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We consider a system of two equations that can be used to describe nonlinear 
chromatography and produce a coherent explanation and description of the 
unbounded solutions (singular shocks) that appear in Mazzotti’s model [21,22]. 
We use the methods of Geometric Singular Perturbation Theory, to show existence 
of a viscous solution to Dafermos–DiPerna regularization.
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1. Introduction

The aim of this paper is to show existence of no classical Riemann solutions to a physical model with 
important applications in modern industry. The model exhibiting singular shocks, has been already studied 
in carefully designed experiments by Mazzotti et al. [6,21–23].

Singular shocks, a type of weak solutions of very low regularity, have been studied before. They were 
originally discovered by Keyfitz and Kranzer [11,12,16], and later studied in greater depth by Sever [27]. 
Keyfitz and Kranzer [11] worked with a strictly hyperbolic, genuinely nonlinear system derived from a 
1-dimensional model for isothermal, isentropic gas dynamics and they observed that there is a large region, 
where the Riemann problem cannot be solved using shocks and rarefactions. They produced approximate 
unbounded solutions which do not satisfy the equation in the classical weak-solution sense and showed 
that only the first component of the Rankine–Hugoniot relation is satisfied, giving a unique speed s for 
which any given two states UL and UR can be joined. Later on, Schecter [25] proved existence of a viscous 
solution following Dafermos’s approach [2,3], under the condition that the singular shock is overcompressive. 
Schecter used a geometric method and dynamical systems theory (blowing-up approach to geometric singular 
perturbation problems that lack normal hyperbolicity, see Fenichel [4] and Jones [7]).
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Keyfitz and Tsikkou [13] showed existence of approximations to singular shock solutions by the same 
method, for a non-hyperbolic system (change of type) derived from isentropic gas dynamics for an ideal 
fluid with 1 < γ < 5

3 , conserving velocity and entropy. Singular shocks also appear in a two-fluid model for 
incompressible two-phase flow, see Keyfitz et al. [10,14,15], in a model describing gravity-driven, particle-
laden thin-film flow, see Wang and Bertozzi [33], Mavromoustaki and Bertozzi [20], in the Brio system 
appearing in the study of plasma and the classical shallow-water system see Kalisch and Mitrovic [9] and 
possibly in a model for chemotaxis, see Levine and Sleeman [18].

Naturally, questions then arise about whether it is possible to predict singular shock solutions to systems, 
find a physical interpretation of their significance, explain the sense in which they satisfy the equation and 
find a better definition which will describe some wider collection of examples, check for connection between 
singular shocks, genuinely nonlinear systems and change of type. A few of these questions will be subject 
of future work.

Investigation of singular solutions was mostly focused on the case when only one state variable develops 
the Dirac delta function and the others are functions with a bounded variation. We have though other 
physically important systems with delta functions in more than one state variables. For example, Mazzotti 
et al. [6,21–23] in their recent work studied numerically and experimentally the following model, which 
exhibits singular solutions, in a single space dimension and time, arising in two-component chromatography 
(concentration ui for chemical i)

∂

∂t
(ui + αiui

1 − u1 + u2
) + ∂ui

∂x
= 0, i = 1, 2, α1 < α2. (1.0.1)

They obtained approximate solutions, using a linear combination of δ-functions, with an error that converged 
to zero and showed that neither of the Rankine–Hugoniot equations is satisfied. In system (1.0.1) that results 
when some assumptions in the traditional Langmuir equilibrium model are changed, the conserved quantities 
are the masses of two components flowing at constant speed along a column, cooperating for adsorption 
sites and is a system which exhibits change of type (hyperbolic and elliptic).

In this paper, we obtain useful information from the Dafermos–DiPerna self-similar regularization and 
produce an explanation/description of the singular solution in Mazzotti’s work.

In the next section, we derive a simpler system of equations which we will study, by rescaling time and 
changing the dependent variables. These changes are linear in the conserved quantities so that the form of 
the system is maintained. Derivation of alternative models will be also subject of future work. In Section 3
we give a formal description of the Riemann solutions, including the cases that include vacuum states. As in 
Keyfitz et al. [11,13], we are led to the form of the solutions by using a self-similar viscous perturbation of 
the system. The new system has now similar properties to those in [11,13], as only the first component of 
the Rankine–Hugoniot relation is satisfied. In Section 4, we use the theory of dynamical systems in the same 
spirit as in Schecter [25], Keyfitz and Tsikkou [13] and more specifically geometric singular perturbation 
theory (GSPT), see Fenichel [4], Jones [7], Krupa and Szmolyan [17], Jones and Kopell [8], Schecter and 
Szmolyan [26], to construct orbits that connect the left and right states given by

U(x, 0) =
{

UL, x < 0;
UR, x ≥ 0.

(1.0.2)

We also prove existence of self-similar viscous profiles for overcompressive singular shocks for the chromatog-
raphy model. It should be noted, however, that the symmetry in the orbits is lost and the solutions differ 
significantly from those of previous models exhibiting singular shocks.

There is a body of literature on all kinds of chromatography systems of the form

(uj)t + (ujfj(μ1u1 + . . . + μnun))x = 0, x ∈ R, t � 0, j = 1, 2, (1.0.3)
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but all the known results are for simplified, everywhere hyperbolic, systems which also belong to Temple 
class. For recent developments in this direction see Shen [29], Li and Shen [19] and Sun [30,31] for a system 
with fj(w) = 1

1+w , μ1 = 1, μ2 = 0 (the second characteristic family is linearly degenerate); Guo, Pan and 
Yin [5], Cheng and Yang [1] for a system with fj(w) = 1 + 1

1+w , μ1 = −1, μ2 = 1 (the first characteristic 
family is linearly degenerate); Wang [32] for a system with fj(w) = 1

1+w , μ1 = −1, μ2 = 1 (the first 
characteristic family is linearly degenerate), and the references cited therein. See also Shelkovich [28] for 
a class of systems with a different definition of solutions whose components contain Dirac delta functions. 
These include the system of nonlinear chromatography for fj(w) = 1 + aj

1+w , μj = 1 and aj is Henry’s 
constant.

2. Preliminaries

In this section we derive a simpler system of equations from (1.0.1) which we study in this paper. 
Since these changes are linear in the conserved quantities we are not changing the form of the system. 
We also analyze its basic properties (hyperbolicity, genuine nonlinearity, and the shock and rarefaction 
curves sketched in Fig. 2.1). Finally, we identify the regions where classical Riemann solutions exist.

2.1. Derivation of the model from chromatography

We start out with the equations in the form used by Mazzotti [22],
⎧⎨
⎩

(u1 + α1u1
1−u1+u2

)τ + (u1)x = 0,

(u2 + α2u2
1−u1+u2

)τ + (u2)x = 0,
(2.1.1)

with α1 < α2. To create a system more conventional to conservation laws researchers, we make some changes 
of variables. First, we change to a moving coordinate system, or rescale time:

x′ = x, t = τ − x,

so that the system becomes
⎧⎨
⎩

( α1u1
1−u1+u2

)t + (u1)x′ = 0,

( α2u2
1−u1+u2

)t + (u2)x′ = 0.
(2.1.2)

We then drop the prime in x. The aim is to focus on the conserved quantities v1 = α1u1
1−u1+u2

and v2 = α2u2
1−u1+u2

so we also change the dependent variables. If we let

ω1 = u1

1 − u1 + u2
, ω2 = u2

1 − u1 + u2
,

then we have ⎧⎨
⎩

(ω1)t + ( u1
α1

)x = 0,

(ω2)t + ( u2
α2

)x = 0.
(2.1.3)

Looking then at (2.1.3), we let

v = (α1α2)1/3(1 + ω1 − ω2), y = 1
1/3 [α2ω1 − α1ω2 − (α1 + α2)v],
(α1α2)
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and we find
{

vt + (yv )x = 0,

yt + ( 1
v )x = 0.

(2.1.4)

In the original variables u1 and u2 the new variables can be expressed as

v

(α1α2)1/3
= 1

1 − u1 + u2
, (α1α2)1/3y = α2u1 − α1u2 − (α1 + α2)

1 − u1 + u2
.

This system, equivalent to (2.1.1) for smooth solutions, but possessing different weak solutions, expresses 
conservation of v and y. We define U = (v, y)ᵀ and F = F (U) = (yv , 

1
v )ᵀ the flux function. We work with 

the system (2.1.4) and Riemann data

U(x, 0) =
(
v

y

)
(x, 0) =

{
UL, x < 0;
UR, x ≥ 0.

(2.1.5)

to show existence of singular shocks. Attention is drawn to the limit v → 0 where the variables u1, u2 of 
(2.1.1) become singular.

2.2. Hyperbolicity and genuine nonlinearity

The Jacobian of (2.1.4) is
(
− y

v2
1
v

− 1
v2 0

)
. (2.2.1)

The eigenvalues of (2.2.1) are

λ1(v, y) = −y −
√

y2 − 4v
2v2 , (2.2.2)

λ2(v, y) = −y +
√

y2 − 4v
2v2 . (2.2.3)

The eigenvectors are

r1 =
(

2v
y −

√
y2 − 4v

)
, (2.2.4)

r2 =
(

2v
y +

√
y2 − 4v

)
. (2.2.5)

The system (2.1.4) is strictly hyperbolic when 4v < y2, and non-hyperbolic when 4v > y2. On y2 = 4v, 
λ1 = λ2, and r1 = r2.

For the system (2.1.1), since vi as well as ui must be positive, Mazzotti, considered only states with 
1 − u1 + u2 > 0 and data in the hyperbolic part of state space in the closure of the open component 
neighboring the origin. This physically meaningful experimental situation for (2.1.4) corresponds to the 
region bounded by a curvilinear triangle with vertices

O =
(
α,−α1 + α2

)
, A =

(
α1

α,−2α1
)
, B =

(
α2

α,−2α2
)
,

α α2 α α1 α
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where α = (α1α2)1/3 and sides
OA: y = −α2v

α2 − α1

α
,

OB: y = −α1v

α2 − α2

α
.

Therefore v > 0, y < 0 and λ1(v, y), λ2(v, y) > 0. Since Dλiri �= 0 if y2 �= 16
3 v then the states below 

y2 = 4v and above y2 = 16
3 v are genuinely nonlinear for both i-characteristic families. To stay in the strictly 

hyperbolic, genuinely nonlinear physically feasible region we need α2
3 < α1 < 3α2.

2.3. Rarefaction curves through the left state UL in the hyperbolic region

For i = 1 or 2, the i-rarefaction curves are solutions of the system(
v̇

ẏ

)
=

(
2v

y ∓
√
y2 − 4v

)
, (2.3.1)

where overdot denotes derivative with respect to ξ = λi(v, y). By the change of variables w =
√

y2−4v
v , 

we get d
dv (w) = ±

√
w2+4
2v . Upon separation of the variables, integration, further calculations, and returning 

to the U variables we derive

R1(vL, yL) :
√

y2 − 4v − y = v

vL
(
√
y2
L − 4vL − yL), (2.3.2)

R2(vL, yL) :
√

y2 − 4v − y =
√

y2
L − 4vL − yL. (2.3.3)

The curves R1 and R2 lie in the closure of the hyperbolic region and intersect only at UL. The curves R1
and y2 = 4v intersect (tangentially) at

UG = (vG, yG) =
(
y2
G

4 ,− 4vL√
y2
L − 4vL − yL

)
; (2.3.4)

the curve R1 and the line OB intersect at

UH = (vH , yH) =
(

−4α2v2
L + 2αα2vL(

√
y2
L − 4vL − yL)

α2(
√
y2
L − 4vL − yL)2 − 2α1vL(

√
y2
L − 4vL − yL)

,−α1vH
α2 − α2

α

)
; (2.3.5)

the curve R2 and the line OA intersect at

UC = (vC , yC) =
(

(2αα1 − α2
√

y2
L − 4vL + α2yL)(

√
y2
L − 4vL − yL)

4α2 − 2α2(
√

y2
L − 4vL − yL)

,−α2vC
α2 − α1

α

)
; (2.3.6)

the curves R2 and y2 = 4v intersect at

UD = (vD, yD) =
(

(yL −
√
y2
L − 4vL)2

4 , yL −
√
y2
L − 4vL

)
; (2.3.7)

the curve R2 and the line OB intersect at

UE = (vE , yE) =
(

(2αα2 − α2
√

y2
L − 4vL + α2yL)(

√
y2
L − 4vL − yL)

4α2 − 2α1(
√
y2
L − 4vL − yL)

,−α1vE
α2 − α2

α

)
. (2.3.8)

The portion of Ri with v < vL corresponds to an admissible rarefaction of the ith family, i = 1 or 2.
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2.4. Shock curves through the left state UL in the hyperbolic region

Using the Rankine–Hugoniot jump conditions,

s[v]jump =
[y
v

]
jump

, (2.4.1)

s[y]jump =
[
1
v

]
jump

, (2.4.2)

we derive

y = vyL
2vL

+ yL
2 ± 1

2
(v − vL)

vL

√
y2
L − 4vL; (2.4.3)

The choice of sign for S1 and S2 is found by calculating

dy

dv
|u=uL

= yL
2vL

±
√
y2
L − 4vL
2vL

,

dR1

dv
|u=uL

= yL
2vL

−
√
y2
L − 4vL
2vL

,

dR2

dv
|u=uL

= yL
2vL

+
√
y2
L − 4vL
2vL

.

Since shock and rarefaction curves have second order contact at UL, we conclude that the states that can 
be connected to UL by a 1-shock or 2-shock lie on the curves

S1(vL, yL) : y = v( yL
2vL

−
√
y2
L − 4vL
2vL

) + yL
2 +

√
y2
L − 4vL

2 (2.4.4)

or

S2(vL, yL) : y = v( yL
2vL

+
√
y2
L − 4vL
2vL

) + yL
2 −

√
y2
L − 4vL

2 (2.4.5)

respectively. The curves S1 and S2 intersect at UL.

2.5. The Lax shock admissibility criterion and classical Riemann solutions

By (2.4.1)–(2.4.2)

s1 =
−yL −

√
y2
L − 4vL

2vvL
, (2.5.1)

s2 =
−yL +

√
y2
L − 4vL

2vvL
. (2.5.2)

From the eigenvalues (2.2.2)–(2.2.3), we conclude that λ1(vL, yL) > s1 > λ1(v, y) and λ2(vL, yL) > s2 >

λ2(v, y) when v > vL. Therefore the admissible parts of the shock curves consist of points with v > vL and 
the curves of admissible rarefactions, as stated in the previous section, consist of points with v < vL (if UL

is the state on the left).
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Fig. 2.1. Rarefaction and shock curves.

The curve S1 and the line OB intersect at

UH = (vH , yH) =
(

−4α2v2
L + 2αα2vL(

√
y2
L − 4vL − yL)

α2(
√
y2
L − 4vL − yL)2 − 2α1vL(

√
y2
L − 4vL − yL)

,−α1vH
α2 − α2

α

)
; (2.5.3)

the curves S2 and y2 = 4v intersect at

UD = (vD, yD) =
(

(yL −
√
y2
L − 4vL)2

4 , yL −
√
y2
L − 4vL

)
; (2.5.4)

the curve S2 and the line OB intersect at

UE = (vE , yE) =
(

(2αα2 − α2
√

y2
L − 4vL + α2yL)(

√
y2
L − 4vL − yL)

4α2 − 2α1(
√
y2
L − 4vL − yL)

,−α1vE
α2 − α2

α

)
. (2.5.5)

Fig. 2.1 sketches these curves. Using the results of Sections 2.3 and 2.4 and equations (2.5.1)–(2.5.2), we see 
that in a neighborhood of UL there exist the usual four regions for the solution of the Riemann problem.

Specifically, we have

• Region 1: the unique solution consist of a 1-shock followed by a 2-shock. The region is bounded by 
S1(UL), S2(UL) and the line HE with v > vL.

• Region 2: the unique solution consist of a 1-rarefaction followed by a 2-rarefaction. We observe that for 
any UL the curve R1(UL) becomes tangent to y2 = 4v at the point UG identified in equation (2.3.4). 
The (smooth) continuation of this curve is in fact an R2 curve. This curve and the line OA intersect at

UF = (vF , yF ) =
(

−4α2v2
L + 2αα1vL(

√
y2
L − 4vL − yL)

α2(
√
y2
L − 4vL − yL)2 − 2α2vL(

√
y2
L − 4vL − yL)

,−α2vF
α2 − α1

α

)
; (2.5.6)

The region is bounded by R2(UL), the line FC and the curve which begins as R1(UL) and continues as 
R2(UG).

• Region 3: the unique solution consist of a 1-rarefaction followed by a 2-shock. The region is bounded 
since only the finite interval of R1(UL) between UL and UG is available for the intermediate state UM . 
Furthermore, the interval of admissible points UR ∈ S2(UM ) terminates at a point UD(UM ) at which 
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Fig. 2.2. Rarefaction and shock curves, regions.

the shock speed s2 = λ1(UM ). The upper boundary of Region 3 is the curve y2 = 4v. This curve is 
tangent to S2(UL) at the point UD.

• Region 4: the unique solution consist of a 1-shock followed by a 2-rarefaction. The region is bounded by 
the lines OH, CO, S1(UL) and the curve R2(UL).

2.6. Solutions with a vacuum state

We now observe that y2 = 4v is an invariant curve for (2.1.4), and if (v, y)(x, t) is a smooth solution on 
this curve then v satisfies the equation

vt − ( 2√
v
)x = 0. (2.6.1)

Therefore, if UR is in Region 5 of Fig. 2.2, the solution consists of a 1-rarefaction from UL to UG, a rarefaction 
solution to (2.6.1) from UG to a point UAB(UR), and a 2-rarefaction from UAB(UR) to UR, where UAB(UR)
is the point where R2(UR) is tangent to y2 = 4v.

In Region 6, outside these five regions, no classical Riemann solution exists. In the rest of this paper, 
we show that a solution containing a singular shock can be constructed.

3. The formal construction of singular shocks

This section begins the construction of singular solutions by examining a self-similar approximation to 
(2.1.4), which provides valuable insight in the GSPT analysis. This will become evident in Section 4.

3.1. Dafermos regularization

We study systems that approximate (2.1.4)–(2.1.5). Following Dafermos [2], Dafermos and DiPerna [3], 
and Keyfitz and Kranzer [11], we analyze the regularization of

Ut + F (U)x = 0

by a viscous term following Dafermos’s approach:

εtUxx = Ut + F (U)x. (3.1.1)



774 C. Tsikkou / J. Math. Anal. Appl. 439 (2016) 766–797
Using ξ = x
t , the initial value problem (3.1.1)–(2.1.5) becomes a nonautonomous second-order ODE

ε
d2U

dξ2 = (DF (U) − ξI) dU
dξ

, (3.1.2)

with boundary conditions

U(−∞) = UL, U(+∞) = UR. (3.1.3)

Since in the region of interest there are no classical solutions, we seek solutions that are not uniformly 
bounded in ε for ξ near some value s. The following technique, motivated by Keyfitz and Kranzer [11], 
provides a formal solution. We develop this and then show in Section 4, following Schecter [25], that for 
sufficiently small ε > 0, (3.1.2) possesses solutions with the qualitative behavior we predict in this sec-
tion.

Let

U(ξ) =
(
v(ξ)
y(ξ)

)
, (3.1.4)

with

v(ξ) =
ε2ũ2( ξ−s

εq )
(ũ2/3

1 ( ξ−s
εq ) + εβ3)3/2

− εβ4 ,

y(ξ) =
εũ2

2(
ξ−s
εq )

(ũ16/15
1 ( ξ−s

εq ) + εβ2)3/2
− εβ1 ,

where β1 > 1, β4 > 41
15 (the values of βi, i = 1, . . . , 4 are not unique and are chosen so as to ensure the 

desired behavior) and define η = ξ−s
εq . Then (3.1.2) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε3−q

(
ũ2

(ũ2/3
1 + εβ3)3/2

)
ηη

= −(εqη + s)ε2

(
ũ2

(ũ2/3
1 + εβ3)3/2

)
η

+ ε−1

⎛
⎜⎜⎝

[
ũ2

2(
ξ−s
εq ) − εβ1−1(ũ16/15

1 ( ξ−s
εq ) + εβ2)3/2

]
(ũ2/3

1 ( ξ−s
εq ) + εβ3)3/2[

ũ2( ξ−s
εq ) − εβ4−2(ũ2/3

1 (ξ − s

εq
) + εβ3)3/2

]
(ũ16/15

1 ( ξ−s
εq ) + εβ2)3/2

⎞
⎟⎟⎠

η

,

ε2−q

(
ũ2

2

(ũ16/15
1 + εβ2)3/2

)
ηη

= −(εqη + s)ε
(

ũ2
2

(ũ16/15
1 + εβ2)3/2

)
η

+ ε−2

(
(ũ2/3

1 ( ξ−s
εq ) + εβ3)3/2

ũ2( ξ−s
εq ) − εβ4−2(ũ2/3

1 ( ξ−s
εq ) + εβ3)3/2

)
η

.

(3.1.5)

We balance at least two terms in each equation, so that nontrivial solutions can be found. Thus we set 
3 − q = −1 in the first equation, and 2 − q = −2 in the second. This gives q = 4 and hence
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Fig. 3.1. Integral curves and orbits of (3.1.8).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ũ2

(ũ2/3
1 +εβ3 )3/2

)
ηη

= −(εqη + s)ε3
(

ũ2

(ũ2/3
1 +εβ3 )3/2

)
η

+

⎛
⎜⎜⎝

[
ũ2

2(
ξ−s
εq ) − εβ1−1(ũ16/15

1 ( ξ−s
εq ) + εβ2)3/2

]
(ũ2/3

1 ( ξ−s
εq ) + εβ3)3/2[

ũ2( ξ−s
εq ) − εβ4−2(ũ2/3

1 (ξ − s

εq
) + εβ3)3/2

]
(ũ16/15

1 ( ξ−s
εq ) + εβ2)3/2

⎞
⎟⎟⎠

η

,

(
ũ2

2

(ũ16/15
1 +εβ2 )3/2

)
ηη

= −(εqη + s)ε3
(

ũ2
2

(ũ16/15
1 +εβ2 )3/2

)
η

+
(

(ũ2/3
1 ( ξ−s

εq ) + εβ3)3/2

ũ2( ξ−s
εq ) − εβ4−2(ũ2/3

1 ( ξ−s
εq ) + εβ3)3/2

)
η

.

(3.1.6)

The singular region is narrower than a standard shock profile.
When we expand ũ1, ũ2 as series in ε

ũ1 = y1(η) + o(1), ũ2 = y2(η) + o(1),

we obtain ⎧⎪⎪⎨
⎪⎪⎩

(
y2
y1

)
ηη

=
(

y2

y
3/5
1

)
η
,

(
y2
2

y
8/5
1

)
ηη

=
(

y1
y2

)
η
.

(3.1.7)

We note that from (3.1.4) we must have y1, y2 → 0 as |η| → ∞, and 
y2

y
3/5
1

, 
y1

y2
→ 0 as η → ∞. Assuming 

that the singular behavior is restricted to a neighborhood of ξ = s we also have 
(
y2

y1

)
η

, 

(
y2
2

y
8/5
1

)
η

→ 0 as 

η → ∞. We integrate (3.1.7) once, and now focus attention on solutions of
⎧⎪⎨
⎪⎩

dy1
dη = 5

2

(
y
18/5
1
y3
2

− 2y7/5
1

)
,

dy2
dη = 5

2
y
13/5
1
y2
2

− 4y2y
2/5
1 ,

(3.1.8)

which approach (0, 0) as |η| → ∞.
The phase portrait of the 2-dimensional system (3.1.8) is shown in Fig. 3.1. The origin is the unique 

equilibrium. y2 = 21/3y
11/15
1 is an invariant parabola (in (v, y) coordinates this curve is y2 = 2v). The line 

y2 = 0 corresponds to the point (0, 0) in (v, y) coordinates. The homoclinic orbits, which are of greatest 
interest to us, are solutions (y1(η), y2(η)) which can be determined uniquely by setting y1(0) > 0, y2(0) > 0. 
We will need to know the asymptotic behavior of Y = (y1, y2) as |η| → ∞. Writing
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y1 = c

|η|p + O
(

1
|η|p+1

)
, (3.1.9)

y2 = d

|η|r + O
(

1
|η|r+1

)
, (3.1.10)

we substitute (3.1.9)–(3.1.10) into (3.1.8) and then solve for c, d, p and r to obtain

c =
(

2
3

)5/2

, d = 31/3
(

2
3

)13/6

, r = 11
6 , p = 5

2

as η → ∞. We also have

y2 ≈ 21/3y
11/15
1 (3.1.11)

as Y → 0. This describes the asymptotic behavior of Y as Y → 0. Therefore the homoclinic orbits are 
tangent to the invariant parabola y2 ≈ 21/3y

11/15
1 at one end. In addition we have c = d = 0 as η → −∞.

The singular solution (3.1.4), has its essential support in a layer of width |ξ − s| = O(εq) with q > 1, 
and tends to zero away from ξ = s. As in Keyfitz and Kranzer [11] we embed the singular shock in a shock 
profile of the usual type: a solution Ū(τ) = Ū( ξ−s

ε ) which is bounded in the layer εq < |ξ − s| < ε, has an 
expansion

Ū = Ū0 + o(1), (3.1.12)

and whose derivatives are O(ε−1).
Writing (3.1.2) in terms of τ = ξ−s

ε we have

d

dτ

(
dŪ

dτ
− F (Ū) + sŪ

)
= −ετ

dŪ

dτ
. (3.1.13)

Using the expansion (3.1.12) we have

d

dτ

(
dŪ0

dτ
− F (Ū0) + sŪ0

)
= 0, (3.1.14)

in each separate interval τ < 0 or τ > 0 outside the boundary layer. Hence, we may write

dŪ0

dτ
− F (Ū0) + sŪ0 = k∓. (3.1.15)

On the other hand, integrating (3.1.13) over an interval surrounding τ = 0 (the boundary layer), we obtain

[
dŪ

dτ
− F (Ū) + sŪ

]τ>0

τ<0
= −ε

τ>0∫
τ<0

τ
dŪ

dτ
dτ. (3.1.16)

Now, from (3.1.4),

Ū(τ) = U(ξ),

and we change the variable to η = τ/ε3 in (3.1.16), which yields
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k+ − k− = lim
ε→0

{
−ε

∫
ε3η

(
dv
dη
dy
dη

)
dη

}
= lim

ε→0

⎛
⎝ −ε6 ∫ η d

dη

(
ũ2

(ũ2/3
1 +εβ3 )3/2

)
dη

−ε5 ∫ η d
dη

(
ũ2

2

(ũ16/15
1 +εβ2 )3/2

)
dη

⎞
⎠

= lim
ε→0

⎛
⎝ −ε6 ∫ η d

dη

(
y2

(y2/3
1 +εβ3 )3/2

)
dη

−ε5 ∫ η d
dη

(
y2
2

(y16/15
1 +εβ2 )3/2

)
dη

⎞
⎠

= lim
ε→0

⎛
⎝ −ε6 ∫

finite η
η d
dη

(
y2

(y2/3
1 +εβ3 )3/2

)
dη − ε6 ∫

infinite η
η d
dη

(
y2

(y2/3
1 +εβ3 )3/2

)
dη

−ε5 ∫
finite η

η d
dη

(
y2
2

(y16/15
1 +εβ2 )3/2

)
dη − ε5 ∫

infinite η
η d
dη

(
y2
2

(y16/15
1 +εβ2 )3/2

)
dη

⎞
⎠ .

(3.1.17)

When η is finite we notice that for values of y1 and y2 away from the origin y and v are close to zero, 
therefore we can focus on the case of y1, y2 → 0. If v → 0 and y → ∞ then ε4v → 0. If v, y → ∞ then by 
(3.1.7)

d

dη

(
y2
2

(y16/15
1 + εβ2)3/2

)
= ε2

v + εβ4
.

In addition v 
 εk
√
y where −1 < k < 2.5 and

ε6 d

dη

(
y2

(y2/3
1 + εβ3)3/2

)
= ε7 y

v
= ε6

ε2
dv

dη
≈ ε4εk

2√y

dy

dη
= ε5εk

2√y

d

dη

(
y2
2

(y16/15
1 + εβ2)3/2

)

so either after short calculations or integration by parts all cases give

lim
ε→0

ε6
∫

finite η

η
d

dη

(
y2

(y2/3
1 + εβ3)3/2

)
dη = 0.

The interesting behavior which will give us the generalized Rankine–Hugoniot condition emerges as η → ∞. 
We use (3.1.9)–(3.1.10), ignoring the constants c and d, without loss of generality, and letting

1
η5/3 = εβ3 tan2 θ

to get

−ε6
∫

infinite η

η
d

dη

(
y2

(y2/3
1 + εβ3)3/2

)
dη

= −ε6
η

η11/6(
1

η5/3 + εβ3

)3/2

∣∣
infinite η

+ ε6
∫

infinite η

1
η11/6(

1
η5/3 + εβ3

)3/2 dη

= ε6−β3 sin θ0 cos2 θ0 + 6
5 · ε6−β3

θ0∫
0

cos θ dθ 
 ε6−β3 ,

for some θ0. On the other hand, if we let
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1
η8/3 = εβ2 tan2 θ

we get

−ε5
∫

infinite η

η
d

dη

(
y2
2

(y16/15
1 + εβ2)3/2

)
dη

= −ε5
η

η11/3(
1

η8/3 + εβ2

)3/2

∣∣
infinite η

+ ε5
∫

infinite η

1
η11/3(

1
η8/3 + εβ2

)3/2 dη

= ε5− β2
2 sin2 θ1 cos θ1 + 3

4 · ε5− β2
2

θ1∫
0

sin θ dθ 
 ε5− β2
2 ,

for some θ1.

3.2. Possible cases

1. If β3 = 6, β2 < 10 then

k+ − k− =
(
∗
0

)
.

By (3.1.3), we have Ū0(−∞) = UL, Ū0(+∞) = UR and dŪ0
dτ (±∞) = 0. Therefore, from (3.1.15) we get 

the generalized Rankine–Hugoniot condition for singular shocks:

ssingular(UL, UR) = s = F2(UL) − F2(UR)
yL − yR

, (3.2.1)

0 < k = F1(UL) − F1(UR) − s(vL − vR). (3.2.2)

We notice that we have a deficit in the first component. This does not agree with Mazzotti [22]. In ad-
dition if we check for the overcompressive region

λ2(v, y) < s < λ1(vL, yL)

we see that Region 6 is overcompressive but the slope of the curve s = λ1(vL, yL) is negative. Therefore 
the region does not look like the required one, which should cover all possible solutions of the Riemann 
problem in the plane.

2. If β3 < 6, β2 < 10 then we get the Rankine–Hugoniot condition for both components but this does not 
give a singular shock.

3. If β3 = 6, β2 = 10 then

k+ − k− =
(
∗
∗

)
.

This means we have a deficit for both components. As η → ∞ the solution (3.1.4) in this case behaves 
like
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v =
ε2 · 1

η11/6(
1

η5/3 + ε6
)3/2 − εβ4 , y =

ε · 1
η11/3(

1
η8/3 + ε10

)3/2 − εβ1 .

Let

1
η1/3 = tan θ,

then as θ → 0

v = ε2 tan11/2 θ

(tan5 θ + ε6)3/2
− εβ4 , y = ε tan11 θ

(tan8 θ + ε10)3/2
− εβ1 .

As ε → 0 one should expect y−v to have a bigger maximum value than v−y (as we will see in Fig. 4.3). 
However, this is not the case here. In addition this would not agree with Mazzotti [22].

4. If β3 � 5, β2 = 10 then to see how this solution behaves for small ε as η → ∞ we may let

1
η1/3 = ε tan θ,

v = tan11/2 θ

(tan5 θ + 1)3/2
− εβ4 .

v remains bounded but since y is unbounded one should expect v to be unbounded as well by (3.1.11).
5. If 5 < β3 < 6, β2 = 10 then

k+ − k− =
(

0
k

)
,

where

k = − lim
ε→0

ε5
∫

η
d

dη

(
y2
2

(y16/15
1 + εβ2)3/2

)
dη,

defined uniquely by each orbit. Finally, from (3.1.15) we get the generalized Rankine–Hugoniot condition 
for singular shocks:

ssingular(UL, UR) = s = F1(UL) − F1(UR)
vL − vR

, (3.2.3)

0 < k = F2(UL) − F2(UR) − s(yL − yR). (3.2.4)

The restriction on the sign of k is consistent with having UR in Region 6 with respect to UL.
We now introduce two curves, as shown in Fig. 3.2, namely J5 and J6 determined by

ssingular(UL, U) = λ1(UL)

and

ssingular(UL, U) = λ2(U),
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Fig. 3.2. Regions of singular shocks, additional curves.

respectively. We find

J5 : y = yL
vL

v + v(v − vL) · (−yL −
√

y2
L − 4vL

2v2
L

) (3.2.5)

The curve J5 passes through the point UL and intersects y2 = 4v at a point UD. The second curve is 
J6, given by

J6 : y = vyL(2v − vL) + v2yL
2vL(2v − vL) + (v − vL)

2vL(2v − vL)

√(
vyL − 4v

2
L

yL

)2

+ 4v3
L

(y2
L − 4vL)
y2
L

(3.2.6)

The curve J6 passes through the point UL and does not intersect y2 = 4v. β3 is chosen such that y is 
unbounded as y1, y2 → 0 and v passes from a neighborhood of 0 (where the variables u1, u2 of (2.1.1)
become singular) before becoming unbounded. In addition y−v has a bigger maximum value than v−y.

We conclude that the forth case agrees with Mazzotti [22] whereas all other cases fail.
In the remainder of this paper we show existence of self-similar singular shock solutions to (3.1.1). Our 

main result is the following theorem.

Theorem 3.1. In the system of conservation laws (2.1.4) with Riemann data (2.1.5), assume that UR is in 
the interior of Region 6 with respect to UL, so that with

ssingular(UL, UR) ≡ F1(UL) − F1(UR)
vL − vR

, (3.2.7)

we have

0 < k = F2(UL) − F2(UR) − ssingular(yL − yR), (3.2.8)

and the strict inequalities
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1. ssingular(UL, UR) < λ1(UL)
2. λ2(UR) < ssingular(UL, UR)

hold. Then there exists a singular shock connecting UL and UR passing from points very close to the y-axis 
(thus the chromatography model (2.1.1) exhibits singular shocks); that is, a solution Uε of (3.1.2)–(3.1.3)
which becomes unbounded as ε → 0.

3.3. Remarks

Since we are only interested in the curvilinear triangle OAB, proving existence of a self-similar approxi-
mate solution in Region 6 – in which the Riemann problem is solved by a strictly overcompressive singular 
shock alone – completes the list of solutions in Regions 1–5, given in Sections 2.5 and 2.6.

In Section 4, we prove Theorem 3.1 by showing existence of solutions to equations (3.1.2) and (3.1.3)
for small ε. We use the approach of Schecter [25], which proceeds by modifying GSP theory [4,7] to take 
into account that normal hyperbolicity fails in parts of the construction. A method for handling loss of 
normal hyperbolicity, known as “blowing up”, was developed by Krupa and Szmolyan, [17], and applied by 
Schecter. Strict overcompressibility is needed, as will be seen, to carry out the construction.

4. Existence of approximations to singular solutions

We use GSPT to prove Theorem 3.1 by showing that self-similar regularized solutions exist for sufficiently 
small ε > 0. The approach was laid out by Schecter [25] and was also employed by Keyfitz and Tsikkou [13].

Basically, the situation described in Section 3 consist of an “outer” part (which includes the two constant 
states UL and UR) and an “inner” part (the scaled homoclinic orbit) with no indication how to connect 
them. The treatment following (3.1.12) did not prove that a solution exists, but just simply suggests a 
mechanism whereby the two parts of the solution could be connected. This is corrected by Geometric 
singular perturbation theory (GSPT), using the theory of dynamical systems to prove that smooth systems, 
under the appropriate nondegeneracy conditions, do possess connecting orbits, and even that these orbits 
are unique. GSPT was developed by Fenichel [4] (see also the exposition by Jones [7]), and despite many 
efforts, points where normal hyperbolicity breaks down, as in our case, remained a major obstacle to the 
geometric theory. (A flow is normally hyperbolic with respect to an invariant manifold if any manifold 
transverse to the flow can be factored into stable and unstable directions. More precisely, if the system 
is linearized at a point on the invariant manifold, then only the eigenvalues with eigenvectors tangent to 
the invariant manifold have zero real part.) Krupa and Szmolyan [17] applied their technique of “blowing 
up” to some examples, but it was Schecter who showed how it could also apply to the system (3.1.2). The 
insight of GSPT is that one can study the systems when ε = 0 and then piece the information together to 
prove the existence of a genuine orbit when ε > 0. Within the framework of GSPT, and following Schecter, 
we find a way to connect the homoclinic orbit produced in the previous section with the skeleton that joins 
UL and UR.

The objective of this section is to apply the theory of dynamical systems to prove existence of an orbit 
when ε > 0. The important tool is the Exchange Lemma of Jones and Kopell [8], and an extension called by 
Schecter [25] the Corner Lemma. GSPT approach replaces a dynamical problem, here (3.1.2) and (3.1.3), 
in which a singular limit occurs, with a higher-dimensional dynamical system in which {ε = 0} is merely 
a subspace, and behavior near that subspace can be determined by continuity if the hypotheses of the 
Exchange and Corner Lemmas are satisfied. We will describe the pieces of the solution in the singular 
limit and verify the nondegeneracy hypotheses needed to carry out the perturbation. As could be seen 
already in Section 3.1, some rescaling of the variables is needed to exhibit any of the dynamics on the fast 
time scale. In addition, the technique of “blowing up” which involves a change of variables to desingularize 
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the invariant manifold will be used to reveal essential information about the flow and gain additional 
hyperbolicity.

4.1. Creating the dynamical problem

We start from (3.1.2)–(3.1.3) introducing V =
(
v1
v2

)
= εdU

dξ , and θ = ξ − ssingular. It is also convenient 

to treat ξ as a state variable. This increases the dimension, but yields an autonomous system. Therefore 
the problem in the original self-similar variable (the slow time θ) is

ε
dv

dθ
= v1,

ε
dy

dθ
= v2,

ε
dv1

dθ
= v2

v
− yv1

v2 − ξv1,

ε
dv2

dθ
= −v1

v2 − ξv2,

dξ

dθ
= 1. (4.1.1)

As written, this is singular as ε → 0. Replacing θ with τ , where θ = ετ , we will work in the fast time system

dv

dτ
= v1,

dy

dτ
= v2,

dv1

dτ
= v2

v
− yv1

v2 − ξv1,

dv2

dτ
= −v1

v2 − ξv2,

dξ

dτ
= ε. (4.1.2)

We note that in this problem “slow” and “fast” do not correspond to “outer” and “inner”. In fact, we will 
need an inner, faster time variable (η = τ/ε3) to describe the inner solution, as done formally in the previous 
section.

The boundary conditions are

(U, V, ξ)(−∞) = (UL, 0,−∞), (U, V, ξ)(+∞) = (UR, 0,+∞). (4.1.3)

We now let ε = 0 in (4.1.2), noting that (4.1.2) is now a regularly perturbed problem. With ξ = const. for 
all solutions, the states V = 0 are all equilibria, and they are the only equilibria.

Using the eigenvalues (2.2.2)–(2.2.3) we identify two subsets of S: For δ > 0, we define 3-dimensional 
manifolds

S0 = {(U, V, ξ) : ‖U‖ ≤ 1
δ
, V = 0, and ξ ≤ λ1(U) − δ},

S2 = {(U, V, ξ) : ‖U‖ ≤ 1
, V = 0, and λ2(U) + δ ≤ ξ},
δ
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which are normally hyperbolic since the lines ξ = λ1(U), ξ = λ2(U) are not included in the sets Si. In fact, 
if we linearize (4.1.2) and set ε = 0, V = 0, there are 3 eigenvalues of zero, with a full set of eigenvectors 
in the space of equilibria. The remaining eigenvalues, −ξ + λ1(U) and −ξ + λ2(U), are real and nonzero. 
In S0, both are positive, so there is an unstable manifold of dimension 2; and in S2 a stable manifold of 
dimension 2. The boundary value (UL, 0, −∞) is an α-limit of points in S0, and (UR, 0, +∞) an ω-limit 
in S2.

By Fenichel [4], and as stated in Schecter [25], a system with normally hyperbolic manifolds of equilibria 
has perturbed normally hyperbolic invariant manifolds nearby. That is the case here: For ε > 0 and near 0, 
by Fenichel theory [4], the system (4.1.2) has normally hyperbolic invariant manifolds near each Si. Since the 
3-dimensional space S ≡ {(U, V, ξ) : V = 0} is invariant under (4.1.2) for every ε, the perturbed manifolds 
may be taken to be the Si themselves.

For a given UL, we define the 1-dimensional invariant set

S0(UL) = {(U, V, ξ) : U = UL, V = 0, ξ < λ1(UL)}.

The line S0(UL) possesses a 3-dimensional unstable manifold Wu
ε (S0(UL)), the perturbation of

Wu
0 (S0(UL)) = {(U, V, ξ) : U ∈ Ωξ, V = V (U), ξ < λ1(UL)},

where Ωξ is an open subset of U -space that depends on ξ and UL. (The linearization of Wu
0 at a point in 

S0 has a basis of eigenvectors, but we can ignore them for now, noting only that the projection of Wu
0 onto 

U -space contains a full neighborhood of UL. The function V (U) is determined by solving the system (4.1.2).) 
Similarly,

S2(UR) = {(U, V, ξ) : U = UR, V = 0, λ2(UR) < ξ}

is a 1-dimensional set, which has a 3-dimensional stable manifold, W s
ε (S2(UR)), the perturbation of

W s
0 (S2(UR)) = {(U, V, ξ) : U ∈ Ωξ, V = V (U), λ2(UR) < ξ}.

Since every trajectory in Wu
ε (S0(UL)) ∩W s

ε (S2(UR)) tends to UR as τ → ∞ and to UL as τ → −∞, our 
objective is to show that these two 3-dimensional manifolds intersect in the 5-dimensional state space.

As an alternative for the same purpose, we focus attention on the shock layer, and specifically on the 
difficulties surrounding the Rankine–Hugoniot relation, which normally is derived from equations (3.1.14)
and (3.1.16), and replace V in (4.1.2) by

W = −V + F (U) − ξU.

Also, from now on we treat ε as a dynamical variable. Then we have the system

dv

dτ
= y

v
− ξv − w1,

dy

dτ
= 1

v
− ξy − w2,

dw1

dτ
= −εv,

dw2

dτ
= −εy,

dξ = ε,

dτ
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dε

dτ
= 0. (4.1.4)

Each subspace ε = constant is invariant. Corresponding to the 3-dimensional subsets S0 and S2 we have 
now 4-dimensional normally hyperbolic subsets which we write as

T0 = {(U,W, ξ, ε) : ‖U‖ ≤ 1
δ
, W = F (U) − ξU, ξ ≤ λ1(U) − δ},

T2 = {(U,W, ξ, ε) : ‖U‖ ≤ 1
δ
, W = F (U) − ξU, λ2(U) + δ ≤ ξ}.

The 1-dimensional sets S0(UL) and S2(UR) are now

T ε
0 (UL) = {(U,W, ξ, ε) : U = UL,W = F (UL) − ξUL, ξ ≤ λ1(UL) − δ, ε fixed},

T ε
2 (UR) = {(U,W, ξ, ε) : U = UR,W = F (UR) − ξUR, ξ ≥ λ2(UR) + δ, ε fixed},

and we rewrite the 3-dimensional unstable manifold Wu
ε (S0(UL)) as

Wu(T ε
0 (UL)) = {(U,W, ξ, ε) : U ∈ Ωξ, W = W (U), ξ < λ1(UL), ε fixed},

where now W (U) denotes the solution of (4.1.4) corresponding to U . Finally, the 3-dimensional stable 
manifold W s

ε (S2(UR)) becomes a 3-dimensional space

W s(T ε
2 (UR)) = {(U,W, ξ, ε) : U ∈ Ωξ, W = W (U), λ2(UR) < ξ, ε fixed}.

As with the previous coordinates, we look for a solution for fixed ε > 0 that lies in the intersection of 
Wu(T ε

0 (UL)) and W s(T ε
2 (UR)).

Now we write down an expression for the inner solution, motivated by the formal derivation given in 

Section 3.1. The scaling (3.1.4) introduces a new variable Y =
(
y1
y2

)
such that

v = ε2y2

(y2/3
1 + εβ3)3/2

− εβ4 , y = εy2
2

(y16/15
1 + ε10)3/2

− εβ1 .

The system, with a time variable η = τ/ε3 is now

dy1

dη
= 5εA(y1, y2, w1, w2, ξ, ε)

2(4εβ3y2y
6/15
1 − 5ε10y2 − y2y

16/15
1 )

,

dy2

dη
= εB(y1, y2, w1, w2, ξ, ε)

(4εβ3y2y
6/15
1 − 5ε10y2 − y2y

16/15
1 )

,

dw1

dη
= − ε6y2

(y2/3
1 + εβ3)3/2

+ εβ4+4,

dw2

dη
= εβ1+4 − ε5y2

2

(y16/15
1 + ε10)3/2

,

dξ

dη
= ε4,

dε = 0, (4.1.5)

dη
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where

A(y1, y2, ε, w1, w2, ξ)

= 2(y2/3
1 + εβ3)4y1/3

1 y2
2

ε(y16/15
1 + ε10)1/2[y2 − εβ4−2(y2/3

1 + εβ3)3/2]
− ξε2y

1/3
1 y2(y2/3

1 + εβ3)(y16/15
1 + ε10)

− y
1/3
1 (y2/3

1 + εβ3)5/2(y16/15
1 + ε10)5/2

εy2[y2 − εβ4−2(y2/3
1 + εβ3)3/2]

+ 2ξy1/3
1 εβ4(y2/3

1 + εβ3)5/2(y16/15
1 + ε10)

− 2y1/3
1 w1(y2/3

1 + εβ3)5/2(y16/15
1 + ε10) − 2y1/3

1 εβ1−1(y2/3
1 + εβ3)4(y16/15

1 + ε10)
ε[y2 − εβ4−2(y2/3

1 + εβ3)3/2]

+ εw2y
1/3
1 (y2/3

1 + εβ3)(y16/15
1 + ε10)5/2

y2
− ε1+β1ξy

1/3
1 (y2/3

1 + εβ3)(y16/15
1 + ε10)5/2

y2
,

B(y1, y2, ε, w1, w2, ξ)

= (y2/3
1 + εβ3)3/2(4εβ3y2y

6/15
1 + 4y2y

16/15
1 )

·
[

y2
2(y2/3

1 + εβ3)3/2

ε(y16/15
1 + ε10)3/2[y2 − εβ4−2(y2/3

1 + εβ3)3/2]
− ε2ξ[y2 − εβ4−2(y2/3

1 + εβ3)3/2]
(y2/3

1 + εβ3)3/2

− εβ1−1(y2/3
1 + εβ3)3/2

ε[y2 − εβ4−2(y2/3
1 + εβ3)3/2]

− w1

]

− 5
2ε(y

16/15
1 + ε10)5/2

[
(y2/3

1 + εβ3)3/2

ε2[y2 − εβ4−2(y2/3
1 + εβ3)3/2]

− ξεy2
2

(y16/15
1 + ε10)3/2

+ εβ1ξ − w2

]
.

The difficulty lies in matching the two outer solutions, expressed in v and y, satisfying the boundary 
conditions (3.1.3), with an inner solution, expressed in y1, y2. System (4.1.5) is of fundamental importance 
since it is not clear that one could use GSPT without some prior information about the asymptotics of the 
inner solution.

When ε = 0, the equation for Y decouples from the rest of the system, and is exactly (3.1.8). Thus, 
(4.1.5) when ε = 0 is

dy1

dη
= 5

2(y
18/5
1
y3
2

− 2y7/5
1 ),

dy2

dη
= 5

2
y
13/5
1
y2
2

− 4y2y
2/5
1 ,

dw1

dη
= − ε6y2

(y2/3
1 + εβ3)3/2

∣∣∣∣
ε=0

= C(y1, y2),

dw2

dη
= − ε5y2

2

(y16/15
1 + ε10)3/2

∣∣∣∣
ε=0

= D(y1, y2),

dξ

dη
= 0,

dε

dη
= 0. (4.1.6)

The fact that w1 and w2 behave differently from each other is an indication that the asymmetry in the 
generalized Rankine–Hugoniot relation will enter into the analysis.
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Desingularization of the system (by rescaling the time variable) on the set y1 = 0, y2 = 0, ε = 0 shows 
that E = {(Y, W, ξ, ε) : Y = 0, ε = 0} is a 3-dimensional space consisting entirely of equilibria. If we 
linearize at a point in E, we find that all 6 eigenvalues are zero. This is exactly the situation found by 
Schecter in [25] and a blow-up is necessary to resolve the behavior of the system near E.

4.2. The blow-up construction

Under the change of variables

y1 = r̄ȳ1,

y2 = r̄11/15ȳ2,

w1 = w1,

w2 = w2,

ξ = ξ,

ε = r̄ε̄, (4.2.1)

with |Ȳ |2 + ε̄2 = 1, the set E becomes the set {r̄ = 0}. This set is now 5-dimensional, in the 6-dimensional 
(Ȳ , ̄ε, ̄r, W, ξ)-space X = S2 × R+ × R

3. The system is also highly singular at {r̄ = 0}, but becomes 
non-singular upon division by r̄2/5. Thus, we can study the dynamics of the transformed system on X. 
In terms of asymptotic structure, the change of variables (4.2.1) couples the growth of U to the limit ε → 0
in the fashion predicted by the formal asymptotics. The range of Ȳ and ε̄ is confined to the unit sphere, but 
the dynamics of these variables can be explored since we can find invariant sets of low dimension of X and 
establish normally hyperbolicity. This will explain the connection between the bounded and unbounded parts 
of the singular shock. The homoclinic solution of Section 3.1 provides the inner dynamics and connecting 
the inner solution to the limit points UL and UR can now be pursued.

We now define two intermediate points qL and qR which serve as bridge columns connecting the inner 
and outer solutions. The connection between the homoclinic orbit, which can be identified as the unique 
solution to (4.1.6) for which wL2 −wR2 = k (the Rankine–Hugoniot deficit, from equation (3.2.4)), and the 
states UL and UR, which are limit points of the manifolds Wu(T ε

0 (UL)) and W s(T ε
2 (UR)) (for ε ≥ 0), will 

be described. By making the transition from the unscaled variables (U, W, ξ, ε) to the coordinate system in 
X we shall show that there is a unique orbit connecting UL with qL. The connection between qL and qR is 
via the homoclinic orbit and finally, qR connects to UR in the same manner as UL to qL.

Because the beginning and ending connections are similar, in the sequel we will look only at the first two 
steps. Fig. 4.2 gives a sketch of the key parts of the solution.

We begin with the definition of the intermediate points qL and qR. In the coordinate system just intro-
duced on X, they are

qL = ( ȳ
15/11
2
a3

, ȳ2, 0, 0,WL, s) (4.2.2)

qR = ( ȳ
15/11
2
a2

, ȳ2, 0, 0,WR, s) (4.2.3)

where we have written the coordinates in the order (Ȳ , ̄ε, ̄r, W, ξ); s is the speed of the singular shock, 
from (3.2.3); a2 and a3 are the two roots (in decreasing order) of

a(a11/5 − 2) = 0 (4.2.4)
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and ȳ2 is the positive root of ȳ2
2 + ȳ

30/11
2
a2
i

− 1 = 0 (so that |Ȳ |2 + ε̄2 = 1). Finally,

WL = F (UL) − sUL, WR = F (UR) − sUR; (4.2.5)

we recall that W = F (Ui) − ξUi (i = L, R) is the value of W on the invariant sets T0(UL) and T2(UR), so qL
and qR are specified by selecting the shock speed for ξ.

4.3. The first stage of the flow

From the description of the underlying planar system U ′ = F (U) or Y ′ = F (Y ) and the sketch in Fig. 3.1, 
it is intuitively clear that the flow trajectories are roughly parabolic. Specifically, if we consider (4.1.4) with 
ε = 0, ξ = s and W = WL = F (UL) − sUL, then the equilibrium UL is a source.

Proposition 4.1. The planar system U ′ = F (U) − sU −WL contains a negatively invariant region to the left 
of UL, bounded by

φ1(v) = yL − E(v − vL),

φ2(v) = 1
s

(
1
v
− 1

vL

)
+ yL,

where E is such that

vLλ1(vL, yL) < E < vLλ2(vL, yL).

Proof. A calculation of U ′ along the curves φi, similar to Lemma 3.2 in Schaeffer, Schecter and Shearer [24], 
gives the result. �

If we now consider (4.1.4) with ε = 0, ξ = s and W = WR = F (UR) − sUR, then the equilibrium UR is a 
sink.

Proposition 4.2. The planar system U ′ = F (U) −sU −WR contains a positively invariant region to the right 
of UR, bounded by

φ1(v) = yR −E(v − vR),

φ2(v) = sv(v − vR) + yR
vR

v,

where E is such that

vRλ1(vR, yR) < E < vRλ2(vR, yR),

and a negatively invariant region to the left of UR bounded by

φ3(v) = 1
s

(
1
v
− 1

vR

)
+ yR,

and the coordinate axes.
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Fig. 4.1. Invariant regions.

Fig. 4.2. Chart 1 and 2.

Proof. A calculation of U ′ along the curves φi, similar to Lemma 3.2 in Schaeffer, Schecter, and Shearer [24], 
gives the result. �

In particular, this means that trajectories within the curvilinear wedge between the two curves of Proposi-
tion 4.1 and the v-axis all have UL as their α-limits and similarly the trajectories within the open curvilinear 
wedge between the two curves φ1 and φ2 of Proposition 4.2 all have UR as their ω-limits (see Fig. 4.1). 
The trajectory beginning near UL becomes unbounded but the ratio y

15/11
2
y1

remains bounded. This moti-
vates introducing a new coordinate chart on X, which we will call Chart 2, following Schecter’s terminology 
in [25].

In terms of the coordinates (Ȳ , ̄ε, ̄r) (and, for reference, the scaled coordinates (Y, ε) and the original 
coordinates (U, ε)), we define, on the portion of X where ȳ1 ȳ2 are positive,
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a = ȳ
15/11
2
ȳ1

= y
15/11
2
y1

(
∼ (y + εβ1)10/11

(v + εβ4)5/11
when v, y are large

)
,

r = r̄ȳ
15/11
2 = y

15/11
2

(
∼ ε15/2(y + εβ1)75/22

(v + εβ4)60/11
when v, y are large

)
,

b = ε̄

ȳ
15/11
2

= ε

y215/11

(
∼ (v + εβ4)60/11

ε13/2(y + εβ1)75/22
when v, y are large

)
, (4.3.1)

and rescale the time variable to 
r2/5

a39/15 η, which we will call ζ. This desingularizes the system (necessary to 

obtain a nontrivial flow) on the set r = 0, a = 0 but leaves it invariant. In these coordinates, the system 
(4.1.5) becomes

da

dζ
= a

(4F − 5G− 1)

{
− 5bβ4+1r13/15rβ4a24/25ξ(1 + F )5/2(1 + G)

+ 5bw1r
13/15a24/15(1 + F )5/2(1 + G) − 5

2w2r
26/15ab2(1 + F )(1 + G)5/2

− 75
22(1 + G)5/2 ·

(
(1 + F )3/2

(1 − Θ) − ξr39/15a13/5b3

(1 + G)3/2
− r26/15ab2w2 + rβ1r26/15ab2+β1ξ

)

+ 60
11a

24/15(1 + F )5/2
(

a3/5(1 + F )3/2

(1 + G)3/2(1 − Θ)
− r13/5ab3ξ(1 − Θ)

(1 + F )3/2

− r13/15bw1 −
r2/15rβ1−1bβ1−1

a(1 − Θ) (1 + F )3/2
)

− 5a33/15(1 + F )4

(1 + G)1/2(1 − Θ)
+ 5

2ξr
39/15a39/15b3(1 + F )(1 + G) + 5

2(1 + F )5/2(1 + G)5/2

+ 5rβ1−1r2/15a3/5bβ1−1(1 + F )4(1 + G)
(1 − Θ) + 5

2ξr
β1+1r11/15ab2+β1(1 + F )(1 + G)5/2

}
,

dr

dζ
= 15r

11(4F − 5G− 1)

{
− 5

2(1 + G)5/2

·
(

(1 + F )3/2

(1 − Θ) − ξr39/15a13/5b3

(1 + G)3/2
− r26/15ab2w2 + rβ1r26/15ab2+β1ξ

)

+ 4a24/15(1 + F )5/2

·
(

a3/5(1 + F )3/2

(1 + G)3/2(1 − Θ)
− r13/5ab3ξ(1 − Θ)

(1 + F )3/2
− r13/15bw1 −

r2/15rβ1−1bβ1−1

a(1 − Θ) (1 + F )3/2
)}

,

dw1

dζ
= −r16/3a54/15b6

(1 + F )3/2
+ a39/15b4+β4rβ4r54/15,

dw2

dζ
= a39/15b4+β1rβ1r54/15 − r67/15a21/5b5

(1 + G)3/2
,

dξ

dζ
= r18/5a39/15b4,

db

dζ
= 15b

11(4F − 5G− 1)

{
5
2(1 + G)5/2

·
(

(1 + F )3/2 − ξr39/15a13/5b3

3/2 − r26/15ab2w2 + rβ1r26/15ab2+β1ξ

)

(1 − Θ) (1 + G)
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− 4a24/15(1 + F )5/2

·
(

a3/5(1 + F )3/2

(1 + G)3/2(1 − Θ)
− r13/5ab3ξ(1 − Θ)

(1 + F )3/2
− r13/15bw1 −

r2/15rβ1−1bβ1−1

a(1 − Θ) (1 + F )3/2
)}

,

(4.3.2)

where

F (a, r, b) = rβ3−1r1/3a2/3bβ3 , G(a, r, b) = r134/15a16/15b10, Θ(a, r, b) = bβ4−2rβ4−2r4/15

a
(1 + F )3/2.

System (4.3.2) plays a key role, since it contains all the dynamics of the problem, scaled in a way that 
emphasizes the region where the singular shock is formed. In addition, this system also possesses an invariant 
manifold, which is normally hyperbolic, and we are able to prove existence of a solution to the Dafermos 
regularization, for small ε, by exhibiting a solution which is close to this invariant manifold during part of 
its trajectory.

In the region of interest we require r = 0 (which corresponds to ε = 0) and b = 0 to find invariant 
manifolds, and then we have an equilibrium of (4.3.2) when da

dζ = 0; that is, when a is a root of the 
equation (4.2.4) introduced in the definition of qL and qR. The two roots of (4.2.4) are

a2 = 25/11, a3 = 0.

Using these roots, we define

Pj = {(a, r,W, ξ, b) : a = aj , r = 0, b = 0} for j = 2, 3.

Each of these sets is a 3-dimensional manifold of equilibria, corner equilibria in Schecter’s definition [25]. 
If we linearize (4.3.2) at a = aj , r = b = 0, we find a zero eigenvalue of multiplicity 3, with 3 linearly 
independent eigenvectors lying in Pj. There are three additional eigenvalues,

λ2 = −16
11a

11/15
j + 10

11 ,

λ3 = −60
11a

11/5
j + 75

22 ,

λ4 = 60
11a

11/5
j − 75

22 ,

and since the corresponding eigenvectors, which are

R2 = (1, 0, 0, 0, 0, 0),

R3 = (0, 1, 0, 0, 0, 0),

R4 = (0, 0, 0, 0, 0, 1) (4.3.3)

respectively, are transversal to Pj , the Pj are normally hyperbolic manifolds.
We fix a point (a3, 0, W0, ssingular, 0) in P3. Then λ4 < 0 < λ2, λ3 so the point has a 1-dimensional 

stable manifold tangent to R4. Indeed, the stable manifold of any point with r = b = 0 is contained in the 
2-dimensional plane

{(a, r, w1, w2, ξ, b) : r = 0, W = W0, ξ = ssingular},

which is invariant under the flow (4.3.2). Thus the stable manifold of P3 is tangent to
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{(a, r,W, ξ, b) : r = 0, a = a3} (4.3.4)

at P3.
Since λ2 and λ3 are positive at points of P3, each point has a 2-dimensional unstable manifold tangent 

to the plane spanned by R2 and R3. (The same two eigenvalues, λ2 and λ3, are negative on P2.) Thus P3
has the 5-dimensional unstable manifold

Wu(P3) = {(a, r, w1, w2, ξ, b) : b = 0}.

The point qL, identified earlier, is a particular point of P3, with W = WL and ξ = ssingular. (In Chart 2 coor-
dinates, qL = (a3, 0, WL, ssingular, 0) and v = 0, y = 0 in the original variables.) Through the 1-dimensional 
stable manifold of qL ∈ P3, there is a unique connection backwards in time to UL, and through the 
2-dimensional unstable manifold, qL connects forward to the singular orbit. We state

Proposition 4.3. There is a unique orbit in the 2-dimensional invariant plane

{r = 0,W = WL, ξ = ssingular}

that connects qL as ζ → ∞ with UL as ζ → −∞. Furthermore, in a neighborhood of qL, we have b > 0
along the orbit.

Proof. The proof is similar to the result of Schecter [25], with details motivated by Theorem 3.1 of Schaeffer, 
Schecter and Shearer [24]. One can verify that, in one direction, the stable manifold of qL is in the interior of 
the negatively invariant region for UL. The inequality for b follows from examining the eigenvector tangent 
to the manifold at qL. The manifolds are described in different coordinate systems since the coordinate 
system of Chart 2 is not suitable for describing the entire trajectory because y (or y1, y2 or ȳ1, ȳ2) need not 
remain positive throughout the trajectory. �

We now fix a point (a2, 0, W0, ssingular, 0) in P2. Then λ2, λ3 < 0 < λ4 so the point has a 1-dimensional 
unstable manifold tangent to R4. Indeed, the unstable manifold of any point with r = b = 0 is contained in 
the 2-dimensional plane

{(a, r, w1, w2, ξ, b) : r = 0, W = W0, ξ = ssingular},

which is invariant under the flow (4.3.2). Thus the unstable manifold of P2 is tangent to

{(a, r,W, ξ, b) : r = 0, a = a2} (4.3.5)

at P2.
Since λ2 and λ3 are negative at points of P2, each point has a 2-dimensional stable manifold tangent to 

the plane spanned by R2 and R3. Thus P2 has the 5-dimensional stable manifold

W s(P2) = {(a, r, w1, w2, ξ, b) : b = 0}.

The point qR, identified earlier, is a particular point of P2, with W = WR and ξ = ssingular. The point qR
corresponds to (v, y), y2 = 2v in the original variables. Through the 1-dimensional unstable manifold of 
qR ∈ P2, there is a unique connection forward in time to UR.

On the other hand, we need to show that through the 2-dimensional stable manifold, qR connects back-
wards to the singular orbit. It should be noted that the connections between UL, qL, qR and UR do not 
solve the problem, since for example qL and UL are the ω- and α-limits of a unique orbit, and thus are not 
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themselves part of a longer connection between UL and UR. To demonstration that connecting orbits exist 
in the neighborhood of these invariant manifolds we use the Corner Lemma to show that UL and UR can 
be connected when ε > 0.

For this, we introduce an 1-dimensional set that contains qL. We recall the definitions of WL and WR, 
(4.2.5), and of qL and qR in the Chart 2 coordinate system

qL = (a3, 0,WL, ssingular, 0), qR = (a2, 0,WR, ssingular,∞).

In addition, we note that using (3.2.7) wL1 = wR1, and (3.2.8), wR2 = wL2 − k < wL2.
If we express qL and qR in Y , ε coordinates, they are points in E (the invariant set of equilibria of (4.1.6)). 

Specifically, qL = (0, WL, ssingular, 0) and qR = (0, WR, ssingular, 0). Following the discussion of the homo-
clinic orbits in Section 3.1, there is a unique solution of (4.1.6) that connects the two points such that 
k = − limε→0ε

5 ∫ η d
dη

(
y2
2

(y16/15
1 +εβ2 )3/2

)
dη. Write the solution as

(Y (η),W (η), ssingular, 0),

with

w1(η) = wL1 = wR1, w2(η) = wL2 + lim
ε→0

ε5
η∫

−∞

t
d

dt

(
y2
2(t)

(y16/15
1 (t) + εβ2)3/2

)
dt = wL2 − k(η).

This can be written in the coordinates of Chart 2, (a, r, W, ξ, b) as

q(ζ) = (a(ζ), r(ζ),W (ζ), ssingular, b(ζ)). (4.3.6)

Here r(±∞) = 0, a(−∞) = a3, a(+∞) = a2. We note that q(−∞) = qL, q(+∞) = qR. Geometrically, 
q(ζ) lies in the 4-dimensional subspace of R6 (in Chart 2 coordinates) with w1 = w1L = w2L and ξ = s. 
In addition there exists qM = (aM , rM , w1L, w2M , ssingular, 0) which corresponds to (v, y) = (0, ∞) in the 
original variables.

We define

C3 = {(a, r,W, ξ, b) : a = a3, r = 0,W = F (UL) − ξUL, ξ < λ1(UL), b = 0} ⊆ P3,

D3 = {(a, r,W, ξ, b) : a = a3, r = 0, w1 = wL1,

w2 = wL2 + lim
ε→0

ε5
ζ∫

−∞

t
d

dt

(
y2
2(t)

(y16/15
1 (t) + εβ2)3/2

)
dt, ξ = ssingular, b = b(ζ), ζ ∈ R},

E3 = {(a, r,W, ξ, b) : a = a3, r = 0, w1 = wL1,

w2 = wL2 + lim
ε→0

ε5
ζ∫

−∞

t
d

dt

(
y2
2(t)

(y16/15
1 (t) + εβ2)3/2

)
dt,

with ζ such that b = 0, ξ = ssingular} ⊆ D3,

C2 = {(a, r,W, ξ, b) : a = a2, r = 0,W = F (UR) − ξUR, λ2(UR) < ξ, b = ∞},

where we have not fixed the values of W as we did to define qi. The stable manifold of C3 is a 2-dimensional 
surface in the 5-dimensional space r = 0; it is the union of the stable manifolds of the points of C3. Since up 
to now we have not made use of the specific value of ξ (beyond its relation to the eigenvalues of dF (UL)), 
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the results of Proposition 4.3 hold at each point of C3, and we have (recalling that T 0
0 (UL) is precisely the 

1-dimensional set in which ξ is allowed to vary).

Proposition 4.4. In the coordinate system of Chart 2, the set Wu(T 0
0 (UL)) takes the form

Wu(N0
0 (UL)) = {(aξ(τ), 0,W, ξ, bξ(τ))}, (4.3.7)

where W = F (UL) − ξUL for a fixed ξ < λ1(UL) and (aξ, bξ), with

a = y
15/11
2 (τ)
y1(τ) and b = ε(τ)

y
15/11
2 (τ)

,

where

v(τ) = ε2(τ)y2(τ)
(y2/3

1 (τ) + εβ3(τ))3/2
− εβ4(τ), y(τ) = ε(τ)y2

2(τ)
(y16/15

1 (τ) + ε10(τ))3/2
− εβ1(τ),

is the expression in Chart 2 coordinates of the solution of (4.3.2) with ω-limit in C3 for fixed ξ. The 
intersection of Wu(N0

0 (UL)) and W s(P3) is an open subset Q3 of W s(C3), namely the points of W s(C3)
with b > 0.

Proof. The conclusion of Proposition 4.3, which holds at each point of C3, implies this result. The positivity 
of b follows from the explicit scaling. �

The analogous result for C2, and corresponding space

W s(N0
2 (UR)) = {(a, r,W, ξ, b) : (a, b) ∈ Vξ, r = 0, W = F (UR) − ξUR, λ2(UR) < ξ},

are used to construct and analyze the second half of the orbit. For this purpose, we note that P2 has a 
5-dimensional stable manifold

W s(P2) = {(a, r,W, ξ, b) : b = 0}.

4.4. The inner solution

We now seek the connection between qL and qR. The curves D3 of equilibria, in P3 and C2 are useful. 
The overcompression condition s < λ1(UL) and s > λ2(UR) is needed in this part or else the construction 
fails, because then qL is an endpoint of C3 and we cannot verify Proposition 4.5, which we will need to 
apply the Corner Lemma at qL to match the inner with the outer solution.

The unstable manifold of D3 has dimension three, and we have a description of its tangent space. It is 
spanned by the eigenvectors R2 and R3 of (4.3.3), and can be written

Wu(D3) = {(a, r,W, ξ, b) : w1 = wL1, w2 = wL2 + lim
ε→0

ε5
ζ∫

−∞

t
d

dt

(
y2
2(t)

(y16/15
1 (t) + εβ2)3/2

)
dt,

ξ = ssingular, b = b(ζ), ζ ∈ R}. (4.4.1)

Remark 1. We observe that as ζ → ∞, r → 0, a → a2 then Wu(D3) is tangent to

{(a, r,W, ξ, b) : a = a2, r = 0, W = WR, ξ = ssingular} (4.4.2)

therefore Wu(D3) ∩W s(N0
2 (UR)) �= ∅.
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Fig. 4.3. Solution when ε = 0 in the vy-plane.

Fig. 4.4. Solution when ε = 0 in arb-space.

Remark 2. Wu(D3) ⊇ Wu(C3) ∩Wu(E3) �= ∅.

4.5. Completion of the result

The ingredients to be combined so as to synthesize the solution of the problem are now prepared. Three 
particular orbits have been constructed, each corresponding to the limit ε = 0: A1, joining UL to qL, A2
joining qL to qR, and A3 joining qR to UR (see Fig. 4.4). To show that a solution exists for ε > 0, that 
will actually connect UL and UR via a solution of the equation, we need to show that there is a solution, 
with ε > 0, that is close to the union of these three orbits. The technique is to show that a solution close 
to A1, in Wu(T ε

0 (UL)), will enter Wu(C3), and similarly to match Wu(D3) with W s(T ε
2 (UR)). We do this 

by verifying the conditions of the Corner Lemma (Theorem 5.1 of Schecter [25]).

Proposition 4.5. In the coordinate system of Chart 2, the sets Wu(T ε
0 (UL)) and W s(T ε

2 (UR)) will be denoted 
by Wu(Nε

0 (UL)) and W s(Nε
2 (UR)), respectively.

The 4-dimensional set Wu(N0(UL)) = ∪0≤ε≤ε0W
u(Nε

0 (UL)) is transverse to W s(P3) along Q3.

Proof. When we calculate Wu(N0(UL)) at Q3 in the coordinate system of Chart 2, we find that the tangent 
space to Wu(N0(UL)) is spanned by



C. Tsikkou / J. Math. Anal. Appl. 439 (2016) 766–797 795
Fig. 4.5. Corner Lemma.

(1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1),

(0, 0,−vL,−yL, 1, 0),

(0, 1, 0, 0, 0, 0).

The tangent space to W s(P3) at the same point is spanned by

(0, 0, 1, 0, 0, 0),

(0, 0, 0, 1, 0, 0).

These six vectors are linearly independent; therefore transversality follows. �
Proof of Theorem 3.1. Proposition 4.5 establishes the hypotheses of the Corner Lemma [25]. As Schecter 
showed in [25], we have the 1-dimensional space

W s(qL) = {(a, r,W, ξ, b) : r = 0, W = WL, ξ = ssingular, a = a3}.

See Fig. 4.5. We let p ∈ W s(qL)\{qL}, let N be a 3-dimensional slice of Wu(N0(UL)) transverse to the 
vector field and to W s(P3) at the point p; let Nδ = N ∩ {r = δ}, a 2-dimensional manifold; let q be in 
Wu(C3) with positive r coordinate, and let U be a small neighborhood of q.

Then under the flow, Nδ becomes a 3-dimensional manifold Ñδ (like Wu(N δ
0 (UL))) that passes near q. 

By the Corner Lemma,

as δ → 0, Ñδ ∩ U → Wu(C3) ∩ U in the C1 topology.

With the lemma and remarks in Section 4.4 we make the final match for the solution since Wu(Nε
0 (UL))

passes qL and arrives near q(−T ) for T > 0, where q(·) is given by (4.3.6). We then have a solution connecting 
UL and UR. As ε → 0, this solution is unbounded. This completes the proof of Theorem 3.1. �
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