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ABSTRACT. Let ζn(z) :=
∑n

k=1

1

kz
, z = x + iy, be the nth partial sum

of the Riemann zeta function and aζn(z)
:= inf {�z : ζn(z) = 0}. In this paper

we prove that aζn(z)
= − log 2

log(n−1
n−2 )

+ Δn, n > 2, with lim supn→∞ |Δn| ≤ log 2.
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1 Introduction

Let

ζn(z) =

n∑
k=1

1

kz
, n ≥ 2, z = x+ iy,

be the nth partial sum of the Riemann zeta function ζ(z), and aζn(z)
:=

inf {�z : ζn(z) = 0}. By introducing the functions Gn(z) := ζn(−z) =
∑n

k=1 k
z

and defining bGn(z) := sup {�z : Gn(z) = 0}, n ≥ 2, it is immediate that

aζn(z)
= −bGn(z), for all n ≥ 2. (1.1)

Our objective is to give an estimate of bGn(z) and, by using (1.1), we will then
have that of aζn(z)

. It is evident that the numbers bGn(z) are not easy to
calculate. However, the real solutions of the equations Gn−1(x) = nx, denoted
by βGn(z), which are unique by virtue of Pólya and Szëgo’s formula [4, p. 46],
are much more easy to determine. Both numbers satisfy

bGn(z) ≤ βGn(z), for all n ≥ 2, (1.2)

as an immediate consequence of the fact that the half-plane
{
z : Re z > βGn(z)

}
is a zero-free region of Gn(z), for every n ≥ 2; for details, see [2, Theorem 3.1]
and [3, Lemma 1]. Furthermore, for n prime, it is not hard to prove that
bGn(z) = βGn(z). A proof of this property can be found in [2, Theorem 4.10]
and [3, Proposition 5].

Concerning the converse of (1.2), we have the very important contribution of
Balazard and Velásquez Castañón [1, Proposition 1, (ii)], where it was proved
the existence of some n0 such that

βGn(z) ≤ bGn(z), for all n ≥ n0.

Therefore, the numbers bGn(z) and βGn(z) are equal from some positive integer
n0. Consequently, to give an estimate of aζn(z)

it is enough to give an estimate
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of βGn(z). In fact, this process was followed by the aforementioned authors in
[1] to prove that

lim
n→∞

aζn(z)

n
= − log 2 (1.3)

or, equivalently, aζn(z)
= −n log 2 + o(n), by using the property

βGn(z)

n
→ log 2, n → ∞,

obtained by Borwein, Fee, Ferguson and van der Waall in [2, p. 25], under

the implicit assumption of the existence of limit of the sequence
(

βGn(z)

n

)
n≥2

.

There, after the proof of Theorem 3.1, the authors proposed (stated without
proof) for βGn(z) the estimate (n− 3/2) log 2.

In the present paper we have proved (Theorem 2) that

aζn(z)
= − log 2

log
(

n−1
n−2

) +Δn, with lim sup
n→∞

|Δn| ≤ log 2. (1.4)

To do it we have followed the process consisting of, first, to demonstrate (The-
orem 1) that

βGn(z) =
log 2

log
(

n−1
n−2

) +Δn, with lim sup
n→∞

|Δn| ≤ log 2, (1.5)

second, to apply [1, Proposition 1, (ii)] to deduce that the preceding estimate
is also true for bGn(z) and, third, to use (1.1) to obtain (1.4). Furthermore,

as we consider relevant the existence of limit of the sequence
(

βGn(z)

n

)
n≥2

, we

have given a proof of such a fact. Then, since limn→∞(n + a) log
(

n−1
n−2

)
= 1,

for any a ∈ R, our estimate (1.5) first confirms the validity of the estimate
(n − 3/2) log 2, computationally settled by Borwein et al. in [2]. Second, (1.4)
implies, in particular, (1.3) and it reveals the secret of the term o(n) in the
expression aζn(z)

= −n log 2 + o(n) of Balazard and Velásquez Castañón in [1].

2 The numbers βGn(z)

By defining

βGn(z) := sup {x ∈ R : Gn−1(x) ≥ nx} , Gn(z) := ζn(−z), n ≥ 2,

since the equation Gn−1(x) = nx, by virtue of Pólya and Szëgo’s formula
[4, p. 46], has only one real solution, it follows that βGn(z) is such a solution.
Hence, for every n > 2, one has

Gn−1(x) > nx, if x < βGn(z)

Gn−1(x) = nx, if x = βGn(z)

Gn−1(x) < nx, if x > βGn(z)

. (2.1)
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Lemma 1
(
βGn(z)

)
n≥2

is an unbounded strictly increasing sequence of positive

terms, except βG2(z) = 0. Furthermore,

bGn(z) ≤ βGn(z) ≤ n− 2, for all n ≥ 2,

where the first inequality becomes an equality for all prime numbers and in the
second the equality is only attained for n = 2, 3.

Proof. For n = 2, by defining the function G1(x) as identically equal to 1, it
is immediate that βG2(z) = 0, so suppose n > 2. From (2.1), it trivially follows
that βGn(z) ≥ 1, for all n > 2 . Now, again by (2.1), let us consider the equalities

Gn(βGn+1(z)) = (n+ 1)
βGn+1(z) and Gn−1(βGn(z)) = nβGn(z) . By dividing by

(n+ 1)
βGn+1(z) and nβGn(z) , respectively, we have

(
1

n+ 1

)βGn+1(z)

+

(
2

n+ 1

)βGn+1(z)

+ . . .+

(
n

n+ 1

)βGn+1(z)

= 1

and (
1

n

)βGn(z)

+

(
2

n

)βGn(z)

+ . . .+

(
n− 1

n

)βGn(z)

= 1.

By subtracting we get

(
1

n+ 1

)βGn+1(z)

+

[(
2

n+ 1

)βGn+1(z)

−
(
1

n

)βGn(z)

]
+ . . .+

[(
n

n+ 1

)βGn+1(z)

−
(
n− 1

n

)βGn(z)

]
= 0,

which means that, for some k, with 2 ≤ k ≤ n,[(
k

n+ 1

)βGn+1(z)

−
(
k − 1

n

)βGn(z)

]
< 0.

That is, (
k

n+ 1

)βGn+1(z)

<

(
k − 1

n

)βGn(z)

, (2.2)

which is equivalent to saying that

(
n+ 1

k

)βGn+1(z)

>

(
n

k − 1

)βGn(z)

.

By taking the logarithm,

βGn+1(z) log

(
n+ 1

k

)
> βGn(z) log

(
n

k − 1

)
, (2.3)
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and, since n
k−1 > n+1

k > 1, we obtain

βGn+1(z)

βGn(z)

>
log

(
n

k−1

)
log

(
n+1
k

) > 1.

This proves that the sequence
(
βGn(z)

)
n≥2

is strictly increasing.

By supposing that
(
βGn(z)

)
n≥2

is bounded, there exists a positive integer

M such that
βGn(z) ≤ M , for all n ≥ 2,

which means, from (2.1), that Gn−1(M) ≤ nM or, equivalently,

Gn−1(M)

nM
≤ 1, for all n ≥ 2. (2.4)

However, it is well known thatGn−1(M) = 1+2M+. . .+(n−1)M is a polynomial
in n of degree M + 1 with a positive leader coefficient. Therefore, by taking
the limit in (2.4) when n tends to ∞, we are led to a contradiction because the
left-hand side of (2.4) tends to ∞ whereas its right-hand side is equal to 1. In

consequence, the sequence
(
βGn(z)

)
n≥2

is unbounded.

A proof of the fact that bGn(z) ≤ βGn(z), for all n ≥ 2, and that the
equality is attained for n prime can be found in [2, Theorem 3.1 and 4.10] and
[3, Lemma 1 and Proposition 5]. Then it only remains to demonstrate that

βGn(z) ≤ n− 2, for all n ≥ 2, (2.5)

where the equality it reached only for n = 2, 3. To do it, we firstly see, after
an easy computation, that the first values of βGn(z) are βG2(z) = 0, βG3(z) = 1,
βG4(z) ≈ 1.7 and βG5(z) ≈ 2.4. Then (2.5) follows for 2 ≤ n ≤ 5. Hence, assume
n > 5. Second, we observe, because (2.1), that the inequality (2.5) is equivalent
to

Gn−1(n− 2) ≤ nn−2, for all n ≥ 2. (2.6)

We proceed to give a proof of (2.5) by induction. Hence, we assume (2.5) is true
for a fixed n > 5 and we must prove

βGn+1(z) ≤ n− 1. (2.7)

We firstly claim that

2 (n− 1)
n−2

< nn−2, for all n > 5, (2.8)

which is equivalent to saying that 2 <
(

n
n−1

)n−2

, for all n > 5. Indeed, for

n = 6, by direct computation, one has 2 <
(
6
5

)4
, so (2.8) follows for n = 6. Now,

we are going to prove that the sequence

((
n

n−1

)n−2
)

n≥6

is strictly increasing,
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which means that (2.8) will be proved for any n > 5. It is immediate that((
n

n−1

)n−2
)

n≥6

is strictly increasing if and only if

n− 2

n− 1
<

log(n+ 1)− log n

log n− log(n− 1)
. (2.9)

To show (2.9), we define the functions f(x) := log(x + 1) and g(x) := log x,
x > 0. By applying Cauchy’s mean value theorem, there exists some x with
n− 1 < x < n such that

log(n+ 1)− log n

log n− log(n− 1)
=

f(n)− f(n− 1)

g(n)− g(n− 1)
=

f ′(x)
g′(x)

=
x

x+ 1
.

Then
n− 2

n− 1
<

log(n+ 1)− log n

log n− log(n− 1)
if and only if

n− 2

n− 1
<

x

x+ 1
,

where the last inequality is true if and only if n−2 < x. Therefore, (2.9) follows
because x is so that n− 1 < x < n. Consequently, (2.8) is true. Now, from the
hypothesis of induction for a fixed n > 5, one has βGn(z) < βGn(z) +1 ≤ n− 1.

Then, from (2.1), it follows that Gn−1(n− 1) < nn−1. Since (2.8) is true for all
n > 5, we have 2nn−1 < (n+ 1)n−1. Therefore,

Gn(n− 1) = Gn−1(n− 1) + nn−1 < 2nn−1 < (n+ 1)n−1,

which means, by (2.1), that βGn+1(z) < n− 1. That is, (2.7) is true. Finally, by
using the principle of induction, (2.5) follows and then the proof is completed.

Corollary 1 The sequence
(

βGn(z)

n

)
n≥2

is strictly increasing and upper bounded

by 1. Then
(

βGn(z)

n

)
n≥2

has limit and it is log 2.

Proof. From Lemma 1, βGn(z) ≤ n− 2 for all n ≥ 2. Then,
βGn(z)

n ≤ n−2
n < 1,

for all n ≥ 2. That is,
(

βGn(z)

n

)
n≥2

is upper bounded by 1. On the other

hand, since βG2(z) = 0, βG3(z) = 1, the inequality
βGn(z)

n <
βGn+1(z)

n+1 trivially
follows for n = 2, so assume that n > 2. The above inequality is equivalent to
βGn+1(z)

βGn(z)
> n+1

n . Then, in order to prove it, we firstly observe that, from (2.3),

for any n > 2 there exists some k, with 2 ≤ k ≤ n, such that

βGn+1(z)

βGn(z)

>
log

(
n

k−1

)
log

(
n+1
k

) =
log n− log(k − 1)

log(n+ 1)− log k
.

By considering the functions f(x) := log(x + 1) and g(x) := log x, x > 0, used
to prove (2.9), and applying Cauchy’s mean value theorem, there exists some x,
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with k − 1 < x < n, such that

log n− log(k − 1)

log(n+ 1)− log k
=

g′(x)
f ′(x)

=
x+ 1

x
.

Then, since x < n, one has x+1
x > n+1

n , so from the two previous relations it

follows that
βGn+1(z)

βGn(z)
> n+1

n . Therefore, the sequence
(

βGn(z)

n

)
n≥2

is strictly

increasing and, in consequence, as we have just proved that it is bounded, there

exists a := lim n→∞
βGn(z)

n , with 0 < a ≤ 1. By (2.1), Gn−1(βGn(z)) = nβGn(z) .

Then, dividing by nβGn(z) , we have(
1

n

)βGn(z)

+

(
2

n

)βGn(z)

+ . . .+

(
n− 1

n

)βGn(z)

= 1, for every n ≥ 2,

or equivalently

1 =

[(
n− 1

n

)n] βGn(z)
n

+

[(
n− 2

n

)n] βGn(z)
n

+ . . .+

[(
n− (n− 1)

n

)n] βGn(z)
n

.

Since limn→∞
(
n−j
n

)n
= e−j , by taking the limit in the above expression and

noting that a := lim n→∞
βGn(z)

n , we obtain

1 = e−a + e−2a + . . . ,

where the series is convergent because 0 < e−a < 1. As its sum is 1
ea−1 , it must

satisfy 1 = 1
ea−1 , which implies that a = log 2. This proves the corollary.

Lemma 2 For every n ≥ 2, define mn :=
[
βGn(z)

]
+1, where

[
βGn(z)

]
denotes

the integer part of βGn(z). Then mn + 1 > βGn+1(z).

Proof. We firstly note that in spite of the sequence
(
βGn(z)

)
n≥2

is strictly

increasing, by virtue of Lemma 1, it could be
[
βGn(z)

]
=

[
βGn+1(z)

]
for some

n. In this case the lemma trivially follows, so from now on we assume that[
βGn(z)

]
<

[
βGn+1(z)

]
. As we have just seen in the proof of the preceding

lemma, the first few values of βGn(z) are βG2(z) = 0, βG3(z) = 1, βG4(z) ≈ 1.7
and βG5(z) ≈ 2.4. Then the lemma is true for 2 ≤ n ≤ 5. Hence, assume n > 5.
Since by the definition of integer part is βGn(z) < mn, in particular, one has

βGn(z) < mn + 1. Then, by (2.1), Gn−1(mn + 1) < nmn+1. The proof will be
completed if we can prove that

2nmn+1 < (n+ 1)mn+1, for all n > 5. (2.10)

If this were true, then we will have

Gn(mn + 1) = Gn−1(mn + 1) + nmn+1 < (n+ 1)mn+1,
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and, by (2.1), it implies that mn + 1 > βGn+1(z). To prove inequality (2.10),
we observe that it is of type (2.8), so we will show it of a similar form. Indeed,
for n = 6, βG6(z) ≈ 3.1, then m6 = 4. Now, a simple computation shows that

2 <
(
7
6

)5
, so (2.10) follows for n = 6. Then, by proving that the sequence((

n+ 1

n

)mn+1
)

m≥6

is strictly increasing, it will eventually demonstrate (2.10). Hence, we are going
to show (

n+ 1

n

)mn+1

<

(
n+ 2

n+ 1

)mn+1+1

, for all n > 5. (2.11)

Indeed, as it has been done in (2.9), by taking the logarithm and applying
Cauchy’s mean value theorem to the functions f(x) := log(x + 1) and g(x) :=
log x, x > 0, on the interval [n, n+ 1], there exists x with n < x < n + 1 such
that (2.11) is equivalent to prove that

mn + 1

mn+1 + 1
<

x

x+ 1
.

But this inequality is true by noting that n < x and mn ≤ n− 2 for all n > 5,
by virtue of Lemma 1. Now the proof is completed.

Corollary 2 For all n ≥ 2, one has βGn+1(z) − βGn(z) < 2.

Proof. By the definition of integer part we have[
βGn(z)

]
≤ βGn(z) <

[
βGn(z)

]
+ 1 := mn.

By applying the above lemma, mn + 1 > βGn+1(z). Then we get

βGn+1(z) − βGn(z) < mn + 1−
[
βGn(z)

]
= 2,

so the corollary follows.

Lemma 3 lim infn→∞
(
βGn+1(z) − βGn(z)

)
≥ log 2 .

Proof. In Lemma 1 we have proved, see (2.2) and (2.3), that given n > 2, there
exists some k, with 2 ≤ k ≤ n, such that

βGn+1(z) log

(
n+ 1

k

)
> βGn(z) log

(
n

k − 1

)
.

By writing n
k−1 = n+1

k . nk
(n+1)(k−1) and substituting in the preceding inequality

one has

βGn+1(z) log

(
n+ 1

k

)
> βGn(z)

[
log

(
n+ 1

k

)
+ log

(
nk

(n+ 1)(k − 1)

)]
.
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That is, for every integer n > 2, there exists k = kn (k depends on n), with
2 ≤ kn ≤ n, such that

βGn+1(z) − βGn(z) > βGn(z)

log
(

nkn

(n+1)(kn−1)

)
log

(
n+1
kn

)

=
βGn(z)

n
n
log

(
nkn

(n+1)(kn−1)

)
log

(
n+1
kn

) . (2.12)

Now, we claim that the sequence (kn)n>2 is unbounded. Indeed, if (kn)n>2 were
bounded, then clearly

lim
n→∞n

log
(

nkn

(n+1)(kn−1)

)
log

(
n+1
kn

) = ∞,

which is impossible by noting that, on one hand, βGn+1(z) − βGn(z) is upper

bounded, by virtue of Corollary 2, and, on the other hand, limn→∞
βGn(z)

n =
log 2, from Corollary 1. Thus, the claim follows. We write

n
log

(
nkn

(n+1)(kn−1)

)
log

(
n+1
kn

)

=
n

n+1
n+1−kn

kn−1

log
(
1 + n+1−kn

kn

) log

(
1 +

1
(kn−1)(n+1)

n+1−kn

) (kn−1)(n+1)
n+1−kn

=
n

n+1

kn−1
kn

log

(
1 + 1

kn
n+1−kn

) kn
n+1−kn

log

(
1 +

1
(kn−1)(n+1)

n+1−kn

) (kn−1)(n+1)
n+1−kn

.

(2.13)

Now, since for x > 0 is always x > log(1 + x), we have

1

log
(
1 + 1

x

)x =
1
x

log
(
1 + 1

x

) > 1,
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so, by using this property for x = kn

n+1−kn
in the last equality of (2.13), we get

n
log

(
nkn

(n+1)(kn−1)

)
log

(
n+1
kn

) >
n

n+1
kn−1
kn

log

(
1 +

1
(kn−1)(n+1)

n+1−kn

) (kn−1)(n+1)
n+1−kn

=
nkn

(n+ 1) (kn − 1)
log

(
1 +

1
(kn−1)(n+1)

n+1−kn

) (kn−1)(n+1)
n+1−kn

> log

(
1 +

1
(kn−1)(n+1)

n+1−kn

) (kn−1)(n+1)
n+1−kn

, (2.14)

because nkn

(n+1)(kn−1) > 1 by taking into account that 2 ≤ kn ≤ n. Then, from

(2.12), (2.13) and (2.14), we obtain

βGn+1(z) − βGn(z) >
βGn(z)

n
log

(
1 +

1
(kn−1)(n+1)

n+1−kn

) (kn−1)(n+1)
n+1−kn

. (2.15)

Since we have just proved that (kn)n>2 is unbounded, it implies that (kn−1)(n+1)
n+1−kn→ ∞ and then

lim
n→∞ log

(
1 +

1
(kn−1)(n+1)

n+1−kn

) (kn−1)(n+1)
n+1−kn

= 1.

Therefore, by applying Corollary 1, the limit of the right-hand side of (2.15) is
log 2. Consequently,

lim inf
n→→∞

(
βGn+1(z) − βGn(z)

)
≥ log 2.

3 The numbers γn

We define the numbers

γn :=
log 2

log
(

n
n−1

) , n ≥ 2.

Lemma 4 For every n ≥ 2 one has βGn(z) ≤ γn, and the sequence (γn)n≥2 is

strictly increasing. Furthermore, limn→∞(γn − γn−1) = limn→∞
γn

n = log 2.

Proof. Since βG2(z) = 0, βG3(z) = 1 and γ2 = 1, γ3 := log 2

log( 3
2 )

> 1, the first

part of the lemma trivially follows for n = 2, 3. Then we assume n > 3. By

(2.1), for any x ∈
[
βGn−1(z), βGn(z)

]
, one has

1 + 2x + . . .+ (n− 2)
x ≤ (n− 1)

x
, (3.1)
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because βGn−1(z) ≤ x, and

1 + 2x + . . .+ (n− 2)
x
+ (n− 1)

x ≥ nx, (3.2)

because x ≤ βGn(z). By adding (n− 1)
x
to (3.1), from (3.2), one deduces

nx ≤ 1 + 2x + . . .+ (n− 2)
x
+ (n− 1)

x ≤ 2 (n− 1)
x
.

That is,
(

n
n−1

)x

≤ 2 or, equivalently, x ≤ log 2

log( n
n−1 )

= γn for any x of the

interval
[
βGn−1(z), βGn(z)

]
. Hence, it follows that βGn(z) ≤ γn. Now, we define

f(x) := log 2
log x , x > 1. This function is strictly decreasing. Then, as n

n−1 < n−1
n−2 ,

by taking into account the definition of γn, one has γn = f( n
n−1 ) > f(n−1

n−2 ) =
γn−1, which proves the first part of the lemma. To show the second part, by
using the mean value theorem applied on the function f(x), we have

f(n−1
n−2 )− f( n

n−1 )
n−1
n−2 − n

n−1

= f ′(x), for some x ∈
(

n

n− 1
,
n− 1

n− 2

)
.

Then we obtain

γn − γn−1 = −f ′(x)
(
n− 1

n− 2
− n

n− 1

)
=

log 2

x (log x)
2 .

1

(n− 2) (n− 1)
. (3.3)

Now, noticing n
n−1 < x < n−1

n−2 , the limit in (3.3), when n → ∞, exists and it is
immediate that

lim
n→∞

(
γn − γn−1

)
= log 2.

Finally, according to the definition of γn, it is clear that limn→∞
γn

n exists and
it is equal to log 2. Then the lemma follows.

Lemma 5 Let γn := log 2

log( n
n−1 )

and Gn(x) := 1 + 2x + . . .+ nx, n ≥ 2. Then,

lim
n→∞ inf

Gn−1(γn−1)

nγn−1
≥ 1.

Proof. An elementary computation gives us G2(γ2)
3γ2

= 1, G3(γ3)
4γ3

≈ 1.018 and
G4(γ4)
5γ4

≈ 1.009, then the lemma follows for n = 3, 4 and 5, so assume n > 5.

We fix an integer k such that 2 < k < n− 2. Then, noticing γn−1 := log 2

log(n−1
n−2 )

,

we have

Gn−1(γn−1)

nγn−1

=
1 + 2γn−1 + . . .+ (n− 1− k)γn−1 + . . .+ (n− 2)γn−1 + (n− 1)γn−1

nγn−1

=
( 1
n−2 )

γn−1
+ . . .+ (n−1−k

n−2 )
γn−1

+ (n−k
n−2 )

γn−1
+ . . .+ (n−3

n−2 )
γn−1

+ 3

( n
n−2 )

γn−1
.

(3.4)
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By defining

An,k :=

(
1

n− 2

)γn−1

+

(
2

n− 2

)γn−1

+ . . .+

(
n− 1− k

n− 2

)γn−1

=(n− 2)
n−1−k∑
j=1

1

n− 2

(
j

n− 2

)γn−1

,

is immediate that

An,k > (n− 2)

∫ n−1−k
n−2

0

xγn−1dx =
n− 2

γn−1 + 1

(
n− 1− k

n− 2

)γn−1+1

. (3.5)

Then, from (3.4) and (3.5), we can write

Gn−1(γn−1)

nγn−1
=

An,k + (n−k
n−2 )

γn−1
+ . . .+ (n−3

n−2 )
γn−1

+ 3

( n
n−2 )

γn−1
> Bn,k (3.6)

where, Bn,k, for every n > 5 and k satisfying 2 < k < n− 2, is defined as

Bn,k :=

n−2
γn−1+1 (

n−1−k
n−2 )

γn−1+1

+ (n−k
n−2 )

γn−1
+ . . .+ (n−3

n−2 )
γn−1

+ 3

( n
n−2 )

γn−1
. (3.7)

For each fixed integer j, from the second part of Lemma 4, it is immediate that

lim
n→∞

n− 2

γn−1 + 1
=

1

log 2

and

lim
n→∞

(
n− 1− j

n− 2

)γn−1+1

= lim
n→∞

(
n− 1− j

n− 2

)γn−1

=
1

2j−1
.

Then by taking the limit in (3.7) when n → ∞, for any fixed k > 2, we have

lim
n→∞Bn,k =

1
log 2

1
2k−1 + 1

2k−2 + . . .+ 1
2 + 1 + 2

4
=

1
log 2

1
2k−1 + 4(1− 1

2k
)

4
=

1 +
1

log 2

1

2k+1
− 1

2k
. (3.8)

Then, noticing (3.8), from (3.6), we get

lim
n→∞ inf

Gn−1(γn−1)

nγn−1
≥ lim

n→∞ inf Bn,k = lim
n→∞Bn,k = 1 +

1

log 2

1

2k+1
− 1

2k
.

Therefore, since k is arbitrary,

lim
n→∞ inf

Gn−1(γn−1)

nγn−1
≥ 1

and consequently the lemma follows.
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4 The estimate of aζn(z) := inf {�z : ζn(z) = 0}
Theorem 1 Let

(
βGn(z)

)
n>2

be the sequence of the real solutions of the equa-

tions Gn−1(x) = nx, n > 2. Then

βGn(z) =
log 2

log
(

n−1
n−2

) +Δn,

with lim supn→∞ |Δn| ≤ log 2.

Proof. We firstly say that for those n such that
Gn−1(γn−1)

nγn−1 ≥ 1, the theorem

follows. Indeed, by (2.1),
Gn−1(γn−1)

nγn−1 ≥ 1 is equivalent to saying that γn−1 ≤
βGn(z). From Lemma 4, βGn(z) ≤ γn. Then we have γn−1 ≤ βGn(z) ≤ γn, so
we can write βGn(z) = γn−1 +Δn, with Δn := βGn(z) − γn−1. Since 0 ≤ Δn ≤
γn − γn−1, by virtue of the second part of Lemma 4, we get

lim sup
n→∞

|Δn| ≤ lim sup
n→∞

(
γn − γn−1

)
= lim

n→∞
(
γn − γn−1

)
= log 2.

Then, noting that γn−1 = log 2

log(n−1
n−2 )

, the theorem is proved. Therefore, from now

on, we suppose
Gn−1(γn−1)

nγn−1 < 1. For every integer n > 2, we define

gn(x) :=
Gn−1(x)

nx
, x ≥ 0,

which is a convex and strictly decreasing one-to-one function which maps the
interval [0,∞) onto (0, n− 1], and, from (2.1), satisfies gn(βGn(z)) = 1. Then
the inverse function of gn(x), denoted by hn(x), maps (0, n− 1] onto [0,∞)
and shares the aforementioned properties with gn(x). By Lemma 1, βGn(z) <
βGn+1(z) for all n > 2. Thus, let βn be the mean point of each interval[
βGn(z), βGn+1(z)

]
. Since hn (1) = βGn(z), for all n > 2, and hn(x) is strictly

decreasing, there exists an εn > 0 such that β
n
= hn (1− εn). Now we claim

that ε := inf {εn : n > 2} is a positive number. Otherwise, there exists a sub-
sequence of (εn)n, denoted by the same form, such that εn → 0 and then by
continuity of every hn(x ) at x = 1 we would have

lim
n→∞(β

n
− βGn(z)) = lim

n→∞ (hn (1− εn)− hn (1)) = 0.

But, this is impossible because β
n
− βGn(z) = 1

2

(
βGn+1(z) − βGn(z)

)
and, by

taking into account Lemma 3, it does not tend to 0. Hence, the claim follows.
Now, given the above ε, for every n > 2 let us define β

n,ε := hn (1− ε). Then,
since ε ≤ εn for all n > 2, noting that hn(x) is strictly decreasing and that βn

is the mean point of the interval
[
βGn(z), βGn+1(z)

]
, one has

βGn(z) < β
n,ε ≤ β

n
< βGn+1(z). (4.1)
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By using Lemma 5, and under the assumption made on
Gn−1(γn−1)

nγn−1 , there exists
n0 such that

1− ε ≤ Gn−1(γn−1)

nγn−1
< 1, for all n ≥ n0.

From the definition of gn(x), the above inequalities are equivalent to write

1− ε ≤ gn(γn−1) < 1, for all n ≥ n0.

Then, as hn(x) is strictly decreasing,

hn(1− ε) ≥ γn−1 > hn(1), for all n ≥ n0,

and, noticing hn(1− ε) = β
n,ε and hn(1) = βGn(z), we get

β
n,ε ≥ γn−1 > βGn(z). (4.2)

Finally, from (4.1) and (4.2), we obtain

βGn(z) < γn−1 ≤ β
n,ε ≤ β

n
< βGn+1(z). (4.3)

Now consider two cases:
Case 1: γn < βGn+1(z). Then, from (4.3) and Lemma 4, we have

βGn(z) < γn−1 < γn < βGn+1(z) ≤ γn+1, (4.4)

and, by writing

βGn+1(z) = γn + (βGn+1(z) − γn) = γn +Δn,

with Δn := βGn+1(z) − γn, from (4.4), one has that 0 ≤ Δn ≤ γn+1 − γn. Now,
by using the second part of Lemma 4, the theorem follows.

Case 2: βGn+1(z) ≤ γn. Then from (4.3), we get

βGn(z) < γn−1 < βGn+1(z) ≤ γn, (4.5)

so we can express

βGn+1(z) = γn −
(
γn − βGn+1(z)

)
= γn +Δn

with Δn := −
(
γn − βGn+1(z)

)
. By (4.5), |Δn| = γn − βGn+1(z) < γn − γn−1,

and then in this case the theorem also follows by applying the second part of
Lemma 4. This completes the proof.

Theorem 2 Let aζn(z)
:= inf {�z : ζn(z) = 0}. Then

aζn(z)
= − log 2

log
(

n−1
n−2

) +Δn, n > 2, (4.6)

with lim supn→∞ |Δn| ≤ log 2.

Proof. From [1, Proposition 1, (ii)], there exists n0 such that

bGn(z) := sup {�z : Gn(z) = 0} = βGn(z), n ≥ n0.

By using (1.1), we get aζn(z)
= −bGn(z), for all n ≥ 2, so aζn(z)

= −βGn(z) for
n ≥ n0. Now, by applying Theorem 1, the estimate (4.6) follows.

13



References

[1] M. Balazard and O. Velásquez Castañón, Sur l’infimum des parties réelles
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