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Abstract

The quaternion Fourier transform - a generalized form of the classical Fourier

transform - has been shown to be a powerful analyzing tool in image and signal

processing. This paper investigates the Pitt’s inequality and uncertainty princi-

ple associated with the two-sided quaternion Fourier transform. It is shown that

by applying the symmetric form f = f1 + i f2 + f3 j+ i f4 j of quaternion from

Hitzer and the novel module or Lp-norm of the quaternion Fourier transform f̂ ,

then any nonzero quaternion signal and its quaternion Fourier transform can-

not both be highly concentrated. Two part results are provided, one part is the

Heisenberg-Weyl’s uncertainty principle associated with the quaternion Fourier

transform. It is formulated by using logarithmic estimates which may obtained

from a sharp of Pitt’s inequality; the other part is the uncertainty principle of

Donoho and Stark associated with the quaternion Fourier transform.
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1. Introduction

The uncertainty principle of harmonic analysis states that a non-trivial func-

tion and its Fourier transform (FT) cannot both be sharply localized. The un-

certainty principle plays an important role in signal processing [6, 7, 8, 10, 11,

17, 20, 21, 23, 27], and physics [1, 5, 14, 15, 16, 18, 19, 24, 28, 29]. In quan-

tum mechanics an uncertainty principle asserts that one cannot make certain

of the position and velocity of an electron (or any particle) at the same time.

That is, increasing the knowledge of the position decreases the knowledge of

the velocity or momentum of an electron. In quaternionic analysis some pa-

pers combine the uncertainty relations and the quaternionic Fourier transform

(QFT) [2, 12, 22, 37, 38]. Recently, the Heisenberg’s uncertainty relations were

extended to the quaternion linear canonical transform [37] - a generalized form

of the QFT.

The QFT plays a vital role in the representation of (hypercomplex) signals.

It transforms a real (or quaternionic) R
d signal into a quaternion-valued fre-

quency domain signal. The four components of the QFT separate four cases of

symmetry into real signals instead of only two as in the complex FT. Due to

the noncommutative property of multiplication of quaternion, there are three

different types of QFT: left-sided, right-sided and two-sided QFT. Hitzer [35]

introduced these different types of QFT and investigated their important prop-

erties. In [25] the authors used the QFT to proceed color image analysis. The

paper [4] implemented the QFT to design a color image digital watermarking

scheme. The authors in [3] applied the QFT to image pre-processing and neural

computing techniques for speech recognition.

There are different types of uncertainty relations, including entropy-based

uncertainty relations, Heisenberg’s uncertainty for time spread and frequency

spread, the uncertainty relations for time-frequency distribution and so on. In

this paper, we will mainly focus on the new inequalities for the two-sided QFT,
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including the Pitt’s inequality [30] in QFT domains, the logarithmic uncertainty

relations in QFT domains, the Heisenberg-Weyl’s uncertainty relations in QFT

domains, the uncertainty relations of Donoho and Stark [32] in QFT domains

etc. To the best of our knowledge, the study of the Pitt’s inequality and its

Heisenberg-Weyl’s uncertainty relations associate with two-sided QFT has not

been carried out yet. The results in this paper are new in the literature. The

main motivation of the present study is to develop further technical applications

in the theory of partial differential equations [9]. We would like to apply these

ideas to the existence and smoothness of solutions of PDE, construction of

explicit fundamental solutions, and eigenvalues of Schrodinger operators in the

Hamiltonian quaternionic algebra. Further investigations and extensions of this

topic will be reported in a forthcoming paper.

The paper is organized as follows. Section 2 gives a brief introduction to

some general definitions and basic properties of quaternion analysis. The QFT

of Rd quaternionic signal in introduced and studied in Section 3. Some impor-

tant properties such as Plancherel’s and inversion theorems are obtained. The

classical Pitt’s inequality and logarithmic uncertainty principle are generalized

in the quaternion Fourier domains in Section 4. In Section 5 the uncertainty

principle of Donoho and Stark associated with two-sided quaternion Fourier

transform is provided. Finally conclusions are summarized in Section 6.

2. Preliminaries

For convenience of further discussions, we briefly review some notions and

terminology on quaternion. We write

x · u =
d∑

i=1

xiui

for the inner product on R
d, and abbreviate x2 = x · x. The Euclidean norm is

defined by |x| := √
x · x.

Let H denote the quaternion algebra over R, which is an associative non-

3



commutative four-dimensional algebra

H := {q = q1 + i q2 + j q3 + k q4 | q1, q2, q3, q4 ∈ R} , (1)

where the elements i, j, and k obey Hamilton’s multiplication rules:

i2 = j2 = k2 = 1, i j = −j i = k, j k = −k j = i, k i = −i k = j . (2)

The conjugate of a quaternion q is defined by

q := q1 − i q2 − j q3 − k q4, (3)

and the module |q| of a quaternion q is given by

|q| :=
√
q q = (q21 + q22 + q23 + q24)

1/2. (4)

In particular, when q = q1 is a real number, the module |q| reduces to the

ordinary Euclidean module, i.e. |q| = √
q1 · q1. Suppose that d is a positive

integer. A function f : R2d → H can be expressed as

f(x, y) := f1(x, y) + i f2(x, y) + j f3(x, y) + k f4(x, y), (5)

where x = (x, y) ∈ R
d × R

d. We may represent f : R2d → H into a symmetric

form[35] as

f(x, y) = f1(x, y) + i f2(x, y) + f3(x, y) j+ i f4(x, y) j . (6)

If 1 ≤ p < ∞, the Lp-norm of f is defined by

‖f‖p :=

(∫
R2d

|f(x, y)|p dxdy
)1/p

, (7)

thus Lp(R2d,H) is the Banach space of all measurable functions f that have finite

Lp-norm. For p = ∞, L∞(R2d,H) is the collection of essentially bounded mea-

surable functions with the norm ‖f‖∞ = ess sup x∈R2d |f(x)|. If f ∈ L∞(R2d,H)

is continuous, then ‖f‖∞ = supx∈R2d |f(x)|. For p = 2, we can define the inner

product

〈f, g〉 :=
∫
R2d

f(x, y)g(x, y) dxdy (8)
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here g(x, y) = g1(x, y) + i g2(x, y) + j g3(x, y) + k g4(x, y), turns L2(R2d,H) a

Hilbert space.

The two-sided quaternion Fourier transform FQ(f) : R
2d → H of a quater-

nion function f ∈ L1(R2d,H) is defined as[35]

FQ(f)(u, v) = f̂(u, v) :=

∫
R2d

e−2πi x·uf(x, y)e−2πj y·v dxdy. (9)

From (6) and the above definition, we have the following lemma:

Lemma 2.1. If f ∈ L1(R2d,H), then FQ(f) has a symmetric representation:

f̂(u, v) = f̂1(u, v) + i f̂2(u, v) + f̂3(u, v) j+ if̂4(u, v) j, (10)

where

f̂l(u, v) = FQ(fl)(u, v), l = 1, 2, 3, 4.

Now we define a new module of f̂ as follows:

|f̂(u, v)|Q := (|f̂1(u, v)|2 + |f̂2(u, v)|2 + |f̂3(u, v)|2 + |f̂4(u, v)|2)1/2. (11)

Furthermore, we define a new Lp-norm of f̂ as follows:

‖f̂‖Q, p :=

(∫
R2d

|f̂(u, v)|pQ dudv

)1/p

. (12)

It is worthwhile to observe that |f̂ |Q is not equivalent to |f̂ |, and ‖f̂‖Q, p

is not equivalent to ‖f̂‖p. The concept ‖f̂‖Q, p do depend on the expression of

the quaternion function f . In fact, it requires that every component function

fi of the quaternion function f to be real function, i = 1, 2, 3, 4. However, it is

useful in some environment, with the Lp-norm of f̂ , f̂ behaves like a quaternion

function f in the Lp-space.

3. Properties of quaternion Fourier transform

Firstly, let S(R2d,H) denote the Schwartz space from R
2d into H, we list the

elementary properties of two-sided quaternion Fourier transform as follows:

Proposition 3.1. If f ∈ L1(R2d,H), then
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(i) The map f −→ f̂ is real linear. That is, for a, b ∈ R, we have af + bg −→
af̂ + bĝ.

(ii) f(x+ h, y + l) −→ e2πih·uf̂(u, v)e2πj l·v, where (h, l) ∈ R
d × R

d.

(iii) e2πi x·hf(x, y)e2πj y·l −→ f̂(u− h, v − l), where (h, l) ∈ R
d × R

d.

(iv) f(x/λ, y/λ) −→ λ2df̂(λu, λv), whereλ > 0.

(v)
∂α+β

∂xα∂yβ
f(x, y) −→ (2πiu)

α
f̂(u, v)(2πj v)

β
, whenever f ∈ S(R2d,H).

(vi) (−2πix)
α
f̂(x, y)(−2πj y)

β −→ ∂α+β

∂uα∂vβ
f̂(u, v), whenever f ∈ S(R2d,H).

(vii) f(R1x,R2y) −→ f̂(R1u,R2v), where R1, R2 is a rotation.

(viii) f̂ ∈ L∞(R2d,H), and ‖f̂‖Q,∞ ≤ ‖f‖1.

(ix) f̂ is continuous (and hence measurable) function.

Here the arrow, which we have taken, indicates the quaternion Fourier trans-

form.

Proof. The first four properties are obvious by the definition of the quaternion

Fourier transform. The properties (v) and (vi) can be verified by applying

integration by parts. Property (vii) can verified by a simple change variables

x0 = R1 · x, y0 = R2 · y in the integral. Then, recall that |det(Ri)| = 1 with

i = 1, 2, and R−1
1 x0 · u = x0 ·R1u,R

−1
2 y0 · v = y0 ·R2v, because R is a rotation.

Properties (iv) and (v) in the proposition 3.1 show that, up to factors, the

quaternion Fourier transform interchanges differentiation and multiplication by

monomials. Indeed, all properties but (iv) and (v) still hold for the L1(R2d,H).

However, this generalization is useful in many circumstances.

Properties (viii) is just a consequence of absolute inequality. Properties (ix)

is easy to prove. By the definition and Properties (iii),

f̂(u, v)−f̂(u−h, v−l) =

∫
R2d

e−2πi x·u(f(x, y)−e2πi x·hf(x, y)e2πj y·l)e−2πj y·v dxdy.
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By Properties (viii) we deduce that∣∣∣ ∫
R2d

e−2πi x·u(f(x, y)− e2πi x·hf(x, y)e2πj y·l)e−2πj y·v dxdy
∣∣∣ ≤ 2‖f‖1.

Since f is integrable, by Lebesgue dominated theorem, we can see that |f̂(u, v)−
f̂(u− h, v − l)| → 0 when (h, l) → 0. This proves Properties (ix).

Theorem 3.1 (Riemann-Lebesgue lemma). If f ∈ L1(R2d,H), then f̂(u) → 0

as u = (u, v) → ∞.

Proof. By Lemma 2.1, we can restrict ourself to the case where f is a function

in L1(R2d,R). By the Proposition 1(ii), we can rewrite

f̂(u) =

∫
R2d

e−2πi x·uf(x, y)e−2πj y·v dxdy

=
1

2

∫
R2d

e−2πi x·u [f(x, y)− f(x− h, y − l)] e−2πj y·v dxdy,

where h = (1/u1, 1/u2, · · · , 1/2un), l = (1/v1, 1/v2, · · · , 1/vn). Thus,

|f̂(u)| ≤ 1

2

∫
R2d

|f(x, y)− f(x− h, y − l)| dxdy.

Since continuous functions of compact support are dense in the integrable

functions space, let Cc(R
2d,R) be the space of continuous functions of compact

support from R
2d into R, then for any ε > 0, we can choose a function g ∈

Cc(R
2d,R) so that ‖f − g‖1 < ε. Now

f − fh = (f − g) + (g − gh) + (gh − fh),

where fh(x) = f(x− h), and h = (h, l).

However, when u is sufficiently large, while h becomes very small, ‖fh −
gh‖1 = ‖f − g‖1 < ε, since g is continuous and has compact support. Clearly

we have

‖g − gh‖1 =

∫
R2d

|g(x)− g(x− h)| dx → 0

as h → 0. This proves the theorem.
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Before giving the Plancherel’s Theorem, we give the quaternion Fourier

transform of the Gaussian function e−πλ(|x|2+|u|2), which is crucial in the proof

of Plancherel’s Theorem.

Example 3.1 (Quaternion Fourier transform of a Gaussian function). For λ >

0, the Gaussian function on R
2d is given by

gλ := exp [−πλ(|x|2 + |y|2)] (13)

for (x, y) ∈ R
d × R

d. Then

ĝλ := λ−d exp [−πλ−1(|u|2 + |v|2)]. (14)

Proof. By Proposition 3.1(iv), it suffices to consider λ = 1. We deduce

ĝ(u) =

∫
R2d

e−2πi x·ue−π|x|2e−π|y|2e−2πj y·v dxdy

=
d∏

m=1

∫ ∞

−∞
e−2πi xm·ume−πx2

m dx
d∏

n=1

∫ ∞

−∞
e−2πi yn·vne−πy2

n dy

=

d∏
m=1

e−πu2
m

d∏
n=1

e−πv2
n

= e−π|u|2e−π|v|2 .

Now we give the Plancherel’s Theorem.

Theorem 3.2 (Plancherel). If f ∈ L1(R2d,R)
⋂

L2(R2d,R), then ‖f̂‖2 = ‖f‖2.
Furthermore, if f ∈ L2(R2d,H), then ‖f̂‖Q,2 = ‖f‖2.

Proof. We first assume f ∈ L1(R2d,R)
⋂

L2(R2d,R), since the function f̂ is

bounded, ∫
R2d

|f̂(u, v)|2 exp [−επ(|u|2 + |v|2)] dudv (15)

is well defined.

Notice that f(x, y)f(z, w) exp[−επ(|u|2 + |v|2)] is in L1(R3×2d), we could

rewrite (15) as∫
R2d

(∫
R2d

e−2πi x·uf(x, y)e−2πj y·v dxdy
)(∫

R2d

e2πjw·vf(z, w)e2πi z·u dzdw
)

exp [−επ(|u|2 + |v|2)] dudv.
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Then, by applying Fubini’s theorem and Example 3.1, we will obtain∫
R2d×R2d

ε−d exp[−πε−1(|x− z|2 + |y − w|2)]f(x, y)f(z, w) dxdydzdw. (16)

Since the family ĝε is an approximation to the identity, let ε → 0, then (16)

reduces to
∫
R2d |f(x, y)|2 dxdy. This show that (15) is uniformly in ε.

On the other hand, by the monotone convergence theorem, (15) is equal

to
∫
R2d |f(u, v)|2 dudv. Therefore we have showed that f̂ ∈ L2(R2d,R) and

‖f̂‖2 = ‖f‖2.
Now we have to prove that the quaternion Fourier transform is a bounded

linear operator defined on the dense subset L1
⋂

L2 of L2. In fact, it is isometry.

Furthermore, there exists a unique bounded extension, FQ, of this operator to

all of L2.

In general, if f ∈ L2(R2d,R), there exists sequences f l in L1(R2d,R)
⋂

L2(R2d,R)

of L2(R2d,R) converging to f in the L2-norm. We may choose the sequence f l,

where f l(x) equals f(x) when |x| ≤ l and is zero elsewhere. Hence, f̂ l is a

Cauchy sequence in L2(R2d) that converges to some function in L2(R2d,R),

which we denote it by FQ(f), or f̂ . Moreover,

‖f̂‖2 = lim
l→∞

‖f̂ l‖2 = lim
l→∞

‖f l‖2 = ‖f‖2.

Finally, let f ∈ L2(R2d,H), then we want to prove ‖f̂‖Q, 2 = ‖f‖2. In fact,

since previous argument for f ∈ L2(R2d,H) gives the desired result for fi with

i = 1, 2, 3, 4. The general case, ‖f̂‖Q, 2 = ‖f‖2 follows by (7) and (12).

Next, let’s establish the inversion formula of QFT.

Theorem 3.3 (Inversion formula). If f ∈ L2(R2d,R), then the inversion for-

mula of the quaternion Fourier transform, F−1
Q , can be obtained by letting

(F−1
Q )(x) = FQ(−x), or simply denoted by f̌ := f̂(−x). Moreover, by (6)

and (10), the statement that f̌ = f̂(−x) still holds for all f ∈ L2(R2d,H).

Proof. For f ∈ L2(R2d,R), by Hölder’s inequality, the expression∫
R2d

f(x, y)ĝε(u− x, v − y) dxdy (17)
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is well defined. Here ĝε is defined as Example 3.1, i.e. ĝε(u, v) = ε−d exp [−πε−1(|u|2+
|v|2)]. By applying Fubini’s theorem and Example 3.1, we could express (17) as∫

R2d

f(x, y)

(∫
R2d

e2πi (u−x)·zgε(z, w)e2πj (v−y)·w dzdw

)
dxdy

=

∫
R2d

e2πiu·zgε(z, w)f̂(z, w)e2πj v·w dzdw.

Since the family ĝε is an approximation to the identity, let ε → 0, then (17)

tends to f(u, v) in L2(R2d). Further, gεf̂ → f̂ in L2(R2d) as ε → 0 by dominated

convergence. Thus, we will get

f(u, v) =

∫
R2d

e2πiu·z f̂(z, w)e2πj v·w dzdw. a.e. �

Now let’s compute the quaternion Fourier transform of |x|−α.

Theorem 3.4 (Quaternion Fourier transform of |x|−α). Suppose that f be a

function in Cc(R
2d,H), and let 0 < α < 2d, and

cα := π−α/2Γ(α/2). (18)

Then we have

cα(|w|−αf̂(w))∨(x) = c2d−α

∫
R2d

|x− u|α−2df(u) du. (19)

Proof. By Theorem 3.3 together with the representations (6) and (10), it is

suffice to prove (19) for all f ∈ Cc(R
2d,R).

In order to show (19), we will apply the elementary formula

cα|w|−α =

∫ ∞

0

exp [−π|w|2λ]λα/2−1 dλ. (20)

To verify this by using the definition of Gamma function and a simple change

of variable.

Since |w|−αf̂(w) is integrable, by Fubini’s theorem and Example 3.1, and

(20), we have

cα(|w|−αf̂(w))∨(x)

=

∫
R2d

e2πi x1·w1

(∫ ∞

0

exp [−π|w|2λ]λα/2−1 dλ

)
f̂(w))e2πj x2·w2 dw

10



=

∫
R2d

e2πi x1·w1

(∫ ∞

0

e−π|w|2λλα/2−1 dλ

)(∫
R2d

e−2πiw1·y1f(y)e−2πjw2·y2 dy

)
e2πj x2·w2 dw

=

∫ ∞

0

λα/2−1

{∫
R2d

(∫
R2d

e−2πiw1·(y1−x1)e−π|w|2λe−2πjw2·(y2−x2) dw

)
f(y) dy

}
dλ

=

∫ ∞

0

λα/2−1λ−d

{∫
R2d

e−πλ−1|x−y|2f(y) dy
}

dλ

= c2d−α

∫
R2d

|x− y|−(2d−α)f(y) dy,

where x = (x1, x2), y = (y1, y2), and w = (w1, w2) are in R
d × R

d.

In [31], W.Bechner stated the following lemma, which is useful in the calcu-

lation of the convolution.

Lemma 3.1 (Beckner). For 0 < α < n, 0 < β < n, and 0 < α+ β < n,(|x|α−n ∗ |x|β−n
)
(y) =

cn−α−β cα cβ
cα+β cn−α cn−β

|y|α+β−n, (21)

where x, y ∈ R
n and cα := π−α/2 Γ(α/2).

Lastly, we extend Theorem 3.4 to the case Lp(R2d,H), which is key to prove

the logarithmic uncertainty principle.

Corollary 3.1. If 0 < α < d and f ∈ Lp(R2d,R) with p = 2d/(d + α), then f̂

exists. Moreover, let

g(x) := c2d−α|x|α−2d ∗ f(x), (22)

where cα is defined as in Theorem 3.4, that is cα := π−α/2Γ(α/2). Then g is an

L2(R2d,R) function, and hence has a quaternion Fourier transform ĝ. In fact,

ĝ(w) = cα|w|−αf̂(w), (23)

and an application of Plancherel’s Theorem will lead to

c2α

∫
R2d

|w|−2α|f̂(w)|2 dw = c2d−2α

∫
R2d×R2d

f(x)f(y)|x− y|2α−2d dxdy. (24)

Furthermore, for f ∈ Lp(R2d,H),

c2α

∫
R2d

|w|−2α|f̂Q(w)|2 dw = c2d−2α

∫
R2d×R2d

4∑
i=1

fi(x)fi(y)|x− y|2α−2d dxdy.

(25)
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Remark 3.1. Let us recall the properties that we have been proved so far,

f ∈ L1(R2d,R) =⇒ FQ(f) ∈ L∞(R2d,H) with ‖FQ(f)‖Q,∞ ≤ ‖f‖1.

f ∈ L2(R2d,R) =⇒ FQ(f) ∈ L2(R2d,H) with ‖FQ(f)‖Q,2 = ‖f‖2.

By the Riesz’s interpolation theorem, we obtain

‖f̂‖Q,p′ ≤ ‖f‖p. (26)

holds for 1 ≤ p ≤ 2 with 1/p + 1/p′ = 1. That means, f̂ does exist in the

Lp-norm sense, and f̂ ∈ Lp′
whenever f ∈ Lp.

Proof of Corollary 3.1. As in Theorem 3.4, we assume that f is a real

function. Since Cc(R
2d,R) is dense in Lp(R2d,R), we may find a sequence

f l of functions in Cc(R
2d,R) such that ‖f l − f‖p → 0 as l → ∞. Setting

g := c2d−α|x|α−2d ∗ f and gl := c2d−α|x|α−2d ∗ f l. By Fubini’s theorem and

Lemma 3.1, we have∫
R2d

|g(x)|2 dx

=

∫
R2d

(∫
R2d

c2d−α|x− y|α−2df(y) dy

)(∫
R2d

c2d−α|x− z|α−2df(z) dz

)
dx

= c22d−α

∫
R2d×R2d

f(y)f(z)

(∫
R2d

|x− y|α−2d|x− z|α−2d dx

)
dydz

=
c2d−2α

c2α
c2α

∫
R2d×R2d

f(y)|y − z|2α−2df(z) dydz.

By Hardy-Littlewood-Sobelev inequality (see [34]), g and gl are in L2(R2d,R).

Since f l → f in Lp(R2d,R), we have that f̂ l → f̂ in Lp′
(R2d,R) by the

Remark in Corollary 3.1. An application of Hardy-Littlewood-Sobelev inequal-

ity, we have that gl → g in L2(R2d,R), and hence ĝl → ĝ in L2(R2d,R) by

Plancherel’s theorem.

From Theorem 3.4, we can see

ĝl(w) = cα|w|−αf̂ l(w).

To show that

ĝ(w) = cα|w|−αf̂ l(w).

12



We pass to a subsequence so that ĝl → ĝ and f̂ l → f̂ pointwise a.e. By the

completeness of Lp space. This implies

ĝ(w) = lim
l→∞

cα|w|−αf̂ l(w) = cα|w|−αf̂(w). a.e. �

4. Pitt’s inequality and the uncertainty principle

The uncertainty principle is a description of feature of a function and its

quaternion Fourier transform. Beckner [30] has showed that sharp Pitt’s inequal-

ity yields a short proof of logarithmic uncertainty estimate, and Heisenberg-

Weyl’s inequality follows by using logarithmic uncertainty inequality in the real

number field. In [30], with aid of rearrangement and symmetrization, Beckner

have proved a sharp Pitt’s inequality by applying the sharp L1 Young’s in-

equality for convolution on R+. Here, as in [31], base on Young’s inequality for

convolution on R+×S2d−1, we will give a different proof of the Pitt’s inequality

about quaternion Fourier transform.

Theorem 4.1 (Pitt’s inequality). For f ∈ S(R2d,H),∫
R2d

|ξ|−α|f̂(ξ)|2Q dξ ≤ Cα

∫
R2d

|x|α|f(x)|2 dx, (27)

Cα := πα

[
Γ

(
2d− α

4

)
Γ

(
2d+ α

4

)]
.

In particular, for f ∈ S(R2d,R), and 0 ≤ α < 2d,∫
R2d

|ξ|−α|f̂(ξ)|2 dξ ≤ Cα

∫
R2d

|x|α|f(x)|2 dx. (28)

Proof. We first prove the inequality (28). To this end, we assume that f ∈
S(R2d,R), by consider the function

F (x) = |x|α/2f(x),

then by Corollary 3.1, we can see the left side of (28) is∫
R2d

|ξ|−α|f̂(ξ)|2 dξ =
c2d−α

cα

∫
R2d×R2d

f(x)|x− y|α−2df(y) dxdy

=
c2d−α

cα

∫
R2d×R2d

F (x)

|x|α/2 |x− y|α−2d F (y)

|y|α/2 dxdy,

13



and the right side of (28) becomes∫
R2d

|x|α|f(x)|2 dx =

∫
R2d

|F (x)|2 dx.

Then (28) is equivalent to prove that∣∣∣∣∫
R2d×R2d

f(x)

|x|α/2 |x− y|α−2d f(y)

|y|α/2 dxdy

∣∣∣∣ ≤ Cα
cα

c2d−α

∫
R2d

|f(x)|2 dx. (29)

Here, for the sake of convenience we shall use f instead of F. Without loss of

generality, we may assume that f is nonnegative. By setting

t = |x|, x = t ξ,

s = |y|, y = sη,

h(t ξ) = tdf(t ξ),

ψ(t, ξ · η) = tα/4
(

t+
1

t
− 2ξ · η

)−(d−α/4)

, ξ,η ∈ S2d−1.

Then (29) has a equivalent formulation as a convolution estimate on the product

manifold R+ × S2d−1:

‖ψ ∗ h‖L2(R+×S2d−1) ≤ ‖ψ‖L1(R+×S2d−1)‖h‖L2(R+×S2d−1). (30)

Now we observe

‖f‖22 =

∫
R2d

|f(x)|2 dx =

∫
R+×S2d−1

|tdf(t ξ)|2 dξdt
t

= ‖h‖2L2(R+×S2d−1), (31)

and

‖ψ ∗ h‖2L2(R+×S2d−1) =

∫
R+×S2d−1

|ψ ∗ h|2 dξdr
r

=

∫
R+×S2d−1

(∫
R+×S2d−1

h(t ζ)ψ(
r

t
, ζ · ξ) dζ dt

t

)
× (32)

×
(∫

R+×S2d−1

h(sη)ψ(
r

s
,η · ξ) dη ds

s

)
dξ

dr

r

=

∫
R+×S2d−1

∫
R+×S2d−1

h(t ζ)h(sη)K(t, s, ζ · ξ,η · ξ) dζ dt
t
dη

ds

s
,

where the kernel is

K(t, s, ζ · ξ,η · ξ) :=
∫
R+×S2d−1

ψ(
r

t
, ζ · ξ)ψ(r

s
,η · ξ) dξdr

r
.

14



By Lemma 3.1, we can calculate K(t, s, ζ · ξ,η · ξ).∫
R+×S2d−1

ψ(
r

t
, ζ · ξ)ψ(r

s
,η · ξ) dξdr

r

=

∫
R+×S2d−1

(r
t

)α/4
(
r

t
+

t

r
− 2ζ · ξ

)−(2d−α/2)/2 (r
s

)α/4 (r
s
+

s

r
− 2η · ξ

)−(2d−α/2)/2

dξ
dr

r

= sd−α/2td−α/2

∫
R+×S2d−1

|r ξ − t ξ|−(2d−α/2) |r ξ − sη|−(2d−α/2)
r2d−1 dξdr

= |x|d−α/2|y|d−α/2

∫
R2d

|z− x|−(2d−α/2)|z− y|−(2d−α/2) dz

= |x|d−α/2|y|d−α/2 c2d−α

cα

[
cα/2

c2d−α/2

]2
|x− y|α−2d. (33)

Thus, from (32) and (33), we could know

‖ψ ∗ h‖2L2(R+×S2d−1) =
c2d−α

cα

[
cα/2

c2d−α/2

]2 ∫
R2d×R2d

f(x)

|x|α/2 |x− y|α−2d f(y)

|y|α/2 dxdy. (34)

Now Young’s inequality (30) and (31) implies the best constant Cα in (29) is[
c2d−α/2

cα/2

]2
‖ψ‖2L1(R+×S2d−1).

To compute the integration of ψ, we observe from Lemma 7 that

‖ψ‖L1(R+×S2d−1) =

∫
R+×S2d−1

tα/4
(

t+
1

t
− 2ξ · η

)−(d−α/4)

dξ
dt

t

=

∫
R+×S2d−1

t−d(t2 + 1− 2tξ · η)−(d−α/4)t2d−1 dξdt

=

∫
R2d

|x− ξ|−(2d−α/2)|x|−d dx

=
cd−α/2 cα/2

cd+α/2 c2d−α/2
,

where |ξ| = 1. Evidently,

Cα =

[
cd−α/2

cd+α/2

]2
= πα

[
Γ

(
2d− α

4

)
Γ

(
2d+ α

4

)]
.

Because of (7), (12) and (28), we can easily deduce (27).

Since inequalities (28) and (27) are equations for α = 0, by differentiating

the sharp Pitt’s inequalities at α = 0, we will obtain logarithmic estimate of

uncertainty.
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Corollary 4.1 (Logarithmic uncertainty principle). For f ∈ S(R2d,H),∫
R2d

ln |x| |f(x)|2 dx+

∫
R2d

ln |ξ| |f̂(ξ)|2Q dξ ≥ D

∫
R2d

|f(x)|2 dx (35)

D := ψ(2d/4)− ln(π), ψ :=
d

dt
[ln Γ(t)].

In particular, for f ∈ S(R2d,R),∫
R2d

ln |x| |f(x)|2 dx+

∫
R2d

ln |ξ| |f̂(ξ)|2 dξ ≥ D

∫
R2d

|f(x)|2 dx. (36)

Remark In fact, the logarithmic uncertainty (36) implies the Heisenberg-

Weyl’s inequality. Since the logarithm is a concave function, by Jensen’s in-

equality,

ln

[∫
R2d

ln |x|2 |f(x)|2 dx
]1/2

≥
∫
R2d

ln |x| |f(x)|2 dx,

ln

[∫
R2d

ln |ξ|2 |f̂(ξ)|2 dξ
]1/2

≥
∫
R2d

ln |ξ| |f̂(ξ)|2 dξ.

With the aid of the logarithmic uncertainty principle (36), we arrive at

ln

[∫
R2d

ln |x|2 |f(x)|2 dx
∫
R2d

ln |ξ|2 |f̂(ξ)|2 dξ
]1/2

≥ D = ψ(2d/4)− ln(π),

which holds for all d ∈ N. By utilizing the product structure,
∏

f(xk) with

‖f‖2 = 1, note that ψ(2d/4) − ln(2d/4) ≥ −1/(2d/4), and let d → ∞. This

implies the Heisenberg-Weyl’s uncertainty principle in one dimension:[∫
R

|x|2 |f(x)|2 dx
∫
R

|ξ|2 |f̂(ξ)|2 dξ
]1/2

≥ 1

4π
.

By utilizing the product structure,
∏

f(xk) with ‖f‖2 = 1 again, one obtains

the n-dimensional form for f ∈ S(R2d,R):(∫
R2d

|x|2 |f(x)|2 dx
)(∫

R2d

|ξ|2 |f̂(ξ)|2 dξ
)

≥
(
2d

4π

)2

.

Naturally, with the representations (7) and (12), and replacing f(x1, x2) by

e−2πi x1·ξ1f(x1, x2)e
−2πj x2·ξ2 and changing variables, the corresponding n-dimensional

form for f ∈ S(R2d,H) is given by:(∫
R2d

|x− x0|2 |f(x)|2 dx
)(∫

R2d

|ξ − ξ0|2 |f̂(ξ)|2Q dξ

)
≥

(
d

2π

)2

.
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We introduce the standard derivations

Δfx =

(∫
R2d

|x− x0|2 |f(x)|2 dx
)1/2

,

and

Δfξ =

(∫
R2d

|ξ − ξ0|2 |f̂(ξ)|2Q dξ

)1/2

.

It is easy to observe that the expectation x =
∫
R2d x|f(x)|2 dx is that choice for

for which the uncertainty Δfξ is the smallest. Similarly, Δfξ is minimized at

ξ =
∫
R2d ξ|f̂(ξ)|2Q dξ.

Now the uncertainty principle of quaternion Fourier transform becomes:

Theorem 4.2 (Heisenberg-Weyl’s uncertainty principle). If f ∈ L2(R2d,H)

with ‖f‖22 = 1, then

Δfx ·Δfξ ≥ d

2π
. (37)

The Heisenberg uncertainty principle of quaternion Fourier transform can

be formulated in terms of the Hermite operator L := −Δ+ |x|2, which acts on

Schwartz functions by the formula

L(f) := −Δf + |x|2f,

here f ∈ S(R2d,H).

At first, we integrate by parts, then by the arithmetic mean-geometric mean

inequality and Theorem 4.2, we have

〈Lf, f〉 =

∫
R2d

(−Δf + |x|2f)f dx =

∫
R2d

(|∇f |2 + |x|2|f |2)dx

≥ 2

(∫
R2d

|∇f |2 dx
)1/2 (∫

R2d

|x|2|f |2 dx
)1/2

= 2

(∫
R2d

|2πξ|2|f̂ |2 dξ
)1/2 (∫

R2d

|x|2|f |2 dx
)1/2

≥ 2× 2d

4π
× 2π ×

(∫
R2d

|f |2 dx
)1/2

= (2d)〈f, f〉.

In the penultimate equation we have used Plancherel’s theorem.
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Now we have showed that the Heisenberg uncertainty principle implies 〈Lf, f〉 ≥
(2d)〈f, f〉 for all f ∈ S(R2d,H). This usually denoted by L ≥ (2d)I.

Next, consider the operator Ai and A∗
i defined on S(R2d,H) by

Ai(f) :=
∂f

∂xi
+ xif and A∗

i (f) := − ∂f

∂xi
+ xif , i = 1, 2, · · · , 2d.

The operator Ai and A∗
i are sometimes called the annihilation and creation

operators, respectively. By integrating by parts, for all f, g ∈ S(R2d,H), we can

find that

(i) 〈Aif, g〉 = 〈f,A∗
i g〉,

(ii) 〈Aif,Aif〉 = 〈A∗
iAif,Aif〉 ≥ 0,

(iii)
∑2d

i=1 A
∗
iAi = L− (2d)I,

for i = 1, 2, · · · , 2d. In particular, this again show that L ≥ (2d)I.

Now for t ∈ R, let

Ai,t(f) :=
∂f

∂xi
+ txif and A∗

i,t(f) := − ∂f

∂xi
+ txif , i = 1, 2, · · · , 2d.

Use the fact that 〈∑2d
i=1 A

∗
i,tAi,tf, f〉 ≥ 0 and

∑2d
i=1 A

∗
i,tAi,tf = −Δf +

t2|x|2f − (2d)f , then we have

t2〈|x|2f, f〉 − t(2d)〈f, f〉 − 〈Δf, f〉 ≥ 0,

or

t2〈|x|2f, f〉 − t(2d)〈f, f〉+ 〈∇f,∇f〉 ≥ 0.

If f �≡ 0, then 〈|x|2f, f〉 �= 0. We can choose t to be equal to
1

2
(2d)〈f, f〉/〈|x|2f, f〉,

then

〈|x|2f, f〉〈∇f,∇f〉 ≥
(
2d

2

)2

〈f, f〉.

Assume that ‖f‖22 = 1, and use Plancherel’s theorem, we obtain

〈|x|2f, f〉〈|ξ|2f̂ , f̂〉 ≥
(
2d

4π

)2

,

which is the Heisenberg uncertainty principle. Now we have showed that L ≥
(2d)I implies the Heisenberg uncertainty principle conversely.
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The heuristic assertion stated before the next section can be made precise

as follows. If f ∈ L2(R2d,H) with ‖f‖22 = 1, then we say that its position is

εp-concentrated on a ball B1 centered at x0 if(∫
Bc

1

|x− x0|2|f(x)|2 dx
)1/2

≤ εp

∫
R2d

|x− x0|2|f(x)|2 dx. (38)

If 0 ≤ εp ≤ 1/2, then the preponderance of its position is contained in a ball

B1.

Correspondingly, its momentum is εm-concentrated on a ball B2 centered at

ξ0 if (∫
Bc

2

|ξ − ξ0|2|f̂(ξ)|2Q dx

)1/2

≤ εm

∫
R2d

|ξ − ξ0|2|f̂(ξ)|2Q dξ. (39)

Similarly, If 0 ≤ εm ≤ 1/2, then the preponderance of its momentum is con-

tained in a ball B2.

Corollary 4.2. With the assumption (1) and (2), let rj denotes the radius of

Bj with j = 1, 2. Then we have

r1 · r2 ≥ 2d

4π

√
(1− εp)(1− εm) (40)

Proof. By assumption (1) and the fact that |x − x0| ≤ r1 when x ∈ B1, and

‖f‖22 = 1,∫
R2d

|x− x0|2|f(x)|2 dx ≤ (1− εp)
−1

∫
B1

|x− x0|2|f(x)|2 dx

≤ (1− εp)
−1r21.

Similarly, we deduce that∫
R2d

|ξ − ξ0|2|f̂(ξ)|2Q dξ ≤ (1− εm)−1r22.

Combining these inequalities and applying Theorem 4.2,

(1− εp)
−1(1− εm)−1r21 · r22 ≥

(
2d

4π

)2

,

from which the corollary follows.
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5. The uncertainty principle of Donoho and Stark

The classical uncertainty principle is based on the interpretation of the stan-

dard deviation Δfx as the size of the essential support of f . Other notions of

the support lead to different versions of the uncertainty principle. As an exam-

ple we present a beautiful uncertainty principle on R
2d of Donoho and Stark

[32].

Definition 5.1. A function f ∈ L2(R2d,H) is said to be ε-concentrated on a

measurable set T ⊆ R
2d, if(∫

T c

|f(x1, x2)|2 dx1dx2

)1/2

≤ ε‖f‖2. (41)

If 0 ≤ ε ≤ 1/2, then the most of energy is concentrated on T , and T is indeed

the essential support of f . If ε = 0, then T is the exact support of f .

Theorem 5.1 (Uncertainty principle of Donoho and Stark). Suppose that f ∈
L2(R2d,H) with f �= 0, is εT -concentrated on T ⊆ R

2d and f̂ is εΩ-concentrated

on Ω ⊆ R
2d. Then

|T | · |Ω| ≥ (1− εT − εΩ)
2. (42)

Proof. Without loss of generality, we may assume that T and Ω have finite

measure. Let

PT f = χT · f,

and

QΩf = F−1
Q [χΩ(FQf)] =

∫
Ω

e2πi x·uf̂(u, v)e2πj y·v dudv.

Both operators are orthogonal projections on L2(R2d,H). With this notation,

f is εT -concentrated on T if and only if

‖f − PT f‖2 ≤ ε‖f‖2,

and f̂ is εΩ-concentrated on Ω if and only if

‖f −QΩ f‖2 = ‖χΩc · f̂‖Q,2 ≤ εΩ‖f‖2.
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Since ‖QΩ‖2 ≤ 1, we obtain that

‖f −QΩPT f‖2 ≤ ‖f −QΩf‖2 + ‖QΩ(f − PT f)‖2
≤ (εT + εΩ)‖f‖2,

and consequently

‖QΩ PT f‖2 ≥ ‖f‖2 − ‖f −QΩPT f‖2 ≥ (1− εT − εΩ)‖f‖2. (43)

Next we compute the integral kernel and the L2-norm of QΩ PT .

QΩPT f(x, y) = F−1
Q (χΩ(PT f)

∧) (x, y)

=

∫
Ω

e2πi x·u
(∫

R2d

e−2πi t·uχT (t, s)f(t, s)e
−2πj s·v dtds

)
e2πj y·v dudv.

Since both T and Ω have finite measure and since f ∈ L2(T,H) ⊆ L1(T,H),

this double integral converges absolutely. By Fubini’s theorem,

QΩPT f(x, y) = QΩPT f1(x, y) + iQΩPT f2(x, y) +QΩPT f3(x, y) j+ iQΩPTQΩPT f4(x, y) j

=

∫
R2d

K(x, y; t, s)f1(t, s) dtds+ i

∫
R2d

K(x, y; t, s)f2(t, s) dtds+

+

∫
R2d

K(x, y; t, s)f3(t, 3) dtds j+ i

∫
R2d

K(x, y; t, s)f4(t, s) dtds j,

where the kernel is

K(x, y; t, s) = χT (t, s)

∫
Ω

e2πi (x−t)·uχΩ(x, y)e
2πj (y−s)·v dudv

= χT (t, s)T(t,s)F−1
Q (χΩ(x, y)) ,

here T(t,s) is the translation operator, i.e. T(t,s)f(·, ·) = f(· − t, · − s). The

L2-norm of QΩ PT is given by

‖QΩQT ‖22 =

∫
R2d

∫
R2d

|K(x, y; t, s)|2 dxdydsdt.

Since the translation operator T(t,s) is unitary, and Inversion Fourier transform

F−1
Q is isometry. We have for fixed (t, s) that∫

R2d

|K(x, y; t, s)|2 dxdy = χT (t, s)‖T(t,s)F−1
Q χΩ‖22

= χT (t, s)‖χΩ‖22
= χT (t, s)|Ω|,
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and therefore ∫
R2d

∫
R2d

|K(x, y; t, s)|2 dxdydsdt = |T | · |Ω|. (44)

Finally combining (43), (44), and the fact that the operator norm ‖QΩ PT ‖
is dominated by the Hilbert Schmidt norm (see [36]), we obtain

(1− εT − εΩ)
2‖f‖22 ≤ ‖QΩPT f‖22

≤ ‖QΩPT ‖22 · ‖f‖22
= |T | · |Ω|‖f‖22.

Hence

|T | · |Ω| ≥ (1− εT − εΩ)
2. �

Choose εT = εΩ = 0 in Theorem 5.1 and observe that f is concentrated on T

if and only if supp f ⊆ T , and f̂ is concentrated on Ω if and only if supp f̂ ⊆ Ω.

Thus we have the following result.

Theorem 5.2. Suppose that f ∈ L2(R2d,H), supp f ⊆ T and supp f̂ ⊆ Ω.

Then |T | · |Ω| ≥ 1.

This theorem should be contrasted with the following qualitative uncertainty

principle [33].

Theorem 5.3. Suppose that f ∈ L1(R2d,H), supp f ⊆ T and supp f̂ ⊆ Ω. If

|T | · |Ω| ≥ ∞, then f = 0.

Note that f ∈ Lp(R2d,H) and |T | < ∞, then we can see that f ∈ L1(R2d,H)

by Hölder’s inequality. On the contrary, if f ∈ L1(R2d,H), then by inversion

formula we have that |f | ≤ ∫
Ω
|f̂ |Q dξ ≤ ‖f‖1 · |Ω| and ‖f‖p ≤ ‖f‖1 · |Ω| · |T |1/p.

From which we can know that f ∈ Lp(R2d,H). Hence the theorem applies

equally to Lp function.

Theorem 5.3 for the ordinary Fourier transform is due to Benedicks [33],

whose elegant proof, we reproduce for the quaternion Fourier transform below.

It relies on the following form of the Poissson summation formula.
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Lemma 5.1 (Poissson summation formula). If f ∈ L1(R2d,H), the series

φ(x1, x2) :=
∑

(k1,k2)∈Z2d

f(x1 + k1, x2 + k2)

converges in L1([0, 1]2d,H), then the quaternion Fourier series of φ is∑
(k1,k2)∈Z2d

e2πi k1·x1 f̂(k1, k2)e
2πj k2·x2 .

Proof. Since φ converges in L1([0, 1]2d,H), we can take the quaternion Fourier

series of φ,∫
[0,1]2d

e−2πi k1·x1

⎛⎝ ∑
(k1,k2)∈Z2d

f(x1 + k1, x2 + k2)

⎞⎠ e−2πj k2·x2 dx1dx2

=
∑

(k1,k2)∈Z2d

∫
[0,1]2d

e−2πi k1·x1f(x1 + k1, x2 + k2)e
−2πj k2·x2 dx1dx2

=
∑

(k1,k2)∈Z2d

∫
[0,1]2d

e−2πi k1·y1f(y1, y2)e
−2πj k2·y2 dy1dy2

=

∫
R2d

e−2πi k1·y1f(y1, y2)e
−2πj k2·y2 dy1dy2

= f̂(k1, k2).

So the quaternion Fourier series of φ is
∑

(k1,k2)∈Z2d e2πi k1·x1 f̂(k1, k2)e
2πj k2·x2 .

Proof of Theorem 5.3.

Proof. We may assume that |T | < 1 by replacing f(x) by f(cx) for some c > 0.

We have∫
[0,1]2d

∑
(k1,k2)∈Z2d

χΩ(ξ1 + k1, ξ2 + k2) dξ1dξ2 =

∫
R2d

χΩ(ξ1, ξ2) dξ1dξ2 = |Ω| < ∞,

∫
[0,1]2d

∑
(k1,k2)∈Z2d

χT (x1 + k1, x2 + k2) dx1dx2 =

∫
R2d

χT (x1, x2) dx1dx2 = |T | < 1.

These inequalities implies, respectively, that

(i) These exists E ⊆ [0, 1]2d with |E| = 1 such that
∑

χΩ(a + k) < +∞
for a := (a1, a2) ∈ E, and hence f̂(a + k) �= 0 for only finitely many

k := (k1, k2) if a ∈ E.
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(ii) There exists F ⊆ [0, 1]2d with |F | > 0 such that
∑

χT (x + k) = 0 for

x := (x1, x2) ∈ F , and hence f(x+ k) = 0 for k if x ∈ F .

Given a ∈ E, let

φa(x) =
∑

(k1,k2)∈Z2d

e−2πi a1·(x1+k1)f(x1 + k1,x2 + k2)e
−2πj a2·(x2+k2).

Since φa(x) ∈ L1([0,1]2d,H) and by Lemma 5.1, the quaternion Fourier trans-

form of φa is
∑

e2πi k1·x1 f̂(k1, k2)e
2πj k2·x2 . Since a ∈ E, φ̂a is a trigonometric

polynomial, thus φa is a trigonometric polynomial by inversion formula. A

trigonometric polynomial φa, however, cannot vanish on a set of positive mea-

sure, unless it vanishes identically. We conclude that φa = 0 for almost all

a ∈ E, whence φ̂a(a+ k) = 0 for a ∈ E and k ∈ Z
2d. In other word, f̂ = 0 a.e.,

so f = 0.

From Theorem 5.3 we obtain a qualitative statement about the quaternion

Fourier transform: either f ≡ 0 or |supp f | · |supp f̂ | = ∞.

We summarize the main results in Table 1.

Table 1: The uncertainty principle.

Theorem Condition Conclusion

Pitt’s inequality f ∈ S(R2d,H)

∫
R2d

|ξ|−α|f̂(ξ)|2Q dξ ≤ Cα

∫
R2d

|x|α|f(x)|2 dx,

Cα := πα [Γ ((2d− α)/4) Γ ((2d+ α)/4)] .

Logarithmic f ∈ S(R2d,H)

∫
R2d

ln |x| |f(x)|2 dx+

∫
R2d

ln |ξ| |f̂(ξ)|2Q dξ

uncertainty ≥ D

∫
R2d

|f(x)|2 dx,

principle D := ψ(2d/4)− ln(π), ψ :=
d

dt
[ln Γ(t)].

Heisenberg-Weyl’s f ∈ L2(R2d,H) Δfx ·Δfξ ≥ d

2π
.

uncertainty principle with ‖f‖22 = 1

Uncertainty principle 0 �= f ∈ L2(R2d,H) |T | · |Ω| ≥ (1− εT − εΩ)
2.

of Donoho and Stark is εT -concentrated,

f̂ is εΩ-concentrated.
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6. Conclusion

Firstly, we constructed the multiple dimensional quaternion Fourier trans-

form by employing a symmetric rewriting only in terms of i and j. Secondly,

some important properties of the quaternion Fourier transform such as Plancherel’s

theorem, Inversion formula, quaternion Fourier transform of |x|−α were demon-

strated. Thirdly, the Heisenberg-Weyl’s uncertainty principle associated with

the quaternion Fourier transform was established by using logarithmic estimate

obtained from a sharp form of Pitt’s inequality. Finally the uncertainty princi-

ple of Donoho and Stark associated with the quaternion Fourier transform was

formulated by applying the concept of εΩ-concentrated and Hilbert-Schmidt

operator.
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