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Abstract

In this paper, we study a reduced gravity two and a half layer model in three-dimensional whole

space R
3. Under assumption of small initial data, we establish the unique global solution by energy

method, furthermore, we obtain the time decay rates of the higher-order spatial derivatives of the

solution by the method of spectral analysis and energy estimates if the initial data belongs to L1(R3)

additionally.
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1 Introduction

In this paper, we consider the reduced gravity two and a half layer model in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th1 + div(h1u1) = 0,

∂t(h1u1) + div(h1u1 ⊗ u1) + (g1 + g2)h1∇h1 + g2h1∇h2 = 2ν1div(h1Du1),

∂th2 + div(h2u2) = 0,

∂t(h2u2) + div(h2u2 ⊗ u2) + g2h2∇h1 + g2h2∇h2 = 2ν2div(h2Du2),

h1(x, t) → h̃1 > 0, h2(x, t) → h̃2 > 0 as |x| → ∞,

(1.1)
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where hi(x, t), ui(x, t) and νi(i = 1, 2) are the upper and middle layer thickness, horizontal velocity, and

the coefficient of lateral friction, Dui := ∇ui+(∇ui)
′

2 (i = 1, 2) denote the stress tensor in the upper and

middle layers, respectively. g1 and g2 are positive constants, h̃1, h̃2denote the background doping profile

which are known positive constants. Without loss of generality, we set ν1 = ν2 = h̃1 = h̃2 = 1 in the

sequel.

We point out here that if we take h1 ≡ 0 or h2 ≡ 0, then the model (1.1) is the following viscous

compressible Navier-Stokes equations, the viscosity coefficient is taken as νh, and the pressure is P (h) =

g′h2, ⎧⎨
⎩ ∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u) + g′h∇h = 2νdiv(hDu).

As stated in [2], (1.1) is a useful model of the stratified upper ocean overlying a nearly stationary and

nearly unstratified abyss. The simplest way to simulate the ocean circulation is to assume the ocean is

homogeneous in density, and this model has no vertical structure. For some reasons, here the stratification

in the ocean is simplified as a two-layer fluid. Fluid below the main thermocline moves much slower than

that above the main thermocline. As a good approximate, one can assume that the fluid in the lower layer

is near stagnant. For more information about this model, see, for instance, [2], [9], and references cited

therein. In the present paper, we mainly consider the global existence and large time behavior of global

classical solution to the Cauchy problem of the reduced gravity two and a half layer model (1.1) with the

following initial condition:

(h1, u1, h2, u2)|t=0 = (h10, u10, h20, u20), x ∈ R
3. (1.2)

The the existence and optimal time-decay rates of the solutions have been the important problem in

the PDE theory. For the compressible Navier-Stokes system, there has been much important progress on

classical solutions; refer to [1],[11], [12], [13], [14], [15], [16], [18], [19], [21] and references therein. For

the compressible Nematic Liquid Crystal Flows, there has been some progress on long-time behavior of

solution; refer to [22],[23] and references therein. Considering the reduced gravity two and a half layer

model (1.1), Duan and Zhou [2] obtained the stability of weak solutions in two dimension periodic domain

T
3. Guo, Li and Yao [4] investigated the existence of global weak solution in one-dimensional bounded

spatial domain or periodic domain. Recently, Cui, Yao and Yao [3] proved the global existence by classical

methods and got the optimal time decay rates of global smooth solutions by the detailed analysis of

the Green’s function to the linearized system and elaborate energy estimates to the nonlinear system in

three-dimensional under the condition that the HN ∩ L1(N > 4) norm of the initial data is small.

‖(h1 − 1, u1, h2 − 1, u2)(t)‖HN ≤ C(1 + t)−
3
4 . (1.3)
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However, to our knowledge there are few results about the large time behavior of the reduced gravity two

and a half layer model up to now.

In this paper, we first establish the global solution by the energy method following the idea of Guo,

Wang [14] and Wang [20] under the assumption that the H3 norm of the initial date is small, but the

higher order derivatives can be arbitrarily large. Then we establish the time decay rates by the method of

spectral analysis and energy estimates by assuming that the initial data belongs to L1(R3) additionally.

Notation Throughout this paper, ∇l with an integer l ≥ 0 stands for the usual any spatial derivatives

of order l. When l < 0 or l is not a positive integer, ∇l stands for Λl defined by Λsu = F−1(|ξ|sû(ξ)),
where û is the Fourier transform of u and F−1 its inverse. We will employ the notation A � B to mean

that A ≤ CB for a universal constant C > 0 that only depends on the parameters coming from the

problem. For the sake of conciseness, we write ‖(A,B)‖X := ‖A‖X + ‖B‖X .

In this subsection, we first reformulate the system (1.1). We denote n1 = h1 − 1, n2 = h2 − 1, then the

system (1.1) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tn1 + divu1 = f1,

∂tu1 −�u1 −∇divu1 + (g1 + g2)∇n1 = f2,

∂tn2 + divu2 = f3,

∂tu2 −�u2 −∇divu2 + g2∇n2 = f4,

(1.4)

with

(n1, u1, n2, u2)|t=0 = (h10 − 1, u10, h20 − 1, u20) =: (n10, u10, n20, u20), x ∈ R
3. (1.5)

where

f1 := −div(n1u1),

f2 := −u1 · ∇u1 +
1

n1 + 1
div[(n1 + 1)∇u1]−�u1 +

1

n1 + 1
div[(n1 + 1)(∇u1)

′]−∇divu1 − g2∇n2,

f3 := −div(n2u2),

f4 := −u2 · ∇u2 +
1

n2 + 1
div[(n2 + 1)∇u2]−�u2 +

1

n2 + 1
div[(n2 + 1)(∇u2)

′]−∇divu2 − g2∇n1.

Our main results are stated in the following theorem.

Theorem 1.1. Let N ≥ 3, assume that (n10, u10, n20, u20) ∈ HN (R3). Then there exists a constant δ0 > 0

such that if

‖(n10, u10, n20, u20)‖H3 ≤ δ0, (1.6)

then the problem (1.1) has a unique global solution satisfying that for all t ≥ 0,

‖(n1, u1, n2, u2)(t)‖2HN + C

∫ t

0

(‖∇(n1, n2)(τ)‖2HN−1 + ‖∇(u1, u2)(τ)‖2HN )dτ (1.7)
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≤ C‖(n10, u10, n20, u20)‖2HN .

If further, (n10, u10, n20, u20) ∈ L1(R3), then

‖∇l(n1, u1, n2, u2)(t)‖HN−l ≤ C(1 + t)−
3+2l

4 , for l = 0, 1, · · ·, N − 1. (1.8)

and for 2 ≤ p ≤ ∞, there holds

‖∇l(n1, u1, n2, u2)(t)‖Lp ≤ C(1 + t)−
l
2− 3

2 (1− 1
p ), (1.9)

especially,

‖∇l(n1, u1, n2, u2)(t)‖L∞ ≤ C(1 + t)−
3+l
2 . (1.10)

2 Energy estimates

In this subsection, we will derive the a priori nonlinear energy estimates for the system (1.7). Hence we

assume a priori that for sufficiently small δ > 0,

√
E3
0 (t) = ‖(n1, u1, n2, u2)(t)‖H3 ≤ δ. (2.1)

First of all, by (2.1) and Sobolev’s inequality, we obtain

1

2
≤ n1 + 1, n2 + 1 ≤ 3

2
. (2.2)

Now, we list some inequalities, which will be used in the later.

Lemma 2.1. Let 0 ≤ m,α ≤ l, then we have

‖∇αf‖Lp � ‖∇mf‖1−θ
Lq ‖∇lf‖θLr . (2.3)

where 0 ≤ θ ≤ 1 and α satisfies α
3 − 1

p = (m3 − 1
q )(1− θ) + ( l

3 − 1
r )θ.

Here when p = ∞ we require that 0 < θ < 1.

Proof. This can be found in [[8], p. 125, Theorem].

Lemma 2.2. Assume that ‖nj‖L∞ ≤ 1 and p > 1. Let g(nj) be a smooth function of nj with bounded

derivatives of any order, then for any integer m ≥ 1, we have

‖∇mg(nj)‖Lp � ‖∇mnj‖Lp , j = 1, 2. (2.4)

Proof. The proof is similar to the proof of Lemma A.2 in [20] and is omitted here.
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Lemma 2.3. Let m ≥ 1 be an integer and define the commutator

[∇m, f ]g = ∇m(fg)− f∇mg.

Then we have

‖[∇m, f ]g‖Lp � ‖∇f‖Lp1 ‖∇m−1g‖Lp2 + ‖∇mf‖Lp3 ‖g‖Lp4 . (2.5)

and for m ≥ 0

‖∇m(fg)‖Lp � ‖f‖Lp1 ‖∇mg‖Lp2 + ‖∇mf‖Lp3 ‖g‖Lp4 . (2.6)

where p, p2, p3 ∈ (1,∞) and 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Proof. For p = p2 = p3 = 2, it can be proved by using Lemma 2.1. For the general cases, one may refer to

[[7], Lemma 3.1].

Next, we will establish the global existence of solution for the reduced gravity two and a half layer

model. For this purpose, we begin with the energy estimates including n1, u1, n2, u2 themselves.

Lemma 2.4. If
√
E3
0 (t) ≤ δ, then for k = 0, · · ·, N − 1, we have

d

dt
(‖∇k(n1, u1, n2, u2)‖2L2 +

∫
R3

∇kn1 · ∇kn2dx) + C‖∇k+1(u1, u2)‖2L2

� δ‖∇k+1(n1, u1, n2, u2)‖2L2 . (2.7)

Proof. Applying∇k to (1.4), and multiplying the resulting identities by (g1+g2)∇kn1,∇ku1, g2∇kn2,∇ku2

respectively, summing up them and then integrating over R3 by parts, we get

1

2

d

dt
[(g1 + g2)‖∇kn1‖2L2 + ‖∇ku1‖2L2 + g2‖∇kn2‖2L2 + ‖∇ku2‖2L2 ] + ‖∇k+1(u1, u2)‖2L2 + ‖∇kdiv(u1, u2)‖2L2

=

∫
R3

(g1 + g2)∇kf1 · ∇kn1 +∇kf2 · ∇ku1 + g2∇kf3 · ∇kn2 +∇kf4 · ∇ku2dx (2.8)

:=

4∑
i=1

Ii.

We shall estimate the terms in the right hand side of (2.8). First, for the term I1, employing Hölder’s

inequality and Lemma 2.3, we obtain

I1 =−
∫
R3

(g1 + g2)∇kdiv(n1u1) · ∇kn1dx (2.9)

�(‖n1‖L3‖∇k+1u1‖L2 + ‖∇k+1n1‖L2‖u1‖L3)‖∇kn1‖L6

�δ(‖∇k+1n1‖2L2 + ‖∇k+1u1‖2L2).
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Similarly, we can bound

I3 �δ(‖∇k+1n2‖2L2 + ‖∇k+1u2‖2L2). (2.10)

For the second and fourth terms, we have

I2 + I4 = −g2

∫
R3

∇k∇n2 · ∇ku1 +∇k∇n1 · ∇ku2dx+
2∑

j=1

∫
R3

∇k(−uj · ∇uj) · ∇kuj (2.11)

+∇k(
1

nj + 1
∂lnj∂lu

i
j) · ∇kui

j +∇k(
1

nj + 1
∂lnj∂iu

l
j) · ∇kui

jdx.

By (1.4)1,3 and integrating by parts, we deduce from (2.9), (2.10) that

−
∫
R3

∇k∇n2 · ∇ku1 +∇k∇n1 · ∇ku2dx (2.12)

=

∫
R3

∇kn2 · ∇kdivu1 +∇kn1 · ∇kdivu2dx

=

∫
R3

∇kn2 · ∇k(f1 − ∂tn1) +∇kn1 · ∇k(f3 − ∂tn2)dx

=

∫
R3

∇kn2 · ∇kf1 +∇kn1 · ∇kf3dx− d

dt

∫
R3

∇kn1 · ∇kn2dx

� δ(‖∇k+1n2‖2L2 + ‖∇k+1u2‖2L2)− d

dt

∫
R3

∇kn1 · ∇kn2dx.

Now, we estimate the term
∑2

j=1

∫
R3 ∇k(−uj ·∇uj) ·∇kujdx. If k = 0, by Hölder’s inequality, we have∫

R3

(uj · ∇uj) · ujdx � ‖uj‖L3‖∇uj‖L2‖uj‖L6 � δ‖∇uj‖2L2 . (2.13)

If k ≥ 1, by using Hölder’s inequality, Lemma 2.1 and Lemma 2.3, we have∫
R3

∇k(uj · ∇uj) · ∇kujdx (2.14)

� (‖uj‖L3‖∇k+1uj‖L2 + ‖∇kuj‖L2‖∇uj‖L3)‖∇kuj‖L6

� δ‖∇k+1uj‖2L2 + ‖uj‖1−
k

k+1

L2 ‖∇k+1uj‖
k

k+1

L2 ‖∇αuj‖
k

k+1

L2 ‖∇k+1uj‖1−
k

k+1

L2 ‖∇kuj‖L6

� δ‖∇k+1uj‖2L2 .

where α is defined by

1

3
− 1

3
= (

α

3
− 1

2
)× k

k + 1
+ (

k + 1

3
− 1

2
)× (1− k

k + 1
).

Since k ≥ 1, we have α = k+1
2k ∈ ( 12 , 1].

For the fourth term, by using Hölder’s inequality, Lemma 2.2 and Lemma 2.3, we have∫
R3

∇k(
1

nj + 1
∂lnj∂lu

i
j) · ∇kui

jdx (2.15)

�
(
‖ 1

nj + 1
‖L3‖∇k(∂lnj∂lu

i
j)‖L2 + ‖∇k(

1

nj + 1
)‖L6‖∇nj‖L3‖∇uj‖L3

)
‖∇kuj‖L6
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� ‖nj‖L3

(
‖∇nj‖L∞‖∇k+1uj‖L2 + ‖∇k+1nj‖L2‖∇uj‖L∞

)
‖∇k+1uj‖L2

+ ‖∇nj‖L3‖∇uj‖L3‖∇k+1nj‖L2‖∇k+1uj‖L2

� δ(‖∇k+1nj‖2L2 + ‖∇k+1uj‖2L2).

Similarly, we have∫
R3

∇k(
1

nj + 1
∂lnj∂iu

l
j) · ∇kui

jdx � δ(‖∇k+1nj‖2L2 + ‖∇k+1uj‖2L2). (2.16)

Combining (2.8)− (2.16), we deduce (2.7) for 0 ≤ k ≤ N − 1, this yields the desired result.

Lemma 2.5. If
√
E3
0 (t) ≤ δ, then for k = 0, · · ·, N − 1, we have

d

dt
(‖∇k+1(n1, u1, n2, u2)‖2L2 +

∫
R3

∇k+1n1 · ∇k+1n2dx) + C‖∇k+2(u1, u2)‖2L2

� δ‖∇k+1(n1, u1, n2, u2)‖2L2 . (2.17)

Proof. Applying∇k+1 to (1.4), and multiplying the resulting identities by (g1+g2)∇k+1n1,∇k+1u1, g2∇k+1n2,

∇k+1u2 respectively, summing up them and then integrating over R3 by parts, we get

1

2

d

dt
[(g1 + g2)‖∇k+1n1‖2L2 + g2‖∇k+1n2‖2L2 + ‖∇k+1(u1, u2)‖2L2 ] + ‖∇k+2(u1, u2)‖2L2 + ‖∇k+1div(u1, u2)‖2L2

=

∫
R3

(g1 + g2)∇k+1f1 · ∇k+1n1 +∇k+1f2 · ∇k+1u1dx+ g2∇kf3 · ∇k+1n2 +∇k+1f4 · ∇ku2dx (2.18)

:=
4∑

i=1

Ji.

We shall estimate the terms in the right hand side of (2.18). First, for the term J1, employing the

Leibniz formula and by Hölder’s inequality, we obtain

J1 =−
∫
R3

(g1 + g2)∇k+1div(n1u1) · ∇k+1n1dx (2.19)

=−
∫
R3

(g1 + g2)([∇k+1, divu1]n1 + divu1∇k+1n1 + [∇k+1, u1]∇n1 + u1∇k+1∇n1) · ∇k+1n1dx

�(‖∇2u1‖L3‖∇kn1‖L6 + ‖∇k+2u1‖L2‖n1‖L∞ + ‖∇u1‖L∞‖∇k+1n1‖L2)‖∇k+1n1‖L2

+ (‖∇u1‖L∞‖∇k+1n1‖L2 + ‖∇k+1u1‖L6‖∇n1‖L3 + ‖∇u1‖L∞‖∇k+1n1‖L2)‖∇k+1n1‖L2

�δ(‖∇k+1n1‖2L2 + ‖∇k+2u1‖2L2).

Similarly, we can bound

J3 �δ(‖∇k+1n2‖2L2 + ‖∇k+2u2‖2L2). (2.20)

For the second and fourth terms, we have

J2 + J4 = −g2

∫
R3

∇k+1∇n2 · ∇k+1u1 +∇k∇n1 · ∇k+1u2dx+

2∑
j=1

∫
R3

∇k+1(−uj · ∇uj) · ∇k+1uj (2.21)
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+∇k+1(
1

nj + 1
∂lnj∂lu

i
j) · ∇k+1ui

j +∇k+1(
1

nj + 1
∂lnj∂iu

l
j) · ∇k+1ui

jdx.

By (1.4)1,3 and integrating by parts, we deduce from (2.19), (2.20) that

−
∫
R3

∇k+1∇n2 · ∇k+1u1 +∇k+1∇n1 · ∇k+1u2dx (2.22)

=

∫
R3

∇k+1n2 · ∇k+1divu1 +∇k+1n1 · ∇k+1divu2dx

=

∫
R3

∇k+1n2 · ∇k+1(−f1 − ∂tn1) +∇k+1n1 · ∇k+1(−f3 − ∂tn2)dx

= −
∫
R3

∇k+1n2 · ∇k+1f1 +∇k+1n1 · ∇k+1f3dx− d

dt

∫
R3

∇k+1n1 · ∇k+1n2dx

� δ(‖∇k+1(n1, n2)‖2L2 + ‖∇k+2(u1, u2)‖2L2)− d

dt

∫
R3

∇k+1n1 · ∇k+1n2dx.

By using Hölder’s inequality, Lemma 2.1 and Lemma 2.3, we have∫
R3

∇k+1(uj · ∇uj) · ∇k+1ujdx (2.23)

� (‖uj‖L3‖∇k+2uj‖L2 + ‖∇k+1uj‖L2‖∇uj‖L3)‖∇k+1uj‖L6

� δ(‖∇k+1uj‖2L2 + ‖∇k+2uj‖2L2).

For the fourth term, by using Hölder’s inequality, Lemma 2.3, we have∫
R3

∇k+1(
1

nj + 1
∂lnj∂lu

i
j) · ∇k+1ui

jdx (2.24)

�
(
‖ 1

nj + 1
‖L∞‖∇k(∂lnj∂lu

i
j)‖L2 + ‖∇k(

1

nj + 1
)‖L6‖∇nj‖L6‖∇uj‖L6

)
‖∇k+2uj‖L2

� ‖nj‖L∞
(
‖∇nj‖L∞‖∇k+1uj‖L2 + ‖∇k+1nj‖L2‖∇uj‖L∞

)
‖∇k+2uj‖L2

+ ‖∇k+1nj‖L2‖∇2nj‖L2‖∇2uj‖L2‖∇k+2uj‖L2

� δ(‖∇k+1nj‖2L2 + ‖∇k+1uj‖2L2 + ‖∇k+2uj‖2L2).

Similarly, we have∫
R3

∇k+1(
1

nj + 1
∂lnj∂iu

l
j) · ∇k+1ui

jdx � δ(‖∇k+1nj‖2L2 + ‖∇k+1uj‖2L2 + ‖∇k+2uj‖2L2). (2.25)

Combining (2.18)− (2.25), we deduce (2.17) for 0 ≤ k ≤ N − 1, this yields the desired result.

The following lemma provides the dissipation estimate for n1, n2.

Lemma 2.6. If
√
E3
0 (t) ≤ δ, then for k = 0, · · ·, N − 1, we have

d

dt

∫
R3

∇ku1 · ∇k+1n1 +∇ku2 · ∇k+1n2dx+ C‖∇k+1(n1, n2)‖2L2 (2.26)

� ‖∇k+1(u1, u2)‖2L2 + ‖∇k+2(u1, u2)‖2L2 .
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Proof. Applying ∇k to (1.4)2 and (1.4)4, multiplying ∇k+1n1,∇k+1n2 respectively, summing up and in-

tegrating by part, we get

(g1 + g2)‖∇k+1n1‖2L2 + g2‖∇k+1n2‖2L2 ≤−
∫
R3

∇k∂tu1 · ∇k+1n1 +∇k∂tu2 · ∇k+1n2dx (2.27)

+ C‖∇k+2u1‖L2‖∇k+1n1‖L2 + C‖∇k+2u2‖L2‖∇k+1n2‖L2

+

∫
R3

∇kf2 · ∇k+1n1 +∇kf4 · ∇k+1n2dx.

For the first integration in the right-hand side of (2.27), by (1.4)1,2 and integrating by parts, we deduce

from (2.9), (2.10) that

−
∫
R3

∇k∂tu1 · ∇k+1n1 +∇k∂tu2 · ∇k+1n2dx

=− d

dt

∫
R3

∇ku1 · ∇k+1n1 +∇ku2 · ∇k+1n2dx+

∫
R3

∇ku1 · ∇k+1∂tn1 +∇ku2 · ∇k+1∂tn2dx (2.28)

=− d

dt

∫
R3

∇ku1 · ∇k+1n1 +∇ku2 · ∇k+1n2dx+

∫
R3

∇kdivu1 · ∇k(f1 − divu1) +∇kdivu2 · ∇k(f3 − divu2)dx

=− d

dt

∫
R3

∇ku1 · ∇k+1n1 +∇ku2 · ∇k+1n2dx+ ‖∇k+1(u1, u2)‖2L2 + C‖∇k+1(u1, u2)‖L2‖∇k(f1, f3)‖L2

=− d

dt

∫
R3

∇ku1 · ∇k+1n1 +∇ku2 · ∇k+1n2dx+ ‖∇k+1(u1, u2)‖2L2 + Cδ‖∇k+1(n1, n2)‖2L2 .

For the last integration in the right-hand side of (2.27), by using Hölder’s inequality , Lemma 2.3 and

together with (2.24), (2.25), we obtain

∫
R3

∇kf2 · ∇k+1n1 +∇kf4 · ∇k+1n2dx

= −g2

∫
R3

∇k∇n2 · ∇k+1n1 +∇k∇n1 · ∇k+1n2dx+
2∑

j=1

∫
R3

∇k(−uj · ∇uj) · ∇k+1nj (2.29)

+∇k(
1

nj + 1
∂lnj∂lu

i
j) · ∇k+1ni

j +∇k(
1

nj + 1
∂lnj∂iu

l
j) · ∇k+1ni

jdx

≤ g2
2
(‖∇k+1n1‖2L2 + ‖∇k+1n2‖2L2) + δ(‖∇k+1nj‖2L2 + ‖∇k+1uj‖2L2)

+ C(‖uj‖L∞‖∇k+1uj‖L2 + ‖∇kuj‖L6‖∇uj‖L3)‖∇k+1nj‖L2

≤ g2
2
(‖∇k+1n1‖2L2 + ‖∇k+1n2‖2L2) + Cδ(‖∇k+1nj‖2L2 + ‖∇k+1uj‖2L2).

Combining (2.27)− (2.29), by Cauchy’s inequality, since δ is small, we then obtain (2.26).

Next, we will combine all the energy estimates that we have derived to prove (1.7) of Theorem 1.1.

Proof. We first close the energy estimates at each l-th level in our weaker sense. Let N ≥ 3 and 0 ≤ l ≤
m − 1 with 1 ≤ m ≤ N . Summing up the estimates (2.7) of Lemma 2.4 for from k = l to m − 1, since

9
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√
E3
0 ≤ δ is small, we obtain

d

dt

∑
l≤k≤m−1

(
‖∇k(n1, u1, n2, u2)‖2L2 +

∫
R3

∇kn1 · ∇kn2dx
)
+ C

∑
l+1≤k≤m

‖∇k(u1, u2)‖2L2

� δ
∑

l+1≤k≤m

‖∇k(n1, u1, n2, u2)‖2L2 . (2.30)

Let k = m− 1 in the estimates (2.17) of Lemma 2.5 , we have

d

dt

(
‖∇m(n1, u1, n2, u2)‖2L2 +

∫
R3

∇mn1 · ∇mn2dx
)
+ C‖∇m+1(u1, u2)‖2L2

� δ‖∇m(n1, u1, n2, u2)‖2L2 . (2.31)

Adding the inequality (2.31) with (2.30), we get

d

dt

∑
l≤k≤m

(
‖∇k(n1, u1, n2, u2)‖2L2 +

∫
R3

∇kn1 · ∇kn2dx
)
+ C1

∑
l+1≤k≤m+1

‖∇k(u1, u2)‖2L2

≤ C2δ
∑

l+1≤k≤m

‖∇k(n1, u1, n2, u2)‖2L2 . (2.32)

Summing up the estimates (2.26) of Lemma 2.6 for from k = l to m− 1, we have

d

dt

∑
l≤k≤m−1

∫
R3

(∇ku1 · ∇k+1n1 +∇ku2 · ∇k+1n2)dx+ C3

∑
l+1≤k≤m

‖∇k(n1, n2)‖2L2 (2.33)

≤ C4

∑
l+1≤k≤m+1

‖∇k(u1, u2)‖2L2 .

Multiplying (2.33) by 2C2δ
C3

, adding it with (2.32), since δ > 0 is small, we deduce that there exists a

constant C5 > 0 such that for 0 ≤ l ≤ m− 1

d

dt

{ ∑
l≤k≤m

(
‖∇k(n1, u1, n2, u2)‖2L2 +

∫
R3

∇kn1 · ∇kn2dx
)

+
2C2δ

C3

∑
l≤k≤m−1

∫
R3

(∇ku1 · ∇k+1n1 +∇ku2 · ∇k+1n2)dx

}
(2.34)

+ C5

{ ∑
l+1≤k≤m

‖∇k(n1, n2)‖2L2 +
∑

l+1≤k≤m+1

‖∇k(u1, u2)‖2L2

}
≤ 0.

Next, we define Em
l (t) to be C−1

5 times the expression under the time derivative in (2.34). Observe that

since δ is small, Em
l (t) is equivalent to ‖∇l(n1, u1, n2, u2)(t)‖2Hm−l , that is, there exists a constant C6 > 0

such that for 0 ≤ l ≤ m− 1

C−1
6 ‖∇l(n1, u1, n2, u2)(t)‖2Hm−l ≤ Em

l (t) ≤ C6‖∇l(n1, u1, n2, u2)(t)‖2Hm−l . (2.35)

Then we may write (2.34) as that for 0 ≤ l ≤ m− 1

d

dt
Em
l (t) + C(‖∇l+1(n1, n2)‖2Hm−l−1 + ‖∇l+1(u1, u2)‖2Hm−l) ≤ 0. (2.36)

10
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Taking l = 0 and m = 3 in (2.36), and then integrating directly in time, we get

‖(n1, u1, n2, u2)(t)‖2H3 � E3
0 (t) � E3

0 (0) � ‖(n10, u10, n20, u20)‖2H3 . (2.37)

By a standard continuity argument, this closes the a priori estimates (2.1) if at the initial time we

assume that ‖(n10, u10, n20, u20)‖2H3 ≤ δ0 is sufficiently small. This in turn allows us to take l = 0 and

m = N in (2.36), and then integrate it directly in time to obtain

‖(n1, u1, n2, u2)(t)‖2HN + C

∫ t

0

‖∇(n1, n2)(τ)‖2HN−1 + ‖∇(u1, u2)(τ)‖2HNdτ ≤ C‖(n10, u10, n20, u20)‖2HN .

This proved (1.7).

3 Convergence rate of the solution

The aim of this section is to establish the decay rates of the solution stated in Theorem 1.1 under additional

assumptions that the initial data belong to L1. Firstly, we derive the decay rates for the linearized reduced

gravity two and a half layer equations. Then, we establish the decay rates for the flows (1.1) by the method

of spectral analysis and energy estimates. The Cauchy problem to the linearized two and a half layer system

is as follows: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tn1 + divu1 = 0,

∂tu1 −�u1 −∇divu1 + (g1 + g2)∇n1 + g2∇n2 = 0,

∂tn2 + divu2 = 0,

∂tu2 −�u2 −∇divu2 + g2∇n2 + g2∇n1 = 0.

(3.1)

Initial data of the system is given as

(n1, u1, n2, u2)|t=0 = (n10, u10, n20, u20), x ∈ R
3. (3.2)

Then the solution operator S(x, t) to the model (1.1) satisfies⎧⎨
⎩ ∂tS −A(∇x)S = 0,

S(x, 0) = δ(x)I8×8.
(3.3)

where δ(x) is the Dirac function. Taking the Fourier transform, we have⎧⎨
⎩ ∂tŜ −A(ξ)Ŝ = 0,

Ŝ(ξ, 0) = I8×8.
(3.4)

where

A(ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −iξ′ 0 0

−(g1 + g2)iξ −|ξ|2I3×3 − ξ ⊗ ξ −g2iξ 0

0 0 0 −iξ′

−g2iξ 0 −g2iξ −|ξ|2I3×3 − ξ ⊗ ξ

⎞
⎟⎟⎟⎟⎟⎟⎠

8×8

(3.5)

11
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The characteristic polynomial of A(ξ) is (λ+ |ξ|2)4[(λ2+2|ξ|2λ)2+(λ2+2|ξ|2λ)(g1+2g2)|ξ|2+g1g2|ξ|4],
which implies the eigenvalues are

λ0(ξ) = −|ξ|2(quadruple), λ1(ξ) = −|ξ|2 + ib1

λ2(ξ) = −|ξ|2 − ib1, λ3(ξ) = −|ξ|2 + ib2, λ4(ξ) = −|ξ|2 − ib2,

where

b1(ξ) =
1

2

√
2(g1 + 2g2 +

√
g21 + 4g22)|ξ|2 − 4|ξ|4,

b2(ξ) =
1

2

√
2(g1 + 2g2 −

√
g21 + 4g22)|ξ|2 − 4|ξ|4.

As in [3], [5], [6], [10], we can compute the exact expression of the Fourier transform Ŝ(ξ, t) of the system

(3.4). Making use of the semigroup theory for evolutional equation, the solutions U = (n1, u1, n2, u2)
′ of

the linear Cauchy problem (3.1)− (3.2) can be expressed as

U(t) = S(t) ∗ U0. (3.6)

Next, we give the following inequality, which can be found in [3].

Lemma 3.1. Let k ≥ 0 be an integer and, then for any t ≥ 0, the solution U(t) of system (3.1) − (3.2)

satisfies

‖∇kU(t)‖L2 ≤ C(1 + t)−
3
4− k

2 (‖U0‖L1 + ‖∇kU0‖L2). (3.7)

Now, we turn to establish the time decay rates for the reduced gravity two and a half layer equations

(1.4)− (1.5).

Lemma 3.2. Under the assumptions of Theorem 1.1, the global solution (n1, u1, n2, u2) of problem (1.4)

satisfies

‖∇l(n1, u1, n2, u2)(t)‖HN−l ≤ C(1 + t)−
3+2l

4 , for l = 0, 1. (3.8)

Proof. Adding ‖∇l(n1, u1, n2, u2)(t)‖2L2 to both sides of (2.36) gives

d

dt
Em
l (t) + CEm

l (t) ≤ ‖∇l(n1, u1, n2, u2)(t)‖2L2 . (3.9)

Taking l = 1 and m = N in (3.9), we get

d

dt
EN
1 (t) + CEN

1 (t) ≤ ‖∇(n1, u1, n2, u2)(t)‖2L2 . (3.10)

It follows from Gronwall inequality and Lemma 3.1 that

EN
1 (t) ≤ EN

1 (0)e−Ct +

∫ t

0

e−C(t−τ)‖∇(n1, u1, n2, u2)(τ)‖2L2dτ. (3.11)

12
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In order to derive the time decay rate for EN
1 (t), we need to control the term ‖∇(n1, u1, n2, u2)(t)‖2L2 . In

fact, by Duhamel principle, we know

U(t) = S(t) ∗ U0 +

∫ t

0

S(t− τ) ∗ (f1, f2 + g2∇n2, f3, f4 + g2∇n1)
′dτ. (3.12)

For the nonlinear terms of the model (1.4), employing the Hölder’s inequality and Lemma 2.3, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖f1‖L1 � δ‖∇(n1, u1)‖L2 , ‖f2 + g2∇n2‖L1 � δ‖∇u1‖L2 ,

‖f3‖L1 � δ‖∇(n2, u2)‖L2 , ‖f4 + g2∇n1‖L1 � δ‖∇u2‖L2 ,

‖f1‖L2 � δ‖∇(n1, u1)‖L2 , ‖f2 + g2∇n2‖L2 � δ‖∇(n1, u1)‖L2 ,

‖f3‖L2 � δ‖∇(n2, u2)‖L2 , ‖f4 + g2∇n1‖L2 � δ‖∇(n2, u2)‖L2

‖∇f1‖L2 � δ‖∇2(n1, u1)‖L2 , ‖∇(f2 + g2∇n2)‖L2 � δ‖∇(n1, u1)‖H1 ,

‖∇f3‖L2 � δ‖∇2(n1, u1)‖L2 , ‖∇(f4 + g2∇n1)‖L2 � δ‖∇(n2, u2)‖H1 .

(3.13)

Together with (2.13)− (2.14) and Lemma 3.1,, we have

‖∇(n1, u1, n2, u2)‖2L2 ≤ (1 + t)−
5
2 + C

∫ t

0

(1 + t− τ)−
5
2

(‖(f1, f2 + g2∇n2, f3, f4 + g2∇n1)‖2L1 (3.14)

+ ‖∇(f1, f2 + g2∇n2, f3, f4 + g2∇n1)‖2L2

)
dτ

≤ C(1 + t)−
5
2 + C

∫ t

0

δ(1 + t− τ)−
5
2 ‖∇(n1, u1, n2, u2)‖2H1dτ

≤ C(1 + t)−
5
2 + CδM(t)

∫ t

0

(1 + t− τ)−
5
2 (1 + τ)−

5
2 dτ

≤ C(1 + t)−
5
2 + CδM(t)(1 + t)−

5
2

≤ C(1 + t)−
5
2 (1 + δM(t)).

where M(t) = sup
0≤τ≤t

(1 + t)
5
2 EN

1 (t)

Inserting (3.14) into (3.11), it follows

EN
1 (t) ≤ EN

1 (0)e−Ct +

∫ t

0

e−C(t−τ)(1 + τ)−
5
2 (1 + δM(τ))dτ (3.15)

≤ EN
1 (0)e−Ct + C(1 + δM(t))

∫ t

0

e−C(t−τ)(1 + τ)−
5
2 dτ

≤ EN
1 (0)e−Ct + C(1 + δM(t))(1 + t)−

5
2

≤ C(1 + δM(t))(1 + t)−
5
2 .

where we have used the fact:

∫ t

0

e−C(t−τ)(1 + τ)−
5
2 dτ

=

∫ t
2

0

e−C(t−τ)(1 + τ)−
5
2 dτ +

∫ t

t
2

e−C(t−τ)(1 + τ)−
5
2 dτ

13
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≤ e−
Ct
2

∫ t
2

0

(1 + τ)−
5
2 dτ + (1 +

t

2
)−

5
2

∫ t

t
2

e−C(t−τ)dτ

≤ C(1 + t)−
5
2 .

Noticing the definition of M(t)), we get

M(t) ≤ C(1 + δM(t)).

which implies

M(t) ≤ C. (3.16)

since δ > 0 is sufficiently small.

Hence, we have the following decay rates

‖∇(n1, u1, n2, u2)(t)‖HN−1 ≤ C(1 + t)−
5
4 . (3.17)

On the other hand, by (2.13)− (2.14), it is easy to deduce

‖(n1, u1, n2, u2)‖2L2 ≤ (1 + t)−
3
2 + C

∫ t

0

(1 + t− τ)−
3
2 ‖(f1, f2 + g2∇n2, f3, f4 + g2∇n1)‖2L1∩L2dτ

≤ C(1 + t)−
3
2 + C

∫ t

0

δ(1 + t− τ)−
3
2 ‖∇(n1, u1, n2, u2)‖2L2dτ (3.18)

≤ C(1 + t)−
3
2 + C

∫ t

0

(1 + t− τ)−
3
2 (1 + τ)−

5
2 dτ

≤ C(1 + t)−
3
2 + C

∫ t

0

(1 + t− τ)−
5
2 (1 + τ)−

3
2 dτ

≤ C(1 + t)−
3
2 .

where we have used the inequality [1]:∫ t

0

(1 + t− τ)−
5
2 (1 + τ)−

3
2 dτ ≤ C(1 + t)−

3
2 .

which together with (3.17) implies (3.8).

Lemma 3.3. Under the assumptions of Theorem 1.1, the global solution (n1, u1, n2, u2) of problem (1.4)

satisfies

‖∇l(n1, u1, n2, u2)(t)‖HN−l ≤ C(1 + t)−
3+2l

4 , for l = 0, 1, · · ·, N − 1. (3.19)

Proof. We are ready to prove (3.19) by induction. When l = 0, 1, inequality (3.19) has been established

in Lemma 3.2, suppose (3.19) holds for the case l = k − 1, and k = 2, 3, · · ·, N − 1, that is

‖∇k−1(n1, u1, n2, u2)(t)‖HN−k+1 ≤ C(1 + t)−
1+2k

4 . (3.20)
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We need show (3.19) holds for l = k. Let l = k and m = N in the estimates (2.36) , we have

d

dt
EN
k (t) + ‖∇k+1(n1, n2)‖2HN−k−1 + ‖∇k+1(u1, u2)‖2HN−k ≤ 0. (3.21)

Adding ‖∇k+1(n1, n2)(t)‖2L2 to both sides of (3.21) gives

d

dt
EN
k (t) + C(‖∇k+1(n1, n2)‖2L2 + ‖∇k+1(n1, n2)‖2HN−k−1 + ‖∇k+1(u1, u2)‖2HN−k) ≤ 0. (3.22)

As in [17], we define

S(t) = {ξ ∈ R
3 : |ξ| ≤ (

a

1 + t
)

1
2 }.

for a constant a that will be specified bellow. Then

‖∇k+1ni‖2L2 =

∫
R3

|ξ|2(k+1)|n̂i|2dξ ≥
∫
R3/S

|ξ|2(k+1)|n̂i|2dξ

≥ a

1 + t

∫
R3/S

|ξ|2k|n̂i|2dξ

≥ a

1 + t

∫
R3

|ξ|2k|n̂i|2dξ − a2

(1 + t)2

∫
S

|ξ|2(k−1)|n̂i|2dξ

≥ a

1 + t

∫
R3

|ξ|2k|n̂i|2dξ − a2

(1 + t)2

∫
R3

|ξ|2(k−1)|n̂i|2dξ.

Thus, we have

‖∇k+1ni‖2L2 ≥ a

1 + t
‖∇kni‖2L2 − a2

(1 + t)2
‖∇k−1ni‖2L2 , i = 1, 2. (3.23)

Similarly, one has

‖∇k+1(u1, u2)‖2L2 ≥ a

1 + t
‖∇k(u1, u2)‖2L2 − a2

(1 + t)2
‖∇k−1(u1, u2)‖2L2 . (3.24)

Summing up the estimates (3.24) for k from k to N , one has

‖∇k+1(u1, u2)‖2HN−k ≥ a

1 + t
‖∇k(u1, u2)‖2HN−k − a2

(1 + t)2
‖∇k−1(u1, u2)‖2HN−k . (3.25)

Substituting the inequalities (3.23), (3.25) into (3.22), applying (3.20), it follows

d

dt
EN
k (t) +

Ca

1 + t
(‖∇k(n1, n2)(t)‖2L2 + ‖∇k+1(n1, n2)(t)‖2HN−k−1 + ‖∇k(u1, u2)‖2HN−k)

≤ Ca2

(1 + t)2
(‖∇k−1(n1, n2)(t)‖2L2 + ‖∇k−1(u1, u2)‖2HN−k)

≤ C(1 + t)−
5+2k

2 .

where we have used

a

1 + t
‖∇k+1(n1, n2)(t)‖2HN−k−1 ≤ ‖∇k(n1, n2)(t)‖2HN−k−1 ,
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for some sufficiently large time t ≥ a− 1 , such that a
1+t ≤ 1.

This, together with the definition of EN
k (t), implies that

d

dt
EN
k (t) +

Ca

1 + t
EN
k (t) ≤ C(1 + t)−

5+2k
2 . (3.26)

Choosing

a =
k + 2

C
,

and multiplying both sides of (3.26) by (1 + t)k+2, we get

d

dt
[(1 + t)k+2EN

k (t)] ≤ C(1 + t)−
1
2 . (3.27)

Solving the inequality direcly yields

‖∇k(n1, u1, n2, u2)(t)‖2HN−k ≤ C(1 + t)−
3+2k

2 . (3.28)

Hence, we have verified that (3.8) holds on for the case l = k, this concludes the proof of the lemma.

With Lemma 3.2 and Lemma 3.3 in hand, we are ready to proof Theorem 1.1:

Proof. With the help of Lemma 3.2 and Lemma 3.3, it is easy to obtain the conclusion (1.8) . As for (1.9),

by (1.8) and the Gagliardo-Nirenberg inequality,

‖∇lf(t)‖Lp ≤ C‖∇lf(t)‖θL2‖f(t)‖1−θ
L2 ,

1

p
− l

3
= (

1

2
− l

3
)θ +

1

2
(1− θ),

the claim follows.
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