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CHAOTIC SEMIGROUPS FROM SECOND ORDER PARTIAL DIFFERENTIAL

EQUATIONS

J. ALBERTO CONEJERO, CARLOS LIZAMA, AND MARINA MURILLO-ARCILA

Abstract. We give general conditions on given parameters to ensure Devaney and distributional chaos for

the solution C0-semigroup corresponding to a class of second-order partial differential equations. We also
provide a critical parameter that led us to distinguish between stability and chaos for these semigroups. In
the case of chaos, we prove that the C0-semigroup admits a strongly mixing measure with full support. We

also give concrete examples of partial differential equations, such as the telegraph equation, whose solutions
satisfy these properties.

1. Introduction

The phenomenon of chaos is usually identified with nonlinear phenomena, but chaos also appears in linear
dynamical systems provided that the underlying space is infinite-dimensional. The theory of chaos in finite-
dimensional dynamical systems has been well-developed and includes both discrete maps and systems of
ordinary differential equations. This theory has led to important applications in physics, chemistry, biology,
and engineering. However, for a long period of time, there was no theory of chaos for partial differential
equations (PDE’s). In terms of applications, most of the important natural phenomena are described by
PDE’s: nonlinear wave equations, Maxwell equations, Navier-Stokes equations, and so on. These equations
model a wide variety of phenomena in cell proliferation, electrostatics, electrodynamics, elasticity, fluid flow,
heat conduction, sound propagation, or traffic modelling.

The study of C0-semigroups has been widely identified with partial of parabolic and hyperbolic type
differential equations. It is now well known that the solutions of these equations can be represented in
terms of C0-semigroups [27]. They permit the solution to the corresponding abstract Cauchy problem to
be described in a broader setting, for instance, including non-differentiable integrable functions as initial
conditions.

In this paper, we provide a new insight into the chaotic behavior of any C0-semigroup that is solution
of a certain class of second order partial differential equations, considering both Devaney and distributional
chaos. The study will be carried out on Herzog type spaces [32]. Herzog’s result was later improved in [24].

These spaces consist of analytic functions regulated by a parameter, or a tuner, that allows their growth
at infinity to be controlled. They were initially introduced in order to study the universality of the solution
operators of the heat equation. In [16], Chan & Shapiro studied the dynamics of the translation operator on
spaces of analytic functions of slow growth and characterized when the derivative operator was bounded on
these spaces. Then, since the derivative operator is the infinitesimal generator of the translation semigroup,
we can conclude that the translation semigroup is uniformly continuous and all its operators can be obtained
via the exponential formula. See for instance [27, Th. 3.7]. Interesting constructions and counterexamples
have been given in the framework of certain subspaces of analytic functions, see for instance [10, 40, 14].
Godefroy & Shapiro also considered Hardy and Bergman spaces for studying the dynamics of shift operators,
see [28].
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Our results show an interesting duality between chaos and stability, which is distinguished by means of a
critical parameter depending on the given equation. We obtain sharp conditions involving the coefficients of
the equation and the tuner. This is a remarkable phenomenon that appears to be linked to the dependence
of the tuning parameter of the underlying Herzog space. A similar analysis of the existence of chaos versus
stability can also be found in [6, 15].

We point out that our results refer to the dynamics on the whole space. Special cases in which the chaotic
behaviour is analyzed in certain subspaces can be found in [5], where the notion of subchaos is described.
See also [6, 9] for the study of the stability on a dense subspace of the phase space.

In the last section, we analyze the linear telegraph equation on an infinite transmission lossless line. This
equation is obtained from a system of two coupled differential equations that represent the voltage and
current on an electrical transmission line with distance and time. These equations can be simplified into
a single second order differential equation, either for the voltage or the current. This model shows that
electromagnetic waves can travel with a speed close to the speed of light, although electrons travel with a
drift velocity of only a few centimeters per second, which makes a wave propagation phenomenon of the
electric field appear.

This permits performing an analysis of the linear dynamics, using a similar approach to [22] for the
solution of the wave equation, see also [20, 21]. Though the chaos for the solutions of this equation has
not been obtained, some results on the dynamics of the solutions have already been obtained. Bereanu [11]
has studied the existence, non existence and multiplicity of the periodic solutions of the nonlinear telegraph
equation with bounded non linearities and in [34] the authors introduced a maximum principle for the
bounded and periodic solutions of this equation. Abdusalam has given asymptotic techniques in order to
find traveling waves solution in [1]. Finite difference schemes have been widely used for solving this equation,
see for example [18].

2. Preliminaries

Let X be a separable infinite-dimensional Banach space. We recall that {Tt}t≥0, with Tt : X → X
a continuous and linear map on X for each t ≥ 0, is a C0-semigroup if T0 = I, Tt+s = Tt ◦ Ts, and
lims→t Tsx = Ttx for all x ∈ X and t ≥ 0, which is the convergence of the operatos of the semigroup to the
identity when t tends to 0 with respect to the strong operator topology. If the limit holds uniformly over
bounded subsets of X we say that the C0-semigroup is uniformly continuous.

Let us consider the following abstract Cauchy problem on X:

(1)

{
ut(t, x) = Au(t, x),

u(0, x) = ϕ(x) with ϕ(x) ∈ X.

The solution to (1) can be represented by a C0-semigroup {Tt}t≥0 on X whose infinitesimal generator
is A. Provided A ∈ L(X) is a generator, then the operators in the C0-semigroup can be represented as
Tt = etA =

∑∞
k=0(tA)

n/n! for all t ≥ 0, see for instance [27, Chapter I, Proposition 3.5].
A C0-semigroup {Tt}t≥0 on X is said to be hypercyclic if there exists x ∈ X such that the set {Ttx : t ≥ 0}

is dense in X. An element x ∈ X is called a periodic point for the semigroup {Tt}t≥0 if there exists some
t > 0 such that Ttx = x. {Tt}t≥0 is transitive if for any pair U, V of nonempty open sets of X, there exists
some t0 ≥ 0 such that Tt0(U) ∩ V �= ∅, and it is topologically mixing if Tt(U) ∩ V �= ∅ for all t ≥ t0. A
C0-semigroup {Tt}t≥0 is called Devaney chaotic if it is hypercyclic and the set of periodic points is dense in
X. We point out that these two requirements also yield the sensitive dependence on the initial conditions,
as seen by Banks et al for the discrete case [7, 31], and [4] for the case of C0-semigroups.

It is well-known that, topologically mixing property for C0-semigroups is strictly stronger than hyper-
cyclicity, see for instance [12]. Further information on the dynamics of C0-semigroups can be found in [31,
Chapter 7].

Another variation of the definition of chaos is the notion of distributional chaos introduced by Schweizer
& Smı́tal [39], see also [33, 37] for its presentation in the infinite-dimensional linear setting. A C0-semigroup
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{Tt}t≥0 on X is said to be distributionally chaotic if there exists an uncountable subset S ⊂ X and δ > 0 such

that, for each pair of distinct points x, y ∈ S and for every ε > 0, we have Dens({s ≥ 0; ||Tsx−Tsy|| > δ}) = 1
and Dens({s ≥ 0; ||Tsx − Tsy|| < ε}) = 1, where Dens stands for the upper density of a set of real positive
numbers, that is, given M ⊂ R+,

Dens(M) := lim sup
N→∞

λ(M
⋂
[0, N ])

N
,

where λ is the Lebesgue measure on R+. The set S is called the scrambled set and the C0-semigroup is said
to be densely distributionally chaotic if S is dense on X.

Remark 2.1. Upper denstiy can be easily illustrated with the next two examples: For 0 < ε < 1 and k ∈ N,
the upper density of the set ∪∞

n=1[kn, kn + ε] is ε/k; however, the upper density of the set ∪∞
n=1[n

2, n2 + ε]
is 0.

Given a pair of elements in the scrambled set S, the notion of distributional chaos indicates that we can
find intervals, as long as we want, such that the upper density of times in which the orbits of both elements
are close enough is positive, and long intervals such that the set of times in which both orbits differ by at
least a certain positive amount, and also have positive upper density.

Now, we present a criterion that ensures Devaney chaos for C0-semigroups, that is a variation of the
Desch-Schappacher-Webb (DSW) criterion [25], see [31, Th. 7.30].

Theorem 2.2. Let X be a complex separable Banach space, and {Tt}t≥0 a C0-semigroup on X with infini-
tesimal generator (A,D(A)). Assume that there exists an open connected subset U and a weakly holomorphic
function f : U → X, such that

(i) U ∩ iR �= ∅,
(ii) f(λ) ∈ ker(λI −A) for every λ ∈ U ,
(iii) for any x∗ ∈ X∗, if 〈f(λ), x∗〉 = 0 for all λ ∈ U , then x∗ = 0.

Then the semigroup {Tt}t≥0 is Devaney chaotic and topologically mixing.

Finally, we recall the definition of the space of analytic functions of Herzog type [32]. Given ρ > 0, let:

(2) Xρ =

{
f : R → C; f(x) =

∞∑
n=0

anρ
n

n!
xn, (an)n≥0 ∈ c0(N0)

}

endowed with the norm ||f || = supn≥0 |an|. This space is isometrically isomorphic to c0(N0) := {an : N0 →
C : limn→∞ |an| = 0}. To finish this section, we recall that a function f : U → X, defined on an open subset
U ⊂ C is weakly holomorphic if for all x∗ ∈ X∗, x∗ ◦ f is holomorphic.

3. Chaotic behavior for a class of partial differential equations

In this section, we will study the chaotic behavior of second-order partial differential equations with
respect to the time and space such as the following:

(3)
∂2u

∂t2
(t, x) + γ

∂u

∂t
(t, s) + θu(t, x) = α

∂2u

∂x2
(t, x), t ≥ 0, x ∈ R,

where γ, θ and α ∈ R. This equation can be reduced to a first order system on the phase space that is the
product of a certain space of Herzog type with itself. Setting u1 = u and u2 = ∂u

∂t we have

(4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂t

(
u1

u2

)
=

(
0 I

α ∂2

∂x2 − θI −γI

)(
u1

u2

)
;

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R.
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Since the second order differential operator ∂2

∂x2 turns out to be a bounded operator on Xρ, then the
operator-valued matrix

(5) A :=

(
0 I

α ∂2

∂x2 − θI −γI

)
,

defines a bounded operator on X := Xρ ⊕ Xρ for every ρ > 0 and, consequently, we have that (etA)t≥0 is
the uniformly continuous semigroup associated with the Cauchy problem (4). The following theorem is one
of the main results of the present study.

Theorem 3.1. Let γ, θ, α be real positive numbers. Suppose that

(6) γ2 = 4θ.

Then A generates a uniformly continuous semigroup which is Devaney and distributionally chaotic, topolog-
ically mixing and admits a strongly mixing measure with full support on Xρ ×Xρ, for each ρ > γ

2
√
α
.

Proof. Our purpose is to apply Theorem 2.2. Since ρ > γ
2
√
α
there exists ε > 0 such that ε < 2ρ

√
α− γ. We

define

(7) U := {z ∈ C : |z + γ

2
| < γ

2
+

ε

2
}.

Note that U ∩ iR �= ∅ because ε > 0. It satisfies condition (i) in Theorem 2.2. For each λ ∈ C we define

Rλ := λ2+γλ+θ
α = 1

α (λ+ γ
2 )

2, where the last identity follows from (6).
We now solve Afz0,z1(λ) = λfz0,z1(λ). We then obtain weakly analytic functions fz0,z1(λ) on the set U

given by

(8) fz0,z1(λ) =

(
ϕλ

λϕλ

)
,

where ϕλ(x) := cosh
(

1√
α
(λ+ γ

2 )x
)
z0 + sinh

(
1√
α
(λ+ γ

2 )x
)
z1, z0, z1 ∈ C. It is easy to see that

(9) αϕ
′′
λ(x) = (λ2 + γλ+ θ)ϕλ(x), for every x ∈ R.

We will show that fz0,z1(λ) ∈ Xρ ×Xρ for all λ ∈ U.
Indeed, first note that we can rewrite

(10) ϕλ(x) =

∞∑
n=0

an(λ)
(ρx)n

n!
, x ∈ R,

where an(λ) =
1

αn/2

(λ+γ/2)n

ρn z0, n = 0, 2, 4, . . . and an(λ) =
1

αn/2

(λ+γ/2)n

ρn z1, n = 1, 3, 5, . . . See for instance

[19, 21]. Therefore, by definition, it is enough to prove that
∣∣∣ 1
ρ
√
α
(λ+ γ

2 )
∣∣∣ < 1. Indeed, by the choice of

ε > 0, we have for all λ ∈ U that

(11)

∣∣∣∣ 1

ρ
√
α
(λ+

γ

2
)

∣∣∣∣ < γ + ε

2ρ
√
α

< 1,

which proves the claim and gives condition (ii) in Theorem 2.2.
It only remains to show, that for any x∗ ∈ X∗

ρ ⊕ X∗
ρ , the functions λ → 〈fz0,z1(λ), x∗〉, z0, z1 ∈ C, are

holomorphic on U , and if they all vanish on U , then x∗ = 0. Since Xρ is isometrically isomorphic to c0, in
what follows, we identify the dual space X∗

ρ with �1.

Let x∗ ∈ X∗
ρ ⊕X∗

ρ . It can be represented in a canonical way by (x∗
1, x

∗
2) = ((x∗

1,n)n≥0, (x
∗
2,n)n≥0) ∈ �1⊕ �1.

Then, we have

(12) 0 = 〈fz0,z1(λ), x∗〉 = 〈ϕλ, x
∗
1〉+ 〈λϕλ, x

∗
2〉,
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for all λ ∈ U, z0, z1 ∈ C. This last equation can be reformulated in the following way:

(13) 0 =

∞∑
n=0

an(λ)x
∗
1,n + λ

∞∑
n=0

an(λ)x
∗
2,n.

Let λ0 := −γ
2 . It is clear that λ0 ∈ U and evaluating (13) in λ0 we get :

z0x
∗
1,0 + λ0z0x

∗
2,0 = 0,(14)

for all z0 ∈ C. Now, differentiating (13) with respect to λ we obtain:

z0

∞∑
n=2,4,...

n(λ+ γ/2)n−1

αn/2ρn
x∗
1,n + z1

∞∑
n=1,3,...

n(λ+ γ/2)n−1

αn/2ρn
x∗
1,n+

+ z0

∞∑
n=0,2,4,...

(λ+ γ/2)n

αn/2ρn
x∗
2,n + z1

∞∑
n=1,3,...

(λ+ γ/2)n

αn/2ρn
x∗
2,n

+ λ

(
z0

∞∑
n=2,4,...

n(λ+ γ/2)n−1

αn/2ρn
x∗
2,n + z1

∞∑
n=1,3,...

n(λ+ γ/2)n−1

αn/2ρn
x∗
2,n

)
= 0

(15)

Evaluating (15) in λ = λ0 we obtain:

z1√
αρ

x∗
1,1 + z0x

∗
2,0 +

λ0√
αρ

z1x
∗
2,1 = 0,(16)

for all z0, z1 ∈ C. Therefore, solving (14) and (16),we have x∗
1,0 = 0, x∗

2,0 = 0 and

(17)
z1√
αρ

x∗
1,1 +

λ0√
αρ

z1x
∗
2,1 = 0.

Now, we divide (13) by (λ+ γ
2 ) and we differentiate with respect to λ obtaining:

z0

∞∑
n=2,4,...

(n− 1)(λ+ γ/2)n−2

αn/2ρn
x∗
1,n + z1

∞∑
n=3,5,...

(n− 1)(λ+ γ/2)n−2

αn/2ρn
x∗
1,n+

+ z0

∞∑
n=2,4,...

(λ+ γ/2)n−1

αn/2ρn
x∗
2,n + z1

∞∑
n=1,3,...

(λ+ γ/2)n−1

αn/2ρn
x∗
2,n

+ λ

(
z0

∞∑
n=2,4,...

(n− 1)(λ+ γ/2)n−2

αn/2ρn
x∗
2,n + z1

∞∑
n=3,5,...

(n− 1)(λ+ γ/2)n−2

αn/2ρn
x∗
2,n

)
= 0.

(18)

Evaluating (18) in λ0, we get:

z0
αρ2

x∗
1,2 +

1√
αρ

z1x
∗
2,1 +

λ0z0
αρ2

x∗
2,2 = 0,(19)

for all z0 ∈ C. Therefore, solving (19) and (17), we obtain x∗
1,1 = 0 and x∗

2,1 = 0. Proceeding inductively we
will get that x∗

i,n = 0 for i = 1, 2 and n ∈ N. We finally have x∗ = 0 and we conclude the result by applying
Theorem 2.2. Finally, it is well known that distributional chaos holds whenever the DSW criterion can be
applied [8, 13]. Moreover, when DSW holds, the C0-semigroup admits a strongly mixing measure with full
support on Xρ ×Xρ, [35]. �

Roughly speaking, the existence of distributional chaos means that we can pick two initial vectors from
an uncountable set such that there will be intervals of arbitrary time length in which the trajectories of the
solutions are very similar and intervals have arbitrary time length in which there exists at least some positive
difference between them. The mixing properties indicate that given any pair of open sets U and V on the
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space X, where we take the initial conditions, there will exist an instant of time t0 such that for every time
t1 ≥ t0 we can find the orbit of an elements that at t = 0 lies in U and later, at time t1, visits V .

Remark 3.2. One can also consider the equation (3) including a source term g(t, x)

(20)
∂2u

∂t2
(t, x) + γ

∂u

∂t
(t, s) + θu(t, x) = α

∂2u

∂x2
(t, x) + g(t, x), t ≥ 0, x ∈ R.

Then the abstract Cauchy problem can be reformulated as follows in the same way as in [23]

(21)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂t

(
u1

u2

)
=

(
0 I

α ∂2

∂x2 − θI −γI

)(
u1

u2

)
+

(
0

g(t, x)

)
;

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R.

Taking the operator A as in (5), the solution family of operators to this abstract Cauchy problem is given
by

(22) u(t, x) = etAΦ(x) +

∫ t

0

e(t−s)AΨ(s, x)ds, for every x ∈ R, t ≥ 0.

where we have used the following notation

(23) u(t, x) =

(
u1(t, x)
u2(t, x)

)
, Φ(x) =

(
ϕ1(x)
ϕ2(x)

)
, Ψ(t, x) =

(
0

g(t, x)

)
.

Given U defined as in (7), for any arbitrary value λ ∈ U with �(λ) < 0 we also obtain the topologically
mixing property for the solution family (22), which is not a semigroup, where

(24) Ψ(t, x) =

(
ϕλ(x)
λϕλ(x)

)
,

by following exactly the technique shown in Theorem 2.2 and Remarks 1,2, and 3 in [23].

Recall that a uniformly continuous semigroup is said to be stable, if limt→∞ ‖eAt‖ = 0. For more
information related to stability of C0-semigroups, we refer to [27, Chapter V] and [26]. We can prove the
following result.

Theorem 3.3. Let θ ∈ R, γ > 0, α > 0. Suppose that

(25) γ2 − 4θ < 0.

Then A generates a uniformly continuous and stable semigroup on Xρ ×Xρ for each ρ < γ
2
√
α
.

Proof. It remains to prove stability. Since A is bounded, it is enough to show that the spectrum of A is
contained in the negative real axis. Then the result is a consequence of the spectral mapping theorem [27,
Chapter I, Lemma 3.13]. Indeed, we shall consider the eigenvalue problem for A

(26) Af = λf, λ ∈ C, for every f ∈ Xρ ×Xρ.

As in the proof of the above theorem, this leads to the equation

(27) ϕ′′(x) = Rλϕ(x) for every x ∈ R, ϕ ∈ Xρ,

where Rλ := λ2+γλ+θ
α . Since ϕ ∈ Xρ, we have ϕ(x) =

∞∑
n=0

anρ
n

n!
xn, where an → 0. From (27) we obtain

that the sequence (an)n satisfies ρ2an+2 = Rλan, n ∈ N0. Therefore the sequence (an)n must be defined as
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powers of
Rλ

ρ2
. This, together with the condition an → 0, implies that we have |Rλ| < ρ2. Hence

(28)
∣∣∣λ+

γ

2
− ic

∣∣∣ ∣∣∣λ+
γ

2
+ ic

∣∣∣ = ∣∣λ2 + γλ+ θ
∣∣ < αρ2,

where c :=
√
θ − γ2

4 . Let λ = a+ ib, a, b ∈ R. Then the above inequality gives

(29)

((
a+

γ

2

)2

+ (c− b)2
)((

a+
γ

2

)2

+ (c+ b)2
)

< α2ρ4.

In particular, it implies |a + γ
2 | <

√
αρ < γ

2 and therefore �(λ) < 0, which proves that claim and the
theorem. �

Remark 3.4. Comparing Theorems 3.1 and 3.3 we observe that concerning Herzog’s spaces, a critical point
is ρ = γ

2
√
α
from where stability and chaos are divided. Observe that for γ = 0 there is no possibility to have

stability according to Theorem 3.3. It is interesting to note that γ = 0 indicates that the damping effect in
the equation (3) disappears, which is consistent with the stabilization of the solution on time. Therefore, in
this sense, both theorems are dual and the conditions are sharp.

4. Application to the telegraph equation

The telegraph equation models a piece of telegraph wire as an electrical circuit which consists of a resistor
of resistance R and a coil of inductance L. The function u(x, t) represents the voltage at position x and
time t. We also suppose that current can escape from the wire to the ground, either through a resistor of
conductance G or through a capacitor of capacitance C. This equation is given by

(30)
∂2u

∂t2
− c2

∂2u

∂x2
+ (a+ b)

∂u

∂t
+ abu = 0,

where a = G
C , b = R

L , and c2 = 1
LC . We identify the parameters in (3) as α = c2, γ = (a+ b), and θ = ab.

The usual frame in which the telegraph equation is applied is the design of circuits on wires of finite length.
The abstract model of an infinite transmission line corresponds to the situation in which the energy supplied
at the source is transmitted without dissipation along the line, and no reflections are considered. This
situation is equivalent to the finite case in which the impedance at one extreme is equal to the characteristic
impedance (ratio of voltage and current) at the other extreme (source), see for instance [38, 42]. This is
known as a matched line [2]. Lossless lines are transmission lines with no resistance and no dielectric loss.
Maxwell equations for an infinite lossless transmission line can be transformed into telegraph equations [36].
The connection of the telegraph equation with the wave equation was observed by Griego and Hersh [30]
in the Banach setting, see also [29]. The asymptotic analysis of the solutions of the telegraph equation on
L2(R) was considered in [3].

By Theorem 3.1, if a = b we have that the associated uniformly continuous semigroup of (30) is Devaney
and distributionally chaotic, and topologically mixing on Xρ ⊕Xρ for all ρ > a

c . In particular, if a = 0 then
the wave equation

(31)
∂2u

∂t2
= c2

∂2u

∂x2
,

is always chaotic on Xρ
∼= c0(N0) for all ρ > 0. We remark that the presence of chaos for the wave equation

has been previously observed in the literature by other authors. See [17, 41] and references therein.

Remark 4.1. As mentioned in [22, Sec. 3] it follows from the existence of chaos in the sense of Devaney
that for every ε > 0, �0 > 0 and ϕ1, ϕ2, ϕ3, ϕ4 real-valued continuous functions defined on the whole line,
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there exist a solution ū(t, x) of (30) and t0, t1 > 0 such that ū(t, x) = ū(t+ t0, x) for all t > 0, x ∈ R and

sup
x∈[−�0,�0]

|ū(0, x)− ϕ1(x)| < ε, sup
x∈[−�0,�0]

|ūt(0, x)− ϕ2(x)| < ε,

sup
x∈[−�0,�0]

|ū(t1, x)− ϕ3(x)| < ε, sup
x∈[−�0,�0]

|ūt(t1, x)− ϕ4(x)| < ε.

References

[1] H. A. Abdusalam. Asymptotic solution of wave front of the telegraph model of dispersive variability. Chaos Solitons
Fractals, 30(5):1190–1197, 2006.

[2] A. Bakshi. Transmission Lines And Waveguide. Technical Publications, 2008.
[3] J. Banasiak and A. Bobrowski. Interplay between degenerate convergence of semigroups and asymptotic analysis: a study

of a singularly perturbed abstract telegraph system. J. Evol. Equ., 9(2):293–314, 2009.
[4] J. Banasiak and M. Lachowicz. Chaotic linear dynamical systems with applications. In Semigroups of operators: theory

and applications (Rio de Janeiro, 2001), pages 32–44. Optimization Software, New York, 2002.
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