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1. Introduction and the main result

Consider the following polynomial vector fields of degree n:

x.:Pn(x7y)7 y:Qn(l‘vy) (11)

It is well known that the second part of Hilbert’s 16th problem is to ask the exact upper bound of the
number of limit cycles and to determine their relative positions for system (1.1). Up to now, we only know
that a specific planar polynomial system always has a finite number of limit cycles, see [4] and [8]. However,
it is still an open problem to find the uniform upper bounds, even for n = 2.

Attentions are also paid to the lower bounds of H(n) and M(n) for n > 2, where H(n) stands for the
number of all the limit cycles for system (1.1), and M (n) stands for the number of small amplitude limit
cycles for system (1.1). There are many references for specific n, for instance, see [1,2,9-15,17,18,20-31,33]
etc. The lower bound of H(n) for general n was first considered in [3]. Recently, it was found in [6] that
H(n) grows at least as rapidly as 51— (n + 2)?In(n + 2). It was obtained that M (5) > 25 in [15] and [28].
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For general n, it was proved that M (n) > n? if n > 23 in [32]. It was also proved in [32] that M (n) grows
2
1

at least as rapidly as 18 - Lo (n + 2)2In(n + 2) for all large n. One can obtain a detailed list of references

25 " 2In2
with great ease via e-resources.

Let z =a 4 Iy, Z = x — Iy, then system (1.1) becomes
2=F(z2Z), Z=F(z,2), (1.2)

where 12 = —1 and F(z,2) = P,(z,y) + IQn(x,y). Let Z, be a cyclic group which is generated by a planar
counterclockwise rotation through 27/¢ about the origin. By Corollary 7.3 in [13], we get

Lemma 1.1. (See [13].) For system (1.1) with n = 5, all non-trivial Z,-equivariant vector fields have the
following forms:
) Forq=6:F(z,2) = (Ao + A1|2|> + Az|2|*)z + A325;
) For q=5:F(z,2) = (Ao + A1|2|* + Az|2|*)z + A3z,
(i) For q=4: F(z,2) = (Ao + A1]2]? + Az2|z|Y)z + (A3 + A4|2]?)23 + A525;
) For q=3: F(2,2) = (Ag + A1|2]? + Aa|2|*) 2 + (A3 + Ag|2|}) 22 + As2? + A62°;
) For q = 2: F(2,2) = (Ao + A1|2]? + Ag|z|Y)2 + (A3 + A4]z]? + As|2|H)z +(A6 + A7]2|*)23 + (As +
Ag|2]?)23 + A1925 + A112°,

where A; = A; +1B; with A;, B; € R fori=0,---,11. The above F(z,2) define Z,-equivariant Hamiltonian
vector fields if and only if Ag = Ay = Ay =0 and for ¢ =4, Ay = —5A5; for ¢ =3, Ay = —5A5; for ¢ =2,
A4 = —3/16, A5 = —2/17 and /19 = —5/110.

In recent years, more attentions were paid to the lower bounds and distribution of limit cycles for
system (1.1) with n = 5, for instance, see [2,9,11,12,14,15,17,18,20,21,24-31,33] and references therein.
Some interesting results are listed as follows.

(i) For Zs-equivariant system: it was shown in [24] that there were Zs-equivariant quintic systems with
at least 25 limit cycles for each of them, and it was obtained in [25] that there was a Zs-equivariant quintic
planar vector field having 28 limit cycles with four different configurations.

(ii) For Zs-equivariant system: it was proved in [18] that there were at least 15 limit cycles for a
Zs-equivariant near-Hamiltonian system of degree 5 which was a perturbation of a Zs-equivariant cubic
Hamiltonian system. It was shown in [2] that there were at least 23 limit cycles for a Zs-equivariant
near-Hamiltonian system of degree 5 which was a perturbation of a Zz-equivariant quintic Hamiltonian
system. It was obtained in [26] that there were at least 24 limit cycles with two different configurations
for a Zs-equivariant near-Hamiltonian system of degree 5 which was the perturbations of a Zg-equivariant
quintic Hamiltonian system.

(iii) For Z-equivariant system: it was achieved in [27] that there were at least 28 limit cycles with two
different configurations.

(iv) For Zs-equivariant system: it was proved dependently in [15] and [30] that there were Zs-equivariant
planar polynomial vector fields of degree 5 having at least 25 small limit cycles for each of them.

(v) For Zg-equivariant system: it was obtained that there were Zg-equivariant planar polynomial vector
fields of degree 5 having at least 24 small limit cycles for each of them in [15], and there were Zg-equivariant
planar polynomial vector fields of degree 5 having at least 24 limit cycles for each of them in [12].

Motivated by [2,9,11,12,14,15,17,18,20,21,24-31] and [33], in this paper, we intend to study the number
and the distribution of limit cycles of the following Zs-equivariant quintic systems:

$=Hy(x,y)+6775(:c,y), y:—Hx(x,y)+€Q5(Jj,y), (13)



354 L. Zhao / J. Math. Anal. Appl. 422 (2015) 352-375

where

H(z,y) = _%(332 )+ %($4 Tyt b %:Czyz _ 1%356 + g:r4y2 _ %mzyz; _ %yG’ (1.4)
Ps(z,y) = z(z* — 102%y® + 5y*) Ag + y (52" — 102° + y*) Bs

+ (2 + %)  As —y(a® + %) Bs + (2° — y?) A + 22y By

+ (2t —y*) As + (2" — 62%y% + y!) A5 + 22y (2? + y?) By — day(2? — y?) Bs

+z(2® + y?) A1 — y(2® + y*) Br + 2Ag — yBo, (1.5)
Os5(z,y) = —y(52* — 102%y* + y*) Ag + z(2* — 102®y* + 5y*) Bs

+y(? + %) Az + 2(2® + %) By — 20y As + (2® — y?) By

—2zy(2® + y?) As + day (2 — y?) A5 + (z* — y*)Ba + (a* — 62°y* + y*) Bs

+y(2® + y*) A1 + 2 (2® + y*) By + yAo + 2Bo. (1.6)

System (1.3) with € = 0 is Zg-equivariant (see Lemma 1.1). The expressions of Ps(x,y) and Qs(x,y) are
obtained by Lemma 1.1(iv). System (1.3) is Hamiltonian if and only if

Ag=A41 =4, =0, Ay = —4A4s5, By = 4B:s. (1.7)
Denote
A = (Ao,"',Ae,Bo,"',BG), A* = (AS’...’AZ’BS7...7BE)_
Our main result is stated as follows.

Theorem 1.1. For 0 < e < 1,

(i) there exists a A* with A5 # 0 and A, = —4A% such that system (1.3) has at least 23 or 20 limit
cycles. The configurations of these limit cycles are shown in Figs. 1(a) and 1(b);

(it) there exists a A* with Ay # 0 and A = Bf =0 (i = 3,4,5) such that system (1.3) has at least 24
or 18 limit cycles. The configurations of these limit cycles are shown in Figs. 1(c) and 1(d).

Remark 1.1. (i) System (1.3) with A = Bf =0 (i = 3,4,5) is Zs-equivariant.

(ii) The configuration of the 23 limit cycles in Theorem 1.1 is new and different from that obtained in [2],
where the unperturbed system is a Zs-equivariant quintic Hamiltonian system. Our unperturbed system is
different from that in [26], see Figs. 2(a) and 2(b). The configurations of limit cycles in Figs. 1(b) and 1(d)
are also new.

This paper is organized as follows. In Section 2, we will give some preliminaries. We will study the
expansion of the Abelian integral I(h) near a homoclinic loop and give some criterions for determining the
zeros of I(h). In Section 3, we will obtain the specific expressions of I(h) for system (1.3) near homoclinic
loops. In Section 4, we shall give the proof of Theorem 1.1.

2. Preliminaries

Consider the following near-Hamiltonian systems

{i: = Hy(z,y) + €P(z,y,6), (2.1)

y = _H:c(l'vy) + eQ(m,y,&),
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Fig. 1. The phase plane for Zs-equivariant system (1.3) with (a) 23, (b) 20 limit cycles, and for Zg-equivariant system (1.3) with
(c) 24, (d) 18 limit cycles.

(a) (b)

Fig. 2. (a) The phase portraits of system (3.1). (b) The phase portraits of the unperturbed system in [26].
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where 0 < |¢|] < 1 and H, P,Q are analytic in (z,y,0) € D C R* x R™ with D being bounded. We assume
system (2.1)__, has a continuous family of periodic orbits | J,,c s, I'h, where I', = {(z,y) : H(z,y) = h}. For
the orientation of a periodic orbit I}, we have

Lemma 2.1. (See [5].) If the closed curve I}, is oriented clockwise, then it expands with h increasing. If the
closed curve Iy, is oriented counter clockwise, then it shrinks with h increasing.

Let us take a segment o, which is transversal to each of the ovals J, 5. I'n, and parameterize o by the
values of H(x,y). Denote by I'.(h,d) a piece of orbit of system (2.1) between the starting point h on o and
the next intersection point P.(h,d) with o. As usual, we call

de(hv 5) = Pe(ha 5) —h (22)

a displacement function of system (2.1). Obviously, if there are € # 0 and 0* € R™ such that dex (h, %) £ 0
and dex(hg, 6%) = 0, then e (ho, 6%) is a limit cycle of system (2.1) with e = €* and § = §*.

Lemma 2.2 (Poincaré—Pontryagin). (See [19].) The displacement function d.(h,d) has the following asymp-
totic expansion:

de(h,8) = €(I(h,8) + epc(h,0)), €—0, (2.3)
where
I(h,d) = @ Qdx — Pdy, (2.4)
/

and @¢(h, §) is analytic and uniformly bounded for (h,€) in a compact neighborhood of (h,0). I(h,0) is called
the Abelian integral of system (2.1).

The Poincaré-Pontryagin theorem has the following immediate corollaries.

Corollary 2.1. (See [10].) (i) If an hg is the simple zero of I(h), then for sufficiently small €, d.(h) also has
one simple zero close to hg. Therefore, system (2.1) has one limit cycle close to I'(hg).

(i3) If I(h) is well defined in (hy1,h2) and I(h{)I(hy) <0, then for sufficiently small €, d.(h) has at least
one zero. It follows that system (2.1) has at least one limit cycle.

Lemma 2.3. (See [5,7,16].) Suppose that system (2.1)__, has a homoclinic loop Iy corresponding to H(z,y) =
0 through a hyperbolic saddle p. Assume the periodic orbits \J,cx, I'. expand to Iy as h decreases to 0.
Then, for 0 < h < 1, there exist analytical functions ai(h,d) and by(h,d) with b1(0,5) = 0 such that
I(h,0) = ai(h,0) +bi(h,0)Inh, that is,

I(h,d) =a1(0,8) + b1(0,0)hInh + a}(0,8)h + h.o.t.

where

(0.5 = [Qdz—Pdy,  K0.6) =~ (P + QD)
Iy

(0.0 = [P+ Qe i74(0.6) =0,

I

and A > 0 is the eigenvalue of the saddle p.
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Lemma 2.4. (See [5,7,16].) Assume system (2.1),_ has a continuous family of periodic orbits U, ., p, Ih
and Iy, is a homoclinic loop through a hyperbolic saddle p. Denote A (> 0) the eigenvalue of the saddle p.
(i) Suppose that \J;, <1, I'h expand to I, as h decreases to hy. Then, for 0 < h —hy < 1,

I(h) = co(6) + e1(8)(h — ho) n(h — ha) + c2(8)(h — ha) + h.o.t., (2.5)
where
w® = [ Qdo—Pdy.  ca®) = 1(P+ Q) (2.6
Ty
)= [(P+@de ifald) =0, (2.7)
Iy

2

(ii) Suppose that J;, jp,, Ih expand to Iy, as h increases to hy. Then, for 0 < |h — ha| < 1 with
h < hs,

I(h) = co(8) + c1(8) (ha — h) In(hs — h) + c2(8)(hs — h) + h.o.t., (2.8)

where ¢co(8) is given in (2.6), and

aB) =3P QE). ) =- [(B+@d iFal) =0, (2:9)

F}LQ
3. The expressions of the related Abelian integrals

For ¢ = 0, system (1.3) is given as follows:

ZL':Hy(l',y) :yHl(x’y)a yszr("E?y) = 7$H2(xay)7 (31)

where
Hy(z,y) = -5+ 14(2* + ¢y*) + 2(3z" — 192%y* — 24*)] /5, (3.2)
Hy(z,y) = —[5— 14(2® + y*) + 92" — 122%y* + 19y*] /5. (3.3)

The phase portraits of system (3.1) are shown in Fig. 2.
System (3.1) is a Zg-equivariant quintic system with 4 saddles on the axes of coordinates:

-2 -2
$1(1,0),  S»(—1,0), S; (o, 7T\/—9) S, (0, —%\/_9) (3.4)
and 4 centers on the axes of coordinates:
2 \/ 2
cl<§7o), @(—?,0), 03(0, ”T\/_g) 04<o,—7+m>. (3.5)

Let Iy denote the homoclinic loop passing the saddle S1(1,0). Since

H(Cy) ~ —0.1131687243,  H(S;) = —0.1,
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Is

C3

(a)

Fig. 3. (a) The homoclinic loops of Iy and I's. (b) The homoclinic loops of I's and I4.

the periodic orbits inside the I} expand to I} as h increases to —0.1, and I is orientated clockwise. Let
I'; denote the homoclinic loop passing the saddle (—1,0). We know that I and I are symmetric about
y-axis, see Fig. 3(a).

Let I's denote the homoclinic loop passing the saddle S3(0, y3) with y3 = 7@/% given in (3.4). Since

H(Cs) ~ 1.2050,  H(S3) ~ —0.096542,

the periodic orbits inside the I'5 expand to I'5 as h decreases to —0.096542, and I3 is orientated counter-
clockwise. Let I’y denote the homoclinic loop passing the saddle S4(0, —y3). We know that I's and Iy are
symmetric about z-axis, see Fig. 3(b).

We introduce the following notations. For ¢ = 1,---,4, let I} be expressed as (x;(¢t),y;(t)) for ¢t €
(—00, +00). Denote D; the region enclosed by I'; and set

Yit) = (z(t), yi(t)), (3.6)
5
w('ray) = % aa—Q?f = Z wi(xvy)Ai + 1/4(x,y)B4 + V5($7y)357 (37)
i=0,£3
wo(z,y) = 2, w1(z,y) :4(.132+y2>,

2
WZ(may) 6(%2 + y2) ) w4(9c,y) = 215(1'2 - 3y2)a w5(x7y) = 4w4(x,y),
, 2

y(gxz - y2)7 VS(:E’ y) = —41/4(ac,y). (38)

va(z,y)
Theorem 3.1. The homoclinic loop I'y can be expressed as y = yi(x) (> 0) and y = y_(x) with y_(z) =
—y+ (). It intersects x-axis at the points (@, 0) and (1,0). We express I asy = y! (z) (> 0) andy = y" (z)

(<0). Then y' (z) = =y (x) and ¥, (—z) = y1(x), see Fig. /. Suppose the Abelian integral of system (1.3)
near I; is expressed as

ID(h) = cio + ¢ (hy — h)In(hy — B) + cia(hy — h) + hoot., i=1,2, (3.9)

where hy = H(Sy). Then



L. Zhao / J. Math. Anal. Appl. 422 (2015) 352-375 359

0.4 \J
Yy
02 -

T* t*
T T — 7"
0.5 0 0.5

-02
~ 1 M

Fig. 4. About the calculation of ¢12 and ca2: z(t*) = ?, x(t2) = x5, x(t1) = z7, C1 = (@, 0).

Ci0 = (aoaa17a27a474a4) : (A07A1aA27A4aA5)Ta
ca0 = (g, 1, g, —au, —day) - (A, Az, Aa, Ay, As)T,

(i)
o = //wz x,y) dx dy;

c11 = /\—(AO —|—2A1 + 314.2 +A4 +4A5)7

(i) 5

Co1 = 3= (Ao + 241 + 345 — Ay — 445),
1

where A\y = \/% is the eigenvalue of system (3.1) at the saddle S1(1,0).

(iii) For x} and x} satisfying @ <7y < % <zi <1, and y5 = —yy(x3) (see Fig. 4), c1a and caa can be
expressed as

C12 = 7(:]1(1) + J2(1) + Jél)), Co9 — 7((]1(2) + J2(2) + Jéz)),

where

1
gD g / 2yA1 +3y(22% + y*) A2 — BxyAs — 122y As i
1= T
o Hy(x,y) y=y; (2)
1
1
x—1 B1A1+ BaAs + 4By + 454Bs
+4 : dx,
z¥ Hi(z,y) y=y+(x)
1 1 (3.10)
7@ _y / 2yAq1 + 3y(22° 4 y*) As + 3zy Ay + 120y As ;
1= T
J, Hi(z,y) y=y+ (@)
1
1
+ 4/ z—1 . BlAl + ﬁ1A2 — ﬁ4B4 — 45435 dw’
E Hi(w,y) Y=y, (2)
1




360 L. Zhao / J. Math. Anal. Appl. 422 (2015) 352-375

*

Ty

W1 A1 + WoAs + W4 Ay + 404 A
J2(1) :2/w1 1+ ws 2I-;w4 4+ 4wy 5(x,y) dz.,
et ¥ y=y+ ()
’ (3.11)
Ty
W1 A1 + WoAs — W4 Ay — 44 A
J2(2) _ 2/ w1 Ay +wa Ao Hw4 4 — 4wy As (2.9) du
3 Y y=y+(z)
AL+ Ga s+ BaAs + A5s A
J?EU —9 / W1 Ay + o 2_-;;4 4+ 404 A5 (2,1) dy.
) x a=a(y)
’ (3.12)
1A 09 Ao — W4 Ay — 4004 A
I =2 / w1 A1 + wo 2_Hw4 4 — 404 A5 (2.1) dy.
) @ a=a(y)
Bi(x) =2(x + 1), Bo=3(z"+1)(z +1), Ba(z) =2* +x+1, (3.13)
Wy = 4(3;2 +y? - 1), Wy = 6[(352 + y2)2 — 1], Wy = 2x(x2 — 3y2) -2, (3.14)

Hy(x,y) and Hi(x,y) are defined in (3.2) and (3.5) respectively, and f(x,y)ly—g(z) is defined as
F@y)ly=g(@) = f(x,9(2)).

Proof. First, let us consider the expressions of ¢y; (¢ = 0,1,2). The expression of c¢jo follows from
Lemma 2.4(ii) and Green’s formula. By (2.9) and (3.7), we get ¢11 = )\%w(l,O), which gives the first
formula in (ii). It follows from c¢;; = 0 that

Ag = —24, — 345 — Ay — 445, (3.15)

Let us give the expression of ¢15. For some —oco < t1 < to < t* < t3 < t4 < 400 such that

z(t*) < z(t2) < ? <az(t) <1, a(tx) =z(t)z(t) =z(ts),  y+(z(t")) =0,

see Fig. 4, let x(t1) = «7, z(t2) = z3, y5 = —y(z(t2)) > 0, and

—0o0 tq
to ty
J§ = </+ )w('yl(t))dt,
t1 t3
t3
Jél) = /w(’yl(t)) dt
ta

Then, by (2.9), we get ¢c1o = — ¢F1 w(y1(t))dt = —(Jl(l) + Jz(l) + Jél)). By system (3.1), we get

x(t1)

Jl(l): / Hi(x,y_(x))dm—k / Hi(a:,y+(m))dx
1 (ta)
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Z.

_ / Wl (@) (o, y_ (@)
1, (. ()

z(ta)

It is easy to know that w(z,y) under (3.15) can be expressed as
w(z,y) = f(w,y) +2(x — 1)(B1 A1 + B2A2 + S4By + 454 Bs)
where 3; (i =1,---,4) are given by (3.13) and
fz,y) = 2y[2yA; + 3y (227 + y?) Az — BayAy — 122y A5 + (32% — y?) By — 4(32% — ) B5].  (3.16)

Noting that y_ () = —y4 (z), we get

1
O _ / dy[2y A + 3y(22® + y*) Ay — 3wy Ay — 120y As] i
! yHy(x,y) y=y4 (z)
z(t1)
1
n / 4(x —1)(B1A1 + B2As + B4Bs + 464B5) i
yHi(z,y) S
z(t1)
which gives the first formula of (3.10). Similarly, we can get
z(t1)
g _ / w(z,y.(2)) +w(z,y-(2)) . (3.17)
’ Hy(z,y4+(x))
z(t2)
We know that w(z,y) under (3.15) can also be expressed as
5 5
w(z,y) = Y wilm,y)Ai+ Y vi(r,y)B; — 4A; — 64 — 24, — 845
i=1,#3 i=4
5
- Z ai(xvy)Ai"i_Vll(xvy)Bﬁl+V5($7y)B57 (318)
i=1,#3

where W;(z,y) are given by (3.14) and @Ws(x,y) = 4w4(x,y). Substituting (3.18) into (3.17), we can get the
first formula of (3.11). Noting that x(—y) = z(y), we have

0 (]173)0@1@)) dt = ( /O N y/“”) j{z (2(y),y) dy.
ta 3 y 0

(t2)

Let u = —y, then

0

0
W@y we(-w),—u)
(/ SR T (/ WA,

Since Ho(z, —u) = Ha(x,u), thus
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—y(t2)
Jm / w(z,y) +w(z, —y)
3 =

dy.

r=z(y)

By v(z,—y) = —v(z,y) and w;(x, —y) = w;(x,y), we can get the first formula of (3.12).
Next, let us consider the expressions of cg; (¢ = 0,1,2). By Lemma 2.4(ii), we get

020—§I§Q5d11—735dy— Z A//wzxy dxdy+ZB //l/lasy dx dy.

i=1,#3

Noting that

//wi(x,yl)dxdy://wi(x,y)dmdy, i=1,3,6;
D2 Dl

//w(x,yl) dr dy = —//w(%y) dz dy;

D2 Dl

we get
a0 = (g, 1, gy —aug, —4au) - (Ao, A1, Az, Ay, As)T,

where «; (i =1,---,4) are given in Theorem 3.1(i). By Lemma 2.4(ii) and (3.7), we have

C21 =

1 2
—w(=1,0) = —(Ag + 241 + 34y — Ay — 4A5).
A Al

It follows from c9; = 0 that
Ap = —2A; — 345 + Ay + 4As5.
Let us give the expression of cos. For —oo < 7 < 75 < 7% < 73 < 74 < 400 such that
(1) = x(14) = —x(t1), x(12) = x(13) = —x(t2), z(r%) = —x(t*),

see Fig. 4, let

J& = (Z +Ti/oo>w
-]+ ]

73

J§2) = /W(’Yz(t)) dt.

T2

Then, by Lemma 2.4(ii), we get coo = — ﬁm w(vye(t)) dt = —(J1(2) + J2(2) + Jéz)). By (3.1), we get

(3.19)
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x(‘rl) —1
7O _ / Yk () d /i L)) d
1 : Hy (LL’,y+($)) SC+( )Hy (IE,y_(fﬁ)) €z
- (T4

[ et o),
S TR w) '

It is easy to know that w(z,y) under (3.19) can be expressed as
w=f(z,y) + 2z + 1) (1A + BoAs + S4By + 454Bs), (3.20)
where f(z,y) is given by (3.16) and
Bi(x) = 2(x — 1), Bg(x):i’)(x—l)(x?—l—l), Ba(x) =2? —x + 1.
Hence,

z(71)

J® / 4y[2yAr + 3y(22° 4 y°) Ay — Buy Ay — 122y A5 da
! 7 yHl (.T, y) y:yi(m)
z(71) - ~ - -
" / d(x + 1)(B1A1 + PoAa + BaBy + 454 Bs) e
) yHi(z,y) y=yk (z)
@) 24 .2
4 / 2yA1 + 3y(22° + y?) Ay — 3zyAy — 122y A5 i

2 Hi(z,y) y=y} (x)

x(71) ~ ~ ~ -
! / r+1 [1As + PaAs + 4By +4P4Bs .
Joye(2) Hy(z,y) y=v, (z)
Since ¢! (—z) =y, (z) and
Bl(*iﬁ) = —p1i(=), 52(*50) = —Ba(x), 54(*45) = Ba(x),
we get
1
5O _y / 2y A1 + 3y(22% + y?) Ay + 3wy Ay + 122y As "
L Hiy(x, _
ot 1(z,y) y=y+(z)
1
4 / x—1 1A+ BoAs — BaBy —4P4Bs d
Y+ (2) Hy(z,y) y=y4(z) 7

z(t1)
which yields the second formula of (3.10). Similarly, we have
x(72)

w(@, v () +w(@,y ()

Hwd@)

T =

z(11)
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We can check that w(z,y) under (3.19) can also be expressed as

]
§ |
w
o
=

+
~
8
o
o)
N
+
N
ot
—
8
S
=
ot

2 _3y2) +27 @5(‘ray) :4(:)4

Since w;(—x,y) = w;(x,y) for i = 1,2 and wy(—2z,y) = —04(z,y), thus,
z(t1) o(t1) _

J2(2) —9 Z A; / ;—;(x,y+(m)) dx — 2(Aq + 4A45) / Z—z(a:,er(x)) dx,
z(t2)

=12 0

which yields the second formula of (3.11). For J§2), we have

J§2>=<7+7>w(72(t))dt:< /0+/

y(72)

Let u = —y, then
Wz (9).9) @ (cw), )
R N R B ey AT e

o

Since 2!(—y) = 2'(y) and Hy(x, —u) = Ha(z,u), we have

0
@ _ w(z'(y),y) + w(@'(y), —y)
B = / —H,(2'(y),y) -

—y(73)

Noting that z!(y) = —2"(y), we get

—y(t2) —y(t2)
Wws w
i=1,2 0 z 0 z
O

which yields the second formula of (3.12). This completes the proof.

Theorem 3.2. Suppose the Abelian integral of system (1.3) near the homoclinic loop T'; is expressed as
i=3,4, (3.21)

ID(h) = ¢;0 + ¢ (h — hg) In(h — h3) + cia(h — hs) + h.o.t.,

where hg = H(S3). Then
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cs0 = (10,11, 72,74, —4na) - (Ao, A1, A, Ba, Bs)",
C40 = 770’77177727 774a47]4) (A05A17A2aB4aB5 )

(i)
//wzxydzcdy, 1=0,1,2; //1/4zydacdy,
where w;(x,y) are given in (Hi)
1 3 1 3 3
Ca1 = —1- {2140 + (7= V29)A; + M V29)? A5 = 2(T = V29)2 By + (7 - @)235],
3
(i)
en =y {2A0+(7 V29) Ay + ST = V29245 + o (7 V29)2 B, — (T— V29): B ]
where A3 = %\/—19140 + 3570v/29 is the eigenvalue of system (3.1) at the saddle Ss.
Proof. We express the homoclinic loop I3 as x = 4 (y) (> 0) and 2 = z_(y) = —x+(y), and express Iy as
z =gz (z) (>0) and z = 2% (y) (< 0). Then 2% (y) = —2% (y) and 2% (—y) = 24 (y). By Lemma 2.4(i) and

(3.7), we have

030:§£Q5dx—735dy

*fZA//wZa:yda:dy (By — 4Bs) //V4xyd:cdy,

1=0,1,2

which gives the first formula in (i). By Lemma 2.4(i), we get ¢33 = —5-w(S3). Noting the orbits of sys-
tem (3.1) are symmetric about both of z-axis and y-axis, we can obtaln the formula of c4; by the similar
arguments to that of co; (¢ = 0,1). This ends the proof. O

For system (3.1), there exists a heteroclinic-polycycle S©) through 6 saddles (see Fig. 3(b)). It is
orientated counter-clockwise and corresponds to H(z,y) = H(Ss3). It follows from [7] and [16] that for
0 < h—H(S3) <1, I(h) can be expressed as

10(h) = / Qs(x,y) dz — Ps(a,y) dy + hoo.t.
S(6)

Denote cgg = fs<6> Qs dxr — Ps dy. Since system (1.3) is Zs-equivariant, we get

c60=—3< [+ )[Qs<x,y>dx—7>5<x,y>dy], (3.22)

©:5; 5361

where O3 (x3;,31) is obtained by rotating S3 counter-clockwise with Z, and ©;(x3,,¥3,) is obtained by
rotating S3 clockwise with §. By symmetry, we get x3 = —x3, and y3, = y3;. Hence,

_%060 = ( /+/ ) [Q5 (amy(x)) —’P5(m,y(m))y/(gg)] dx.

Let u = —z. Since along 0555 and 57351, we have y(—z) = y(z) and y'(—x) = —y/(z), then
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/[95 (z,y(z)) — Ps(z,y(z))y ()] dx
= / (95 (—u, y(—u)) — Ps(—u, y(—w))y' (—u)] d(—u)

(95 (—u, y(u) + Ps(—u, y(u)y' (u)] du.

I
E \O

So,

o= 10001 + Q(rate))] e

31

—/[Ps(x,y(x)) - Ps(—z,y(x))]y (z) da

0
=2 /{y(m2 + y2)2A2 +y(2® +y*) AL + yAo }|

31

)d:lc

y=y(z

0
-2 /{x(x2 + y2)2A2 +z(z® +y%) A + xA0}|y=y(x)y'(x) dzx.

31

Remark 3.1. In the calculations of ¢;2 (i = 1,2), we find that Hy(z,y) has the factor y, which leads to the
integrals cannot be calculated directly by Matlab even though we know that c;s exists by Lemma 2.4. We

deal with this problem by the way of (3.16) and (3.20).

4. Proof of the main results

Set 7 = 0.95, x5 = ? 4+0.1 and 2% ~ —A7! for € (0.95,1). Then by Matlab 7.5, we get

Y+ ()
(i) The values in Theorems 3.1(i) and 3.2(i):

ap ~ 0.22126, o1 ~ 0.24487, oy ~ 0.21722, 1o ~ 1.981659229;

m o~ T.62447,  mp A~ 27.60503,  ny A~ —5.21282,  ms a4 x 5.2128.

(ii) The values for (3.10)-(3.12):
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1
| e
Hl(xay)
zi
1
/324(2332 +v%)
Hl(z7y)

dz ~ 6.806860858 x 1074,

y=y+ ()

dz ~ 1.907295061 x 1073,
y=y+(z)

y=y+(x)

Zy
1
/ _ By da ~ 9.192955257 x 10~
Hi(z,y)
a1

y=y+(x)

1
/L da =~ 2.108043101 x 101,
Hi(z,y)
a1
1

/L dz ~ 5.337516448 x 1072,
Hy(2,9) lymyy (2)

"L'l .
23 (2,4 (x)) do ~ —2.363016631,
Hy
a3
z] _
26 (2, y1 () dz ~ —5.808452011,
Hy
)
—Ys _
©3 (2(y),y) dy ~ —4.828232524,
H,

0

v

/ 28 (2(y), y) dy ~ —9.852007882.
0

(iii) The values for (3.23):

0
2 2\2 ~ -2
/y(x +y%) yy:y(m) dz ~ 3.092091723 x 10~ 2,

Z31

(' = y")|,_, @) @7 ~ —2.580407313 x 1072,

y(z* +¢?)]| da ~ 9.015509722 x 1072,

\o é\o

y=y(x)

T3l

y(x) dr =~ 2.646601805 x 107,

—

Z31

367
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0
2 _
/ z(2® +y?) ‘y:y(m)y'(x) dx ~ —1.303820399 x 1072,

x31
0

/ 2zy(2® + y°) ‘y:y(m)y'(az) dx ~ —3.064747205 x 1072,

Z31
0

2 2 ~ -2
/ (2 +y?)|,_, (¥ (@) do ~ —3.064747205 x 1072,

Z31
0

/ zy (z) dr ~ —1.088923565 x 10~

z31

Remark 4.1. It is crucial for us to obtain the expressions of the homoclinic loops I and I'3. To do this,
we solve the equations H(x,y) = H(S1) and H(x,y) = H(S3) by the formula of root for the equation
s34+ as® + bs + ¢ = 0, where s € R is variable. There are three branches for each of H(z,y) = H(S;) and
H(xz,y) = H(S3). Then, we plot the image for each of the branches to make sure that the expressions are
right.

Let Ay = —4 A5, then we have w(O) = 24, and

c10 = C20 = apAg + a1 Ay + Ay,

c11 = o1 = 2(Ag + 241 + 342)/ )\,

c12 ~ 16.05817189A4; + 31.69816485A5 + 0.09744927200B,4 + 0.3897970879 855, (4.1)
Coo ~ 16.05817189A1 + 31.69816485A45 — 0.09744927200B, — 0.3897970879Bs,

2
w(C1) = w(C2) = (2740 + 3041 + 2545] ~ 2.Ag + 222224, + 1851945,

c30 = MoAo + AL + 1242 + 1By — 404 Bs,
1 1

e31 = =1~ [240 + (7~ V29) A1 + §<7 ~ V29245 — (7T~ V29)2 By + (T~ V/29)* By
3

1
~ —)\—[Z.AO +1.6148351934; + 0.9778847629 A5 — 0.5130176625B4 + 2.052070650Bs5], (4.2)
3
3 1
w(C3) = 240 + (T+ V29)A; + ST+ V29)% Ay — 17+ V29)22 By 4 (7 +v29)*/?Bs
~ 2.Ag +12.385A1 + 57.521 A5 — 10.896 B4 + 43.584Bs;
cq0 = NoAo +m1 A1 +m2As — na By + 41y Bs,
w(Cy) ~= 2.A1 +12.385A4; + 57.521 45 + 10.896 B, — 43.584 Bs,
o ~ —0.9346069440 40 — 0.3570457510A4; — 0.1072962794 A,
+ 0.3387092711 B4 + 1.354837084 Bs,

where A; > 0 and A3 > 0 are respectively the eigenvalues of system (3.1) at the saddles S; and Ss.

4.1. The 28 limit cycles for Zs-equivariant quintic systems

Let
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1 = apAo + a1 A1 + apAs,
po = 1noAo + A1 + 1242 + 774B4 — 414 Bs, (4.4)
p3 = —|240 + (7T —V29) A4, + = (7 \/_)Ag——('r V29)2 By + (7 — v/29)2 Bs |.

Then we get

Ag =~ 2.447341576 A5 — 3.448106551 1 — 0.09612190380u2 — 0.9767044561 s,

A; = —3.098455496 Ay + 7.199444833 111 + 0.08685397331 12 + 0.8825320703 3,

B4 ~ 1.694040964 A5 + 485 + 9.2193780691; — 0.1013395027 149 + 0.9195296149 143,

w(Cy) =~ —0.138921654 A2 + 9.1025531981 + 0.000765022042 + 0.00777346643, (4.5)
w(C5) ~ 5.58255808 A2 — 18.19016710x1 + 1.987717275u9 — 1.0428890543,

w(Cy) ~ 42.50127484 A5 + 182.7303625111 — 0.220803343 2 + 18.99668151 143,

w(0) =~ 2(2.447341576 Ay — 3.448106551 11 — 0.09612190380u2 — 0.976704456113),

and
IV (h) = I'D(h) = py + ¢y (b1 — h)In(hy — ) + h.o.t.,
IO(h) = po + L2 (h — h3) In(h — h3) + hoot.,
A3 (4.6)
ID(h) = ¢y + heo.t.,
6)(h): 60+h0t
with

2
iy~ )\—1(—0.749569416/12 +10.95078312p1 + 0.0775860428 15 + 0.7883596849143),

Cho & 17.66147727 A5 + 96.1180040211 — 0.056530132012 + 9.586693437 3, (4.7)
cgo ~ —0.7145209599 A5 + 2.709674167 Bs
+ 3.7747819651 4 0.02450072754 19 4 0.9091836462143.

Denote p = (1, p2, 43). Since

2
lim ¢y & +(~0.749569416) A,
1

pn—0

lim cjy ~ 17.66147727 Ao,

pn—0

111% cgo ~ —0.7145209599 45 + 2.709674167B5,

—

lim w(C1) = lim w(Cs) =~ —0.138921654 A5,
—0 pn—0

hm w

3) & 5.58255808 A,

pn—0

lim w(O) = 2 x 2.447341576 A,,

n—0

(€
hm w(Cy) ~ 42.50127484 A5,
(

for some A3 and B such that A5 > 0 and —0.7145209599A% + 2.709674167BZ > 0, there exists a neighbor-
hood U of p = 0 such that for yu € U we have

i <0, w(Cy) < 0; w(C3) > 0; ¢ > 0, w(Cyq) > 0; cgo > 0, w(0) > 0.
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Set some p* € U such that uf <0 (i = 1,2,3) with |us| < |us]. For p = p* and A = A* with A§, A7 and
Bj determined by (4.5), we get simultaneously the following facts.

(1) For j = 1,2,3, IY(h) has 1 zero.

(2) For j = 1,2, 3, the stability of limit cycles (generated by homoclinic bifurcation) and the stability of
centers C; yields 1 limit cycle in the region enclosed by I'; in view of Poincaré-Bendixson theorem.

(3) The broken position of the separatrixes of Sy and the stability of the center Cy yields one limit cycle.

(4) The broken position of the separatrixes of the polycycle S and the stability of the center O yields
one limit cycle.

From (1)—(4), we obtain 9 +9 + 3 + 1 = 22 limit cycles altogether. Finally, let us consider the limit
cycles bifurcating from the unbounded period annulus. Let V; be the singular points obtained by rotating
the saddle S; around the origin counter-clockwise with %”i (i=1,2,3,4,5) and V3 = S5. Then, we obtain a
heteroclinic polycycle through the saddles Si, Vi, ---, Vi, denoted as V(©) | see Fig. 3(a). The unperturbed
system has an unbounded period annulus with the boundary V(%) for h € (—oo, H(S)) see Fig. 2(a). For
A§, A7, AS, Bf and Bf defined above and h € (—oo, H(S1)), we have

:/%xymf%@w@

//(6735 6Q5)d dy

—/ {ZAS + 4(332 + yQ)AT + 6(3:2 + y2)2A§

+ 2y(3x2 — yQ)BZ — 8y(3x2 — yz)Bg‘} dz dy, (4.8)

where D is the region enclosed by I},. It follows from (4.8) that I(h) has the opposite sign with Aj for |h
sufficiently large. Hence, there exists an h* with h* < H(S;) and |h*| > 1 such that I(h*) < 0. In the
meanwhile, by (1.5), (1.6) and (3.7),

I(H(S1)) 3(/ + /)st(x,y)dw?%(x,y)dy

IARAL

=-3 / w(x,y)dedy — 3 / w(x,y)dedy

mUvzvl ‘72—‘73UV3V2
+3(/ i /)Q5<x,y>dm—7>5<x,y>dy.
VoVp V3 Vs

It is easy to see that both fmumw(x,y) dx dy and fmum w(z,y) dz dy are linear functions of Ag,
A7, A3, Bi, Bs and puf (i=1,2,3), and

(/ n /)Qs(x,y)dx—%(w,y)dy

VoV V3Vs
1/2 —1/2
= / Qs (m ?) dx + / (Qs(,V3(x +1)) = V3Ps (2, V3(z + 1)) d
—-1/2 -1

e B e T =TT
= \/§A0+6\/§A1 + 10\/§A2+ o1 Bo-
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Hence, there exists a B§ > 0 such that for Bs = B§, we have I(H(S1)) > 0. Then, it follows from
Corollary 2.1(ii) that there exists at least one “big” limit cycle around all 25 singular points for system (1.3).

To sum up, we have obtained 23 limit cycles for system (1.3). The distribution of the 23 limit cycles is shown
in Fig. 1(a).

4.2. The 20 limit cycles for Zs-equivariant quintic systems

Set

1 = apAo + a1 A1 + axAs,
M2 = 2(A0 + 2A1 + 3142)7
p3 = noAo +m Ay +n2Ay + 4By — 40y Bs.

Then we get

Ap ~ 1.518694660A5 + 10.11889703 11 — 1.238907158 112

A; = —2.259347330A — 5.059448517 111 + 1.11945357910;

By ~ 2.568326255A5 + 4.00000000085 — 3.553433097 141
4+ 1.166383357 12 — 0.1918345717 s,

(4.9)

and
IV (h) = py 4 pa/A1(hy — h) In(hy — h) + iy (hy — h) + ho.t.,
I (h) = py 4 pa/ A (hy — h)In(hy — ) + 5 (hy — h) + heo.t.,
IS (h) = ps + ¢, (h — hs) In(h — hs) + h.o.t.,
I (h) = ¢y + hot.,
I9(h) = ¢&, + hot.,
where
¢ty A~ —4.33254141 Ay + 0.7795941759B5 — 81.5917734241 + 18.0900412015 — 0.01869413936 413,
Chy A —4.83310445A5 — 0.7795941759B5 — 80.899214501; + 17.86271478 5 + 0.01869413936 113,
1
ko~ 7>\—3[70.950796228A2 +13.890592501; — 1.268456544 15 + 0.0984145235543),
Cho /2 26.77646924 A5 — 37.046847844; + 12.1603040245 — 0.9999999998 13,
¢ty & 0.1499274240 A5 + 2.709674168 Bs — 8.854317565.;, + 1.153259946115 — 0.06497614795113
and

w(C)) = w(Cy) ~ —0.131530670 Az + 8.994575154; + 0.009860304 5,

(C3) ~ 4.59098313 A5 — 3.7038203841 — 1.32285945115 + 2.090352704 3,
(Cy) = 60.56324797 Ay — 81.14479894411 + 24.09646495115 — 2.090352704413,
(

w(0) = 2(1.518694660 A5 + 10.11889703p; — 1.23890715813).

W

w

Denote p = (u1, pi2, #3). Then, we get
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lim ¢3, ~ —4.833104454; — 0.7795941759B;,
n—

lim w(Cy) &~ —0.131530670 Az,

pn—0

liir%] cgo =~ 0.0249879037 A2 + 0.4516123614 Bs,
o

lim w(0) ~ —2.259347330A,,

n—0

*

lim . A~ 0.950796228

pn—0 31 )\3 2
lim w(C3) ~ 4.59098313 A,
n—0

lim ¢, ~ 26.77646924 A,
n—0

lim w(Cy) ~ 60.56324797 A,.
pn—0
Choose A3, B such that A5 > 0 and

—4.83310445A35 — 0.7795941759B; > 0, 0.0249879037 A3 + 0.4516123614B; < 0.

It is easy to know that

—4.83310445A5 — 0.7795941759B; >0 <« A < —18.07323923B:,
0.0249879037A5 + 0.4516123614B; <0 <= A5 < —0.1613029853B;.

Then, there is a neighborhood U of y = 0 such that for y € U we have ¢§, < 0, w(O) < 0; and
cho > 0, w(Cy) < 0; c5 >0, w(C3) > 0; Cho > 0, w(Cy) > 0.

Set some p* € U such that uf <0 (i =1,2,3) with pf > 0 and |u1] < |pe|. For g = p* and A = A* with
A§, A7 and B} determined by (4.9) we get simultaneously the following facts.

(1) I™(h) has 1 zero, I (h) has 2 zeros and I (h) has 1 zero.

(2) The stability of limit cycles (generated by homoclinic bifurcation) and the stability of the center Cs
yields 1 limit cycle in the region enclosed by I3.

(3) The broken position of the separatrixes of Sy and the stability of the center Cy yields one limit cycle.

(4) The broken position of the separatrixes of the polycycle S and the stability of the center O yields
one limit cycle.

(5) By the similar arguments as in Section 4.1, we can obtain a “big” limit cycle around all 25 singular
points.

To sum up, we have obtained 20 limit cycles for system (1.3). The distribution of the 20 limit cycles is
shown in Fig. 1(b).

4.8. The 24 limit cycles for Zg-equivariant quintic systems

For Ps, Qs given in (1.5) and (1.6), let AY = Bf =0 (i = 3,4,5). Then system (1.3) with 0 < e < 1 is
Zg-equivariant. Let

H1 = ol + a1 Ar + Ao, o = noAo +m A1 + n2As. (4.10)

Then we get
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Ap =~ 4.246715224 A5 4 6.34451730511 — 0.2037625303 122,
Ay = —4.724336223 A5 — 1.64898884 7111 + 0.1841160513 110,

4.11
w(Cy) ~ —0.15324264 A5 + 9.0246149501 + 0.0016217201 115, (4.11)
w(C3) ~ 7.50386299 A5 — 7.73396403 111 + 1.872782579 12,
and
IDR) = 1 + ‘;1—1(h1 — R)In(h1 — h) + hoo.t.,
1
IS (h) = pg + ¢, (h — hs) In(h — hs) + h.o.t., (4.12)

¢}, ~ —2.010102733 A5 + 2.781097447 11 + 0.1501394912,

1
Ch R —)\—3(1.842290815%12 +10.0261893911 — 0.1102079814 ).

Denote p = (p1, p12). Since

lim ¢}, ~ —2.010102733 45,
pn—0

L 1842200815
1m ~ -
pn—0 €31 )\3 2

lim w(Cy) ~ —0.15324264 A,
n—0

lim w(Cs5) ~ 7.50386299A4,,
n—0
for A3 > 0, there exists a neighborhood U of u = 0 such that for u € U we have
ciy < 0,w(Cy) < 0; ¢ < 0,w(Cs) > 0.

Set some p* € U such that uf <0 (i =1,2). For p = p* and A = A* with A} = A} = B} = B =0 and
Ag 1 determined by (4.11), we get simultaneously the following facts.

(1) For j = 1,3, IU(h) has 1 zero, which yields 2 x 6 = 12 limit cycles (generated by homoclinic
bifurcation) for system (1.3) by Corollary 2.1 and rotating the vector fields around the origin by 27 /6 since
system (1.3) is Zg-equivariant.

(2) For j = 1,3, the stability of limit cycles (generated by homoclinic bifurcation) and the stability of
the centers C} yields 1 limit cycle in the region enclosed by I'; in view of Poincaré-Bendixson theorem. So,
we obtain another 2 x 6 = 12 limit cycles for system (1.3). The distribution of the 24 limit cycles is shown
in Fig. 1(c).

4.4. The 19 limit cycles for Zg-equivariant quintic systems

Let

2

\ (A() +2A; + 3A2). (4.13)
1

p1 = apAo + a1 Ay + azAs, Ho =

Then we get

{ Ao =~ 1.518694660A2 + 10.11889704 11 — 1.357154793 142, (4.14)

A; = —2.259347330A5 — 5.05944851811 + 1.226299954 10,

and
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ID(R) = py 4 po(hy — h)In(hy — h) + ¢y (h1 — h) 4+ heo.t.,

I®(h) = ¢4 + h.o.t.,

iy A —4.58282293 A, — 81.24549397 11 + 19.6921354515, (4.15)
5o ~ 13.38823462 A5 — 18.5234239241; + 6.660472813 115,

w(C3) ~ 32.57711555A5 — 42.42430966; + 12.473617451.

Denote p = (p1, 12). Since

lim ¢}y ~ —4.58282293 45,

pn—0

Q

lim ¢, ~ 13.38823462A,,

pn—0

lim w(Cs) ~ 3257711555 As,
n—0

for A3 > 0, there exists a neighborhood U of u = 0 such that for u € U we have
1y <0, ¢ > 0, w(C3) > 0.

Choose some p* € U such that pi < 0 and pi < 0 with |u1| < |p2|. Then T (h) with p*, A5, A =

5 = Bf = By = 0 and A, determined by (4.14) has 2 zeros. Simultaneously, the broken position of
the separatrixes of the saddle S3 and the stability of center C5 leads another 1 limit cycle in the region
enclosed by I's according to Poincaré-Bendixson theorem. So, system (1.3) has (2+1) x 6 = 18 limit cycles
by Corollary 2.1 and rotating the vector fields around the origin by 27 /6, see Fig. 1(d). This completes the
proof of Theorem 1.1. 0O

Remark 4.2. In Section 4.1, we obtain a “big” limit cycle around all 25 singular points of system (1.3) and
a limit cycle around only the origin. The configuration of the 23 limit cycles is new and different from the
result obtained in [2].
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