wave
curve is monotonic increasing and concave. In addition, we prove that limρ→0 u = +∞ for the backward
rarefaction wave curve and limρ→+∞ u = +∞ for the forward rarefaction wave curve.

Now we consider the discontinuous solution. A bounded discontinuity at ξ = σ should satisfy the Rankine–
Hugoniot compatibility condition

⎧⎨⎩
σ[ρ] − [ρu] = 0,

σ[ρu] −
[
ρu2 + P

]
= 0, P = Aρ− B

ρ
.

(3.12)

Then eliminating σ in (3.12), a regular calculation gives

(u− u−)2 = ρ− − ρ

ρ−ρ

(
A(ρ− − ρ) + B

(
1
ρ
− 1

ρ−

))
.

Thus, we have
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u− u− = ±
√

ρ− − ρ

ρ−ρ

(
A(ρ− − ρ) + B

(
1
ρ
− 1

ρ−

))

= ±
√

1
ρ−ρ

(
A + B

ρ−ρ

)
(ρ− ρ−)2. (3.13)

In order to identify the admissible solution, the discontinuity associating with λ1 has to be satisfied with
the stability condition

σ < λ1(u−, ρ−) < λ2(u−, ρ−), λ1(u, ρ) < σ < λ2(u, ρ), (3.14)

and the discontinuity associating with λ2 should satisfy

λ1(u−, ρ−) < σ < λ2(u−, ρ−), λ1(u, ρ) < λ2(u, ρ) < σ. (3.15)

Furthermore, from the first equation of (3.12), it is easy to find

σ = ρ−u− − ρu

ρ− − ρ
= u− + ρ(u− − u)

ρ− − ρ
= u + ρ−(u− − u)

ρ− − ρ
. (3.16)

Thus, by a simple calculation, (3.14) is equivalent to

−
√

Aρ2 + B <
ρ−ρ

ρ− − ρ
(u− − u) < −

√
Aρ2

− + B, (3.17)

and (3.15) is equivalent to

√
Aρ2 + B <

ρ−ρ

ρ− − ρ
(u− − u) <

√
Aρ2

− + B. (3.18)

(3.17) and (3.18) imply that ρ > ρ−, u < u− and ρ < ρ−, u < u−, respectively.
Therefore, associating with λ1, we obtain the following backward shock denoted by ←−

S

←−
S:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ = u− − ρ

√
1

ρ−ρ

(
A + B

ρ−ρ

)
,

u = u− −
√

1
ρ−ρ

(
A + B

ρ−ρ

)
(ρ− ρ−), ρ > ρ−,

(3.19)

and associating with λ2, we get the forward shock denoted by −→
S

−→
S:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ = u− + ρ

√
1

ρ−ρ

(
A + B

ρ−ρ

)
,

u = u− +

√
1

ρ−ρ

(
A + B

ρ−ρ

)
(ρ− ρ−), ρ < ρ−.

(3.20)

The curves expressed by the second equations of (3.19) and (3.20) in the (u, ρ)-plane are called the
backward shock curve and forward shock curve, respectively. Similar with the analysis of the rarefaction
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Fig. 1. Curves of elementary waves.

waves, we can get uρ < 0 and uρρ > 0 for the backward shock curve, which mean that this curve is monotonic
decreasing and convex. While we can get uρ > 0 and uρρ < 0 for the forward shock curve, which mean
that this curve is monotonic increasing and concave. In addition, we verify that limρ→+∞ u = −∞ for the
backward shock curve and limρ→0 u = −∞ for the forward shock curve.

Starting from a constant state (u−, ρ−), we draw the elementary wave curves passing through this point
in the phase-plane (u, ρ). Then the phase plane can be divided into four domains I, II, III and IV(u−, ρ−)
(see Fig. 1).

By the analysis method in phase plane, it is easy to construct Riemann solutions for any given (u+, ρ+)
as follows:

(1) (u+, ρ+) ∈ I(u−, ρ−): ←−
R + −→

R;
(2) (u+, ρ+) ∈ II(u−, ρ−): ←−

R + −→
S;

(3) (u+, ρ+) ∈ III(u−, ρ−): ←−
S + −→

R;
(4) (u+, ρ+) ∈ IV(u−, ρ−): ←−

S + −→
S.

Then we directly have the following result.

Theorem 1. For the Riemann problem of (1.1) and (1.6) with (2.1), there exists a unique entropy solution,
which consists of rarefaction waves, shock waves, and constant states.

4. Formation of δ-shocks

In this section, we describe the formation of δ-shock waves in the Riemann solutions of system (1.1) and
(1.6) in the case (u+, ρ+) ∈ IV(u−, ρ−) with u− > u+ as the pressure vanishes.

4.1. Limit behavior of the Riemann solutions as A,B → 0

When (u+, ρ+) ∈ IV(u−, ρ−), for each pair of fixed A > 0 and B > 0, suppose that (uAB
∗ , ρAB

∗ ) is the
intermediate state connected with (u−, ρ−) by ←−

S with speed σAB
1 and (u+, ρ+) by −→

S with speed σAB
2 , then

it follows

←−
S:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σAB

1 = u− − ρAB
∗

√
1

ρ−ρAB
∗

(
A + B

ρ−ρAB
∗

)
,

uAB
∗ = u− −

√
1

ρ ρAB

(
A + B

ρ ρAB

)(
ρAB
∗ − ρ−

)
, ρAB

∗ > ρ−,

(4.1)
− ∗ − ∗
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and

−→
S:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σAB

2 = uAB
∗ + ρ+

√
1

ρAB
∗ ρ+

(
A + B

ρAB
∗ ρ+

)
,

u+ = uAB
∗ +

√
1

ρAB
∗ ρ+

(
A + B

ρAB
∗ ρ+

)(
ρ+ − ρAB

∗
)
, ρ+ < ρAB

∗ .

(4.2)

In what follows, we give some lemmas to show the limit behavior of the Riemann solutions of system
(1.1) and (1.6) as A,B → 0.

Lemma 1. limA→0
B→0

ρAB
∗ = +∞.

Proof. Eliminating uAB
∗ in the second equations of (4.1) and (4.2) gives

u− − u+ =

√
1

ρ−ρAB
∗

(
A + B

ρ−ρAB
∗

)(
ρAB
∗ − ρ−

)
+

√
1

ρAB
∗ ρ+

(
A + B

ρAB
∗ ρ+

)(
ρAB
∗ − ρ+

)
. (4.3)

If limA→0
B→0

ρAB
∗ = M ∈ (max(ρ−, ρ+),+∞), then by taking the limit of (4.3) as A,B → 0, we obtain that

u− − u+ = 0, which contradicts with u− > u+. Therefore we must have limA→0
B→0

ρAB
∗ = +∞. �

By Lemma 1, from (4.3) we immediately have the following lemma.

Lemma 2. limA→0
B→0

AρAB
∗ = ρ+ρ−

(√ρ++√
ρ−)2 (u− − u+)2.

Lemma 3. Set limA→0
B→0

uAB
∗ = σ, then limA→0

B→0
uAB
∗ = limA→0

B→0
σAB

1 = limA→0
B→0

σAB
2 = σ ∈ (u+, u−).

Proof. From the first equations of the Rankine–Hugoniot relation (3.12) for ←−
S and −→

S, by Lemma 1, it gives

lim
A→0
B→0

σAB
1 = lim

A→0
B→0

ρ−u− − ρAB
∗ uAB

∗
ρ− − ρAB

∗
= lim

A→0
B→0

ρ−u−
ρAB
∗

− uAB
∗

ρ−
ρAB
∗

− 1 = lim
A→0
B→0

uAB
∗ ,

and

lim
A→0
B→0

σAB
2 = lim

A→0
B→0

ρAB
∗ uAB

∗ − ρ+u+

ρAB
∗ − ρ+

= lim
A→0
B→0

uAB
∗ − ρ+u+

ρAB
∗

1 − ρ+
ρAB
∗

= lim
A→0
B→0

uAB
∗ ,

which immediately lead to limA→0
B→0

uAB
∗ = limA→0

B→0
σAB

1 = limA→0
B→0

σAB
2 = σ.

From the second equation of (4.1), observing Lemmas 1–2, we get

lim
A→0
B→0

uAB
∗ = u− − lim

A→0
B→0

√
1

ρ−ρAB
∗

(
A + B

ρ−ρAB
∗

)(
ρAB
∗ − ρ−

)2
= u− − lim

A→0
B→0

√(
1
ρ−

− 1
ρAB
∗

)(
A
(
ρAB
∗ − ρ−

)
+ B

(
1
ρ−

− 1
ρAB
∗

))

= u− − lim
A→0
B→0

√
1
ρ−

AρAB
∗

< u−.
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Performing the similar analysis as above, from the second equation of (4.2) and Lemmas 1–2, we obtain

lim
A→0
B→0

uAB
∗ = u+ + lim

A→0
B→0

√
1

ρ+ρAB
∗

(
A + B

ρ+ρAB
∗

)(
ρAB
∗ − ρ+

)2
= u+ + lim

A→0
B→0

√(
1
ρ+

− 1
ρAB
∗

)(
A
(
ρAB
∗ − ρ+

)
+ B

(
1
ρ+

− 1
ρAB
∗

))

= u+ + lim
A→0
B→0

√
1
ρ+

AρAB
∗

> u+.

The proof is completed. �
Lemma 4.

lim
A→0
B→0

σAB
2∫

σAB
1

ρAB
∗ dξ = σ[ρ] − [ρu], (4.4)

lim
A→0
B→0

σAB
2∫

σAB
1

ρAB
∗ uAB

∗ dξ = σ[ρu] −
[
ρu2]. (4.5)

Proof. The first equations of the Rankine–Hugoniot relation (3.12) for ←−
S and −→

S read

{
σAB

1
(
ρ− − ρAB

∗
)

= ρ−u− − ρAB
∗ uAB

∗ ,

σAB
2

(
ρAB
∗ − ρ+

)
= ρAB

∗ uAB
∗ − ρ+u+,

(4.6)

from which we have

lim
A→0
B→0

ρAB
∗

(
σAB

2 − σAB
1

)
= lim

A→0
B→0

(
−σAB

1 ρ− + σAB
2 ρ+ + ρ−u− − ρ+u+

)
= σ[ρ] − [ρu]. (4.7)

Similarly, from the second equations of the Rankine–Hugoniot relation (3.12) for ←−
S and −→

S⎧⎪⎪⎪⎨⎪⎪⎪⎩
σAB

1
(
ρ−u− − ρAB

∗ uAB
∗

)
=

(
ρ−u

2
− − ρAB

∗
(
uAB
∗

)2) + A
(
ρ− − ρAB

∗
)

+ B

(
1

ρAB
∗

− 1
ρ−

)
,

σAB
2

(
ρAB
∗ uAB

∗ − ρ+u+
)

=
(
ρAB
∗

(
uAB
∗

)2 − ρ+u
2
+
)

+ A
(
ρAB
∗ − ρ+

)
+ B

(
1
ρ+

− 1
ρAB
∗

)
,

(4.8)

we obtain

lim
A→0
B→0

ρAB
∗ uAB

∗
(
σAB

2 − σAB
1

)
= lim

A→0
B→0

(
−σAB

1 ρ−u− + σAB
2 ρ+u+ + ρ−u

2
− − ρ+u

2
+ + A(ρ− − ρ+) + B

(
1
ρ+

− 1
ρ−

))
= σ[ρu] −

[
ρu2]. (4.9)
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Thus, from (4.7) and (4.9) it follows that

lim
A→0
B→0

σAB
2∫

σAB
1

ρAB
∗ dξ = lim

A→0
B→0

ρAB
∗

(
σAB

2 − σAB
1

)
= σ[ρ] − [ρu]

and

lim
A→0
B→0

σAB
2∫

σAB
1

ρAB
∗ uAB

∗ dξ = lim
A→0
B→0

ρAB
∗ uAB

∗
(
σAB

2 − σAB
1

)
= σ[ρu] −

[
ρu2].

The proof is finished. �
Lemma 5. For σ mentioned above, we have

σ =
[ρu] +

√
[ρu]2 − [ρ][ρu2]

[ρ] =
√
ρ+u+ + √

ρ−u−√
ρ+ + √

ρ−
(4.10)

when ρ− 	= ρ+, and

σ = u− + u+

2 (4.11)

when ρ− = ρ+.

Proof. By Lemmas 3–4, one can find that

lim
A→0
B→0

ρAB
∗ uAB

∗
(
σAB

2 − σAB
1

)
= lim

A→0
B→0

ρAB
∗

(
σAB

2 − σAB
1

)
· lim
A→0
B→0

uAB
∗ ,

then we have

σ[ρu] −
[
ρu2] =

(
σ[ρ] − [ρu]

)
σ, (4.12)

from which, noticing σ ∈ (u+, u−), the sought results in (4.10) and (4.11) are easily reached. �
Remark 1. As A,B → 0, the velocities of shocks ←−

S and −→
S and the intermediate velocity uAB

∗ of (1.1) and (1.6)
approach to σ, which determines the δ-shock solution of (1.3), and the intermediate density ρAB

∗ becomes
singular simultaneously.

4.2. δ-shocks and concentration

Now, we present the following conclusion characterizing the vanishing pressure limit for the case
(u+, ρ+) ∈ IV(u−, ρ−).

Theorem 2. Let u− > u+ and (u+, ρ+) ∈ IV(u−, ρ−). For any fixed A,B > 0, assume that (ρAB , uAB) is the
two-shock Riemann solution of system (1.1) and (1.6) with Riemann data (2.1) constructed in Section 3.
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Then as A,B → 0, ρAB and ρABuAB converge in the sense of distributions, and the limit functions of ρAB

and ρABuAB are all the sums of a step function and a Dirac delta function with weights

t√
1 + σ2

(
σ[ρ] − [ρu]

)
and t√

1 + σ2

(
σ[ρu] −

[
ρu2]), (4.13)

respectively, which just form the δ-shock solution of (1.3) with the same Riemann data (2.1).

Proof. 1. Set ξ = x/t. Then for any A > 0 and B > 0, the two-shock Riemann solution can be expressed as

(
uAB , ρAB

)
(ξ) =

⎧⎪⎨⎪⎩
(u−, ρ−), ξ < σAB

1 ,

(uAB
∗ (ξ), ρAB

∗ (ξ)), σAB
1 < ξ < σAB

2 ,

(u+, ρ+), ξ > σAB
2 ,

(4.14)

which satisfies the weak formulations

−
+∞∫

−∞

ρAB
(
uAB − ξ

)
φ′ dξ +

+∞∫
−∞

ρABφdξ = 0, (4.15)

and

−
+∞∫

−∞

ρABuAB
(
uAB − ξ

)
φ′ dξ −

+∞∫
−∞

(
AρAB − B

ρAB

)
φ′ dξ +

+∞∫
−∞

ρABuABφdξ = 0, (4.16)

for any φ ∈ C1
0 (−∞,+∞).

2. Consider the limits of ρABuAB and ρAB depending on ξ. The first integral on the left hand side of
(4.16) can be rewritten as

+∞∫
−∞

ρABuAB
(
uAB − ξ

)
φ′ dξ =

( σAB
1∫

−∞

+
σAB
2∫

σAB
1

+
+∞∫

σAB
2

)
ρABuAB

(
uAB − ξ

)
φ′ dξ. (4.17)

With the regular calculation, we get the following fact that

lim
A→0
B→0

σAB
1∫

−∞

ρABuAB
(
uAB − ξ

)
φ′ dξ + lim

A→0
B→0

+∞∫
σAB
2

ρABuAB
(
uAB − ξ

)
φ′ dξ

= lim
A→0
B→0

σAB
1∫

−∞

ρ−u−(u− − ξ)φ′ dξ + lim
A→0
B→0

+∞∫
σAB
2

ρ+u+(u+ − ξ)φ′ dξ

=
(
σ[ρu] −

[
ρu2])φ(σ) +

+∞∫
−∞

H(ξ − σ)φdξ, (4.18)

and
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lim
A→0
B→0

σAB
2∫

σAB
1

ρABuAB
(
uAB − ξ

)
φ′ dξ

= lim
A→0
B→0

σAB
2∫

σAB
1

ρAB
∗ uAB

∗
(
uAB
∗ − ξ

)
φ′ dξ

= lim
A→0
B→0

ρAB
∗ uAB

∗
(
σAB

2 − σAB
1

)(φ(σAB
2 ) − φ(σAB

1 )
σAB

2 − σAB
1

uAB
∗ − σAB

2 φ(σAB
2 ) − σAB

1 φ(σAB
1 )

σAB
2 − σAB

1

+ 1
σAB

2 − σAB
1

σAB
2∫

σAB
1

φdξ

)

=
(
σ[ρu] −

[
ρu2])(σφ′(σ) − σφ′(σ) − φ(σ) + φ(σ)

)
= 0, (4.19)

then, a combination of (4.18) and (4.19) immediately yields

lim
A→0
B→0

+∞∫
−∞

ρABuAB
(
uAB − ξ

)
φ′ dξ =

(
σ[ρu] −

[
ρu2])φ(σ) +

+∞∫
−∞

H(ξ − σ)φdξ, (4.20)

where

H(ξ − σ) =
{
ρ−u−, ξ < σ,

ρ+u+, ξ > σ.

Compute the second term on the left hand side of (4.16), noticing Lemmas 1–3, we obtain that

lim
A→0
B→0

+∞∫
−∞

(
AρAB − B

ρAB

)
φ′ dξ

= lim
A→0
B→0

( σAB
1∫

−∞

+
σAB
2∫

σAB
1

+
+∞∫

σAB
2

)(
AρAB − B

ρAB

)
φ′ dξ

= lim
A→0
B→0

σAB
1∫

−∞

(
Aρ− − B

ρ−

)
φ′ dξ + lim

A→0
B→0

σAB
2∫

σAB
1

(
AρAB

∗ − B

ρAB
∗

)
φ′ dξ

+ lim
A→0
B→0

+∞∫
σAB
2

(
Aρ+ − B

ρ+

)
φ′ dξ

= lim
A→0
B→0

((
Aρ− − B

ρ−

)
φ
(
σAB

1
)
−

(
Aρ+ − B

ρ+

)
φ
(
σAB

2
)

+ AρAB
∗

(
φ
(
σAB

2
)
− φ

(
σAB

1
))

− B

ρAB
∗

(
φ
(
σAB

2
)
− φ

(
σAB

1
)))

= 0. (4.21)
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Substituting (4.20) and (4.21) into (4.16), it is easy to have

lim
A→0
B→0

+∞∫
−∞

(
ρABuAB −H(ξ − σ)

)
φdξ =

(
σ[ρu] −

[
ρu2])φ(σ) (4.22)

for any φ ∈ C1
0 (−∞,+∞).

Similarly, from (4.15) we can get

lim
A→0
B→0

+∞∫
−∞

(
ρAB − H̃(ξ − σ)

)
φdξ =

(
σ[ρ] − [ρu]

)
φ(σ) (4.23)

for any φ ∈ C1
0 (−∞,+∞), where

H̃(ξ − σ) =
{
ρ−, ξ < σ,

ρ+, ξ > σ.

3. Then take into account the limits of ρABuAB and ρAB depending on t. For any ψ ∈ C∞
0 (R × R+),

noticing (4.22), we have

lim
A→0
B→0

+∞∫
0

+∞∫
−∞

ρAB(x/t)uAB(x/t)ψ(x, t) dx dt

= lim
A→0
B→0

+∞∫
0

+∞∫
−∞

ρAB(ξ)uAB(ξ)ψ(ξt, t)d(ξt) dt

= lim
A→0
B→0

+∞∫
0

t

( +∞∫
−∞

ρAB(ξ)uAB(ξ)ψ(ξt, t) dξ
)
dt

=
+∞∫
0

t

((
σ[ρu] −

[
ρu2])ψ(σt, t) +

+∞∫
−∞

H(ξ − σ)ψ(ξt, t) dξ
)
dt

=
+∞∫
0

t

( +∞∫
−∞

H(ξ − σ)ψ(ξt, t) dξ
)
dt +

+∞∫
0

t
(
σ[ρu] −

[
ρu2])ψ(σt, t) dt

=
+∞∫
0

+∞∫
−∞

H(x− σt)ψ(x, t) dx dt +
+∞∫
0

(
σ[ρu] −

[
ρu2])tψ(σt, t) dt, (4.24)

in which by definition (2.3), we obtain

+∞∫
0

(
σ[ρu] −

[
ρu2])tψ(σt, t) dt =

〈
w1(·)δS , ψ(·,·)

〉
where
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w1(t) = t√
1 + σ2

(
σ[ρu] −

[
ρu2]).

Similarly, from (4.23), it gives

lim
A→0
B→0

+∞∫
0

+∞∫
−∞

ρAB(x/t)ψ(x, t) dx dt

=
+∞∫
0

+∞∫
−∞

H̃(x− σt)ψ(x, t) dx dt +
+∞∫
0

(
σ[ρ] − [ρu]

)
tψ(σt, t) dt, (4.25)

in which by definition (2.3), we have

+∞∫
0

(
σ[ρ] − [ρu]

)
tψ(σt, t) dt =

〈
w2(·)δS , ψ(·,·)

〉
where

w2(t) = t√
1 + σ2

(
σ[ρ] − [ρu]

)
.

The proof of Theorem 2 is completed. �
5. Formation of vacuums

In this section, we analyze the formation of vacuum states in the Riemann solutions of system (1.1) and
(1.6) in the case (u+, ρ+) ∈ I(u−, ρ−) with u− < u+ and ρ± > 0 as the pressure decreases. At this moment,
the Riemann solution consists of two rarefaction waves ←−

R, −→
R, and an intermediate state (uAB

∗ , ρAB
∗ ) besides

two constant states (u±, ρ±). They read

←−
R:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ξ = λ1 = u−

√
A + B

ρ2 ,

u = u− −
ρ∫

ρ−

√
A + B

s2

s
ds, ρAB

∗ � ρ � ρ−,

(5.1)

and

−→
R:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ξ = λ2 = u +

√
A + B

ρ2 ,

u = u+ +
ρ∫

ρ+

√
A + B

s2

s
ds, ρAB

∗ � ρ � ρ+.

(5.2)

Now, from the second equations of (5.1) and (5.2), using (3.11), it follows that the intermediate state
(uAB

∗ , ρAB
∗ ) satisfies
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Fig. 2. Density (left) and velocity (right) of δ-shock wave for A = 1.0 and B = 1.0.

u+ − u− = lim
A→0
B→0

{
2

√
A + B

(ρAB
∗ )2 − 2

√
A ln

(√
A + B

(ρAB
∗ )2 +

√
A

)
− 2

√
A ln ρAB

∗

−
√

A + B

ρ2
−

+
√
A ln

(√
A + B

ρ2
−

+
√
A

)
+

√
A ln ρ−

−
√

A + B

ρ2
+

+
√
A ln

(√
A + B

ρ2
+

+
√
A

)
+
√
A ln ρ+

}
, (5.3)

which implies the following result.

Theorem 3. When u− < u+ and (u+, ρ+) ∈ I(u−, ρ−), the vacuum state occurs as A,B → 0, and two
rarefaction waves become two contact discontinuities connecting the constant states (u±, ρ±) and the vacuum
(ρ = 0).

Indeed, if limA→0
B→0

ρAB
∗ = K ∈ (0,min(ρ−, ρ+)), then (5.3) leads to u+ − u− = 0, which contradicts with

u− < u+. Thus we have limA→0
B→0

ρAB
∗ = 0, which just means vacuum occurs. Moreover, as A,B → 0, one

can directly derive that λ1, λ2 → u, and two rarefaction waves, ←−
R and −→

R, tend to two contact discontinuities
ξ = x/t = u±, respectively. These reach the desired conclusion.

In summary, when A,B → 0, the limit of solution of Riemann problem (1.1), (1.6) and (2.1) in this case
can be expressed as (2.2), which is just the solution of (1.3) and (2.1) containing two contact discontinuities
ξ = x/t = u± and a vacuum state in between. Therefore, it is proved that the vacuum state of (1.3) is
obtained as a limit of a two-rarefaction-wave solution of (1.1) and (1.6) as the perturbed pressure vanishes.

6. Numerical simulations

In order to verify the validity of the formation of δ-shocks and vacuums mentioned in Sections 4 and 5,
we presents two selected groups of representative numerical simulations. Many more numerical tests have
been performed to make sure that what are presented are not numerical artifacts. To discretize the system,
we use the fifth-order weighted essentially non-oscillatory scheme and third-order Runge–Kutta method [32]
with 150 × 150 cells.
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Fig. 3. Density (left) and velocity (right) of δ-shock wave for A = 0.20 and B = 0.14.

Fig. 4. Density (left) and velocity (right) of δ-shock wave for A = 0.00014 and B = 0.0009.

For the formation of δ-shocks, we take the initial data

ρ− = 4.0, u− = 2.0, ρ+ = 1.0, u+ = 0.1,

and compute the solution up to t = 3.0, the numerical simulations for different choices of parameters A,B,
starting with A = B = 1.0, then A = 0.20, B = 0.14, and finally A = 0.00014, B = 0.0009, are presented
in Figs. 2–4 which show the process of concentration and formation of a δ-shock in the vanishing pressure
limit of solutions containing two shocks.

From these numerical results, we can clearly observe that, as A,B decreases, the locations of the two
shocks become closer, and the density of the intermediate state increases dramatically, while the velocity is
closer to a step function. In the end, as A,B → 0, along with the intermediate state, the two shocks coincide
to form a δ-shock of the transport equations (1.3), while the velocity is a step function.

For the formation of vacuum states, the initial data is given as
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Fig. 5. Density (left) and velocity (right) of vacuum states for A = 1.0 and B = 1.0.

Fig. 6. Density (left) and velocity (right) of vacuum states for A = 0.09 and B = 0.025.

ρ− = 1.0, u− = 2.0, ρ+ = 2.0, u+ = 3.0.

The numerical simulations for t = 3.0 are listed in Figs. 5–7 which match different choices of parameters
A,B starting with A = B = 1.0, then A = 0.09, B = 0.025, and finally A = 0.00014, B = 0.00025. These
figures exhibit the process of cavitation and formation of a vacuum state in the vanishing pressure limit of
solutions containing two rarefaction waves.

From these numerical results, we can clearly see that, as A,B decreases, the boundaries of two rarefaction
waves become closer and closer, and along with the density of the intermediate state approaching zero, an
inside vacuum state is forming, while the velocity is approximating to a linear function. As a matter of
fact, as A,B → 0, a two-rarefaction-wave solution tends to a two-contact-discontinuity solution including a
vacuum state of the transport equations (1.3).

To sum up, all the numerical simulations given above are in completely coincident with the theoretical
analysis.
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Fig. 7. Density (left) and velocity (right) of vacuum states for A = 0.00014 and B = 0.00025.
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