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Suppose that X is a dendrite and f : X → X is a sensitive continuous map. We 
show that (a) (X, f) contains a bilaterally transitive subsystem with nonempty 
interior; (b) the system (X, f) satisfies only one of the following two conditions: 
(b1) (X, f) contains a topologically transitive subsystem with nonempty interior; 
(b2) there exists an f -invariant nowhere dense closed subset A of X such that the 
attraction basin Basin(A, f) contains a residual subset B of an open set and the 
strong attraction basin Sbasin(A, f) is dense in B; (c) if X is completely regular, 
then (X, f) contains a relatively strongly mixing subsystem with nonempty interior, 
dense periodic points and positive topological entropy. Unlike for interval maps, we 
construct a sensitive dendrite map with zero topological entropy.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A topological dynamical system is a pair (X, f) where X is a compact metric space and f : X → X is 
a continuous map. A system (X, f) is called sensitive, or f is called sensitive for simplicity, if there exists 
a constant c > 0, called a sensitivity constant of the system (X, f), such that for any nonempty open set 
U ⊂ X, there is n ∈ N such that diam(fn(U)) > c. Sensitivity is usually regarded as an important feature of 
chaotic systems, though nowadays there is no universal agreement on the definition of chaos. For example, 
sensitivity is a key ingredient in the definitions of Devaney chaos and Auslander–Yorke chaos (also called 
Ruelle–Takens chaos) (see [12,4]).

The relationships between sensitivity, topological transitivity, and topological entropy have been exten-
sively studied. In [8] it is shown that a transitive system (X, f) with dense periodic points must be sensitive 
except that X is a finite set. This result was extended to transitive non-minimal systems with dense minimal 
points by Glasner and Weiss in [17]. Also, a transitive system with positive topological entropy must be 
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sensitive (see [17]). Some simple examples can show that the converses of the above results are far from being 
true for general systems. However, the situation is completely different when we consider one-dimensional 
systems. It is known that sensitivity implies the existence of a transitive cycle of intervals for any interval 
map f (see [9]). This implies that f has positive topological entropy (see, e.g., [10]). Some stronger forms of 
sensitivity such as Li–Yorke sensitivity, strong sensitivity, syndetic sensitivity and cofinite sensitivity have 
been discussed in [3,32]. Sensitivity also played a key role in proving that Devaney’s chaos implies Li–Yorke’s 
chaos (see [19,24]).

The aim of this paper is to study sensitivity of dendrite maps. We mainly consider the relations between 
sensitivity, transitivity and topological entropy for dendrite maps. Recall that a continuum is a compact 
connected metric space, and a dendrite is a locally connected continuum containing no simple closed curves. 
By a tree, we mean a connected compact one-dimensional polyhedron which contains no simple closed 
curves. Clearly trees are dendrites by definition. Dynamical systems on dendrites appeared naturally in 
the study of complex dynamical systems and hyperbolic geometry. In recent years, many people started 
to study the dynamics of dendrite maps. Although dendrites possess many properties of trees, dynamical 
properties on dendrites are much more varied than that on trees. For example, it is well known that the 
P = R property holds for trees (see [34]), but a counterexample for the Gehman dendrite was constructed 
by Kato in [21]. Further, Illanes proved that a dendrite X contains a Gehman dendrite if and only if X
does not have the P = R property in [20] (see also [6,25]). Recently, Hoehn and Mouron gave a map of the 
Wazewski’s universal dendrite that is weakly mixing but not mixing (see [18]) and has a unique periodic 
point (see [1]), which also showed the sharp difference between the dynamics of tree maps and dendrite 
maps. One may refer to [5,15,22,29–31] for more results about the dynamics of dendrite maps.

Before the statement of the theorem, let us recall some definitions and notation. We denote by R, Z and 
N the sets of real numbers, integers and positive integers respectively. Let (X, f) be a topological dynamical 
system. For x ∈ X, the set O+(x, f) = {fn(x) : n ∈ N ∪ {0}} is called the forward orbit (or usually, the 
orbit) of x under f , and O−(x, f) = ∪{f−n(x) : n ∈ N ∪{0}} is called the backward orbit of x under f . The 
set O(x, f) = O+(x, f) ∪ O−(x, f) is called the bilateral orbit of x under f . We should note that f−n(x)
may be a set with more than one point if f is not injective, so the symbol O(x, f) has different meanings 
from its usual ones.

Recall that the ω-limit set ω(x, f) of a point x ∈ X is the set of all limit points of O+(x, f), i.e., 
ω(x, f) = {y ∈ X : there is a sequence of positive integers ni → +∞ s.t. fni(x) → y}. A point x ∈ X is a 
nonwandering point of f if for every neighborhood U of x there is n ∈ N such that fn(U) ∩ U �= ∅. The 
set of all nonwandering points of f is denoted by Ω(X, f). A subset A of X is called f -invariant provided 
that f(A) ⊂ A. If A ⊂ X is closed and f -invariant, then (A, f |A) is also a topological dynamical system, 
which is called a subsystem of (X, f). The attraction basin of an f -invariant closed set A is defined to be 
the set Basin(A, f) = {x ∈ X : ω(x, f) ∩ A �= ∅} and the strong attraction basin of A is defined to be the 
set Sbasin(A, f) = {x ∈ Basin(A, f) : fn(x) ∈ A for some n ∈ N}. The set A is called the attracting set of 
its attraction basin. To compare the notion of attracting set in the present paper with various definitions 
of attractors, one may consult [26,27].

In this paper, we will refer to the following kinds of transitivity. Let (X, f) be a topological dynamical 
system, then

(1) (X, f) is said to be topologically transitive, or transitive in short, if for every pair of nonempty open 
subsets U and V of X, there is n ∈ N, such that fn(U) ∩ V �= ∅;

(2) (X, f) is said to be point transitive, if there exists a point x ∈ X, such that the closure O+(x, f) = X, 
and the point x is said to be a transitive point;

(3) (X, f) is said to be bilaterally transitive, if there exists a point x ∈ X, such that O(x, f) = X;
(4) (X, f) is said to be strongly mixing if for any pair of nonempty open subsets U and V of X, there is 

some N ∈ N such that fn(U) ∩ V �= ∅ for all n > N .
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We remark that topological transitivity and point transitivity are equivalent if the phase space X is a 
compact metric space with no isolated points, and it follows directly from the above definitions that point 
transitivity implies bilateral transitivity. Therefore, it is obvious that topological transitivity implies bilateral 
transitivity and strong mixing implies topological transitivity. When the system (X, f) is topologically 
transitive (respectively, point transitive, bilaterally transitive, strongly mixing), we also call that the map f
is topologically transitive (respectively, point transitive, bilaterally transitive, strongly mixing). A set D ⊂ X

is regularly closed if it is the closure of its interior. A regular periodic decomposition for f is a finite sequence 
D = (D0, . . . , Dm−1) of regularly closed subsets of X covering X such that f(Di) ⊂ Di+1(mod m) for 
0 ≤ i ≤ m − 1 and Di ∩ Dj is nowhere dense in X for i �= j. We say, according to [7], that f is strongly 
mixing relative to a regular periodic decomposition D if fm is strongly mixing on each of the sets Di. Also, 
we say that f is relatively strongly mixing if it is strongly mixing relative to some of its regular periodic 
decompositions (see [14]). A continuum X is completely regular if every non-degenerate subcontinuum of X
has a nonempty interior. A subset A of an open set V in a topological space X is called a residual subset
of V , if it contains the intersection of a countable family of dense open subsets of V .

In this paper, we will prove the following theorem in Section 3.

Theorem 1.1. Let X be a dendrite and f : X → X be a sensitive map. Then the following three statements 
hold:

(1) (X, f) contains a bilaterally transitive subsystem (Y, f |Y ) such that Int(Y ) �= ∅;
(2) the system (X, f) satisfies only one of the following two conditions:

(2.1) (X, f) contains a topologically transitive subsystem (Z, f |Z) such that Int(Z) �= ∅;
(2.2) there exist an f -invariant closed subset A of X such that Int(A) = ∅, an open subset V of X and 

a residual subset B of V such that B ⊂ Basin(A, f) and Sbasin(A, f) is dense in B.
(3) If X is completely regular then assertion (2.1) holds and, even more, (X, f) contains a topologically 

transitive subsystem (Z, f |Z) with Int(Z) �= ∅ so that (Z, f |Z) is relatively strongly mixing, has dense 
periodic points and positive topological entropy.

Unlike for interval maps, we construct a sensitive dendrite map with zero topological entropy in Section 4.

2. Dendrites

In this section, we give some topological properties of dendrites, which are needed in the proof of the 
main theorem.

Suppose that X is a compact metric space with metric d. Let A, B ⊂ X. We use the symbols A and 
Int(A) to denote the closure and the interior of A in X respectively. Define the diameter of A by diam(A) =
sup{d(a1, a2) : a1, a2 ∈ A}. Write d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Let X be a continuum with metric d. The hyperspace of X is defined by

2X = {A : A is a nonempty closed subset of X}.

For ε > 0 and A ∈ 2X , let Nd(ε, A) = {x ∈ X : d(x, a) < ε, for some a ∈ A}. For any A, B ∈ 2X , define 
dH(A, B) = inf{ε > 0 : A ⊂ Nd(ε, B) and B ⊂ Nd(ε, A)}. Then dH is a metric on 2X and is called the 
Hausdorff metric induced by d (see [28, pp. 52–53]).

Let X be a dendrite and x ∈ X. Define Cx = {C ⊂ X − {x} : C is a component of X − {x}}. We define 
the order of x in X, denoted by ord(x, X), as follows: if the cardinality |Cx| of the family Cx is finite, we 
define ord(x, X) = |Cx|. If |Cx| is not finite then it is countable and the elements of Cx describe a sequence 
whose diameters tend to zero. In such case we define ord(x, X) = ω. If x is of order 1, then x is called an 
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endpoint. The set of endpoints of X is denoted by E(X). If ord(x, X) ≥ 3, then x is called a branch point. 
The set of branch points of X is denoted by B(X).

The following properties of dendrites are well known: every connected subset of a dendrite is arcwise 
connected (a topological space X is arcwise connected if for any two different points x, y ∈ X, there exists 
an arc in X with endpoints x and y); every subcontinuum of a dendrite is still a dendrite; the intersection 
of any two subcontinua of a dendrite is still a dendrite. For any two different points x, y in a dendrite X, 
there is a unique arc from x to y which is denoted by [x, y]. Write [x, y) = (y, x] = [x, y] − {y} and 
(x, y) = [x, y) − {x}. For more details, we refer to [28, Chapter X].

The following lemma follows from [28, Theorem 10.4, p. 167] and the fact that dendrites are hereditarily 
locally connected continua.

Lemma 2.1. Let C1, C2, . . . be pairwise disjoint connected subsets of a dendrite X. Then lim
i→∞

diam(Ci) = 0.

Lemma 2.2. Let X be a dendrite. Then for any ε > 0, there exists a finite subset F ⊂ X such that each 
component of X − F has diameter ≤ ε.

Proof. By Theorem 5 in [23, Chapter VI, p. 302], for each ε > 0, there exist finitely many dendrites 
D1, . . . , Dn such that X = D1∪· · ·∪Dn, diam(Di) ≤ ε, Di∩Dj has at most one point, and Di∩Dj∩Dk = ∅
for every i �= j �= k ∈ {1, . . . , n}. Take F = {x : x ∈ Di ∩Dj , i, j = 1, . . . , n and i �= j}, then F is a finite 
subset of X. For each component C ⊂ X − F , by the connectedness of C, we have C ⊂ Di for some 
i ∈ {1, . . . , n}. Hence diam(C) ≤ ε. �

The following lemma immediately follows from Theorem 4.11 in [28].

Lemma 2.3. Suppose that X is a compact metric space with metric d, Y1 ⊃ Y2 ⊃ · · · ⊃ Yn ⊃ · · · is a sequence 
of decreasing closed sets in X, and Y =

⋂
n∈N

Yn. Then lim
n→∞

dH(Yn, Y ) = 0.

Lemma 2.4. Let X be a dendrite with metric d, Y1 ⊃ Y2 ⊃ · · · ⊃ Yn ⊃ · · · be a sequence of closed subsets 
in X, and Y =

⋂
n∈N

Yn. Then for every ε > 0, there exists some n ∈ N such that each component of Yn−Y

has diameter ≤ ε.

Proof. Assume, to the contrary, that there is ε > 0 so that for each n ∈ N there is a component C = C(n) ⊂
Yn − Y with diam(C) > ε. Then we will get a sequence of pairwise disjoint arcs {[ai, bi] : i ∈ N} in X such 
that diam([ai, bi]) ≥ ε as follows.

First, let Yn1 = Y1, and take a component C1 ⊂ Yn1 − Y with diam(C1) > ε. Then there are two points 
a1, b1 ∈ C1 such that d(a1, b1) ≥ ε. Thus we have that diam([a1, b1]) ≥ ε. Since [a1, b1] ∩ Y = ∅, we have 
d([a1, b1], Y ) > 0. Write d1 = d([a1, b1], Y ). By Lemma 2.3, there is n2 ∈ N such that dH(Yn2 , Y ) < d1. 
Therefore, Yn2 ∩ [a1, b1] = ∅.

Next, take a component C2 ⊂ Yn2 − Y such that diam(C2) > ε. Then there are two points a2, b2 ∈ C2

such that d(a2, b2) ≥ ε. Thus we have that diam([a2, b2]) ≥ ε and [a1, b1] ∩ [a2, b2] = ∅. Since [a2, b2] ∩Y = ∅, 
d([a2, b2], Y ) > 0. Write d2 = d([a2, b2], Y ).

Now suppose that we have got [ai, bi] ⊂ Ci ⊂ Yni
− Y and di for i = 1, 2, . . . , k satisfying:

(1) Ci is a component of Yni
− Y with diam(Ci) > ε;

(2) [ai, bi] is an arc in Ci such that diam([ai, bi]) ≥ ε;
(3) d([ai, bi], Y ) = di and dH(Yni+1 , Y ) < di, where d1 > d2 > · · · > dk > 0;
(4) the arcs [ai, bi], i = 1, . . . , k, are pairwise disjoint.
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Then for i = k + 1, there exists Ynk+1 such that dH(Ynk+1 , Y ) < dk by Lemma 2.3. So Ynk+1 ∩ [ai, bi] = ∅
for all i = 1, · · · , k. Take a component Ck+1 ⊂ Ynk+1 − Y with diam(Ck+1) > ε. Then there are two 
points ak+1, bk+1 ∈ Ck+1 such that d(ak+1, bk+1) ≥ ε. Thus we have that diam([ak+1, bk+1]) ≥ ε, and 
[ak+1, bk+1] ∩ [ai, bi] = ∅ for i = 1, . . . , k.

By induction, we get pairwise disjoint arcs {[ai, bi] : i ∈ N} with diam([ai, bi]) ≥ ε, which contradicts 
Lemma 2.1. Thus, we finish the proof. �
3. Proof of the main theorem

For a topological space X, we call an open set J a free interval of X if it is an open subset of X
homeomorphic to an open interval in the real line. We denote the topological entropy of (X, f) by htop(X, f). 
Topological entropy is an important conjugate invariant in dynamical systems, which was first defined by 
Alder, Konheim and McAndrew in [2], and later extended by Dinaburg (see [13]) and Bowen (see [11]). We 
assume that the reader is familiar with the definition and the basic properties of topological entropy (see, 
e.g., [33, Chapter 7] for details).

The following lemma is taken from [14, Theorem C], which is needed in the proof of Theorem 1.1.

Lemma 3.1 (Dichotomy for transitive maps). Let X be a compact metrizable space with a free interval and 
let f : X → X be a transitive map. Then exactly one of the following two statements holds.

(1) The map f is relatively strongly mixing, non-invertible, has positive topological entropy and dense peri-
odic points.

(2) The space X is a disjoint union of finitely many circles, X =
⊕n−1

i=0 S
1
i , which are cyclically permuted 

by f and, on each of them, fn is topologically conjugate to the same irrational rotation.

Obviously, if the space X in the above theorem contains no simple closed curves, then necessarily the 
case (1) holds.

Proof of Theorem 1.1. Let c be a sensitivity constant of the system (X, f). To show (1) note that, since X
is a dendrite, by Lemma 2.2, we have a finite set {a1, a2, . . . , an} in X such that

each component of X − {a1, a2, . . . , an} has diameter ≤ c. (∗)

We claim that 
⋃n

i=1 O
−(ai, f) = X. Indeed, otherwise there exists a connected open set U ⊂ X −⋃n

i=1 O
−(ai, f) whose orbit misses all points a1, . . . , an; by the choice of a1, . . . , an, this implies that 

diam(fk(U)) ≤ c for each k ∈ N, which is a contradiction.
By the claim, there is a point ai ∈ {a1, . . . , an} such that Int

(
O−(ai, f)

)
�= ∅. Denote Y = O(ai, f) =⋃+∞

j=−∞ f j(ai). Then we have

f(Y ) = f

⎛
⎝ +∞⋃

j=−∞
f j(ai)

⎞
⎠ = f

⎛
⎝ +∞⋃

j=−∞
f j(ai)

⎞
⎠ =

+∞⋃
j=−∞

f j+1(ai) = Y.

Thus Y is closed and f -invariant. So (Y, f |Y ) is a bilaterally transitive subsystem of (X, f) with nonempty 
interior. This shows assertion (1) of Theorem 1.1.

Now, to show assertion (2) let the family

F = {F ⊂ X : F is closed and f -invariant with Int(F ) �= ∅}.
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Clearly F is nonempty since X ∈ F . We endow F with the partial order given by the inclusion relation “⊃”. 
We will consider two cases.

Case 1. For any totally ordered family {Yλ}λ∈Λ of F , Int
(⋂

λ∈Λ Yλ

)
�= ∅.

In this case, we see that any totally ordered family {Yλ}λ∈Λ of F admits a lower bound 
⋂

λ∈Λ Yλ. 
According to Zorn’s Lemma, there exists a minimal element Z in F . By the definition of F , we see that 
Int(Z) �= ∅. Now we prove that (Z, f |Z) is a topologically transitive subsystem. Denote U = Int(Z). We 
have the following

Claim 1. For any two nonempty open sets V, W ⊂ U , 
(⋃+∞

n=0 f
−n(V )

)
∩W �= ∅.

Assume, to the contrary, that there are nonempty open sets V and W contained in U such that (⋃+∞
n=0 f

−n(V )
)
∩ W = ∅. Then we have 

(⋃+∞
n=0 f

n(W )
)
∩ V = ∅, and so 

⋃+∞
n=0 f

n(W ) ∩ V = ∅. It 

follows that 
⋃+∞

n=0 f
n(W ) is a proper subset of Z. Since W ⊂

⋃+∞
n=0 f

n(W ) and W is an open set, then 

Int
(⋃+∞

n=0 f
n(W )

)
�= ∅. Thus 

⋃+∞
n=0 f

n(W ) ∈ F , which contradicts the minimality of Z. So the claim holds.
Let {Ui}+∞

i=1 be a countable basis of neighborhoods of U . For each Ui, according to Claim 1, (⋃+∞
n=0 f

−n(Ui)
)
∩W �= ∅ for any open subset W ⊂ U , which implies that 

(⋃+∞
n=0 f

−n(Ui)
)
∩U is dense in U . 

Hence, 
(⋂+∞

i=1

(⋃+∞
n=0 f

−n(Ui)
))

∩U is a dense Gδ set in U . Take a point x ∈
(⋂+∞

i=1

(⋃+∞
n=0 f

−n(Ui)
))

∩U . 
Then, for every i ∈ N, there exists an n(i) ∈ N such that fn(i)(x) ∈ Ui. It implies that O+(x, f) ∩Ui �= ∅ for 
every i ∈ N. Therefore, we have that U ⊂ O+(x, f). By the minimality of Z, we have O+(x, f) = Z. Then 
(Z, f |Z) is a topologically transitive subsystem with nonempty interior. This shows that assertion (2.1) of 
Theorem 1.1 holds.

Case 2. There is a totally ordered family {Yλ}λ∈Λ of sets from F such that Int
(⋂

λ∈Λ Yλ

)
= ∅.

Since X is a compact metric space, by Theorem 1.1.14 in [16, p. 34] we can take a subsequence {Yλi
}+∞
i=1 ⊂

{Yλ}λ∈Λ such that 
⋂+∞

i=1 Yλi
=

⋂
λ∈Λ Yλ. Denote Ai = Yλi

for every i ∈ N. Let A =
⋂

i∈N
Ai =

⋂
λ∈Λ Yλ. 

Then A is a closed f -invariant nowhere dense set. By Lemma 2.4, there exists some k ∈ N such that

each component of Ak −A has diameter ≤ c. (∗∗)

Define V = Int(Ak). Note that V is an open subset of X.

Claim 2.
(⋃+∞

n=1 f
−n(A)

)
∩ V is dense in V .

In fact, for any nonempty connected open set U ⊂ Ak, we have diam(fn(U)) > c for some n ∈ N by 
the sensitivity of (X, f). Since fn(U) ⊂ Ak and fn(U) is connected, we have fn(U) ∩ A �= ∅ by (∗∗). So, 
U ∩ f−n(A) �= ∅ and Claim 2 holds by the arbitrariness of U .

For each i ∈ N, define Ui = {x ∈ X : d(x, A) < 1/i}. Since A ⊂ Ui, we have that 
(⋃+∞

n=1 f
−n(Ui)

)
∩ V

is dense in V by Claim 2. Thus 
(⋂+∞

i=1

(⋃+∞
n=1 f

−n(Ui)
))

∩ V is a dense Gδ set in V . Let B =(⋂+∞
i=1

(⋃+∞
n=1 f

−n(Ui)
))

∩V . Note that B is residual in V . We consider both Basin(A, f) and Sbasin(A, f)
in V , i.e., we define Basin(A, f) = {x ∈ V : ω(x, f) ∩A �= ∅} and Sbasin(A, f) = {x ∈ Basin(A, f) : fn(x) ∈
A for some n ∈ N}. Then we have the following

Claim 3. B ⊂ Basin(A, f) and Sbasin(A, f) is dense in B.

For each x ∈ B, we have x ∈
⋃+∞

n=1 f
−n(Ui) for each i ∈ N. Then there exists some ni ∈ N such that 

fni(x) ∈ Ui. Thus, by the definition of Ui, we have d(fni(x), A) < 1/i for each i ∈ N. This implies that 
ω(x, f) ∩A �= ∅. Therefore x ∈ Basin(A, f). By the arbitrariness of x, we have B ⊂ Basin(A, f). In addition, 
for each x ∈

(⋃+∞
f−n(A)

)
∩ V , there exists some n ∈ N such that fn(x) ∈ A. Since A is an f -invariant 
n=1
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closed set, then fn+k(x) ∈ A for all k ∈ N and ω(x, f) ∩ A �= ∅. Thus x ∈ Sbasin(A, f). So it implies that 
Sbasin(A, f) =

(⋃+∞
n=1 f

−n(A)
)
∩ V . Then Sbasin(A, f) is dense in B by Claim 2. Hence the claim holds.

This shows that assertion (2.2) of Theorem 1.1 holds. Hence the proof of assertion (2) is complete.
To show assertion (3) assume that X is a completely regular dendrite. Define F as that in the proof of 

assertion (2). Let {Yλ}λ∈Λ be any totally ordered family of F . Take a subsequence Yλ1 ⊃ Yλ2 ⊃ · · · ⊃ Yλi
⊃

· · · of {Yλ}λ∈Λ such that 
⋂+∞

i=1 Yλi
=

⋂
λ∈Λ Yλ. Since X is completely regular, there exists a subcontinuum 

Aλi
⊂ Yλi

with Int(Aλi
) �= ∅ for every i ∈ N. As (X, f) is sensitive, for every Aλi

, there is some n(λi) ∈ N

such that diam
(
fn(λi)(Aλi

)
)
> c. Denote Lλi

= fn(λi)(Aλi
). Since the hyperspace 2X is compact under 

the Hausdorff topology, there exists a subsequence of {Lλi
}i∈N which converges to a subcontinuum L of X. 

Obviously, diam(L) ≥ c and L ⊂
⋂

λ∈Λ Yλ. Because X is completely regular, L contains nonempty interior, 
which implies that Int(

⋂
λ∈Λ Yλ) �= ∅. So, assertion (2.1) holds. Thus we get a topologically transitive 

subsystem (Z, f |Z) with nonempty interior. Using the complete regularity of X again, it is easy to see that 
Z has a free interval. Since Z contains no simple closed curves, we see that (Z, f |Z) is relatively strongly 
mixing, has positive topological entropy and has dense periodic points by Lemma 3.1. Thus we complete 
the proof. �

As a supplement of Theorem 1.1, Example 3.2 shows that assertion (2.2) of Theorem 1.1 would occur 
indeed.

Example 3.2. First we construct a dendrite in the plane R2. Let Y0 = [0, 1] × {0}. For each n ∈ N and 
i = 1, 2, . . . , 2n−1, let Ini = {2i−1

2n } × [0, 1
2n ]. Define X = Y0 ∪

(
∪{Ini : n ∈ N, i = 1, 2, . . . , 2n−1}

)
. Obviously 

X is a dendrite under the subspace topology of R2.
In order to give a sensitive map on X, we shall define two maps h and g as follows. For every n ∈ N and 

i ∈ {1, 2, . . . , 2n−1}, let hni : Ini → [ 2i−1
2n , i

2n−1 ] × {0} be the isometric map with hni((2i−1
2n , 0)) = (2i−1

2n , 0). 
Define

h(x) =
{

hni(x), x ∈ Ini, for each n ∈ N and i = 1, 2, . . . , 2n−1;
x, x ∈ Y0.

Let g : Y0 → Y0 be the tent map on the interval Y0, that is

g((x, 0)) =
{

(2x, 0), 0 ≤ x < 1
2 ;

(2 − 2x, 0), 1
2 ≤ x ≤ 1.

Since h(X) ⊂ Y0, we can let f = g ◦ h. It is easy to see that f is sensitive by the definition and Y0 is a 
nowhere dense attracting set, whose attraction basin is the whole space X. �
Remark. It is well known that sensitive interval maps have positive topological entropy. Though the sensitive 
system (X, f) in Example 3.2 also has positive topological entropy, we will construct a sensitive dendrite 
map with zero topological entropy in Section 4, which shows that the dynamics of dendrite maps is more 
varied than that of interval maps.

4. An example

In this section, we will give a sensitive dendrite map with zero topological entropy. The following lemma 
is obvious.

Lemma 4.1. Let I = [a, b] and J = [α, β] be two nondegenerate closed intervals of the real line R. Suppose 
B = {xi : i ∈ N} is a sequence of distinct points which is dense in J , and L = {li : i ∈ N} is a sequence of 
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Fig. 1. τi.

positive numbers. Then there is a sequence of closed intervals {[αi, βi] : i ∈ N} in I satisfying the following 
conditions:

(1) βi < αj whenever xi < xj, for any i, j ∈ N;
(2) if xi = α, then [αi, βi] = [a, βi], and if xi = β, then [αi, βi] = [αi, b];
(3) |βi − αi| < 1

2 li for every i ∈ N;
(4) [αi, βi] ∩ [αj , βj ] = ∅ for any i �= j;
(5)

⋃
i∈N

[αi, βi] is dense in I.

Remark. Note that the elements of the sequence L = {li : i ∈ N} in the above lemma does not have to be 
pairwise different.

Lemma 4.2. Let I = [a, b], J = [α, β], B = {xi : i ∈ N}, and L = {li : i ∈ N} be as in Lemma 4.1 with the 
additional assumption that li → 0 as i → ∞. For each i ∈ N, if xi �= β, let Ai = {(xi, y)| − li ≤ y ≤ li} be 
an arc in R2 perpendicular to the x-axis; if xi = β, let Ai = {(xi, y)|0 ≤ y ≤ li}. Then the plane point set 
Y = (J × {0}) ∪ (

⋃
i∈N

Ai) is a dendrite and there exist a sequence of closed intervals {[αi, βi] : i ∈ N} in I
with properties (1) to (5) of Lemma 4.1 and a continuous map f : I → Y such that

(1) f is surjective, f(a) = (α, 0), and f(b) = (β, 0);
(2) for every i ∈ N, f−1(Ai) = [αi, βi];
(3) for any subarc K ⊂ [αi, βi], we have |f(K)| ≥ 2|K|. (Here, |K| denote the length of the arc K under 

the Euclidean metric.)

Proof. It is easy to see that Y is compact, connected and contains no simple closed curves by definition. 
Since li → 0 as i → ∞, Y is locally connected. So, Y is a dendrite.

Applying Lemma 4.1 to the intervals I and J , point sequence {xi : i ∈ N}, and positive number sequence 
{li : i ∈ N}, we can get a sequence of closed intervals [αi, βi] ⊂ I satisfying the five conditions in Lemma 4.1. 
Now we start to construct a map f : I → Y satisfying the requirements. For each i ∈ N, define a map 
τi : [αi, βi] → [−li, li] (see Fig. 1-(a)) or τi : [αi, βi] → [0, li] (see Fig. 1-(b)) as follows:

If xi �= β, let

τi(x) =

⎧⎪⎪⎨
⎪⎪⎩

4li
βi−αi

(x− αi), αi ≤ x ≤ αi + βi−αi

4 ;

li − 4li
βi−αi

(x− αi − βi−αi

4 ), αi + βi−αi

4 ≤ x ≤ αi + 3(βi−αi)
4 ;

−l + 4li (x− α − 3(βi−αi) ), α + 3(βi−αi) ≤ x ≤ β .
i βi−αi
i 4 i 4 i
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Fig. 2. Y3 and Y4.

If xi = β, let

τi(x) =
{ 2li

βi−αi
(x− αi), αi ≤ x ≤ αi + βi−αi

2 ;

li − 2li
βi−αi

(x− αi − βi−αi

2 ), αi + βi−αi

2 ≤ x ≤ βi.

Now, define f̃ :
⋃∞

i=1[αi, βi] → Y by letting f̃ |[αi,βi](x) = (xi, τi(x)) for every x ∈ [αi, βi]. As 
⋃∞

i=1[αi, βi]
is dense in I, f̃ |⋃∞

i=1[αi,βi] can naturally be extended to a continuous map f : I → Y . It is easy to see that 
f meets the requirements. �
Example 4.3. First, we define inductively a sequence of trees Yi in the plane R2 as follows. Let Y0 = [0, 1] ×{0}, 
Y1 = Y0 ∪A11, where A11 = {(1

2 , y)| −
1
4 ≤ y ≤ 1

4}, and Y2 = Y1 ∪A21 ∪A22, where A21 = {( 1
22 , y)| − 1

42 ≤
y ≤ 1

42 }, A22 = {( 3
22 , y)| − 1

42 ≤ y ≤ 1
42 }. Assume that Yn−1 has been defined, then let

Yn = Yn−1 ∪

⎛
⎝2n−1⋃

i=1
Ani

⎞
⎠ ,

where

Ani =
{(

2i− 1
2n , y

)
| − 1

4n ≤ y ≤ 1
4n

}
, for i = 1, 2, . . . , 2n−1.

Please see Fig. 2 for Y3 and Y4. Clearly, Y0 ⊂ Y1 ⊂ Y2 · · · , and X =
⋃∞

n=0 Yn is a dendrite under the 
subspace topology of the plane R2.

For any plane point set A ⊂ R
2, denote A+ = A ∩ {(x, y)|y ≥ 0}, and A− = A ∩ {(x, y)|y ≤ 0}. Then 

X+ = Y0 ∪
(⋃

n∈N

(⋃2n−1

i=1 A+
ni

))
, and X− = Y0 ∪

(⋃
n∈N

(⋃2n−1

i=1 A−
ni

))
.

Now, we start to define a sensitive map f : X → X by 5 steps.
Step 1. For any n ∈ N, we write Ani = {Apq : Apq ⊂ (2i−1

2n , 2i+1
2n ) × (− 1

4n , 1
4n ), p ∈ N, q ∈ {1, . . . , 2p−1}}

if i ∈ {1, 2, . . . , 2n−1−1}, and write An2n−1 = {Apq : Apq ⊂ (2n−1
2n , 1) × (− 1

4n , 1
4n ), p ∈ N, q ∈ {1, . . . , 2p−1}}. 

Then let

Yni =
([

2i− 1
2n ,

2i + 1
2n

]
× {0}

)
∪ (∪Ani) ∪A+

n,i+1, for i ∈ {1, 2, . . . , 2n−1 − 1},

and let

Yn2n−1 =
([

2n − 1
2n , 1

]
× {0}

)
∪ (∪An2n−1).

Then Yni is a subdendrite of X (the shadowing parts in Fig. 3 are Y21 and Y22).
For any fixed n ∈ N and i ∈ {1, . . . , 2n−1}, denote I = {2i−1

2n } × [0, 1
4n ]; if i ∈ {1, . . . , 2n−1 − 1}, let 

J = [ 2i−1
n , 2i+1

n ] ×{0} and let B be the branch point set of Yni together with the point (2i+1
n , 0); if i = 2n−1, 
2 2 2
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Fig. 3. Y21 and Y22.

let J = [ 2i−1
2n , 1] × {0} and let B be the branch point set of Yni; let L = {|A+

pq| : A+
pq ⊂ Yni, p ∈ N, q ∈

{1, . . . , 2p−1}}.
Applying Lemma 4.2 to I, J , B and L, we get a surjective map f+

ni : A+
ni → Yni satisfying that 

f+
ni((2i−1

2n , 0)) = (2i−1
2n , 0), f+

ni((2i−1
2n , 1

4n )) = (2i+1
2n , 0) (particularly, f+

ni((2i−1
2n , 1

4n )) = (1, 0) if i = 2n−1) 
and (f+

ni)−1(Apq) is a closed arc {2i−1
2n } × [αj , βj ] in I for every Apq ⊂ Yni. Also, (f+

ni)−1(A+
n,i+1) is a closed 

arc {2i−1
2n } × [αj , βj ] in I. In addition, we have

|f(K)| ≥ 2|K|, for any closed arc K ⊂
{

2i− 1
2n

}
× [αj , βj ]. (∗)

Step 2. Define f+
n :

⋃2n−1

i=1 A+
ni → X by letting f+

n |A+
ni

= f+
ni, for each i ∈ {1, 2, . . . , 2n−1}.

Step 3. Define f+ : X+ → X by

f+(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z, z ∈ [0, 1] × {0};
f+
1 (z), z ∈ A+

11;
· · ·
f+
n (z), z ∈

⋃2n−1

i=1 A+
ni;

· · ·

Step 4. Let ϕ be a symmetry of X about the point (1
2 , 0), i.e., ϕ(x, y) = (1 − x, −y) for any (x, y) ∈ X. 

Then, define f− : X− → X by f−(z) = ϕ ◦ f ◦ ϕ(z) for any z ∈ X−.
Step 5. Since f+(z) = f−(z) = z for any z ∈ [0, 1] × {0} by the definitions of f+ and f−, we have 

naturally a continuous map f : X → X defined by

f(z) =
{

f+(z), z ∈ X+;
f−(z), z ∈ X−.

Proposition 4.4. The map f : X → X defined in Example 4.3 is sensitive and has zero topological entropy.

Proof. Claim 1. For any n ∈ N and i ∈ {1, 2, . . . , 2n−1}, we have

fm(A+
ni) ⊃

[
2i− 1

2n , 1
]
× {0}, for sufficiently large m ∈ N.

In fact, from the definition of f , we can see that

f(A+
ni) ⊃ Yni ⊃ A+

n,i+1 ∪
([

2i− 1
2n ,

2i + 1
2n

]
× {0}

)
, for 1 ≤ i ≤ 2n−1 − 1;

f(A+
n,2n−1) ⊃ Y +

n,2n−1 ⊃
[
1 − 1

2n , 1
]
× {0};

f(z) = z, for all z ∈
[
2i− 1

n
, 1
]
× {0}.
2
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This implies that fm(A+
ni) ⊃ [ 2i−1

2n , 1] × {0} for m ≥ 2n−1 − i + 1.
Similarly, we have

Claim 2. When m is sufficiently large, fm(A−
ni) ⊃ [0, 2i−1

2n ] × {0}.

By Claim 1 and Claim 2, we immediately get the following claim

Claim 3. For any n ∈ N and i ∈ {1, 2, . . . , 2n−1}, we have

fm(Ani) ⊃ [0, 1] × {0}, for sufficiently large m ∈ N.

From (∗) in Example 4.3, we can easily get the following

Claim 4. For any n ∈ N, i ∈ {1, 2, . . . , 2n−1}, and any nondegenerate closed arc K ⊂ Ani, there is m ∈ N

such that fm(K) ⊃ Apq for some p ∈ N and q ∈ {1, 2, . . . , 2p−1}.

By Claim 3 and Claim 4, we get immediately that for any nonempty open set U , there exists m ∈ N such 
that fm(U) ⊃ [0, 1]. Hence (X, f) is sensitive.

From the construction, we see that Ω(X, f) = [0, 1] × {0}, and f |Ω(X,f) = Id. So, htop(X, f) =
htop(Ω(X, f), f |Ω(X,f)) = 0. �
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