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1. Introduction

It is well known from basic calculus that

arcsin(x) =
x∫

0

1
(1 − t2)1/2

dt, 0 ≤ x ≤ 1,

and

π

2 = arcsin(1) =
1∫

0

1
(1 − t2)1/2

dt.

We can define the function sin on [0, π/2] as the inverse of arcsin and extend it on (−∞, ∞).
Let 1 < p < ∞. We can generalize the above functions as follows:

arcsinp(x) ≡
x∫

0

1
(1 − tp)1/p

dt, 0 ≤ x ≤ 1,
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and

πp

2 = arcsinp(1) ≡
1∫

0

1
(1 − tp)1/p

dt = π/p

sin(π/p) = 1
p
B(1/p, 1 − 1/p),

where B is the beta function. The inverse of arcsinp on [0, πp/2] is called the generalized sine function and 
denoted by sinp. By standard extension procedures as the sine function we get a differentiable function 
on the whole of (−∞, ∞) which coincides with the sine function sin when p = 2. In the same way we 
can define the generalized cosine function, the generalized tangent function, and their inverses, and also 
the corresponding hyperbolic functions (see Section 2). The generalized sine function sinp occurs as an 
eigenfunction of the Dirichlet problem for the one-dimensional p-Laplacian. There are several different 
definitions for these generalized trigonometric and hyperbolic functions [9,11–13]. Recently, these functions 
have been studied very extensively. In particular, the reader is referred to [11–14].

The well-known complete elliptic integrals of the first and second kind are respectively defined by

K(r) =
π/2∫
0

dθ√
1 − r2 sin2 θ

=
1∫

0

dt√
(1 − t2)(1 − r2t2)

and

E(r) =
π/2∫
0

√
1 − r2 sin2 θdθ =

1∫
0

√
1 − r2t2

1 − t2
dt.

In 2014, S. Takeuchi [16] introduced a form of the generalized complete elliptic integrals as an application 
of generalized trigonometric functions. The complete p-elliptic integrals of the first and second kind are 
respectively defined as follows: for p ∈ (1, ∞) and r ∈ [0, 1),

Kp(r) =
πp/2∫
0

dθ

(1 − rp sinp
p θ)1−1/p =

1∫
0

dt

(1 − tp)1/p(1 − rptp)1−1/p (1.1)

and

Ep(r) =
πp/2∫
0

(1 − rp sinp
p θ)1/pdθ =

1∫
0

(
1 − rptp

1 − tp

)1/p

dt. (1.2)

The complete p-elliptic integrals can be represented by the Gaussian hypergeometric function [16, Proposi-
tion 2.8]: for r ∈ [0, 1),

Kp(r) = πp

2 F (1/p, 1 − 1/p; 1; rp) (1.3)

and

Ep(r) = πp

2 F (1/p,−1/p; 1; rp), (1.4)

where F (a, b; c; x) denotes the Gaussian hypergeometric function (see Section 2 for the definition).



944 X. Zhang / J. Math. Anal. Appl. 453 (2017) 942–953
Note that there are several different forms of the generalized elliptic integrals, see [6,1,7,8,15]. For example, 
the Borweins [6, Section 5.5] defined the generalized complete elliptic integrals of the first and of the second 
kind by

Ka(r) = π

2F (a, 1 − a; 1; r2) (1.5)

Ea(r) = π

2F (a− 1, 1 − a; 1; r2) (1.6)

for a ∈ (0, 1) and r ∈ (0, 1). The Borweins’ generalized elliptic integrals are of importance in the study of 
Ramanujan’s modular equations and approximations to π. For a = 1/3 and for some δ ∈ (0, 1), they have 
proved the identity

K1/3

⎛
⎝
√

1 −
(

1 − r

1 + 2r

)2
⎞
⎠ = (1 + 2r)K1/3(r3/2), r ∈ (0, δ),

and used it to derive a cubically convergent algorithm for the computation of π. Many noteworthy mono-
tonicity and convexity properties of this form of the generalized elliptic integrals (1.5) and (1.6) have been 
obtained in [1]. A general form of the generalized elliptic integrals with more parameters were introduced 
in [8] and [7], and the results in [1] were extended to these generalized elliptic integrals.

Takeuchi’s complete p-elliptic integrals are in the Legendre–Jacobi standard form with generalized 
trigonometric functions. As it shows in [16], the advantage of using the complete p-elliptic integrals lies 
in the fact that it is possible to prove formulas of the generalized complete elliptic integrals simply as well 
as that of the classical complete elliptic integrals. The complete p-elliptic integrals have been used to es-
tablish computation formulas of the generalized π in terms of the arithmetic-geometric mean and to prove 
Ramanujan’s cubic transformation in an elementary way [16,17].

In this paper we will continue Takeuchi’s study following the ideas of [1,2,8,7] and generalize some 
well-known results of the classical complete elliptic integrals to the case of complete p-elliptic integrals. We 
obtain sharp monotonicity and convexity results for combinations of these functions, as well as functional 
inequalities. This article is organized as follows. In Section 2 we introduce the necessary notation and the 
functions studied, as well as known results used in the sequel. In Section 3 we obtain various generalizations 
of monotonicity results and sharp functional inequalities for certain combinations of the complete p-elliptic 
integrals.

2. Preliminaries and definitions

The generalized cosine function cosp is defined as

cosp(x) ≡ d

dx
sinp(x).

It is clear from the definitions that

cosp(x) = (1 − sinp(x)p)1/p, x ∈ [0, πp/2],

and

| sinp(x)|p + | cosp(x)|p = 1, x ∈ R.

It is easy to see that
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d

dx
cosp(x) = − cosp(x)2−p sinp(x)p−1, x ∈ [0, πp/2].

Similarly, the generalized inverse hyperbolic sine function

arshp(x) ≡
{ ∫ x

0
1

(1+tp)1/p dt, x ∈ [0,∞),

−arshp(−x), x ∈ (−∞, 0)

generalizes the classical inverse hyperbolic sine function. The inverse of arshp is called the generalized 
hyperbolic sine function and denoted by shp. The generalized hyperbolic cosine function is defined as

chp(x) ≡ d

dx
shp(x).

The definitions show that

chp(x)p − |shp(x)|p = 1, x ∈ R,

and

d

dx
chp(x) = chp(x)2−pshp(x)p−1, x ≥ 0.

The generalized hyperbolic tangent function is defined as

thp(x) ≡ shp(x)
chp(x) ,

and hence we have

d

dx
thp(x) = 1 − |thp(x)|p.

The inverse of generalized hyperbolic tangent function is denoted by arthp, and it is easy to see that

d

dx
arthp(x) = 1

1 − xp
.

For real numbers a, b and c with c �= 0, −1, −2 · · · , the Gaussian hypergeometric function is defined by

F (a, b; c;x) =2 F1(a, b; c;x) ≡
∞∑

n=0

(a, n)(b, n)
(c, n)

xn

n! , |x| < 1.

Here (a, 0) = 1 for a �= 0, and (a, n) is the shifted factorial function

(a, n) ≡ a(a + 1)(a + 2) · · · (a + n− 1)

for n ∈ N ≡ {k : k is a positive integer}.
We shall also need the function

R(a, b) = −2γ − ψ(a) − ψ(b), R(a) = R(a, 1 − a), R(1/2) = log 16,

where ψ is the psi function and γ = 0.577215 . . . is the Euler–Mascheroni constant.
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The complete p-elliptic integrals can be represented by the Gaussian hypergeometric function as (1.3) and 
(1.4) show. As is traditional, we always use the notation r′ = (1 − rp)1/p for r ∈ [0, 1]. The complementary 
integrals Kp

′(r) and Ep′(r) are defined by Kp
′(r) = Kp(r′) and Ep′(r) = Ep(r′). Then we have the following 

beautiful Legendre relation [16, Theorem 1.1]:

Kp(r)Ep′(r) + Kp
′(r)Ep(r) −Kp(r)Kp

′(r) = πp

2 .

The functions Kp and Ep satisfy a system of differential equations [16, Proposition 2.1]:

dKp

dr
= Ep − r′ pKp

rr′ p
,

dEp
dr

= Ep −Kp

r
. (2.1)

From (2.1), it is easy to get the following derivative formula:

d

dr
(Ep − r′ pKp) = (p− 1)rp−1Kp,

d

dr
(Kp − Ep) = rp−1Ep

r′ p
. (2.2)

We define two related functions mp and μp as follows: for 0 < r < 1,

mp(r) = 2
πp

r′ pKp(r)Kp
′(r), (2.3)

μp(r) = πp

2
Kp

′(r)
Kp(r)

. (2.4)

For p = 2, these functions reduce to well-known special cases. The function μ(r) = μ2(r) is the modulus of 
the Grötzsch ring domain in the plane, which has numerous applications in the conformal invariants and the 
theory of quasiconformal mappings [2,10]. The function μ(r) also appears in the classical modular equations 
[5,6]. Many noteworthy monotonicity and convexity properties of functions defined in terms of the modulus 
of the Grötzsch ring are presented in the monograph [2]. Applications of these results lead to various sharp 
functional inequalities for the function μ. These sharp inequalities of the functions m2(r) and μ2(r) can be 
used to deduce very good estimates of quasiconformal distortion functions.

3. Monotonicity, convexity and inequalities

The l’Hôpital Monotone Rule (LMR), Lemma 3.1, is a key tool in proofs of our generalizations. For p = 2, 
our results in this section reduce to the results for the classical functions, see [2, Chapter 3].

3.1. Lemma. [3] (l’Hôpital Monotone Rule). Let −∞ < a < b < ∞, and let f, g : [a, b] → R be continuous 
functions that are differentiable on (a, b), with f(a) = g(a) = 0 or f(b) = g(b) = 0. Assume that g′(x) �= 0
for each x ∈ (a, b). If f ′/g′ is increasing (decreasing) on (a, b), then so is f/g.

Some other applications of the l’Hôpital Monotone Rule (LMR) in special functions one is referred to the 
survey [4].

3.2. Lemma. [2, Theorem 1.52(2)] The function r 	→ B(a, b)F (a, b; a + b; r) + log(1 − r) is strictly decreasing 
from (0, 1) onto (R(a, b), B(a, b)).

3.3. Lemma. The function f(r) = Kp(r) + log r′ is decreasing from (0, 1) onto (R(1/p)/p, πp/2).

Proof. It follows from (1.3) and Lemma 3.2. �
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3.4. Lemma. Let p > 1 in the parts (1)–(7), and 1 < p ≤ 2 in the part (8). Then the function

(1) f1(r) = (Ep − r′ pKp)/rp is increasing from (0, 1) onto ((p − 1)πp/(2p), 1).
(2) f2(r) = r′ pKp/Ep is decreasing from (0, 1) onto (0, 1).
(3) f3(r) = (Ep − r′ pKp)/(rpKp) is decreasing from (0, 1) onto (0, (p − 1)/p).
(4) f4(r) = (Kp − Ep)/(rpKp) is increasing from (0, 1) onto (1/p, 1).
(5) f5(r) = r′ p(Kp − Ep)/(rpEp) is decreasing from (0, 1) onto (0, 1/p).
(6) f6(r) = r′ cKp is decreasing from (0, 1) if and only if c ≥ (p − 1)/p, in which case the range of f6 is 

(0, πp/2). Moreover, r 	→ r′Kp is decreasing for each p ∈ (1, ∞).
(7) f7(r) = r′ cEp is increasing from (0, 1) if and only if c ≤ −1/p, in which case the range of f7 is (πp/2, ∞).
(8) f8(r) = ((Kp − Ep) − (Ep − r′ pKp))/rp is increasing from (0, 1) onto ((2 − p)πp/(2p), ∞).

Proof. (1) Write f11(r) = Ep − r′ pKp and f12(r) = rp. Then f11(0) = 0 = f12(0) and

f ′
11(r)
f ′
12(r)

= p− 1
p

Kp

which is increasing, with f1(0+) = (p − 1)πp/(2p). The monotonicity of f1 follows from Lemma 3.1.
(2) Since f2(r) = 1 − (Ep − r′ pKp)/Ep, the result follows from the facts that Ep − r′ pKp is increasing and 

Ep is decreasing.
(3) Write f31(r) = Ep − r′ pKp and f32(r) = rpKp. Then f31(0) = 0 = f32(0) and

f ′
31(r)
f ′
32(r)

= (p− 1)r′ pKp

(p− 1)r′ pKp + Ep
= 1

1 + Ep/((p− 1)r′ pKp)

which is decreasing by (2). Hence (3) follows from Lemma 3.1.
(4) This follows from (3), since f4(r) = 1 − f3(r).
(5) This follows from (1), since f5(r) = 1 − f1(r)/Ep.
(6) By differentiation, we have that

f ′
6(r) = cr′ c−1

(
−
( r

r′

)p−1
)
Kp + r′ c

Ep − r′ pKp

rr′ p

= r′ c−p

r
(Ep − r′ pKp − crpKp)

= r′ c−prp−1Kp

(
Ep − r′ pKp

rpKp
− c

)

which is nonpositive if and only if

c ≥ sup
r

Ep − r′ pKp

rpKp
= (p− 1)/p,

by (3). Therefore, f6 is decreasing from (0, 1) if and only if c ≥ (p − 1)/p.
(7) We have that

f ′
7(r) = cr′ c−1

(
−
( r

r′

)p−1
)
Ep − r′ c

Kp − Ep
r

= r′ c−prp−1Ep
(
−r′ p(Kp − Ep)

rpEp
− c

)
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which is nonnegative if and only if

c ≤ − sup
r

r′ p(Kp − Ep)
rpEp

= −1
p
,

by part (5). Therefore, f7 is increasing from (0, 1) if and only if c ≤ −1/p.
(8) Write f81(r) = (Kp − Ep) − (Ep − r′ pKp) and f82(r) = rp. Then f81(0) = 0 = f82(0) and

f ′
81(r)
f ′
82(r)

= Ep − r′ pKp

pr′ p
+ 2 − p

p
Kp,

which is increasing since 1 < p ≤ 2. Hence the monotonicity of f8 follows from Lemma 3.1. �
3.5. Lemma. Let p ∈ (1, ∞). Then the function

(1) f1(r) = rKp/arthpr is decreasing from (0, 1) onto (1, πp/2). In particular, for r ∈ (0, 1) and p ∈ (1, ∞),

arthpr

r
≤ Kp ≤ πp

2
arthpr

r
.

(2) f2(r) = rpKp/ log(1/r′) is decreasing from (0, 1) onto (1, pπp/2). In particular, for r ∈ (0, 1) and 
p ∈ (1, ∞),

1
p

log(1/(1 − rp))
rp

≤ Kp ≤ πp

2
log(1/(1 − rp))

rp
.

Proof. (1) Write f1(r) = f11(r)/f12(r), where f11(r) = rKp and f12(r) = arthpr. Then f11(0) = 0 = f12(0)
and

f ′
11(r)
f ′
12(r)

= Kp + r(Ep − r′ pKp)/(rr′ p)
1/(r′ p) = Ep

which is strictly decreasing on (0, 1). Hence the monotonicity of f1 follows from Lemma 3.1. The limiting 
values follow from l’Hôpital rule.

(2) Write f2(r) = f21(r)/f22(r), where f21(r) = rpKp and f22(r) = log(1/r′). Then f21(0) = 0 = f22(0)
and

f ′
21(r)
f ′
22(r)

= Ep + (p− 1)r′ pKp,

which is strictly decreasing on (0, 1). Hence the monotonicity of f2 follows from Lemma 3.1. The limiting 
values follow from l’Hôpital rule. �
3.6. Theorem. Let p ∈ (1, 2]. Then

(1) the function f1(x) = Kp(1/chx) is strictly decreasing and convex on (0, ∞). In particular, for s, t ∈
(0, 1),

2Kp

(√
2st

1 + st +
√

(1 − s2)(1 − t2)

)
≤ Kp(s) + Kp(t), (3.7)

with equality if and only if s = t.
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(2) the function f2(x) = Kp(thx) is strictly increasing and convex on (0, ∞). In particular, for s, t ∈ (0, 1),

2Kp

(
s(1 +

√
1 − t2) + t(1 +

√
1 − s2)

st + (1 +
√

1 − s2)(1 +
√

1 − t2)

)
≤ Kp(s) + Kp(t), (3.8)

with equality if and only if s = t.

Proof. 1. Let r = 1/ cosh x. Then dr/dx = −r(1 − r2)1/2 and

f ′
1(x) = −(Ep(r) − r′ pKp(r))

(1 − r2)1/2

1 − rp
,

which is negative and strictly decreasing in r, hence increasing in x for any 1 < p ≤ 2. Therefore, f1 is 
strictly decreasing and convex on (0, ∞). In particular, we have f1((x + y)/2) ≤ (f1(x) + f1(y))/2, with 
equality if and only if x = y. Set s = 1/chx and t = 1/chy. Now

ch
(
x + y

2

)
=

√
1 + st +

√
(1 − s2)(1 − t2)
2st .

Hence

f1

(
x + y

2

)
≤ f1(x) + f1(y)

2

gives

2Kp

(√
2st

1 + st +
√

(1 − s2)(1 − t2)

)
≤ Kp(s) + Kp(t)

with equality if and only if s = t.
2. Let s = thx and t = thy. Then

f ′
2(x) = Ep(s) − s′ pKp(s)

s

1 − s2

1 − sp
,

which is positive and strictly increasing in s, hence increasing in x. Therefore, f2 is strictly increasing and 
convex on (0, ∞). In particular, we have f((x + y)/2) ≤ (f(x) + f(y))/2, with equality if and only if x = y. 
Now

th
(
x + y

2

)
= s(1 +

√
1 − t2) + t(1 +

√
1 − s2)

st + (1 +
√

1 − s2)(1 +
√

1 − t2)
.

Hence

f

(
x + y

2

)
≤ f(x) + f(y)

2

gives

2Kp

(
s(1 +

√
1 − t2) + t(1 +

√
1 − s2)

st + (1 +
√

1 − s2)(1 +
√

1 − t2)

)
≤ Kp(s) + Kp(t),

with equality if and only if s = t. �
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3.9. Theorem. For each p ∈ (1, ∞) and r ∈ (0, 1), the function f(α) = Kp(rα)/α is strictly decreasing and 
strictly log-convex on (0, ∞).

Proof. Let t = rα. By logarithmic differentiation, we obtain

d

dα
log f1(α) =

(
Ep(t)

t′ pKp(t)
− 1 + 1

log(1/t)

)
log r,

which is negative and strictly decreasing in t and hence strictly increasing in α by Lemma 3.4(2). Therefore 
we get the monotonicity and log-convexity of f . �
3.10. Corollary. Let p > 1. For all s, t ∈ (0, 1),

Kp(
√
st)

log(1/
√
st)

≤
√

Kp(s)Kp(t)
log(1/s) log(1/t)

with equality if and only if s = t.

Proof. Let r ∈ (0, 1). It follows from Theorem 3.9 that the function α 	→ Kp(rα)/α is strictly log-convex. 
Hence the log-convexity implies that

Kp

(
r(α+β)/2)

(α + β)/2 ≤

√
Kp(rα)Kp(rβ)

αβ
(3.11)

with the equality if and only if α = β. Set s = rα and t = rβ . Then

r(α+β)/2 =
√
st,

(α + β)/2 = log(1/
√
st)/ log(1/r),

and
√

αβ =
√

log(1/s) log(1/t)/ log(1/r).

Then from (3.11) we conclude that

Kp(
√
st)

log(1/
√
st)

≤
√

Kp(s)Kp(t)
log(1/s) log(1/t)

with equality if and only if s = t. �
3.12. Lemma. Let p > 1. For 0 < r < 1,

dmp(r)
d r

= πp − 4Kp(r)Ep′(r) − 2(p− 2)rpKp(r)Kp
′(r)

πpr
(3.13)

= −1
r
− 4Kp

′(r)(Kp(r) − Ep(r)) + 2(p− 2)rpKp(r)Kp
′(r)

πpr
. (3.14)

dμp(r)
d r

= −
π2
p

4rr′ pKp(r)2
. (3.15)
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Proof. The formulas for the derivatives of mp and μp follow easily from (2.1) and Legendre relation. �
3.16. Theorem. Let p > 1. Then the function

(1) f1(r) = mp(r) + log r is decreasing and concave from (0, 1) onto (0, R(1/p)/p).
(2) f2(r) = mp(r)/ log(1/r) is strictly increasing from (0, 1) onto (1, ∞).
(3) f3(r) = μp(r) + log r is decreasing from (0, 1) onto (0, R(1/p)/p).
(4) f4(r) = μp(r)/ log(1/r) is strictly increasing from (0, 1) onto (1, ∞).

Proof. (1) For p ≥ 2, by the formula (3.14) we have

f ′
1(r) = −4Kp

′(Kp − Ep) + 2(p− 2)rpKpKp
′

πpr
(3.17)

= −
(

4rp−1Kp
′

πp

Kp − Ep
rp

+ 2(p− 2)
πp

rp−1Kp
′Kp

)
(3.18)

which is negative and decreasing.
For 1 < p < 2, we have

f ′
1(r) = −

(
2
πp

2Kp
′(Kp − Ep)

r
− 2

πp

rpKp
′Kp

r
+ 2(p− 1)

πp
rp−1Kp

′Kp

)
(3.19)

= −
(

2
πp

rp−1Kp
′ ((Kp − Ep) − (Ep − r′ pKp))

rp
+ 2(p− 1)

πp
rp−1Kp

′Kp

)
(3.20)

which is negative and decreasing.
Hence, for 1 < p, the function f1 is decreasing and concave on (0, 1). The limiting values are from 

Lemma 3.3 and Lemma 3.4(6).
(2) Write f21(r) = mp(r) and f22(r) = log(1/r). Then f21(1) = 0 and f22(1) = 0. By differentiation,

f ′
21(r)
f ′
22(r)

= 1 + 4rpKp
′

πp

Kp − Ep
rp

+ 2(p− 2)
πp

rpKp
′Kp (3.21)

= 1 + 2
πp

rpKp
′
(

(Kp − Ep) − (Ep − r′ pKp)
rp

+ (p− 1)Kp

)
(3.22)

which is strictly increasing by Lemma 3.4(6) and (8). Hence, the function f2 is strictly increasing by 
Lemma 3.1. �
3.23. Theorem. Let p > 1. Then the function

(1) f1(r) = μp(1 − e−x) is decreasing and convex from (0, ∞) onto (0, ∞). In particular, for a, b ∈ (0, 1)

μp(1 −
√

(1 − a)(1 − b)) ≤ μp(a) + μp(b)
2

with equality if and only if a = b.
(2) f2(r) = μp(e−x) is strictly increasing and concave from (0, ∞) onto (0, ∞). In particular, for a, b ∈ (0, 1)

μp(a) + μp(b)
2 ≤ μp(

√
ab),

with equality if and only if a = b.
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(3) f3(r) = thμp(e−x) is strictly increasing and concave on (0, ∞). In particular, for a, b ∈ (0, 1)

thμp

(√
ab
)
≥ thμp(a) + thμp(b)

2

with equality if and only if a = b.

Proof. (1) With r = 1 − e−x, we have

f ′
1(x) = −

π2
p

4rKp
2

1 − r

r′ p
,

which is negative and strictly increasing in r, hence in x, so f1 is strictly decreasing and convex in x. Hence

f1

(
x + y

2

)
≤ f1(x) + f1(y)

2

for all x, y ∈ (0, ∞), with equality if and only if x = y. Setting 1 − e−x = a, 1 − e−y = b, we get

μp(1 −
√

(1 − a)(1 − b)) ≤ μp(a) + μp(b)
2 .

(2) With r = e−x, we get

f ′
2(x) =

π2
p

4r′ pKp(r)2
,

which is positive and strictly increasing in r by Lemma 3.4(6), hence strictly decreasing in x, so f2 is strictly 
increasing and concave in x. Hence

f2

(
x + y

2

)
≥ f2(x) + f2(y)

2

for all x, y ∈ (0, ∞), with equality if and only if x = y. Setting e−x = a, e−y = b, we get

μp(
√
ab) ≥ μp(a) + μp(b)

2 .

(3) With r = e−x, we have

f ′
3(x) =

π2
p

4r′ pKp(r)2ch2μp(r)
,

which is strictly increasing in r, hence decreasing in x, so f3 is concave. Consequently,

thμp

(
e−(x+y)/2

)
>

thμp(e−x) + thμp(e−x)
2

for all distinct x and y. Now set e−x = a and e−y = a, and the desired inequality follows. �
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