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In this paper, we consider the diffusive competition problem with a free boundary 
and sign-changing intrinsic growth rate in heterogeneous time-periodic environment, 
consisting of an invasive species with density u and a native species with density v. 
We assume that v undergoes diffusion and growth in RN , and u exists initially in a 
ball Bh0 (0), but invades into the environment with spreading front {r = h(t)}. The 
effect of the dispersal rate d1, the initial occupying habitat h0, the initial density 
u0 of invasive species u, and the parameter μ (see (1.3)) on the dynamics of this 
free boundary problem are studied. A spreading–vanishing dichotomy is obtained 
and some sufficient conditions for the invasive species spreading and vanishing are 
provided. Moreover, when spreading of u happens, some rough estimates of the 
spreading speed are also given.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the dynamical behavior of the solution (u(t, r), v(t, r), h(t)) (r = |x|, x ∈ R
N , 

N ≥ 2) to the following reaction–diffusion problem with a free boundary in heterogeneous time-periodic 
environment

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = u (m1(t, r) − b1(t, r)u− c1(t, r)v) , t > 0, 0 < r < h(t),
vt − d2Δv = v (m2(t, r) − c2(t, r)u− b2(t, r)v) , t > 0, 0 < r < ∞,

ur(t, 0) = vr(t, 0) = 0, u(t, r) = 0, t > 0, h(t) ≤ r < ∞,

h′(t) = −μur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

v(0, r) = v0(r), 0 ≤ r < ∞,

(1.1)
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where Δu = urr + N−1
r ur, u(t, r) and v(t, r) represent the population densities of two competing species; 

the positive constants d1 and d2 are dispersal rates of u and v, respectively; the initial functions u0 and v0

satisfy

{
u0 ∈ C2([0, h0]), u′

0(0) = u0(h0) = 0, u0 > 0 in [0, h0),
v0 ∈ C2([0,∞)) ∩ L∞([0,∞)), v′0(0) = 0, v0 ≥ 0 in [0,∞), and v0 �≡ 0;

(1.2)

mi(t, r), bi(t, r), ci(t, r) represent the intrinsic growth rates of species, self-limitation of species and compe-
tition between species, respectively, and bi(t, r), ci(t, r) satisfy the following conditions

(H1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) mi ∈ (C α
2 ,1 ∩ L∞)([0,∞) × [0,∞)), bi, ci ∈ (C α

2 ,α ∩ L∞)([0,∞) × [0,∞)) for some α ∈ (0, 1)
and are T-periodic in t for some T > 0;

(ii) there are positive Hölder continuous and T-periodic functions bi,∗, b
∗
i , ci,∗, c

∗
i (i = 1, 2)

such that bi,∗(t) ≤ bi(t, r) ≤ b∗i (t), ci,∗(t) ≤ ci(t, r) ≤ c∗i (t), ∀t ∈ [0, T ], r ∈ [0,∞).

Ecologically, this problem describes the dynamical process of a new competitor invading into the habitat 
of a native species in heterogeneous time-periodic environment. The first species u, which exists initially 
on a region Bh0(0), stands for the species in the very early stage of its introduction, and disperses through 
random diffusion over an expanding front h(t), evolving according to the free boundary condition

h′(t) = −μur(t, h(t)), (1.3)

where μ is a given positive constant. The second species (v) is native, which undergoes diffusion and growth 
in the entire available habitat. The equation (1.3) is a special case of the well-known Stefan condition, 
which has been used in the modeling of a number of applied problems [4,6,38]. We remark that similar free 
boundary conditions to (1.3) have been used in ecological models over bounded spatial domains in several 
earlier papers, for example, [30,32–34].

In the absence of a native species, namely v ≡ 0, (1.1) reduces to the following diffusive logistic problem 
with a free boundary in the heterogeneous time-periodic environment

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − d1Δu = u(m1(t, r) − b1(t, r)u), t > 0, 0 < r < h(t),
ur(t, 0) = 0, u(t, r) = 0, t > 0, h(t) ≤ r < ∞,

h′(t) = −μur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

(1.4)

which has been studied in [10], where the authors showed the spreading–vanishing dichotomy in time-periodic 
environment, and also determined the spreading speed. The diffusive logistic problem with a free boundary 
in the heterogeneous time-periodic environment was also studied in [5,42]. In the special case that m1 and 
b1 are independent of time t, problem (1.4) was studied in [9,12,28,41,51] etc. In particular, Du and Lin [12]
are the first ones to study the spreading–vanishing dichotomy of species in the homogeneous environment 
of dimension one, which has been extended in [9] to the situation of higher dimensional space in a radially 
symmetric case. They showed that, if the diffusion is slow or the occupying habitat is large, the invasive 
species can establish itself successfully in the underlying habitat, while the species will die out if the initial 
value of the species is small. Other theoretical advances can also be seen in [2,11,14,16,25–27,37,39] and the 
references therein.

Recently, Du and Lin [13] considered the following two-species model in higher dimensional domain with 
radically symmetry
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = u(a1 − b1u− c1v), t > 0, 0 < r < h(t),
vt − d2Δv = v(a2 − b2u− c2v), t > 0, 0 < r < ∞,

ur(t, 0) = vr(t, 0) = 0, u(t, r) = 0, t > 0, h(t) ≤ r < ∞,

h′(t) = −μur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

v(0, r) = v0(r), 0 ≤ r < ∞,

(1.5)

where u and v represent the invasive and native species, respectively, and ai, bi, ci (i = 1, 2) are positive 
constants. They showed that a spreading–vanishing dichotomy holds when u is a superior competitor, and 
the dynamical behavior of (1.5) is similar to that of (1.5) in a fixed domain when u is an inferior competitor. 
Moreover, when spreading of the invasive species u happens, some estimates of the spreading speed were 
also given. We remark that similar Lotka–Volterra competitive type problems with a free boundary were 
introduced in [19,20,44,46,47]. Other studies of Lotka–Volterra prey–predator problems with a free boundary 
can be found in [30,40,45,50].

The problem (1.1) is a variation of the following diffusive Lotka–Volterra competition problem

{
ut − d1Δu = u(m1(t, x) − b1(t, x)u− c1(t, x)v), t > 0, x ∈ S,

vt − d2Δv = v(m2(t, x) − c2(t, x)u− b2(t, x)v), t > 0, x ∈ S,
(1.6)

which is often considered over a bounded spatial domain S = Ω ⊂ R
N with suitable boundary conditions 

or considered over the entire space S = R
N . For example, the long-time behavior of the bounded domain 

problem (1.6) with no-flux boundary conditions is well known. The reader may refer to [3,8,17,21–23,31,35]
and the references therein for further details. For the entire space problem (1.6), when the functions mi, 
bi, ci (i = 1, 2) are positive constants, to describe the invasion and spreading phenomenon, there have been 
many interesting studies on positive traveling waves and asymptotic spreading speed (see [18,29,48]); when 
the functions mi, bi, ci (i = 1, 2) are independent of x, the authors in [1,49] studied the existence and 
stability of time periodic traveling waves. As said in [13], the long-time behavior of the Cauchy problem of 
(1.6) is still poorly understood. To investigate the dynamics of a new competitive species that invades the 
habitat of a resident species in heterogeneous time-periodic environment (seasonal or daily variations, for 
example), it is necessary to study the free boundary model (1.1).

Motivated by the works [28,41,51], we will divide the environment into two different circumstances: strong 
heterogeneous environment and weak heterogeneous environment, where if mi(t, r) satisfies the following 
assumptions

(Hs) mi(t, r) ∈ C1([0, T ] × [0,∞)) ∩ L∞([0, T ] × [0,∞)), i = 1, 2,

and m1(t, ·) changes sign in (0, h0), m2(t, ·) changes sign in (0,∞),

then it is called strong heterogeneous environment for population, and if mi(t, r) satisfies

(Hw) mi(t, r) ∈ C1([0, T ] × [0,∞)), and 0 < mi ≤ mi(t, r) ≤ m̄i < ∞ for (t, r) ∈ [0, T ] × [0,∞), i = 1, 2,

with mi and m̄i being positive constants, then it is called weak heterogeneous environment for population.
The aim of this paper is to study the dynamics of problem (1.1) in the strong and weak heterogeneous 

time-periodic environment. We employ d1, h0, μ and u0(r) as variable parameters to study problem (1.1)
when mi(t, r) (i = 1, 2) satisfy conditions (H1)–(H3). We derive a spreading–vanishing dichotomy and some 
sufficient conditions to ensure that spreading and vanishing occur, which yield sharp criteria governing 
spreading and vanishing both in the strong and weak heterogeneous time-periodic environment. These results 
give the following biological explanations: slow diffusion, large occupying habitat and big initial density of 
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invasive species u are benefit for the invasive species to survive in the new environment. Moreover, the 
estimate of the asymptotic spreading speed is given. Unlike the non-periodic case, the principle eigenvalue 
of time-periodic eigenvalue problem (see (3.1) later) is not monotone with respect to dispersal rate (see 
Theorem 2.2 in [24]), so we only consider two particular cases for d1: slow diffusion and fast diffusion 
(see Corollary 3.1 later).

After this work was completed, we found the preprint by Wang [43]. There, two types of diffusive com-
petition model with a free boundary in heterogeneous time-periodic environment of dimension one are 
considered (see (1.2) and (1.3) in [43]). The author obtained the spreading–vanishing dichotomy and sharp 
criteria for spreading and vanishing by selecting h0 and μ as variable parameters. When N = 1, bi(t, r) = 1
and ci(t, r) = const. (i = 1, 2), our model (1.1) becomes into (1.3) in [43] with αi = 0 and βi = −1. Except 
the difference between equations we dealing with, we also consider the effect of the dispersal rate d1 and 
the initial data u0 on spreading and vanishing under suitable assumptions.

The rest of our paper is arranged as follows. In Section 2, we exhibit some fundamental results, including 
the global existence and uniqueness of the solution of problem (1.1) and the comparison principle in the 
moving domain; An eigenvalue problem under some suitable assumptions is given in Section 3; In Section 4, 
we investigate the dynamics of problem (1.1) in heterogeneous environment. Section 5 is devoted to studying 
the asymptotic spreading speed of the free boundary when spreading of the invasive species u occurs.

2. Preliminaries

In this section, we give some fundamental results on solutions of problem (1.1) under (H1).

Lemma 2.1. For any given (u0, v0) satisfying (1.2), problem (1.1) admits a unique solution (u, v, h) defined 
for all t > 0 and

(u, v, h) ∈ C(1+α)/2,1+α(D) × C(1+α)/2,1+α(D∞) × C1+α/2([0,∞)).

Moreover,

‖u‖C(1+α)/2,1+α(D) + ‖v‖C(1+α)/2,1+α(D∞) + ‖h‖C1+α/2([0,T ]) ≤ C,

where D = {(t, r) ∈ R
2 : t ∈ [0, ∞), r ∈ [0, h(t))}, D∞ = {(t, r) ∈ R

2 : t ∈ [0, ∞), r ∈ [0, ∞)}, C only 
depend on h0, α, ‖u0‖C2([0,h0]), ‖v0‖C2([0,∞)).

Proof. The proof is a simple modification of those of Theorems 2.1, 2.4 and 2.5 in [13]. So we briefly describe 
the main steps.

Step 1. The local existence and uniqueness of positive solution of (1.1).
The essential idea of this proof is to construct a contraction mapping, and the desired result would then 

follow from the contraction mapping theorem. This step can be obtained by exactly the same argument 
used in the proof of Theorem 2.1 in [13].

Step 2. The local solution can be extended to all t > 0.
To show this conclusion, we need the following estimates: if (u, v, h) is a solution of (1.1) defined for 

t ∈ (0, T0) for some T0, then there exist constants C1, C2 and C3 independent of T0, such that

0 < u(t, r) ≤ C1, for t ∈ (0, T0), 0 < r < h(t),

0 < v(t, r) ≤ C2, for t ∈ (0, T0), 0 < r < ∞,

0 < h′(t) ≤ C3, for t ∈ (0, T0). (2.1)
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Now we prove (2.1). Applying the strong maximum principle, we immediately obtain that u(t, r) > 0, 
ur(t, h(t)) < 0 for (t, r) ∈ (0, T0) × [0, h(t)) and v(t, r) > 0 for (t, r) ∈ (0, T0) × [0, ∞). Using the 
Stefan condition (1.3), we have h′(t) > 0 for t ∈ (0, T0). Since bi(t, r) (i = 1, 2) satisfy (H1), then 
min[0,T ]×[0,∞) bi(t, r) > 0. Using the maximum principle again, we can obtain C1 and C2, more precisely,

u(t, r) ≤ C1 := max
{ ‖m1‖L∞([0,T ]×[0,∞))

min[0,T ]×[0,∞) b1(t, r)
, ‖u0‖L∞([0,h0])

}
, for t ∈ (0, T0) and r ∈ [0, h(t))

and

v(t, x) ≤ C2 := max
{ ‖m2‖L∞([0,T ]×[0,∞))

min[0,T ]×[0,∞) b2(t, r)
, ‖v0‖L∞([0,∞))

}
, for t ∈ (0, T0) and r ∈ [0,∞).

To get C3. We define

ΩM = {(t, r) : 0 < t < T0, h(t) −M−1 < r < h(t)},

and construct an auxiliary function

ū(t, r) = C1[2M(h(t) − r) −M2(h(t) − r)2].

We will choose M > 1
h0

so that ū(t, r) ≥ u(t, r) holds over ΩM .
Direct calculations yield that, for (t, r) ∈ ΩM ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ūt − d1Δū = (2MC1h
′(t) + 2(n−1)d1C1M

r )[1 −M(h(t) − r)] + 2d1C1M
2

≥ 2d1C1M
2 ≥ u(m1 − b1u− c1v),

ū(t, h(t) −M−1) = C1 ≥ u(t, h(t) −M−1),
ū(t, h(t)) = 0 = u(t, h(t)),

provided M2 ≥ ‖m1‖L∞([0,T ]×[0,∞))
2d1

. On the other hand, we calculate

ūr(0, r) = −2C1M [1 −M(h0 − r)] ≤ −C1M, for r ∈ [h0 − (2M)−1, h0].

Therefore, by choosing

M := max

⎧⎨
⎩ 1

h0
,

√
‖m1‖L∞([0,T ]×[0,∞))

2d1
,
4‖u0‖C1([0,h0])

3C1

⎫⎬
⎭ ,

we will have ūr(0, r) ≤ ur(0, r) for r ∈ [h0 − (2M)−1, h0]. Since ū(0, h0) = u0(h0) = 0, the above inequality 
implies

ū(0, r) ≥ u0(r), for r ∈ [h0 − (2M)−1, h0].

Moreover, for r ∈ [h0 −M−1, h0 − (2M)−1], we have

ū(0, r) ≥ 3
4C1, u0(r) ≤ ‖u0‖C1([0,h0])M

−1 ≤ 3
4C1.

Therefore, u0(r) ≤ ū(0, r) for r ∈ [h0 − (2M)−1, h0].



Q.L. Chen et al. / J. Math. Anal. Appl. 433 (2016) 1594–1613 1599
Applying the maximum principle to ū − u over ΩM gives that u(t, r) ≤ ū(t, r) for (t, r) ∈ ΩM , which 
indicates that

−2MC1 = ūr(t, h(t)) ≤ ur(t, h(t)), h′(t) = −μur(t, h(t)) ≤ C3 := 2MC1μ for t ∈ (0, T0).

The rest of the proof is the same as in [13].
Step 3. The solution of (1.1) exists and is unique for all t > 0.
This conclusion can be proved by exactly the same argument used in the proof of Theorem 2.4 in [13]. �
In what follows, we discuss the comparison principle for (1.1). The proof is similar to that of Lemma 2.6 

in [13], so we omit the details.

Lemma 2.2 (The comparison principle). Suppose that T0 ∈ (0, ∞), h, ̄h ∈ C1([0, T0]), u ∈ C(D∗
T0

) ∩C1,2(D∗
T0

)
with D∗

T0
:= {(t, r) ∈ R

2 : t ∈ (0, T0], r ∈ (0, h(t))}, ū ∈ C(D∗∗
T0

) ∩ C1,2(D∗∗
T0

) with D∗∗
T0

:= {(t, r) ∈ R
2 : t ∈

(0, T0], r ∈ (0, ̄h(t))}, v, ̄v ∈ (L∞ ∩ C)((0, T0] × [0, ∞)) ∩ C1,2((0, T0) × [0, ∞)) and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūt − d1Δū ≥ ū(m1(t, r) − b1(t, r)ū− c1(t, r)v), 0 < t ≤ T0, 0 < r < h̄(t),
ut − d1Δu ≤ u(m1(x) − b1(t, r)u− c1(t, r)v̄), 0 < t ≤ T0, 0 < r < h(t),
v̄t − d2Δv̄ ≥ v̄(m2(t, r) − c2(t, r)u− b2(t, r)v̄), 0 < t ≤ T0, 0 < r < ∞,

vt − d2Δv ≤ v(m2(t, r) − c2(t, r)ū− b2(t, r)v), 0 < t ≤ T0, 0 < r < ∞,

ūr(t, 0) = v̄r(t, 0) = 0, ū(t, r) = 0, 0 < t ≤ T0, h̄(t) ≤ r < ∞,

ur(t, 0) = vr(t, 0) = 0, u(t, r) = 0, 0 < t ≤ T0, h(t) ≤ r < ∞,

h′(t) ≤ −μur(t, h(t)), h̄′(t) ≥ −μūr(t, h(t)), 0 < t ≤ T0,

h(0) ≤ h0 ≤ h̄(0),
u(0, r) ≤ u0(r) ≤ ū(0, r), 0 ≤ r ≤ h0,

v(0, r) ≤ v0(r) ≤ v̄(0, r), 0 ≤ r ≤ ∞.

Let (u, v, h) be the unique solution of (1.1), then

h(t) ≤ h̄(t) in (0, T0], u(t, r) ≤ ū(t, r), v(t, r) ≤ v(t, r) for (t, r) ∈ (0, T0] × [0,∞),

h(t) ≥ h(t) in (0, T0], u(t, r) ≤ u(t, r), v(t, r) ≤ v̄(t, r) for (t, r) ∈ (0, T0] × [0,∞).

3. Some eigenvalue problems

In this section, we mainly study an eigenvalue problem and analyze the property of its principle eigenvalue. 
These results play an important role in later sections.

Consider the following eigenvalue problem
⎧⎪⎨
⎪⎩

ϕt − dΔϕ = m(t, |x|)ϕ + λϕ, in [0, T ] ×BR,

ϕ = 0, on [0, T ] × ∂BR,

ϕ(0, x) = ϕ(T, x) in BR.

(3.1)

It is well known [3,23] that (3.1) possesses a unique principal eigenvalue λ1 = λ1(d, m, R, T ), which corre-
sponds to a positive eigenfunction ϕ ∈ C1,2([0, T ] × BR). Moreover, ϕ(t, x) is radially symmetric in x for 
all t.

In what follows, we present some further properties of λ1 = λ1(d, m, R, T ). We now discuss the dependence 
of λ1 on d for fixed R.



1600 Q.L. Chen et al. / J. Math. Anal. Appl. 433 (2016) 1594–1613
Lemma 3.1. (See [5].) Let m(t, |x|) be functions satisfying (H1). Then

(i) λ1(·, m, R, T ) → − maxB̄R

1
T

∫ T

0 m(t, |x|)dt as d → 0;
(ii) λ1(·, m, R, T ) → +∞ as d → +∞.

Corollary 3.1. (See [5].) (i) If maxB̄R

1
T

∫ T

0 m(t, |x|)dt > 0, then there exists a constant d∗ = d∗(m, R, T ) ∈
(0, +∞) such that λ1(d, m, R, T ) ≤ 0 for 0 < d ≤ d∗; (ii) There exists a constant d∗ = d∗(m, R, T ) ∈ (0, +∞)
such that λ1(d, m, R, T ) > 0 for d > d∗.

We assume

(H2) 0 < m∗(t) := lim inf
|x|→∞

m(t, |x|) ≤ m∗(t) := lim sup
|x|→∞

m(t, |x|) < ∞,

where m∗(t), m∗(t) ∈ C
α
2 ([0, T ]) are positive T -periodic functions. Clearly, this condition allows m(t, |x|) to 

change sign in a bounded domain with respect to x.

Lemma 3.2. (See [5].) Let m(t, |x|) be functions satisfying (H1). Then

(i) λ1(d, m, ·, T ) is a strictly decreasing continuous function in (0, +∞) for fixed d, m, T , and λ1(d, ·, R, T )
is a strictly decreasing continuous function in the sense that λ1(d, k1(t, r), R, T ) < λ1(d, k2(t, r), R, T ) if 
the two T-periodic continuous functions k1(t, r) and k2(t, r) satisfy k1(t, r) ≥, �≡ k2(t, r) on [0, T ] ×BR;

(ii) λ1(d, m, R, T ) → +∞ as R → 0;
(iii) limR→∞ λ1(d, m, R, T ) < 0 under the assumption (H2).

Corollary 3.2. (See [5].) There exists a threshold h∗ = h∗(d, m, T ) ∈ (0, ∞] such that λ1(d, m, R, T ) ≤ 0 for 
R ≥ h∗ and λ1(d, m, R, T ) > 0 for 0 < R < h∗. Moreover, h∗ ∈ (0, ∞) if the assumption (H2) holds. If we 
replace R in (3.1) by h(t), then it follows from the strict increasing monotony of h(t) and Lemma 3.2 that 
λ1(d, m, h(t), T ) is a strictly monotone decreasing function of t.

4. Strong and weak heterogeneous time-periodic environments

In this section, we will give the dynamics of problem (1.1) with mi(t, |x|) (i = 1, 2) satisfying (H1) and 
(H2). The condition (H2) means that we only consider (1.1) in some cases of strong and weak heterogeneous 
time-periodic environments, where the growth rates of species satisfy some positivity conditions at infinity. 
To get an entire analysis, we need to add the following assumption:

(H3) m1,∗(t) − c∗1(t)V ∗(t) > 0,

where V∗(t), V ∗(t) are the unique positive solutions of the T -periodic ordinary differential problems
{
V ′(t) = V (m2,∗(t) − b∗2(t)V ),
V (0) = V (T ),

(4.1)

and {
V ′(t) = V (m∗

2(t) − b2,∗(t)V ),
V (0) = V (T ),

(4.2)

respectively.
Throughout this section, (H1)–(H3) are assumed to hold even if they are not explicitly mentioned.
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4.1. Spreading–vanishing dichotomy

In this subsection, we prove the spreading–vanishing dichotomy. In view of (2.1), we see that the free 
boundary h(t) is a strictly increasing function with respect to time t. Thus, h∞ := limt→∞ h(t) is well 
defined. We first prove that if the habitat of the invasive species is limited in the long run, then the invasive 
species u vanishes.

Lemma 4.1. If h∞ < ∞, then lim supt→∞ ‖u(t, ·)‖C([0,h(t)]) = 0 and limk→∞ v(t +kT, r) = V (t, r) uniformly 
in any bounded subset of [0, T ] × [0, ∞), where V (t, |x|) is the unique positive solution of

{
Vt − d2ΔV = V (m2(t, |x|) − b2(t, |x|)V ), (t, x) ∈ [0, T ] × R

N ,

V (0, |x|) = V (T, |x|).
(4.3)

Proof. Since m2 satisfies the assumption (H2), Theorem 1.3 in [36] is available, and then the existence and 
uniqueness of V (t, |x|) can be established.

We now argue indirectly, that is, we assume that lim supt→∞ ‖u(t, ·)‖C([0,h(t)]) = δ > 0. Then there exists 
a sequence (tn, rn) ∈ [0, ∞) × [0, h(tn)] with tn → ∞ as n → ∞ such that u(tn, rn) ≥ δ

2 for all n ∈ N . 
Since 0 ≤ rn < h∞ < ∞, there exists a subsequence of {rn}, denoted by itself, and r0 ∈ [0, h∞], such that 
rn → r0 as n → ∞. We claim that r0 < h∞. If this is not true, then rn − h(tn) → 0 as n → ∞. According 
to Lemma 2.1 and the above assumption, we have

∣∣∣∣ δ

2(rn − h(tn))

∣∣∣∣ ≤
∣∣∣∣ u(tn, rn)
rn − h(tn)

∣∣∣∣ =
∣∣∣∣u(tn, rn) − u(tn, h(tn))

rn − h(tn)

∣∣∣∣ = |ur(tn, r̄n)| ≤ C,

where r̄n ∈ (rn, h(tn)). It is a contradiction since rn − h(tn) → 0. Without loss of generality, we assume 
rn → r0 ∈ [0, h∞ − σ] as n → ∞ for some σ > 0.

Define

un(t, r) = u(t + tn, r) and vn(t, r) = v(t + tn, r) for (t, r) ∈ Dn,

with Dn := {(t, r) ∈ R
2 : t ∈ (−tn, ∞), r ∈ [0, h(t + tn)]}.

Letting tn = t̄n+n̄T with t̄n ∈ [0, T ) and n̄ ∈ N, passing to a subsequence if necessary, we may assume that 
t̄n → t0 as n → ∞. Since h∞ < ∞, we have limt→∞ h′(tn) = 0. It follows from Lemma 2.1 that {(un, vn)}
is bounded, by the parabolic regularity, we have, up to a subsequence if necessary, (un, vn) → (ū, ̄v) as 
n → ∞, with (ū, ̄v) satisfying

⎧⎪⎨
⎪⎩

ūt − d1Δū = ū(m1(t + t0, r) − b1(t + t0, r)ū− c1(t + t0, r)v̄), t ∈ (−∞,∞), 0 < r < h∞,

v̄t − d2Δv̄ = v̄(m2(t + t0, r) − c2(t + t0, r)ū− b2(t + t0, r)v̄), t ∈ (−∞,∞), 0 < r < ∞,

ū(t, h∞) = 0, t ∈ (−∞,∞).

Since ū(0, r0) = limn→∞ un(0, rn) = limn→∞ u(tn, rn) ≥ δ
2 , by the maximum principle, we have ū > 0 in 

(−∞, ∞) × (0, h∞). Thus, we can apply the Hopf boundary lemma to conclude that σ0 := ūr(0, h∞) < 0, 
which implies that ur(tni

, h(tni
)) = ∂runi

(0, h(tni
)) ≤ σ0

2 < 0 for all large i, and hence h′(tni
) ≥ −μσ0

2 > 0
for all large i. Since h′(t) → 0 as t → ∞ under the condition h∞ < ∞, this is a contradiction.

Next we prove that limn→∞ v(t + nT, r) = V (t, r) uniformly in any bounded subset of [0, T ] × [0, ∞). In 
what follows, we use a squeezing argument developed in [15] to prove our result. The proof can be done by 
modifying the arguments of [9,15,28]. Due to both time-periodic and sign-changing are considered here, we 
provide the details of proof for the reader’s convenience.
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Since limt→∞ ‖u(t, ·)‖C([0,h(t)]) = 0 for t ≥ 0 and u(t, r) = 0 for r ≥ h(t), then for any small ε > 0, there 
exists T0 > 0 such that 0 < c2(t, r)u(t, r) ≤ ‖c2‖L∞([0,T ]×[0,∞))u(t, r) ≤ ε for any t ≥ T0 and r ∈ [0, ∞). For 
any L > 0, we consider the following problem

⎧⎪⎨
⎪⎩

zt − d2Δz = z(m2(t, r) − ε− b2(t, r)z), (t, r) ∈ [0, T ] × [0, L],
zr(t, 0) = 0, z(t, L) = 0,
z(0, r) = z(T, r).

(4.4)

Since m2(t, r) satisfies the condition (H2), we have Σd2 = {R > 0 : λ1(d2, m2, R, T ) = 0} �= ∅ by 
Corollary 3.2. Thus, we may assume L0 ∈ Σd2 , and then λ1(d2, m2, L, T ) < 0 for any L > L0. Since 
λ1(d2, k(t, r), R, T ) is a strictly decreasing continuous function in k(t, r), then λ1(d2, m2 − ε, L, T ) < 0 for 
small ε. Therefore, for any L > L0, (4.4) has a unique positive solution (see [3,23]), denoted by zεL.

We next consider the following boundary blow-up problem
⎧⎪⎨
⎪⎩

wt − d2Δw = w(m2(t + t∗, |x| + r∗) − b2(t + t∗, |x| + r∗)w), (t, x) ∈ [0, T ] ×BL,

w(t + t∗, L + r∗) = ∞,

w(t∗, r + r∗) = w(t∗ + T, r + r∗),
(4.5)

where r∗ is a constant satisfying r∗ > L0. It follows from Lemma 3.1 in [36] that (4.5) has a unique positive 
solution wL(t + t∗, r + r∗) := w∗

L(t, r) for any L � 1.
Now we choose a decreasing sequence {εn} and an increasing sequence {Ln} such that εn > 0, Ln > L0

for all n and εn → 0, Ln → ∞ as n → ∞. Clearly, both zεnLn
and wLn

converge to V (t, r) as n → ∞, and 
for each n, there exists Tn > T0 such that h(t) ≥ Ln for t ≥ Tn. Since Ln > L0, from [3,23] we know that 
the following problem

⎧⎪⎨
⎪⎩

Zt − d2ΔZ = Z(m2(t, r) − εn − b2(t, r)Z), t ≥ Tn, 0 < r < Ln,

Zr(t, 0) = Z(t, Ln) = 0, t ≥ Tn,

Z(Tn, r) = v(Tn, r), 0 < r < Ln,

admits a unique positive solution Zn(t, r) satisfying

Zn(t + kT, r) → zεnLn
(t, r) uniformly for (t, r) ∈ [0, T ] × [0, Ln] as k → ∞.

Moreover, it follows from the comparison principle that

Zn(t, r) ≤ v(t, r) for t ≥ Tn and r ∈ [0, Ln].

Hence

lim inf
k→∞

v(t + kT, r) ≥ zεnLn
(t, r) uniformly for (t, r) ∈ [0, T ] × [0, Ln].

By letting n → ∞ in the above inequality, we attain

lim inf
k→∞

v(t + kT, r) ≥ V (t, r) locally uniformly for (t, r) ∈ [0, T ] × [0,∞). (4.6)

Similarly one can prove

lim sup v(t + kT, r) ≤ wLn
uniformly for (t, r) ∈ [0, T ] × [0, Ln],
k→∞
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which implies (by sending n → ∞)

lim sup
k→∞

v(t + kT, r) ≤ V (t, r) locally uniformly for (t, r) ∈ [0, T ] × [0,∞). (4.7)

The desired result would then follow directly (4.6) and (4.7). �
Lemma 4.2. If h∞ = ∞, then U(t, r) ≤ lim infk→∞ u(t +kT, r) ≤ lim supk→∞ u(t +kT, r) ≤ Û(t, r) uniformly 
in any compact subset of [0, T ] × [0, ∞), where U(t, |x|) is the unique positive solution of

{
Ut − d1ΔU = U(m1(t, |x|) − b1(t, |x|)U − c1(t, |x|)V (t, |x|)), (t, x) ∈ [0, T ] × R

N ,

U(0, |x|) = U(T, |x|),
(4.8)

and Û(t, |x|) is the unique positive solution of

{
Ût − d1ΔÛ = Û(m1(t, |x|) − b1(t, |x|)Û), (t, x) ∈ [0, T ] × R

N ,

Û(0, |x|) = Û(T, |x|),
(4.9)

where V (t, |x|) satisfies (4.3).

Proof. By Theorem 1.4 in [36], we have

0 < V∗(t) ≤ lim inf
r→∞

V (t, r) ≤ lim sup
r→∞

V (t, r) ≤ V ∗(t), (4.10)

where V∗(t) and V ∗(t) are defined in (4.1) and (4.2).
Moreover, since (H3) holds, then we know that

0 < m1,∗(t) − c∗1(t)V ∗(t) ≤ lim inf
|x|→∞

(m1(t, |x|) − c1(t, |x|)V (t, |x|))

≤ lim sup
|x|→∞

(m1(t, |x|) − c1(t, |x|)V (t, |x|)) ≤ m∗
1(t) − c1,∗(t)V∗(t). (4.11)

Therefore, Theorem 1.3 in [36] is available, and then the existence and uniqueness of U(t, |x|) can be 
established.

Define

v̄(t, r) = (1 + He−Kt)V (t, r), (4.12)

where V satisfies (4.3) and K, H are positive constants to be determined later. Direct calculations yield

v̄t − d2Δv̄ − v̄(m2(t, r) − b2(t, r)v̄) = He−KtV (t, r)[−K + (1 + He−Kt)b2(t, r)V (t, r)]

≥ He−KtV (t, r)[−K + b2(t, r)V (t, r)]

and v̄(0, r) = (1 +H)V (0, r). Since the positive time-periodic functions b2(t, r) and V (t, r) satisfy (H1) and 
(4.10) for any t ∈ [0, T ], then we have min[0,T ]×[0,∞) b2(t, r) > 0 and min[0,T ]×[0,∞) V (t, r) > 0, and thus we 
can choose

K = 1 min b2(t, r) min V (t, r), 1 + H = max
{ ‖v0‖L∞([0,∞))

, 1
}

(4.13)
2 [0,T ]×[0,∞) [0,T ]×[0,∞) min[0,∞) V (0, r)
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such that

v̄t − d2Δv̄ − v̄(m2(t, r) − b2(t, r)v̄) ≥ He−KtV (t, r)[−K + b2(t, r)V (t, r)] ≥ 0

and v̄(0, r) = (1 +H)V (0, r) ≥ ‖v0‖L∞([0,∞)) ≥ v0(r). By the comparison principle, we have v(t, r) ≤ v̄(t, r).
Since h∞ = ∞ and limk→∞ v̄(t + kT, r) = limk→∞(1 + He−K(t+kT ))V (t + kT, r) = limk→∞(1 +

He−K(t+kT ))V (t, r) = V (t, r) uniformly in [0, T ] × [0, ∞), then for any given 0 < ε � 1 and L � 1, 
there exists kε ∈ N such that h(t + kT ) > L and v(t + kT, r) ≤ v̄(t + kT, r) ≤ V (t, r) + ε for any k ≥ kε and 
(t, r) ∈ [0, T ] × [0, L].

Let uε
L(t, r) be the unique solution of

⎧⎪⎨
⎪⎩

ut − d1Δu = u(m1(t, r) − c1(t, r)(V (t, r) + ε) − b1(t, r)u), t ≥ kεT, 0 < r < L,

ur(t, 0) = 0 = u(t, L), t ≥ kεT,

u(kεT, r) = u(kεT, r), 0 < r < L.

The comparison principle implies u(t + kT, r) ≥ uε
L(t + kT, r) for k ≥ kε and (t, r) ∈ [0, T ] × [0, L]. Since 

L � 1, we can deduce that uε
L(t +kT, r) → Uε

L(t, r) as k → ∞, where Uε
L(t, r) is the unique positive periodic 

solution of⎧⎪⎨
⎪⎩

ut − d1Δu = u(m1(t, r) − c1(t, r)(V (t, r) + ε) − b1(t, r)u), t ∈ [0, T ], 0 < r < L,

ur(t, 0) = 0 = u(t, L), t ∈ [0, T ],
u(0, r) = u(T, r), 0 < r < L.

Hence, lim infk→∞ u(t + kT, r) ≥ Uε
L(t, r) uniformly in [0, T ] × [0, L]. Similar as before, we know that 

limL→∞ Uε
L(t, r) = Uε(t, r) uniformly in any compact subset of [0, T ] × [0, ∞), where Uε(t, r) is the unique 

positive solution of

{
ut − d1Δu = u(m1(t, r) − c1(t, r)(V (t, r) + ε) − b1(t, r)u), (t, r) ∈ [0, T ] × (0,∞),
u(0, r) = u(T, r).

Letting ε → 0, it follows that lim infk→∞ u(t + kT, r) ≥ U(t, r) uniformly in any compact subset of [0, T ] ×
[0, ∞), where U(t, r) satisfies (4.8).

On the other hand, since v(t, r) is positive by (2.1), we know that u(t, r) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − d1Δu ≤ u (m1(t, r) − b1(t, r)u) , t > 0, 0 < r < h(t),
ur(t, 0) = 0, u(t, r) = 0, t > 0, h(t) ≤ r < ∞,

h′(t) = −μur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0.

Now we consider the following problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ūt − d1Δū = ū (m1(t, r) − b1(t, r)ū) , t > 0, 0 < r < h̄(t),
ūr(t, 0) = 0, ū(t, r) = 0, t > 0, h̄(t) ≤ r < ∞,

h̄′(t) = −μur(t, h̄(t)), t > 0,
h̄(0) = h0, ū(0, r) = u0(r), 0 ≤ r ≤ h0.

(4.14)

It follows from the comparison principle that

0 ≤ u(t, r) ≤ ū(t, r) and h(t) ≤ h̄(t) for t ≥ 0, 0 ≤ r < h(t). (4.15)
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Since h∞ = ∞, then we have h̄∞ = ∞. By Lemma 4.2 in [5], we have limk→∞ ū(t +kT, r) = Û(t, r) uniformly 
in any compact subset of [0, T ] × [0, ∞), where Û(t, r) is defined in (4.9). Thus, lim infk→∞ v(t + kT, x) ≤
Û(t, x) uniformly in any compact subset of [0, T ] × [0, ∞), which completes the proof of Lemma 4.2. �

The following result gives a sufficient condition for spreading and an estimate of h∞ when h∞ < ∞.

Lemma 4.3. If h∞ < ∞, then h∞ ≤ h∗(d1, m1 − c1V, T ), where V (t, |x|) is the unique positive solution of 
(4.3).

Proof. By Corollary 3.2, we know that under the assumption (H3) there exists h∗ = h∗(d1, m1−c1V, T ) > 0
such that λ1(d1, h∗, m1 − c1V, T ) = 0.

We assume h∞ > h∗(d1, m1−c1V, T ) to get a contradiction. Note that h∗(d1, k, T ) is a strictly decreasing 
continuous function in k(t, |x|), and due to Lemma 4.1, it is easy to see that for any given 0 < ε � 1 there 
exists kε ∈ N such that for k ≥ kε

h(t + kT ) > max {h0, h
∗(d1,m1 − c1(V + ε), T )}

and v(t + kT, r) ≤ V (t, r) + ε, (t, r) ∈ [0, T ] × [0, h∞].

Set L = h(t + kT ), then L > h∗(d1, m1 − c1(V + ε), T ). Let u(t, r) be the unique positive solution of the 
following initial boundary value problem with fixed boundary

⎧⎪⎨
⎪⎩

ut − d1Δu = u(m1(t, r) − c1(t, r)(V (t, r) + ε) − b1(t, r)u), t ≥ kεT, 0 < r < L,

ur(t, 0) = 0 = u(t, L), t ≥ kεT,

u(kεT, r) = u(kεT, r), 0 < r < L.

By the comparison principle

u(t + kT, r) ≥ u(t + kT, r), for any k ≥ kε, (t, r) ∈ [0, T ] × [0, L].

Since λ1(d1, L, m1 − c1(V + ε), T ) < λ1(d1, h∗(d1, m1 − c1(V + ε), T ), m1 − c1(V + ε), T ) = 0, we know that 
u(t + kT, r) → u∗(t, r) as k → ∞ uniformly for r ∈ [0, L], where u∗(t, r) is the unique positive solution of

{
ut − d1Δu = u(m1(t, r) − c1(t, r)(V (t, r) + ε) − b1(t, r)u), (t, r) ∈ [0, T ] × [0, L],
u(0, r) = u(T, r).

Hence, lim infk→∞ u(t + kT, r) ≥ limk→∞ u(t + kT, r) = u∗(t, r) > 0 in [0, T ] × [0, L]. This contradicts to 
Lemma 4.1. �

According to Lemma 4.3, we directly have the following Corollary 4.1.

Corollary 4.1. If h0 > h∗(d1, m1 − c1V, T ), then h∞ = ∞.

Combining Lemmas 4.1–4.3, we have the following spreading–vanishing dichotomy theorem.

Theorem 4.1. Let (u(t, r), v(t, r), h(t)) be any solution of (1.1). Then, the following alternative holds:

Either (i) spreading: h∞ = ∞ and U(t, r) ≤ lim infk→∞ u(t +kT, r) ≤ lim supk→∞ u(t +kT, r) ≤ Û(t, r)
uniformly in any compact subset of [0, T ] × [0, ∞);
or (ii) vanishing: h∞ ≤ h∗(d1, m1−c1V, T ), lim supt→∞ ‖u(t, ·)‖C([0,h(t)]) = 0 and limk→∞ v(t +kT, r) =
V (t, r) uniformly in any bounded subset of [0, T ] × [0, ∞).



1606 Q.L. Chen et al. / J. Math. Anal. Appl. 433 (2016) 1594–1613
Remark 4.1. If we add the assumption m2,∗ − c∗2(t)U∗(t) > 0 in (H3), where U∗(t) is the unique positive 
solution of

{
U ′(t) = U(m∗

1(t) − b1,∗(t)U),
U(0) = U(T ),

then, using similar arguments as in Theorem 3.2 and Theorem 5.2 of [43], we have, if spreading occurs,

U∗(t, r) ≤ lim inf
k→∞

u(t + kT, r) ≤ lim sup
k→∞

u(t + kT, r) ≤ U∗(t, r),

V∗(t, r) ≤ lim inf
k→∞

v(t + kT, r) ≤ lim sup
k→∞

v(t + kT, r) ≤ V ∗(t, r)

uniformly in any bounded subset of [0, T ] × [0, ∞), where (U∗, V∗) and (U∗, V ∗) are positive T-periodic 
solutions of ⎧⎪⎨

⎪⎩
Ut − d1ΔU = U(m1(t, r) − b1(t, r)U − c1(t, r)V ), in [0, T ] × (0,∞),
Vt − d2ΔV = V (m2(t, r) − c2(t, r)U − b2(t, r)V ), in [0, T ] × (0,∞),
U(0, r) = U(T, r), V (0, r) = V (T, r), in [0,∞).

Here the existence of (U∗, V∗) and (U∗, V ∗) can be obtained similarly to the proof of Theorem 2.1 in [43].

4.2. Sharp criteria for spreading and vanishing

In this subsection, we will establish sharp criteria by selecting d1, h0, μ and u0(r) as varying parameters 
to distinguish the spreading–vanishing dichotomy for the invasive species u. The following Theorem 4.2
shows that the invader cannot establish itself and the native species always survives the invasion if 
λ1(d1, m1, h0, T ) > 0 and the initial density u0(r) is small.

Theorem 4.2. If λ1(d1, m1, h0, T ) > 0 and ‖u0‖C([0,h0)) is small, then h∞ < ∞, limt→∞ ‖u(t, ·)‖C([0,h(t)]) = 0
and limk→∞ v(t +kT, r) = V (t, r) uniformly in any bounded subset of [0, T ] × [0, ∞), where V (t, |x|) satisfies 
(4.3).

Proof. In (4.15), we have known that u(t, r) ≤ ū(t, r) and h(t) ≤ h̄(t) for t ≥ 0 and 0 ≤ r < h(t). According 
to Lemma 5.4 in [5], we have that limt→∞ ‖ū(t, ·)‖C([0,h̄(t)]) = 0 and h̄∞ < ∞ for t ≥ 0, which implies 
limt→∞ ‖u(t, ·)‖C([0,h(t)]) = 0 and h(t) < ∞ for t ≥ 0.

On the other hand, we can use the same way as the proof of Lemma 4.1 to deduce that limk→∞ v(t +
kT, r) = V (t, r) uniformly in any bounded subset of [0, T ] × [0, ∞) under the above assumptions. �

Actually, due to Lemma 5.5 in [5], we can prove a more general result by using the same arguments as 
Theorem 4.2.

Theorem 4.3. If λ1(d1, m1, h0, T ) > 0, then there exists μ0 > 0 depending on u0 such that when 0 < μ ≤ μ0, 
we have h∞ < ∞, limt→∞ ‖u(t, ·)‖C([0,h(t)]) = 0, and limk→∞ v(t +kT, r) = V (t, r) uniformly in any bounded 
subset of [0, T ] × [0, ∞), where V (t, |x|) is the unique positive solution of (4.3).

Corollary 4.2. Assume one of the following assumptions holds:

(i) The diffusion d1 is fast, i.e. d1 > d∗(m1, h0, T );
(ii) The initially occupying habitat h0 satisfies h0 < h∗(m1, h0, T ).
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Then λ1(d1, m1, h0, T ) > 0, and hence we can establish the corresponding vanishing results for cases (i) and
(ii) from Theorems 4.2 and 4.3.

Next, we show that the invasive species can spread successfully if λ1(d1, m1 − c1V, h0, T ) ≤ 0.

Theorem 4.4. If λ1(d1, m1 − c1V, h0, T ) ≤ 0, then h∞ = ∞, which implies spreading of the invasive species 
happens, where V (t, |x|) is the unique positive solution of (4.3).

Proof. First, we prove the case λ1(d1, m1 − c1V, h0, T ) < 0.
Recall that, in the proof of Lemma 4.2, we have limk→∞ v̄(t +kT, r) = V (t, r) uniformly in [0, T ] × [0, ∞). 

Then for any given 0 < ε � 1, there exists kε ∈ N with kε � 1 such that v(t + kT, r) ≤ v̄(t + kT, r) ≤
V (t, r) + ε for any k ≥ kε and (t, r) ∈ [0, T ] × [0, ∞).

Let ϕ1 be the corresponding eigenfunction of problem (3.1) with λ1 = λ1(d1, m1 − c1V, h0, T ).
Now we set

u(t, r) =
{
εϕ1(t, r), for t ≥ kεT, r ∈ [0, h(kεT )],
0, for t ≥ kεT, r > h(kεT ).

Choose ε > 0 so small that

λ1 + εb1ϕ1 + εεc1 ≤ 0 and εϕ1(kεT, r) ≤ u(kεT, r) for t ≥ kεT, r ∈ [0, h(kεT )].

Then direct calculation yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu− u(m1(t, r) − b1(t, r)u− c1(t, r)(V (t, r) + ε))
≤ (λ1 + εb1ϕ1 + εεc1)εϕ1 ≤ 0, t > kεT, 0 < r < h(kεT ),

ur(t, 0) = 0 = ur(t, 0), t > kεT,

u(t, r) = 0 ≤ u(t, r), t > kεT, r ≥ h(kεT ),
0 = h′

0 ≤ −μur(t, h0), t > kεT,

u(kεT, r) = εϕ1(kεT, r) ≤ u(kεT, r), 0 ≤ r ≤ h(kεT ).

By the comparison principle, we have

u(t, r) ≥ u(t, r) for (t, r) ∈ [kεT,∞) × [0, h(kεT )].

It follows that

lim inf
t→∞

‖u(t, ·)‖C([0,h(t)]) ≥ inf
t∈[0,T ]

εϕ1(t, 0) > 0.

According to Lemma 4.1, we see that h∞ = ∞. Hence, by Lemma 4.2, spreading happens.
While for λ1(d1, m1 − c1V, h0, T ) = 0, using the monotonically of h(t) (see Lemma 2.1), we can select 

t∗ > 0 such that h(t∗) > h0. It follows from Corollary 3.2 that λ1(d1, m1 − c1V, h(t∗), T ) < λ1(d1, m1 −
c1V, h0, T ) = 0. Therefore, after replacing h0 with h(t∗), the same method employed above can obtain the 
desired result again. �
Corollary 4.3. (1) If maxBh0

∫ T

0 (m1 − c1V )dt > 0, then d∗(m1 − c1V, h0, T ) exists such that h∞ = ∞ for 
d1 ≤ d∗(m1 − c1V, h0, T ).

(2) h∞ = ∞ for h0 ≥ h∗(d1, m1 − c1V, T ). The existence of h∗(d1, m1 − c1V, T ) is obtained by combining 
the fact
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0 < m1,∗(t) − c∗1(t)V ∗(t) ≤ lim inf
|x|→∞

(m1(t, |x|) − c1(t, |x|)V (t, |x|))

≤ lim sup
|x|→∞

(m1(t, |x|) − c1(t, |x|)V (t, |x|)) ≤ m∗
1(t) − c1,∗(t)V∗(t)

and (iii) in Lemma 3.2.

Remark 4.2. The condition maxBh0

∫ T

0 (m1 − c1V )dt > 0 in Corollary 4.3(1) means that some r0 ∈ Bh0

exists such that 
∫ T

0 m1(t, r0)dt is large enough. Corollary 4.3(1) suggests that if the mean growth rate of 
u over [0, T ] is large in a site of initial habitat, then spreading occurs, which coincides with the biological 
phenomenon.

Next, we give a sufficient condition for the spreading of u provided the principle eigenvalue λ1(d1, m1 −
c1V, h0, T ) > 0, where V (t, r) is the unique positive solution of (4.3).

Theorem 4.5. h∞ = ∞ if ‖u0‖C([0,h0]) is sufficiently large or if μ ≥ μ0, where μ0 depends on u0, v0

and h0.

Proof. Recall that in (4.11) we have

0 < m1,∗(t) − c∗1(t)V ∗(t) ≤ lim inf
|x|→∞

(m1(t, |x|) − c1(t, |x|)V (t, |x|))

≤ lim sup
|x|→∞

(m1(t, |x|) − c1(t, |x|)V (t, |x|)) ≤ m∗
1(t) − c1,∗(t)V∗(t).

Thus,

lim
L→∞

λ1(d1,m1 − c1V,
√
L, T ) < 0

by (iii) in Lemma 3.2. Therefore, there exists L∗ > 0, such that λ1(d1, m1 − c1V, 
√
L∗, T ) < 0.

Next, we construct a suitable lower solution to problem (1.1). First, we consider the following eigenvalue 
problem

⎧⎪⎨
⎪⎩

ϕt − d1ϕrr − 1
2ϕr = μϕ, 0 < t < T, 0 < r < 1,

ϕr(t, 0) = ϕ(t, 1) = 0, 0 < t < T,

ϕ(0, r) = ϕ(T, r), 0 < r < 1.

It follows from [3,23] that the above eigenvalue problem admits a unique principal eigenvalue μ1 with 
associated T -periodic eigenfunction ϕ > 0 in (t, r) ∈ [0, T ] × (0, 1) with ‖ϕ‖L∞([0,T ]×[0,1]) = 1. By the 
moving-plane argument in [7], we have ϕr(t, r) < 0 in (t, r) ∈ [0, T ] × (0, 1]. We claim that μ1 > 0. In fact, 
multiplying the equation of ϕ by ϕ and integrating over [0, T ] × (0, 1), we obtain

μ1

T∫
0

1∫
0

ϕ2drdt =
T∫

0

1∫
0

ϕtϕdrdt + d1

T∫
0

1∫
0

|ϕr|2drdt−
1
2

T∫
0

1∫
0

ϕrϕdrdt

= d1

T∫ 1∫
|ϕr|2drdt−

1
2

T∫ 1∫
ϕrϕ > 0.
0 0 0 0
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Define {
h(t) =

√
t + δ, t ≥ 0,

u(t, r) = M
(t+δ)lϕ(ξ, η), ξ =

∫ t

0 h−2(s)ds, η = r√
t+δ

, t ≥ 0, 0 ≤ r ≤
√
t + δ,

where δ, l, M are positive constants to be determined later. We are now in a position to show that (u, ̄v, h)
is a lower solution of problem (1.1), where v̄(t, x) = (1 + He−Kt)V (t, r) is defined in (4.12).

From Lemma 2.2, we have 0 ≤ u(t, r) ≤ C1 for t ≥ 0, r ∈ [0, h(t)], which implies that the parameters 
δ, l and M at least need to be chosen to satisfy u(t, r) ≤ C1. Since m1(t, r), b1(t, r), c1(t, r) and V (t, r)
are bounded, then there exists a positive constant Q such that m1(t, r) − b1(t, r)u− c1(t, r)v̄ ≥ −Q. Direct 
calculations yield

ut − d1Δu− u(m1(t, r) − b1(t, r)u− c1(t, r)v̄)

= − M

(t + δ)l+1 {lϕ(ξ, η) − (t + δ)[h−2(t)ϕξ(ξ, η) − rh−2(t)h′(t)ϕη(ξ, η)]

+ d(t + δ)[h−2(t)ϕηη(ξ, η) + h−2(t)(N − 1)
η

ϕη(ξ, η)]

− (t + δ)ϕ(ξ, η)(m1(x) − b1(t, r)u− c1(t, r)v̄)}

= − M

(t + δ)l+1 {lϕ(ξ, η) − (t + δ)h−2(t)[μ1ϕ(ξ, η) + 1
2ϕη(ξ, η)]

+ (t + δ)rh−2(t)h′(t)ϕη(ξ, η) −Q(t + δ)ϕ(ξ, η)}

≤ − M

(t + δ)l+1 {lϕ(ξ, η) − μ1ϕ(ξ, η) −Q(t + δ)ϕ(ξ, η)},

for 0 < r < h(t), 0 < t ≤ L∗.
Choosing 0 < δ ≤ 1, μ1 + Q(L∗ + 1) < l, we obtain

ut − d1Δu− u(m1(t, r) − b1(t, r)u− c1(t, r)v̄) ≤ − M

(t + δ)l+1 (lϕ(ξ, η) − μ1ϕ(ξ, η) −Q(L∗ + 1)ϕ(ξ, η)) < 0,

for 0 < r < h(t) and 0 < t ≤ L∗.
(i) We may choose 0 < δ ≤ h2

0 and select μ > 0 being sufficiently large such that μ ≥ μ0 := − (L∗+1)l
2Mϕr(t,1) , 

then we have

h′(t) + μur(t, h(t)) = 1
2
√
t + δ

+ μMϕr(t, 1)
(t + δ)l+1/2 ≤ 0 for 0 < t ≤ L∗. (4.16)

Moreover, we select M > 0 being sufficiently small such that

u(0, r) = M

δl
ϕ(0, r√

δ
) < u0(r) in [0,

√
δ ]. (4.17)

(ii) We may select M and ‖u0‖C([0,h0)) being sufficiently large such that (4.16) and (4.17) hold.
Either by (i) or (ii), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − d1Δu ≤ u(m1(t, r) − b1(t, r)u− c1(t, r)v̄), 0 < t ≤ L∗, 0 < r < h(t),
ur(t, 0) = 0, u(t, h(t)) = 0, 0 < t ≤ L∗,

h′(t) + μur(t, h(t)) ≤ 0, 0 < t ≤ L∗,√

u(0, r) ≤ u0(r), 0 ≤ r ≤ δ.
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By the comparison principle, we have h(t) ≤ h(t) in [0, L∗]. Specially, we derive h(L∗) ≥ h(L∗) =
√
L∗ + δ ≥√

L∗. Since λ1(d1, m1 − c1V, 
√
L∗, T ) < 0, according to the strictly monotone decreasing of λ1(d1, m1 −

c1V, R, T ) in R, we have h(L∗) ≥
√
L∗ > h∗(d1, m1−c1V, T ), which implies h∞ > h∗(d1, m1−c1V, T ). From 

Corollary 4.1, we obtain h∞ = ∞. �
Corollary 4.4. For any d1 > 0, h∞ = ∞ if ‖u0‖C([0,h0]) is sufficiently large or if μ > μ0, where μ0 depends
on u0, v0 and h0.

Similarly, due to the strict monotone decreasing of λ∗(d1, m1 − c1V, h(t), T ) in h(t), and Theorem 4.5, 
we obtain

Corollary 4.5. If 0 < h0 < h∗(d1, m1−c1V, T ), then h∞ = ∞ if ‖u0‖C([0,h0]) is sufficiently large or if μ > μ0, 
where μ0 depends on u0, v0 and h0.

If h0 is fixed, some sufficient conditions for spreading–vanishing of u depending on d1 and u0(r) are 
derived from Corollaries 4.2, 4.3 and 4.4.

Theorem 4.6. There exist d∗(m1, h0, T ) and d∗(h0, m1 − c1V, T ) defined in (0, ∞) such that

(i) vanishing occurs if d1 > d∗(m1, h0, T ) and initial value u0(r) is small;
(ii) spreading happens if one of the following results holds:

(a) if 0 < d1 ≤ d∗(m1 − c1V, h0, T ) under the assumption maxBh0

∫ T

0 (m1 − c1V )dt > 0;
(b) if ‖u0‖C([0,h0]) is sufficiently large for any d1 > 0.

Similarly, if d1 is fixed, some sufficient conditions for spreading–vanishing of u depending on h0 and u0(r)
are obtained from Corollaries 4.2, 4.3 and 4.5.

Theorem 4.7. There exist h∗(d1, m1, T ) and h∗(d1, m1 − c1V, T ) defined in (0, ∞) such that

(i) vanishing occurs if h0 < h∗(d1, m1, T ) and the initial value u0(r) is small;
(ii) spreading happens if one of the following holds:

(a) if h0 ≥ h∗(d1, m1 − c1V, T );
(b) if 0 < h0 < h∗(d1, m1 − c1V, T ) and ‖u0‖C([0,h0]) is sufficiently large.

Next, if d1 is fixed, the initial number u0(r) governs the spreading and vanishing of the invasive species. 
Then we can derive the sharp criteria for spreading–vanishing of an invasive species u from Corollaries 4.2, 
4.5 and Theorem 4.4, by the same arguments as Theorem 5.7 in [28].

Theorem 4.8. For any d1 > 0 and given v0, which satisfies (1.2), if u0(r) = εθ(r) for some ε > 0 and 
θ(r) such that u0 satisfies (1.2), then ε∗ exists depending on θ, v0 and d1 such that spreading occurs if 
ε > ε∗, and vanishing happens if 0 < ε ≤ ε∗. Moreover, ε∗ = 0 if h0 ≥ h∗(d1, m1 − c1V, T ), ε∗ ≥ 0 if 
0 < h0 < h∗(d1, m1 − c1V, T ), and ε∗ > 0 if h0 < h∗(d1, m1, T ).

Now we can derive the sharp criteria for spreading–vanishing of an invasive species u from Corollar-
ies 4.2, 4.3, and 4.5 by choosing the expansion capability μ as a parameter. The proof is similar to that of 
Theorem 3.9 in [13].

Theorem 4.9. For any d1 > 0 and given (u0, v0), which satisfies (1.2), μ∗ exists depending on u0, v0, h0
and d1 such that spreading occurs if μ > μ∗, and vanishing occurs if 0 < μ < μ∗. Moreover, μ∗ = 0 if 
h0 ≥ h∗(d1, m1 − c1V, T ), μ∗ ≥ 0 if 0 < h0 < h∗(d1, m1 − c1V, T ), and μ∗ > 0 if h0 < h∗(d1, m1, T ).
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5. Estimates of the spreading speed

In this section, we give some rough estimates on the spreading speed of h(t) for the case that spreading 
of u happens. We first consider the following problem

⎧⎪⎨
⎪⎩

Ut − dΔU + K(t)Ur = U(a(t) − b(t)U), (t, r) ∈ [0, T ] × (0,∞),
U(t, 0) = 0, t ∈ [0, T ],
U(0, r) = U(T, r), r ∈ (0,∞),

(5.1)

where d > 0 is a given constant, and K, a, b are given T-periodic Hölder continuous functions with a, b
positive and K nonnegative. From Propositions 2.1, 2.3 and Theorem 2.4 in [10], we have the following 
Proposition 5.1.

Proposition 5.1. For any given positive T-periodic functions a, b ∈ C
ν0
2 ([0, T ]) and any nonnegative 

continuous T-periodic function K ∈ C
ν0
2 ([0, T ]), problem (5.1) admits a positive T-periodic solution 

UK ∈ C1,2([0, T ] × [0, ∞)) if and only if 1
T

∫ T

0 a(t)dt > 1
T 2 (

∫ T

0 K(t)dt)2/(4d), and such a solution is unique 
when it exists. Furthermore, UK

r (t, r) > 0 in [0, T ] × [0, ∞) and UK(t, r) → V (t) uniformly for t ∈ [0, T ] as 
r → +∞, where V (t) is the unique positive solution of the problem

{
dV
dt = V (a(t) − b(t)V ), t ∈ [0, T ],
V (0) = V (T ).

(5.2)

In addition, for any given nonnegative T-periodic function K1 ∈ C
ν0
2 ([0, T ]), the assumption K1 ≤, �≡ K

implies UK1
r (t, 0) > UK

r (t, 0), UK1(t, r) > UK(t, r) for (t, r) ∈ [0, T ] ×(0, +∞). Besides, for each μ > 0, there 
exists a positive continuous T-periodic function K0(t) = K0(μ, a, b)(t) > 0 such that μUK0

r (t, 0) = K0(t) on 

[0, T ]. Moreover, 0 < 1
T

∫ T

0 K0(μ, a, b)(t)dt < 2
√

d
T

∫ T

0 a(t)dt for every μ > 0.

Making use of the function K0(μ, a, b), we have the following estimate for the spreading speed of h(t).

Theorem 5.1. Assume (H1)–(H3) hold. If h∞ = +∞, then

1
T

T∫
0

K0(μ,m1,∗ − c∗1V
∗, b∗1)dt ≤ lim inf

t→+∞
h(t)
t

≤ lim sup
t→+∞

h(t)
t

≤ 1
T

T∫
0

K0(μ,m∗
1, b1,∗)dt.

Proof. Consider the following auxiliary problem as (4.14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ūt − d1Δū = ū(m1(t, r) − b1(t, r)ū), t > 0, 0 < r < h̄(t),
ūr(t, 0) = 0, ū(t, r) = 0, t > 0, h̄(t) ≤ r < ∞,

h̄′(t) = −μūr(t, h̄(t)), t > 0,
ū(0, r) = u0(r), 0 ≤ r ≤ h0.

By the comparison principle, it follows that h̄(t) ≥ h(t) → +∞ as t → ∞. By Theorem 4.4 in [10], 
lim supt→+∞

h̄(t)
t ≤ 1

T

∫ T

0 K0(μ, m∗
1, b1,∗)dt. Thus, we have

lim sup
t→+∞

h(t)
t

≤ lim sup
t→+∞

h̄(t)
t

≤ 1
T

T∫
K0(μ,m∗

1, b1,∗)dt.

0



1612 Q.L. Chen et al. / J. Math. Anal. Appl. 433 (2016) 1594–1613
Next, we prove that lim inft→+∞
h(t)
t ≥ 1

T

∫ T

0 K0(μ, m1,∗ − c∗1V
∗, b∗1)dt.

As in the proof of Lemma 4.2, we know, for any 0 < ε � 1, there exists kε > 0 such that v(t +
kT, r) ≤ V (t, r) + ε for any k ≥ kε and (t, r) ∈ [0, T ] × [0, ∞). Since h∞ = +∞, we may assume that 
h(kεT ) > h∗(d1, m1 − c1(V + ε), T ). Let (u(t, r), h(t)) be the unique solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − d1Δu = u(m1(t, r) − c1(t, r)(V (t, r) + ε) − b1(t, r)u), t > kεT, 0 < r < h(t),
ur(t, 0) = 0, u(t, r) = 0, t > kεT, h(t) ≤ r < ∞,

h′(t) = −μur(t, h(t)), t > kεT,

u(kεT, r) = u(kεT, r) > 0, h(kεT ) = h(kεT ), 0 < r ≤ h(kεT ).

The comparison principle implies u(t + kT, r) ≤ u(t + kT, r) and h(t + kT ) ≤ h(t + kT ) for any k ≥ kε and 
(t, r) ∈ [0, T ] ×[0, ∞). By Lemma 4.3, h∞ = ∞ since h(kεT ) = h(kεT ) > h∗(d1, m1−c1(V +ε), T ). Moreover, 
by Theorem 1.4 in [36], we have lim supr→∞ c1(t, r)V (t, r) ≤ c∗1(t)V ∗(t). It follows from Theorem 4.4 in [10]
that lim inft→+∞

h(t)
t ≥ 1

T

∫ T

0 K0(μ, m1,∗ − c∗1(V ∗ + ε), b∗1)dt, which implies 1
T

∫ T

0 K0(μ, m1,∗ − c∗1(V ∗ +
ε), b∗1)dt ≤ lim inft→+∞

h(t)
t for any small ε > 0. Let ε → 0 and using the continuity of K0 with respect to 

its components, we immediately obtain the desired result. �
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