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BEST CONSTANTS FOR THE HARDY-LITTLEWOOD MAXIMAL
OPERATOR ON FINITE GRAPHS

JAVIER SORIA AND PEDRO TRADACETE

Abstract. We study the behavior of averages for functions defined on finite
graphsG, in terms of the Hardy-Littlewood maximal operatorMG. We explore the
relationship between the geometry of a graph and its maximal operator and prove
that MG completely determines G (even though embedding properties for the
graphs do not imply pointwise inequalities for the maximal operators). Optimal
bounds for the p-(quasi)norm of a general graph G in the range 0 < p ≤ 1 are
given, and it is shown that the complete graph Kn and the star graph Sn are the
extremal graphs attaining, respectively, the lower and upper estimates. Finally, we
study weak-type estimates and some connections with the dilation and overlapping
indices of a graph.

1. Introduction

Given a simple, connected, and finite graph G = (V,E) (conditions that we will
always assume from now on), where V is a (finite) set of vertices and E the set
of edges between them, for a function f : V → R we can consider the (centered)
Hardy-Littlewood maximal operator

MGf(v) = sup
r≥0

1

|B(v, r)|
∑

w∈B(v,r)

|f(w)|.

Here B(v, r) denotes the ball of center v and radius r on the graph, equipped with
the geodesic distance induced by the edges in E.

The study of this and related maximal operators on metric measure spaces has
received a considerable amount of attention recently (see for instance [1, 13, 14]).
In particular, A. Naor and T. Tao have shown in [14] that for the infinite rooted
k-regular tree T , the maximal operator satisfies

‖MT‖�1(T )→�1,∞(T ) � 1,

with a constant independent of the degree of T [14, Theorem 1.5]. This kind of
averaging operators have also been studied in connection with harmonic functions
and the Laplace operator on trees [7, 10].

Our main interest in this work focuses on finding the sharpest constants CG,p in
inequalities of the form

(1) ‖MGf‖p ≤ CG,p‖f‖p,
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for 0 < p ≤ ∞; i.e.,

CG,p = ‖MG‖p = sup
f

‖MGf‖p
‖f‖p, ,

where for a function f : V → R we denote by ‖f‖p =
(∑

v∈V |f(v)|p)1/p. It is
clear that |f(v)| ≤ MGf(v) ≤ ‖f‖∞, and hence ‖MG‖∞ = 1, for every graph G.
Therefore, we only need to consider the range 0 < p < ∞.

The sharpest constants CG,p are of interest since they could provide improve-
ments in quantitative estimates arising in some of the multiple applications of the
Hardy-Littlewood inequality (for instance, in quantitative versions of Rademacher’s
differentiation theorem for Lipschitz functions [6].)

Another motivation for studying (1) comes from the discretization results proved
for the Hardy-Littlewood maximal function in R in terms of Dirac deltas [9, 11, 12],
which is closely related to the case of a linear tree Ln (see Proposition 4.13 and
Remark 4.14). We will see that a richer geometric structure on the graph gives us
better estimates for the maximal operator which, in turn, characterize the graph
in some extremal cases (see Theorem 3.1). In particular, we will prove that the
complete graph on n vertices can be characterized in terms of the equality

‖MG‖1 = 1 + (n− 1)/n,

while a graph G of n vertices will satisfy

‖MG‖1 = 1 + (n− 1)/2

precisely when G is isomorphic to the star graph Sn.
We will also consider weak-type estimates of the form MG : �p(V ) → �p,∞(V ).

In general, computing exactly the weak-type (1, 1) norm of the Hardy-Littlewood
operator in a metric space ‖M‖L1(X)→L1,∞(X) is a hard problem. In ultrametric
spaces, this norm equals one, while for the real line R, Melas showed [11] it equals
(11+

√
61)/12. Optimal bounds in Lp(R), for the uncentered maximal function, are

proved in [8].
Other results involving maximal operators on infinite graphs can be found in [3].

In [2] boundedness of some Hardy type averaging operators were also considered in
the setting of partially ordered measure spaces, which include the case of infinite
trees.

In our analysis of weak-type estimates we will introduce two indices associated
with coverings of a graph: the dilation and the overlapping indices. These will
provide an upper bound for the weak-type (1, 1) estimate of MG (Theorem 4.9).
The paper is organized as follows: In Section 2 we prove in Theorem 2.4 that MG

completely determines G. Lemma 2.5 is our main tool to easily calculate the norm
of the maximal operator MG on the range 0 < p ≤ 1 and, in particular, we consider
the case of the complete graph Kn. We finish by introducing, in Proposition 2.9,
some estimates of restricted type. In Section 3 we show in Theorem 3.1 that Kn and
the star graph Sn are optimal cases for the boundedness of MG in �p(G), 0 < p ≤ 1,
and get also sharp estimates for the linear graph Ln. To complete the information
for the strong-type estimates, we calculate the norm for the star graph, on the range
1 < p < ∞. Finally, in Section 4, we consider the study of weak-type estimates
on 0 < p < ∞, and establish in Theorem 4.9 a relationship, for p = 1, with some
geometrical indices associated to the graph.

We refer to [4, 5] for standard notations and definitions on graphs.
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2. General properties and best constants

Let G = (V,E) be a simple, connected, and finite graph. Here V denotes the set
of vertices and E the set of edges between them. We will work with this space as a
metric space endowed with the geodesic distance induced by the edges in E. That
is, given v, w ∈ V the distance dG(v, w) is the number of edges in a shortest path
connecting v and w. B(v, r) denotes the ball of center v and radius r on the graph,
i.e.

B(v, r) = {w ∈ V (G) : dG(v, w) ≤ r}.
For example, B(v, r) = {v}, if 0 ≤ r < 1 and B(v, r) = {v} ∪ NG(v), if 1 ≤ r < 2,
where NG(v) is the set of neighbors of v. Also, given a finite set A, denote its
cardinality by |A|.

Given a function f : V → R the Hardy-Littlewood maximal operator is defined
as

MGf(v) = sup
r≥0

1

|B(v, r)|
∑

w∈B(v,r)

|f(w)|.

Since the distance dG introduced above only takes natural numbers as values, the
radius r > 0 considered in the definition of the Hardy-Littlewood maximal operator
can be taken to be a natural number. Moreover, since the diameter of a graph of n
vertices is at most n− 1, we can compute

MGf(v) = max
k=0,...,n−1

1

|B(v, k)|
∑

w∈B(v,k)

|f(w)|.

Given a graph G, the degree of a vertex v ∈ VG, denoted by dG(v), is the number
of edges in EG which have v as one of the endpoints; that is, dG(v) = |NG(v)|. For
j ∈ V we will consider the Kronecker delta

(2) δj(i) =

{
1, for i = j,

0, for i 	= j.

We will use the notation A � B, whenever there exists C > 0 (independent of
the main parameters involved, like the dimension n ∈ N or 0 < p < ∞) such that
A ≤ CB. Similarly for A � B. As usual, A ≈ B means that A � B and A � B.
Recall that two graphs G1, G2 are said to be isomorphic if there is a permutation

of the vertices π : V → V such that v, w ∈ V are the endpoints of an edge in EG1

if and only if π(v) and π(w) are the endpoints of an edge in EG2 . In this case, we
will write G1 ∼ G2. It is clear that if G1 ∼ G2, then MG2f(π(v)) = MG1f(v) and
hence ‖MG1‖p = ‖MG2‖p, 0 < p ≤ ∞. That the converse is not true can be seen in
Example 2.6.

Let Kn denote the complete graph with n ≥ 2 vertices, which we are going to
label as V = {1, . . . , n}. As a metric space, this is the simplest among all graphs
with n vertices, since given any j ∈ V we have

B(j, r) =

{{j}, for 0 ≤ r < 1,

V, for r ≥ 1.
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Therefore, the maximal operator takes the form

(3) MKnf(j) = max
{
|f(j)|, 1

n

∑
k∈V

|f(k)|
}
.

The operator MKn is the smallest, in the pointwise ordering, among all MG, with
G a graph of n vertices. That is, for every positive function f : V → R and every
j ∈ V , we have that

(4) MKnf(j) ≤ MGf(j).

In particular, if 0 < p ≤ ∞ and G is a graph with n vertices, then

‖MKn‖p ≤ ‖MG‖p.
Remark 2.1. Regarding (4), it is worth mentioning that, in general, it is not true
that if G1 ⊂ G2 (i.e., V (G1) = V (G2) and E(G1) ⊂ E(G2)), then MG2f ≤ MG1f .
For example, if V = {1, 2, 3, 4}, G1 is a linear tree with leaves 1 and 4, G2 is the
4-cycle C4 (with a clockwise orientation of V ), and f = δ4 is the Kronecker delta
(see (2) for the definition), then G1 ⊂ G2, but it is easy to prove that, however,
MG2δ4(1) = 1/3 > 1/4 = MG1δ4(1).

Contrary to the minimality property (4) of the complete graph Kn, there is no
graph G whose maximal operator MG is the largest in the pointwise ordering among
all graphs with n ≥ 3 vertices (n = 2 is trivial since K2 is the only example). That
is, there exists no graph Gmax such that, for every graph G with V (G) = V (Gmax),
and every function f : V → R we have

MGf(j) ≤ MGmaxf(j), for each j ∈ V.

However, we will prove in Theorem 3.1 that, in terms of the (quasi)norm ‖MG‖p,
for 0 < p ≤ 1, we do have the existence of a maximal graph (namely, the star Sn).

Proposition 2.2. If G is a graph with n ≥ 3 vertices, then there exists j ∈ V (G),
f : V → R+, and another graph G′, with V (G′) = V (G), so that MGf(j) < MG′f(j).

Proof. Since G has at least 3 vertices, then there is a vertex j ∈ V with degree
dG(j) ≥ 2. Let k ∈ V be a neighbor of j. Let G′ = Gj,k be a linear tree with n
vertices and such that j has degree 1 (it is a leaf in G′), and k is the only neighbor
of j in G′. Let us consider the function f(j) = 1/3, f(k) = 2/3, and f(l) = 0
elsewhere. Then,

MGf(j) = max{1/3, 1/(dG(j) + 1)} = 1/3 and MG′f(j) = max{1/3, 1/2} = 1/2.

Hence, MGf(j) < MG′f(j). �
We can also consider a maximal operator involving the averages for all isomorphic

graphs to a given one. That is, given G, for f : V → R and j ∈ V , we define:

M[G]f(j) = max
H∼G

MHf(j).

For this larger operator, we can actually prove the following optimal pointwise esti-
mates (see Proposition 3.2 for further properties):

Proposition 2.3. Let Ln be a linear tree. Then, for every graph with n vertices
and any function f : {1, . . . , n} → R+,

M[G]f(j) ≤ M[Ln]f(j), j ∈ {1, . . . , n}.
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Proof. Given G and j ∈ {1, . . . , n}, it is easy to find a linear graph Ln so that, for
every 0 ≤ r ≤ n− 1, there exists 0 ≤ s(r) ≤ n− 1 such that

BG(j, r) = BLn(j, s(r)),

and j is a leaf of Ln. For example, if 0 ≤ r < 1, take s(r) = r and BG(j, r) = {j} =
BLn(j, r). If 1 ≤ r < 2, then we order NG(j) in Ln to obtain that BLn(j, dG(j)) =
{j} ∪ NG(j) = BG(j, r) (i.e.; s(r) = dG(j)), and so on (see Figure 1). Then, for
every f : {1, . . . , n} → R+,

MGf(j) = max

{∑
k∈BG(j,r) f(k)

|BG(j, r)| : 0 ≤ r ≤ n− 1

}
≤ max

{∑
k∈BLn (j,s)

f(k)

|BLn(j, s)|
: 0 ≤ s ≤ n− 1

}
= MLnf(j) ≤ M[Ln]f(j),

which gives M[G]f(j) ≤ M[Ln]f(j), for every j ∈ {1, . . . , n}. �

� �

�

� �

�

� � � � � � � � � � � �

1 2 4

3

5

6

7 8 9 5 3 4 6 7 2 8 1 9�
BG(5, 1)

�BG(5, 2)

�
BG(5, 3)

Figure 1: A graph G and its corresponding linear tree for j = 5.

We now study the relationship between the geometry of a graph and its maximal
operator and prove thatMG completely determines G, even though embedding prop-
erties for the graphs do not imply pointwise inequalities for the maximal operators
(see Remark 2.1).

Theorem 2.4. Let G1 and G2 be two graphs with V (G1) = V (G2) = {1, . . . , n}.
The following are equivalent:

(i) G1 = G2.
(ii) For every f : {1, . . . , n} → R, MG1f = MG2f .
(iii) For every k ∈ V , MG1δk = MG2δk.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear. Let us prove (iii) ⇒ (i): For
each k ∈ {1, . . . , n}, we have that

(5) MG1δk(j) =
1

|BG1(j, dG1(j, k))|
= MG2δk(j) =

1

|BG2(j, dG2(j, k))|
.

To prove that G1 = G2, it suffices to show that NG1(j) = NG2(j), for every vertex
j ∈ {1, . . . , n}. Assume that |NG1(j)| = r, with r = dG1(j) and choose an ordering of
NG1(j) = {v1, . . . , vr} in such a way that dG2(j, v1) ≤ dG2(j, v2) ≤ · · · ≤ dG2(j, vr).
Since BG2(j, dG2(j, v1)) ⊂ BG2(j, dG2(j, vr)) and, using (5), we also have that, for
every l ∈ {1, . . . , r},

1 + r = |BG1(j, 1)| = |BG1(j, dG1(j, vl))| = |BG2(j, dG2(j, vl))|.
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Thus, for every l ∈ {1, . . . , r},
(6) BG2(j, dG2(j, v1)) = BG2(j, dG2(j, vl)),

which implies that dG2(j, v1) = dG2(j, vl). In fact, if dG2(j, v1) < dG2(j, vl), for some
vl, then vl ∈ BG2(j, dG2(j, vl)) \BG2(j, dG2(j, v1)), which contradicts (6).

Finally, let us see that dG2(j, v1) = 1, and hence dG2(j, vl) = 1, for every vl: If
dG2(j, v1) > 1, then BG2(j, dG2(j, v1)) contains a vertex u ∈ NG2(j), which necessar-
ily satisfies that u /∈ {j} ∪ {v1, . . . , vr} (we can always find a geodesic L from j to
v1 of the form L ≡ j, u, · · · , v1). Thus,

1 + r = |BG2(j, dG2(j, v1))| ≥ 2 + r,

which is a contradiction.

Therefore, we obtain that NG1(j) ⊂ NG2(j). Reversing the role of G1 and G2, or
using that

|NG1(j)| = |BG1(j, dG1(j, v1))| − 1 = |BG2(j, dG2(j, v1))| − 1 = |NG2(j)|,
we conclude that NG1(j) = NG2(j). �

A starting point for our analysis of the norm of ‖MG‖p, for 0 < p ≤ 1, is the
following useful result. It is worth mentioning that this estimate is the discrete
equivalent version in �p of [12, Theorem 3].

Lemma 2.5. Let G be a graph with n vertices, and T : �p(G) → �p(G) be a sublinear
operator, with 0 < p ≤ 1. Then,

‖T‖p = max
k∈V

‖Tδk‖p.
In particular, ‖MG‖p = max

k∈V
‖MGδk‖p and ‖M[G]‖p = max

k∈V
‖M[G]δk‖p.

Proof. Since for any 0 < p ≤ 1 and k ∈ V , we have that ‖δk‖p = 1, then ‖T‖p ≥
max
k∈V

‖Tδk‖p. For the converse, let f : V → R, with ‖f‖p ≤ 1; that is,

f =
∑
k∈V

akδk,

with
∑
k∈V

|ak|p ≤ 1. Using Holder’s inequality for 0 < p ≤ 1, it follows that

‖Tf‖pp =
∑
j∈V

|Tf(j)|p =
∑
j∈V

∣∣∣T(∑
k∈V

akδk

)
(j)

∣∣∣p
≤

∑
j∈V

∣∣∣∑
k∈V

|ak|Tδk(j)
∣∣∣p ≤ ∑

j∈V

∑
k∈V

|akTδk(j)|p

=
∑
k∈V

|ak|p
∑
j∈V

|Tδk(j)|p =
∑
k∈V

|ak|p‖Tδk‖pp

≤ max
k∈V

‖Tδk‖pp.
�

Example 2.6. As an application of Lemma 2.5, let us find ‖MG‖1 for all six graphs
G with 4 vertices:
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(i) L4 (two vertices {1, 4} of degree 1, two vertices {2, 3} of degree 2): ‖ML4‖1 =
13/6.

For the vertices 1 and 2 we have

ML4δ1(j) =

⎧⎪⎨⎪⎩
1, j = 1,

1/3, j = 2,

1/4, j = 3, 4,

and ML4δ2(j) =

⎧⎪⎨⎪⎩
1/2, j = 1,

1, j = 2,

1/3, j = 3, 4.

Hence, ‖ML4δ1‖1 = 11/6 and ‖ML4δ2‖1 = 13/6. By symmetry, we also have the
estimates for the remaining vertices: ‖ML4δ4‖1 = 11/6 and ‖ML4δ3‖1 = 13/6.
Hence, ‖ML4‖1 = 13/6.

(ii) C4 (all four vertices of degree 2): ‖MC4‖1 = 23/12.

Since every vertex has the same degree, we have for k = 1, . . . , 4 :

MC4δk(j) =

⎧⎪⎨⎪⎩
1, j = k,

1/3, j ≡ k − 1, k + 1 (mod 4),

1/4, j ≡ k + 2 (mod 4).

Hence, ‖MC4‖1 = ‖MC4δk‖1 = 23/12.

(iii) S4 (one vertex {1} of degree 3, three vertices {2, 3, 4} of degree 1): ‖MS4‖1 =
5/2.

MS4δ1(j) =

{
1, j = 1,

1/2, j = 2, 3, 4,
and MS4δ2(j) =

{
1/4, j = 1, 3, 4,

1, j = 2.

Hence, ‖MS4δ1‖1 = 5/2 and ‖MS4δ2‖1 = ‖MS4δ3‖1 = ‖MS4δ4‖1 = 7/4. Hence,
‖MS4‖1 = 5/2 (see Theorem 3.1 for further information).

(iv) K4 (all four vertices of degree 3): ‖MK4‖1 = 7/4.

This is a trivial calculation and it also follows from Theorem 3.1, with n = 4.

(v) D4 (two vertices {2, 4} of degree 3, two vertices {1, 3} of degree 2): ‖MD4‖1 =
23/12.

MD4δ1(j) =

{
1, j = 1,

1/4, j = 2, 3, 4,
and MD4δ2(j) =

⎧⎪⎨⎪⎩
1/3, j = 1, 3,

1, j = 2,

1/4, j = 4.

Thus, ‖MD4δ1‖1 = 7/4, ‖MD4δ2‖1 = 23/12. As before, by symmetry, we also
have the estimates ‖MD4δ3‖1 = 7/4, ‖MD4δ4‖1 = 23/12. Hence, we finally
obtain that ‖MD4‖1 = 23/12.

(vi) P4 (one vertex {1} of degree 1, one vertex {2} of degree 3, two vertices {3, 4}
of degree 2): ‖MP4‖1 = 13/6.
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MP4δ1(j) =

{
1, j = 1,

1/4, j = 2, 3, 4,
MP4δ2(j) =

⎧⎪⎨⎪⎩
1/2, j = 1,

1, j = 2,

1/3, j = 3, 4,

MP4δ3(j) =

⎧⎪⎨⎪⎩
1/4, j = 1, 2,

1, j = 3,

1/3, j = 4.

Hence, ‖MP4δ1‖1 = 7/4, ‖MP4δ2‖1 = 13/6, ‖MP4δ3‖1 = ‖MP4δ4‖1 = 11/6.
Thus, ‖MP4‖1 = 13/6.

In the following diagrams we exhibit the different inclusions between all (con-
nected) graphs with 4 vertices and the order relation among the norms of the cor-
responding maximal operators.

K4

∪
P4 ⊂ D4 ⊃ C4

∪ ∪
S4 L4

‖MK4‖1
∧

‖MP4‖1 > ‖MD4‖1 = ‖MC4‖1
∧ ∧

‖MS4‖1 ‖ML4‖1
In particular, these examples show that we may have non-isomorphic graphs with

equal norms (‖MC4‖1 = ‖MD4‖1 and ‖ML4‖1 = ‖MP4‖1).
The diagram however motivates the following question: Given two graphs G1 ⊂

G2 with n vertices (in the sense that every edge in G1 is an edge in G2), is it always
true that ‖MG2‖1 ≤ ‖MG1‖1? Recall that G1 ⊂ G2 does not imply, in general, the
pointwise inequality MG2f ≤ MG1f (see Remark 2.1).

We are now going to study some optimal constants, and other estimates, for
‖MKn‖p. In Section 3 we will see that, for 0 < p ≤ 1, they are in fact uniquely
determined by Kn.

Proposition 2.7.

(i) If 0 < p ≤ 1, then

‖MKn‖p =
(
1 +

n− 1

np

)1/p

.

(ii) If 1 < p < ∞, then

(7)
(
1 +

n− 1

np

)1/p

≤ ‖MKn‖p ≤
(
1 +

n− 1

n

)1/p

.

In particular, ‖MKn‖p ≈ 1.

Proof. Using (3) we have that the norm of MKn can be computed as

(8) ‖MKn‖p = sup
{( n∑

i=1

max
{
xi,

1

n

n∑
j=1

xj

}p)1/p

: xi ≥ 0,
n∑

i=1

xp
i = 1

}
.
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We start by proving the lower bound, for a general 0 < p < ∞. For k ∈ V , we
consider δk, and for every 0 < p < ∞, we have

‖MKnδk‖p =
( n∑

i=1

max
{
δk(i),

1

n

n∑
j=1

δk(j)
}p)1/p

=
(
1 +

n− 1

np

)1/p

.

Since ‖δk‖p = 1, we get that for every 0 < p < ∞

‖MKn‖p ≥
(
1 +

n− 1

np

)1/p

.

Now, by Lemma 2.5, for 0 < p ≤ 1, we get that

‖MKn‖p =
(
1 +

n− 1

np

)1/p

.

Finally, to prove the upper bound for the case 1 < p < ∞, we use Jensen’s
inequality in (8):

‖MKn‖p ≤ sup
{( n∑

i=1

max
{
xp
i ,
1

n

})1/p

: xi ≥ 0,
n∑

i=1

xp
i = 1

}
.

Now, if xp
i ≤ 1/n, for every 1 ≤ i ≤ n, then

‖MKn‖p ≤ sup
{( n∑

i=1

1

n

)1/p

: xi ≥ 0,
n∑

i=1

xp
i = 1

}
= 1.

On the other hand, if xp
i0
> 1/n, for some index i0 ∈ {1, . . . , n}, then

‖MKn‖p ≤ sup
{( ∑

{xp
i>1/n}

xp
i +

∑
{xp

i≤1/n}

1

n

)1/p

: xi ≥ 0,
n∑

i=1

xp
i = 1

}

≤
(
1 +

n− 1

n

)1/p

.

�
It is not an easy task to compute the exact value of ‖MKn‖p for p > 1. At least,

from Proposition 2.7, we know that 1 ≤ ‖MKn‖p ≤ 2, for every n ∈ N and p > 1.

Remark 2.8. The estimates we have obtained in Proposition 2.7 (ii) are not optimal
in general. For example, if we consider the case n = 2, then for every function
f : {1, 2} → R+, we have that MK2f(j) = (f(j) + ‖f‖∞)/2. Thus, if we assume
that ‖f‖∞ = f(2) and set α = f(1)/f(2), then for every 0 < p < ∞,

‖MK2f‖pp
‖f‖pp =

1

2p
(f(1) + f(2))p + 2pf(2)p

f(1)p + f(2)p
=

1

2p
(1 + α)p + 2p

1 + αp
,

and hence,

‖MK2‖p =
1

2

(
sup

0≤α≤1

(1 + α)p + 2p

1 + αp

)1/p

.

It is easy to see that, for 1 < p < ∞, this supremum is attained at the unique root
αp ∈ (0, 1) of the equation

(1 + α)p−1 =
2pαp−1

1− αp−1
.
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In particular, if p = 2, then α2 =
√
5 − 2 and ‖MK2‖2 = (3 +

√
5)1/2/2. However,

from (7) we only obtain that
√
5/2 < ‖MK2‖2 < (3/2)1/2.

As we have seen, and contrary to what happens for the case 0 < p ≤ 1, the lower
estimate given in (7) is not optimal when 1 < p < ∞. A closer look to the proof of
this result shows that this bound is obtained by evaluating the maximal operator on
characteristic functions supported at a singleton (a Kronecker delta). This can be
improved by considering arbitrary characteristic functions (what is usually called a
restricted type estimate):

‖MKn‖p,rest = max

{
‖MKnχA‖p

‖χA‖p : A ⊂ V

}
.

Clearly, ‖MKn‖p,rest ≤ ‖MKn‖p. The following result shows that, for some particular
values of n ≥ 2 and p > 1, we can get a better estimate. Recall that p′ denotes the
conjugate index to p, defined as 1/p+ 1/p′ = 1, and [x] is the integer part of x.

Proposition 2.9. Let n ≥ 2 and p > 1.

(i) If n ≤ p′, then

‖MKn‖p,rest =
(
1 +

n− 1

np

)1/p

.

(ii) If n ≤ p, then

‖MKn‖p,rest =
(
1 +

(n− 1)p−1

np

)1/p

.

(iii) If n > max{p, p′}, p ∈ Q with p = p1/p2 and p1 divides n, then

‖MKn‖p,rest =
(
1 +

(p− 1)p−1

pp

)1/p

.

(iv) If n > max{p, p′}, but p is not of the previous form, and [n]p = [n/p′], then

‖MKn‖p,rest =
(
1 +

1

np
max

{(
n− [n]p

)
[n]p−1

p ,
(
n− 1− [n]p

)(
[n]p + 1

)p−1})1/p

.

In particular, if n > p′ we have that

‖MKn‖p ≥ ‖MKn‖p,rest >
(
1 +

n− 1

np

)1/p

.

Proof. For A ⊂ V , with |A| = k ≤ n, we have

MKnχA(j) =

{
1, if j ∈ A,

k/n, if j /∈ A.

Therefore,

‖MKnχA‖p =
( n∑

j=1

MKnχA(j)
p
)1/p

=
(
k +

(n− k)kp

np

)1/p

.

Since ‖χA‖p = k1/p, we get

(9) ‖MKn‖p,rest =
(
1 +

1

np
max

1≤k≤n−1
(n− k)kp−1

)1/p

.
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To compute this supremum, let us consider the function ϕ(x) = (n − x)xp−1, for
x > 0. It is easy to see that x = n/p′ is the critical point of ϕ; that is, ϕ′(n/p′) = 0.

(i) If n ≤ p′, then ϕ is a monotone function on [1, n− 1] and the above supremum
is attained at the endpoints. This means that

‖MKn‖p,rest =
(
1 +

n− 1

np

)1/p

.

(ii) If n ≤ p, then n/p′ ≥ n− 1 and, as in the previous case, we get that

‖MKn‖p,rest =
(
1 +

(n− 1)p−1

np

)1/p

.

(iii) If n > max{p, p′}, p ∈ Q, with p = p1/p2 and p1 divides n, then the critical
point n/p′ is an integer between 1 and n−1, so the supremum in (9) is attained
at this point. Thus,

‖MKn‖p,rest =
(
1 +

(p− 1)p−1

pp

)1/p

.

(iv) If n > max{p, p′}, but p is not of the previous form, then the critical point
n/p′ ∈ [1, n− 1], but it is not an integer, so the above supremum is

‖MKn‖pp,rest = 1 +
1

np
max

{(
n− [n]p

)
[n]p−1

p ,
(
n− 1− [n]p

)(
[n]p + 1

)p−1}
,

which corresponds to the evaluation at the closest integer.

The fact that ‖MKn‖p,rest >
(
1 + n−1

np

)1/p
, if n > p′, is an easy computation. For

example, if p′ < n ≤ p, then p > 2, which is equivalent to the inequality(
1 +

(n− 1)p−1

np

)1/p

>

(
1 +

n− 1

np

)1/p

.

�

3. Optimal estimates for ‖MG‖p
In this Section we are going to prove our main result, namely that if 0 < p ≤ 1,

the norm of MG is bounded below and above by some optimal constants, and that
equality at the endpoints is only obtained for some specific graphs. Throughout we
fix n ∈ N and V = {1, . . . , n}. Let Sn denote the star graph of n vertices; i.e., a
graph with one vertex of degree n− 1 and n− 1 leaves (vertices of degree 1). It is
clear that, on V , there are n different (but isomorphic) n-star graphs.

Theorem 3.1. Let G be a graph with n vertices and 0 < p ≤ 1. Then, the following
optimal estimates hold:(

1 +
n− 1

np

)1/p

≤ ‖MG‖p ≤
(
1 +

n− 1

2p

)1/p

.

Moreover,

(i) ‖MG‖p =
(
1 +

n− 1

np

)1/p

if and only if G = Kn;

(ii) ‖MG‖p =
(
1 +

n− 1

2p

)1/p

if and only if G ∼ Sn.
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Proof. This theorem contains several claims. We will prove each of them separately.

Claim 1: For every graph G we have
(
1 + n−1

np

)1/p ≤ ‖MG‖p ≤
(
1 + n−1

2p

)1/p
.

Using (4) we have that MKnf ≤ MGf . Hence, Proposition 2.7 gives us the lower
estimate (

1 +
n− 1

np

)1/p

= ‖MKn‖p ≤ ‖MG‖p.
For the upper bound, given i ∈ V we have that

‖MGδi‖pp = MGδi(i)
p +

∑
k∈V \{i}

MGδi(k)
p = 1 +

∑
k∈V \{i}

(
1

|Bk|
∑
j∈Bk

δi(j)

)p

,

where Bk is a ball in G with center k and a certain radius grater than or equal to
1. Note that for k ∈ V \{i} necessarily |Bk| ≥ 2. Thus, we get

‖MGf‖pp ≤ 1 +
n− 1

2p
.

Since this holds for each i ∈ V , by Lemma 2.5 we obtain the upper estimate

‖MG‖p ≤
(
1 +

n− 1

2p

)1/p

.

Claim 2: G = Kn if and only if ‖MG‖p =
(
1 + n−1

np

)1/p
.

By Proposition 2.7, we have that ‖MKn‖p =
(
1 + n−1

np

)1/p
and hence it remains

to show that any graph G with n vertices, which is not Kn, must necessarily satisfy

‖MG‖p >
(
1 + n−1

np

)1/p
. To see this, suppose G 	= Kn. Then, there exist i 	= j in

V = {1, . . . , n} such that dG(i, j) > 1. Let us consider the sets

A = B(i, 1) = {k ∈ V : dG(i, k) ≤ 1} and B = B(j, 1) = {k ∈ V : dG(j, k) ≤ 1}.
Clearly |A|, |B| ≥ 2. We will analyze two cases:

(a) min{|A|, |B|} ≤ n/2.
(b) min{|A|, |B|} > n/2.

In case (a), we may suppose without loss of generality that |A| ≤ n/2. We pick
any k ∈ A such that k 	= i (i.e., dG(i, k) = 1) and define δk as in (2). Then, since
MGδk(l) ≥ 1/n, for every l ∈ V ,

‖MGδk‖pp =
n∑

l=1

MGδk(l)
p

= MGδk(k)
p +MGδk(i)

p +
∑
l 	=i,k

MGδk(l)
p

≥ 1 +

(
1

|A|
∑
m∈A

δk(m)

)p

+
n− 2

np
.

Using the hypotheses (k ∈ A and |A| ≤ n/2), we now get

‖MG‖pp ≥ ‖MGδk‖pp ≥ 1 +

(
2

n

)p

+
n− 2

np
> 1 +

n− 1

np
.
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This finishes the proof for (a).
We now consider case (b), in which both A and B have cardinality strictly larger

than n/2. In particular, we have that A∩B 	= ∅. If we pick k ∈ A∩B and consider
the function δk as above, then

‖MGδk‖pp = MGδk(i)
p +MGδk(j)

p +MGδk(k)
p +

∑
l 	=i,j,k

MGδk(l)
p

≥
(

1

|A|
∑
m∈A

δk(m)

)p

+

(
1

|B|
∑
m∈B

δk(m)

)p

+ 1 +
n− 3

np
.

Hence, using that k ∈ A ∩ B and |A|, |B| ≤ n− 1, we get

‖MG‖pp ≥ ‖MGδk‖pp ≥
2

(n− 1)p
+ 1 +

n− 3

np
> 1 +

n− 1

np
.

This proves the claim.

Claim 3: G ∼ Sn if and only if ‖MG‖p =
(
1 + n−1

2p

)1/p
.

We first compute ‖MSn‖p. Let k ∈ V be the vertex of degree n − 1 in Sn. We
have that, for any f : V → R+, with ‖f‖1 = 1,

(10) MSnf(j) =

⎧⎪⎪⎨⎪⎪⎩
max

{
f(j),

1

n

}
, if j = k,

max
{
f(j),

f(j) + f(k)

2
,
1

n

}
, if j 	= k.

In particular, for δk we get

(11) ‖MSn‖pp ≥ ‖MSnδk‖pp =
n∑

j=1

MSnδk(j)
p = 1 +

n− 1

2p
.

Since the converse inequality always holds we get that ‖MSn‖p =
(
1 + n−1

2p

)1/p
.

Now, suppose that G is not isomorphic to Sn, and hence n ≥ 3. Then there exist
two different vertices i, j ∈ V whose degrees satisfy that dG(i), dG(j) > 1. Note
that for every function f : V → R+, with ‖f‖1 ≤ 1, either MGf(k) = f(k) or
MGf(k) ≤ 1/(dk + 1). Given such f : V → R+, let

A = {k ∈ V : MGf(k) = f(k)}.
Then we have

‖MGf‖pp =
∑
k∈A

MGf(k)
p +

∑
k∈V \A

MGf(k)
p ≤

∑
k∈A

f(k)p +
∑

k∈V \A

1

(dk + 1)p
.

Now, if both i, j ∈ A, then

‖MGf‖pp ≤ 1 +
n− 2

2p
< 1 +

n− 1

2p
.

Otherwise, if i /∈ A, then since A 	= ∅, we have

‖MGf‖pp ≤ 1 +
1

(di + 1)p
+

n− 2

2p
≤ 1 +

1

3p
+

n− 2

2p
< 1 +

n− 1

2p
.
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Similarly, the same holds if j /∈ A. Hence,

‖MG‖pp ≤ max
{
1 +

n− 2

2p
, 1 +

1

3p
+

n− 2

2p

}
< 1 +

n− 1

2p
.

This proves the claim and finishes the proof. �

In view of the optimality of ‖MSn‖1 and Proposition 2.3, it is natural to compare
the norms for the corresponding maximal operators for [Ln] and [Sn]. The following
results show the different behavior of these two graphs:

Proposition 3.2. For n ≥ 3, we have

‖M[Ln]‖1 = ‖M[Sn]‖1 = ‖MSn‖1 =
n+ 1

2
.

Proof. We use Lemma 2.5 to estimate ‖M[Ln]‖1. Given j, k ∈ V , j 	= k, we take any
linear tree L for which k is a leaf and j is a neighbor of k, to get that

1

2
≥ M[Ln]δj(k) ≥ MLδj(k) =

1

2
.

Since M[Ln]δj(j) = 1, then ‖M[Ln]δj‖1 = 1+ n−1
2
, which proves that ‖M[Ln]‖1 = n+1

2
.

Let us now calculate ‖M[Sn]‖1: If f ≥ 0,

M[Sn]f(j) = max

{
max

{1≤k 	=j≤n}

{
f(j),

f(k) + f(j)

2
,
1

n

}
,max

{
f(j),

1

n

}}

= max
{f(j) + ‖f‖∞

2
,
1

n

}
.

Let A =
{
k : f(k)+‖f‖∞

2
≥ 1

n

}
. Then

‖M[Sn]f‖1 =
∑
k∈A

f(k) + ‖f‖∞
2

+
∑
k/∈A

1

n
=

∑
k∈A

f(k)

2
+

‖f‖∞
2

|A|+ 1

n
(n− |A|)

≤ 1

2
+ |A|

(‖f‖∞
2

− 1

n

)
+ 1 ≤ 1

2
+ n

(1
2
− 1

n

)
+ 1 =

n+ 1

2
.

Thus, ‖M[Sn]‖1 ≤ n+1
2
. On the other hand, Theorem 3.1 gives us the converse

inequality, since ‖M[Sn]‖1 ≥ ‖MSn‖1 = n+1
2
. Therefore,

n+ 1

2
≥ ‖M[Sn]‖1 ≥ ‖MSn‖1 =

n+ 1

2
,

which finishes the proof. �

Proposition 3.3. For n ≥ 2 we have

(12) ‖MLn‖p ≈

⎧⎪⎪⎨⎪⎪⎩
(n1−p − 1

1− p

)1/p

, 0 < p < 1,

log n, p = 1.

Proof. Let us enumerate Ln = {1, 2, . . . , n}, where 1 and n are its leaves. We have

MLnδ1(j) =
1

2j − 1
, 1 ≤ j ≤ [n/2].
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Hence,

‖MLn‖1 ≥ ‖MLnδ1‖1 ≥
[n/2]∑
j=1

1

2j − 1
� log n.

Conversely, since ‖MLnδk‖1 = ‖MLnδn−k+1‖1, then using Lemma 2.5,

‖MLn‖1 = max
1≤k≤[n/2]

‖MLnδk‖1

≤ max
1≤k≤[n/2]

( [k/2]∑
j=1

1

k
+

[(k+n)/2]∑
j=[k/2]+1

1

2|k − j|+ 1
+

n∑
j=[(k+n)/2]+1

1

n− k + 1

)
� max

1≤k≤[n/2]
(1 + log n) � log n.

Similarly, for 0 < p < 1 we have

‖MLn‖p ≥ ‖MLnδ1‖p ≥
( [n/2]∑

j=1

1

(2j − 1)p

)1/p

�
(n1−p − 1

1− p

)1/p

.

And, as before,

‖MLn‖p = max
1≤k≤[n/2]

‖MLnδk‖p

≤ max
1≤k≤[n/2]

( [k/2]∑
j=1

1

kp
+

[(k+n)/2]∑
j=[k/2]+1

1

(2|k − j|+ 1)p
+

n∑
j=[(k+n)/2]+1

1

(n− k + 1)p

)1/p

� max
1≤k≤[n/2]

(
k1−p

2
+

2
(
(k − 1)1−p − (k − n− 1)1−p

)
1− p

+
(n− k + 1)1−p

2

)1/p

�
(n1−p − 1

1− p

)1/p

.

�

Note that if n ≥ 4, then ‖M[Ln]‖1 > ‖MLn‖1. Indeed, by Theorem 3.1 and the
fact that Ln 	∼ Sn, then we have that

‖MLn‖1 < ‖MSn‖1 = ‖M[Ln]‖1.

Observe also that in (12), limp→1−

(
n1−p−1
1−p

)1/p

= log n.

Similar computations yield exactly the same estimate for the cyclic graph Cn.
Note that this graph could be considered as a discretized version of the one-dimensional
torus (although the metric has to be normalized with n).

To finish this Section, we complete the information about the strong-type esti-
mates, on the range 1 < p < ∞, for the star graph.

Proposition 3.4. If 1 < p < ∞, then(
1 +

n− 1

2p

)1/p

≤ ‖MSn‖p ≤
(
n+ 5

2

)1/p

,

i.e., ‖MSn‖p ≈ n1/p.
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Proof. Using an easy modification of (10), it follows that if f ≥ 0,

‖MSnf‖pp ≤ ‖f‖pp +
n

np
‖f‖p1 +

n∑
j=1

(
f(j) + f(1)

2

)p

≤ ‖f‖pp + n1−pnp−1‖f‖pp +
1

2p

n∑
j=1

2p/p
′
(
f p(j) + fp(1)

)
≤ 2‖f‖pp +

1

2

(
‖f‖pp + n‖f‖pp

)
=

n+ 5

2
‖f‖pp.

Conversely, using (11) we can prove that ‖MSn‖p ≥
(
1 + n−1

2p

)1/p
. �

4. Weak-type estimates

Let G be a connected graph with n vertices, V = {1, . . . , n}, f : V → R+, and let
{f ∗

j }j=1,...,n be the decreasing rearrangement of the sequence {fj}j=1,...,n. We now
consider weak-type estimates of the form MG : �p(V ) → �p,∞(V ), 0 < p < ∞, where

‖f‖p,∞ := sup
t>0

t
∣∣{j ∈ V : fj > t}∣∣1/p.

It is easily seen that also ‖f‖p,∞ = maxj∈V j1/pf ∗
j . For this purpose we define

‖MG‖p,∞ = sup
f

‖MGf‖p,∞
‖f‖p .

It is clear that if 0 < p < ∞, then ‖MG‖p,∞ ≤ ‖MG‖p and also

(13) ‖MG‖p,∞ ≤ n1/p, if |G| = n.

Theorem 4.1. If 0 < p < ∞, then

(14) ‖MKn‖p,∞ =

{
n1/p−1, if 0 < p ≤ 1,

1, if p ≥ 1.

In particular, for every connected graph G with n vertices,

‖MG‖p,∞ ≥
{
n1/p−1, if 0 < p ≤ 1,

1, if p ≥ 1.

Proof. Let f : V → R+, with ‖f‖p = 1 (we may assume that f is not a constant
function), and let A(f) = ‖f‖1/n. Since MKnf(j) = max{fj, A(f)}, if we define

j(f) = min{1 ≤ j ≤ n− 1 : f ∗
j+1 < A(f) ≤ f ∗

j },
then (

MKnf
)∗
(j) =

{
f ∗
j , if 1 ≤ j ≤ j(f),

A(f), if j(f) < j ≤ n,

and

‖MKnf‖p,∞ = max
{

max
1≤j≤j(f)

j1/pf ∗
j , max

j(f)<j≤n
j1/pA(f)

}
= max

{
max

1≤j≤j(f)
j1/pf ∗

j , n
1/p−1‖f‖1

}
.(15)
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If we now take f = δ1, then j(f) = 1 and

‖MKnδ1‖p,∞ = max
{
1, n1/p−1

}
=

{
n1/p−1, if 0 < p ≤ 1,

1, if p ≥ 1,

and, hence

‖MKn‖p,∞ ≥
{
n1/p−1, if 0 < p ≤ 1,

1, if p ≥ 1.

Conversely, if 0 < p ≤ 1 let us see that f∗
j ≤ 1/j, for every 1 ≤ j ≤ n. In fact, if

there exists 1 ≤ j0 ≤ n for which f ∗
j0
> 1/j0, then

1 ≥
j0∑
j=1

(f ∗
j )

p >

j0∑
j=1

1

j0
p = j1−p

0 ≥ 1,

which is a contradiction. Thus, j1/pf ∗
j ≤ j1/p−1 ≤ n1/p−1, and hence ‖MKn‖p,∞ ≤

n1/p−1.
Finally, if 1 < p < ∞, we have that j1/pf ∗

j ≤ ‖f‖p,∞ ≤ ‖f‖p = 1 and also,

using Hölder’s inequality, n1/p−1‖f‖1 ≤ n1/p−1‖f‖p n1/p′ = ‖f‖p = 1, and the result
follows from (15).

The last part is a consequence of the trivial estimate MKnf(j) ≤ MGf(j), for
every j ∈ V , and (14). �
Remark 4.2. The fact that ‖MKn‖1,∞ = 1 also follows from the general theory
for ultrametric spaces. Recall that an ultrametric space is a metric space with the
stronger inequality

d(x, y) ≤ max{d(x, z), d(z, y)}
instead of the triangle inequality. It is clear that Kn is an ultrametric space. In fact,
it is the only graph with this property: Indeed, if G 	= Kn, there exist two vertices
x, y with dG(x, y) = r ≥ 2. Pick a geodesic path joining x and y, and let z be a
neighbor of x in that path. It follows that dG(x, z) = 1, dG(z, y) = r − 1, and so

dG(x, y) = r > max{d(x, z), d(z, y)}.
Proposition 4.3. Let 0 < p < ∞. Then,

(16) max{n1/p/2, 1} ≤ ‖MSn‖p,∞ ≤ n1/p.

In particular, ‖MSn‖p,∞ ≈ n1/p, for every n ≥ 1 and 0 < p < ∞, and also, for
every connected graph G with n vertices, ‖MG‖p,∞ ≤ 2‖MSn‖p,∞, 0 < p < ∞.

Proof. Assuming that j = 1 is the vertex of degree n− 1 in Sn, and taking f = δ1,
using (10) we get that

MSnf(j) =

{
1, if j = 1,

1/2, if 2 ≤ j ≤ n,

and hence,

‖MSnf‖p,∞ = max
{
1,max{j1/p/2 : j = 2, . . . , n}} =

{
1, if n < 2p,

n1/p/2, if n ≥ 2p,

which, together with the trivial inequality (13), proves (16). To finish, both esti-
mates ‖MSn‖p,∞ ≈ n1/p and ‖MG‖p,∞ ≤ 2‖MSn‖p,∞ are just a simple remark. �
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The case p = 1 in Proposition 4.3 was previously studied in [14, Proposition 1.5,
Remark 1.2].

Motivated by the classical weak-type (1, 1) bounds for the Hardy-Littlewood op-
erator on Rn we will introduce two indices associated to a graph G: the dilation
and overlapping indices. The dilation index of a graph is related to the so called
doubling condition, and measures the growth of the number of vertices in a ball
when its radius is tripled.

Definition 4.4. Given a graph G we define its dilation index as

D(G) = max

{ |B(x, 3r)|
|B(x, r)| : x ∈ V, r ∈ N, r ≤ diam(G)

}
.

Example 4.5. The dilation index of the complete graph of n vertices and the star
Sn can be easily computed for n ∈ N:

D(Kn) = 1 and D(Sn) =
n

2
.

For the linear tree Ln it is easy to check that D(Ln) < 3 for all n ∈ N, and that
limn→∞ D(Ln) = 3. For small number of vertices we have: D(L3) = 3/2, D(L4) = 2,
D(L5) = 2, D(L6) = 2, D(L7) = 7/3 . . .

The dilation index can be used to give an elementary version of the Vitali covering
lemma [9]:

Lemma 4.6. Let G be a graph with n vertices and A ⊂ V any set of vertices. If
{Bj}j∈J is a finite collection of balls covering A, then there exists I ⊂ J such that
Bi ∩ Bk = ∅, for i, k ∈ I, and

(17) |A| ≤ D(G)
∑
i∈I

|Bi|.

Proof. Let Bi1 be a ball in {Bj}j∈J with the largest radius; let Bi2 be a ball in
{Bj}j∈J\{i1}, with the largest radius among those which are disjoint from Bi1 ; let
Bi3 be a ball in {Bj}j∈J\{i1,i2}, with the largest radius among those which are disjoint
from Bi1 and Bi2 , and so on. Let k be the index where this process stops, and set
I = {i1, . . . , ik}.

That {Bi}i∈I are pairwise disjoint is trivial by construction. To prove (17), given

a ball Bi = B(xi, ri) let us consider B̃i = B(xi, 3ri). We claim that A ⊂ ⋃
i∈I B̃i.

Indeed, otherwise there is a vertex v ∈ A\⋃i∈I B̃i, and since A ⊂ ⋃
j∈J Bj we have

that v ∈ Bj0 = Bj0(xj0 , rj0), for some j0 ∈ J\I. Since the ball Bj0 has not been
chosen, there exists i ∈ I such that Bj0 ∩ Bi 	= ∅ and ri ≥ rj0 . Finally, if we take
u ∈ Bj0 ∩ Bi, then

dG(v, xi) ≤ dG(v, xj0) + dG(xj0 , u) + dG(u, xi) ≤ rj0 + rj0 + ri ≤ 3ri,

and hence v ∈ B̃i, which is a contradiction.

Therefore, A ⊂ ⋃
i∈I B̃i and we have

|A| ≤
∑
i∈I

|B̃i| ≤ D(G)
∑
i∈I

|Bi|.

�
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Another useful quantity for weak-type (1, 1) estimates of the maximal operator
is the overlapping index of a graph, which represents the smallest number of balls
that necessarily overlap in a covering of the graph:

Definition 4.7. Given a graph G we define its overlapping index as

O(G) = min

{
r ∈ N : ∀{Bj}j∈J , Bj a ball in G, ∃I ⊂ J,⋃

j∈J
Bj =

⋃
i∈I

Bi and
∑
i∈I

χBi
≤ r

}
.

Example 4.8. The overlapping index of the following families of graphs can be
computed easily:

O(Kn) = 1, ∀n ∈ N; O(Sn) = n− 1, ∀n ≥ 2;

O(Ln) =

{
1 n ≤ 2,
2 n ≥ 3;

O(Cn) =

{
1 n ≤ 3,
2 n ≥ 4.

The dilation and overlapping indices provide an upper bound for the weak-type
(1, 1) norm of the maximal operator of a graph:

Theorem 4.9. Given a graph G, we have

‖MG‖1,∞ ≤ min
{D(G),O(G)

}
.

Proof. The proof follows the same kind of arguments used for estimating in Rn the
weak-type boundedness of the classical centered Hardy-Littlewood maximal operator
M . Given f : V → R and t > 0, let

At = {1 ≤ j ≤ n : MGf(j) > t}.
For each j ∈ At, take a ball Bj ⊂ G centered at j, satisfying that∑

k∈Bj

|f(k)| > t|Bj|.

On the one hand, by Lemma 4.6, there exists I ⊂ At such that (Bi)i∈I are pairwise
disjoint and

|At| ≤ D(G)
∑
i∈I

|Bi|.

Therefore, we get

|At| ≤ D(G)
∑
i∈I

|Bi| ≤ D(G)
∑
i∈I

1

t

∑
k∈Bj

|f(k)| ≤ D(G)

t
‖f‖1.

Thus, we have ‖MG‖1,∞ ≤ D(G).
On the other hand, using the definition of the overlapping index, we can also select

L ⊂ At such that At ⊂ ∪l∈LBl and
∑

l∈L χBl
(k) ≤ O(G), k = 1, . . . , n. Hence,

|At| ≤
∑
l∈L

|Bl| < 1

t

∑
l∈L

∑
k∈Bl

|f(k)| ≤ O(G)

t
‖f‖1,

which shows that ‖MG‖1,∞ ≤ O(G). �
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To illustrate these results, we will consider now the particular case of the linear
tree Ln. We will see that for this graph, the behavior of the maximal operator is
similar to what happens in the euclidean setting R. First we prove an interpolation
result in Lp,∞(μ), for a general measure μ.

Lemma 4.10. If T is a sublinear operator, of weak-type (1,1) with constant C1 and
bounded in L∞ with constant C∞, then T : Lp → Lp,∞ is bounded, for 1 < p < ∞,
and

‖Tf‖p,∞ ≤ (p′)1/p
′
p1/pC

1/p
1 C1/p′

∞ ‖f‖p.
Proof. Fix t > 0, 0 < λ < 1, and set r = (1 − λ)t/C∞. For f ∈ Lp, write
f = fχ{|f |>r} + fχ{|f |≤r} = f1 + f2. Then,

μ({|Tf | > t}) ≤ μ({|Tf1| > λt}) + μ({|Tf2| > (1− λ)t})
≤ C1

λt
‖f1‖1 + μ({C∞‖f2‖∞ > (1− λ)t})

=
C1

λt

∫
{|f |>(1−λ)t/C∞}

|f |dμ

≤ C1

λt

(
(1− λ)t

C∞

)1−p ∫
{|f |>(1−λ)t/C∞}

|f |pdμ

≤ C1

C1−p∞

(1− λ)1−p

λ
t−p‖f‖pp.

Hence,

‖Tf‖p,∞ ≤ inf
0<λ<1

1

(1− λ)1/p′λ1/p
C

1/p
1 C1/p′

∞ ‖f‖p = (p′)1/p
′
p1/pC

1/p
1 C1/p′

∞ ‖f‖p.

�

Proposition 4.11. If 1 ≤ p < ∞, then

1 ≤ ‖MLn‖p,∞ ≤ (p′)1/p
′
(2p)1/p ≤ 3.

Proof. Since O(Ln) ≤ 2, by Theorem 4.9 we have that ‖MLn‖1,∞ ≤ 2. Since
‖MLn‖∞ = 1 and using Lemma 4.10, we finally obtain the result (notice that
(p′)1/p

′
(2p)1/p ≤ 3 is a trivial estimate). The fact that ‖MLn‖p,∞ ≥ 1 follows easily

since (MLnδ1)
∗(1) = 1 and hence ‖MLnδ1‖p,∞ ≥ 1. �

Proposition 4.12. If {Gn}n∈N is a family of graphs such that Gn has n vertices and
‖MGn‖1,∞ ≈ 1, uniformly in n, then, for every 0 < p < 1 and n ∈ N, ‖MGn‖p,∞ ≈
n1/p−1, uniformly in n and p. In particular ‖MLn‖p,∞ ≈ n1/p−1, 0 < p < 1.

Proof. The inequality ‖MGn‖p,∞ ≥ n1/p−1 follows, as before, from Theorem 4.1.
Now, if 0 < p < 1 and ‖f‖p = 1, then ‖f‖1 ≤ 1 and

j1/p(MGnf)
∗(j) = j1/p−1j(MGnf)

∗(j) ≤ j1/p−1‖MGnf‖1,∞
� j1/p−1‖f‖1 ≤ n1/p−1.

Thus, ‖MGn‖p,∞ � n1/p−1. �

Proposition 4.13. For the linear graph Ln, we have that limn→∞ ‖MLn‖1,∞ = 2.



THE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON GRAPHS 21

Proof. As we have already seen, we have that ‖MLn‖1,∞ ≤ 2. For the converse
inequality, let us assume for simplicity that n = 2k + 1. Then:

MLnδk(j) =

⎧⎪⎪⎨⎪⎪⎩
1

k
, j ≤

[k
2

]
or j > k +

[k + 1

2

]
,

1

2|k − j|+ 1
,

[k
2

]
< j ≤ k +

[k + 1

2

]
.

Thus, we have

‖MLn‖1,∞ ≥ ‖MLnδk‖1,∞ ≥ n

k
=

2n

n− 1
,

which tends to 2, as n → ∞. �
Remark 4.14. Observe that limn→∞ ‖MLn‖1,∞ = 2 = ‖M‖1,∞, where M is the
non-centered maximal function in R. This should be compared to the discretization
result proved in [12, Theorem 3], namely ifM is centered Hardy-Littlewood maximal
operator in R and we consider the discrete measures

D =

{
μ =

N∑
k=1

δak : ak ∈ R, ak+1 = ak +H, H fixed, N ∈ N

}
,

then

sup
μ∈D

‖Mμ‖1,∞
‖μ‖ =

3

2
.

Remark 4.15. The estimates given in Propositions 4.11 and 4.13 for MLn also hold
for the Hardy-Littlewood maximal operator of the cyclic graph Cn, with similar
proofs.
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