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Conditioning of copulas: Transformations, invariance and
measures of concordance

Sebastian Fuchs

Faculty of Economics and Management, Free University of Bozen–Bolzano,
Piazza Università, 39100 Bozen, Italy

Abstract

In the present paper we study the problem of how to transform a copula for an arbitrary distribution function
into a copula for its conditional distribution function where conditioning is meant with respect to a tail event
in which the observations lie below some threshold. To this end, we consider conditioning of copulas as a map
which transforms every copula into another one. Besides the general case, which refers to conditioning in all
coordinates, we also pay attention to the special case of univariate conditioning, which refers to conditioning
in a single coordinate. We investigate the behaviour of conditioning under composition and with respect to
certain transformations of copulas, and we show that invariance of a copula under conditioning is equivalent
to invariance of a copula under univariate conditioning in each coordinate. Finally, we apply conditioning of
copulas to Sklar’s Theorem and to measures of concordance.

Keywords : Copula, Conditioning, Invariance, Measures of concordance, Sklar’s Theorem, Transfor-
mations

1. Introduction

In the present paper we study the problem of how to transform a copula for an arbitrary distribution
function into a copula for its conditional distribution function where conditioning is meant with respect
to a tail event in which the observations lie below some threshold, and hence with respect to a Borel
set with positive measure. Besides the general case, which refers to conditioning in all coordinates, we
also pay attention to the special case of univariate conditioning, which refers to conditioning in a single
coordinate. In contrast to the literature, we do not assume that the coordinates of the distribution
function are continuous, such that the initial copula and the transformed copula may fail to be unique.

Conditioning (or truncation) of copulas (also called conditional copulas, threshold copulas or tail
dependence copulas) is a well–studied object. This is mainly due to its potential in describing and
studying conditional dependence between random variables under a tail event, but also due to various
applications in finance and reliability theory: This includes [5, 23, 24] for studying tail dependence,
[8] for modeling market contagion, [1, 3, 22, 25] for the construction of systemic risk measures like
conditional value at risk (CoVaR), [4, 7] for modeling credit derivatives and stock returns and [12, 30]
for modeling bivariate ageing. In this context, copulas which are invariant under conditioning are
of particular interest (see, e.g., [2, 4, 9, 10, 18, 29, 31]) since for such copulas the values of copula–
based measures of association (like measures of concordance) remain unchanged under conditioning.
For a comprehensive overview of univariate conditioning including theoretical results but also further
applications, we refer to [19].

Here we consider conditioning as a map which transforms every copula into another one, and we
investigate its behaviour under composition but also with respect to permutations and reflections.
In addition, we show that invariance of a copula under conditioning is equivalent to invariance of
a copula under univariate conditioning in each coordinate. In the bivariate case this result was
proved in [9] using the fact that the copulas which are invariant under conditioning belong to the
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closure of the Clayton family of copulas. Moreover, to solve our initial problem, given a copula for
a distribution function, we show how the introduced transformation can be used as a tool to obtain
copulas for all those conditional distribution functions that are conditioned with respect to the event
that observations lie below some threshold, but also for all those conditional distribution functions
where the conditioning event is somehow reflected. Finally, we present representations of the usual
multivariate generalizations of Kendall’s tau and Spearman’s rho for the transformed copula in terms
of the initial copula.

This paper is organized as follows: We first recapitulate essential definitions and results concerning
copulas and transformations of copulas (Section 2). In Section 3 we then introduce conditioning of
copulas as a transformation on copulas and apply it to Sklar’s Theorem (Section 4). We further inves-
tigate the behaviour of conditioning under composition (Section 5) and with respect to permutations
and reflections (Section 6), and we study invariance of copulas under conditioning (Section 7). Finally,
we apply conditioning to the usual multivariate generalizations of Kendall’s tau and Spearman’s rho
(Section 8).

2. Prerequisites

Let I := [0, 1] and let d ≥ 2 be an integer which will be kept fix throughout this paper. For K ⊆
{1, ..., d}, we first consider the map ηK : Id × Id → Id given coordinatewise by

(
ηK(u,v)

)
k

:=

{
uk k ∈ {1, ..., d}\K
vk k ∈ K

and we put ηk := η{k} for k ∈ {1, ..., d}. We denote by 0 the vector with entries 0 and by 1 the vector
with entries 1. A copula is a function C : Id → I satisfying the following conditions:
(i) The inequality ∑

L⊆{1,...,d}
(−1)d−|L| C(ηL(u,v)) ≥ 0

holds for all u,v ∈ Id such that u ≤ v.
(ii) The identity C(ηi(u,0)) = 0 holds for all u ∈ Id and all i ∈ {1, ..., d}.
(iii) The identity C(ηi(1,u)) = ui holds for all u ∈ Id and all i ∈ {1, ..., d}.
Note that this definition of a copula is in accordance with the literature; see, e.g., [11, 28]. The
collection C of all copulas is convex.
A map ϕ : C → C is said to be a transformation on C. Let Φ denote the collection of all transformations
on C and define the composition ◦ : Φ×Φ → Φ by letting (ϕ1◦ϕ2)(C) := ϕ1(ϕ2(C)). The composition
is associative and the transformation ι ∈ Φ given by ι(C) := C satisfies ι◦ϕ = ϕ = ϕ◦ι and is therefore
called identity on C. Thus, (Φ, ◦) is a semigroup with neutral element ι. For the successive composition
of n ∈ N0 transformations ϕm ∈ Φ, m ∈ {1, ..., n}, we write

n

©
m=1

ϕm :=

{
ι n = 0
ϕn ◦©n−1

m=1 ϕm otherwise

and, for N = {1, ..., n} and a set of pairwise commuting ϕm ∈ Φ, m ∈ N , we put ©m∈N ϕm :=
©n

m=1 ϕm.
We now introduce two elementary transformations: For i, j, k ∈ {1, ..., d} with i 	= j, we define the
maps πi,j , νk : C → C by letting

(πi,j(C))(u) := C(η{i,j}(u, uj ei + ui ej))
(νk(C))(u) := C(ηk(u,1))− C(ηk(u,1− u))

where ei denotes the i–th unit vector. πi,j is called a transposition, and νk is called a partial reflec-
tion. Both, πi,j and νk, are involutions. There exists a smallest subgroup (Γ, ◦) of Φ containing all
transpositions and all partial reflections. This group Γ is non–commutative and is a representation of
the hyperoctahedral group with d! 2d elements.
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A transformation is called a permutation if it can be expressed as a finite composition of transpositions,
and it is called a reflection if it can be expressed as a finite composition of partial reflections. We
denote by Γπ the set of all permutations and by Γν the set of all reflections. Then Γπ and Γν are
subgroups of Γ, and every transformation in Γ can be expressed as a composition of a permutation and
a reflection. Since Γν is commutative, for every reflection ν ∈ Γν , there exists a unique K ⊆ {1, ..., d}
such that

ν = νK := ©
k∈K

νk

Due to its particular interest we emphasize the total reflection τ := ν{1,...,d}. The total reflection is
an involution and transforms every copula into its survival copula. We refer to [13] for further details
on the group Γ.
The hyperoctahedral group also has a geometric representation; see [32, 33, 34]: Consider the collection
of all functions from Id into Id equipped with the composition 
 and the identity ι̃. Then there is a
smallest group (Γ̃, 
) containing the functions π̃i,j , ν̃k : Id → Id with i, j, k ∈ {1, ..., d} and i 	= j, given
by

π̃i,j(u) := η{i,j}(u, uj ei + ui ej)
ν̃k(u) := ηk(u,1− u)

Note that every γ̃ ∈ Γ̃ can be expressed as a finite composition of π̃i,j and ν̃k with i, j, k ∈ {1, ..., d}
and i 	= j. Since π̃i,j and ν̃k are continuous, every γ̃ ∈ Γ̃ is continuous as well.
The groups Γ and Γ̃ are related to each other by an isomorphism T : (Γ, ◦) → (Γ̃, 
) satisfying
T (πi,j) = π̃i,j and T (νk) = ν̃k for all i, j, k ∈ {1, ..., d} with i 	= j. For a detailed discussion of the
groups (Γ, ◦) and (Γ̃, 
), see [13, 14].

3. Conditioning of copulas

In the present section we introduce conditioning of copulas as a transformation on copulas, and we
provide some representations of the transformed copula in terms of the initial copula.

First, for a ∈ (0,1], we introduce the set Ca :=
{
C ∈ C ∣∣C(a) > 0

}
. The following examples show

that there exist copulas which are contained in Ca for every a ∈ (0,1], and that there exists some
a ∈ (0,1] such that Ca 	= C:

3.1 Examples.
(1) The product copula Π : Id → I given by Π(u) :=

∏d
i=1 ui satisfies Π ∈ Ca for every a ∈ (0,1].

(2) The Fréchet–Hoeffding upper bound M : Id → I given by M(u) := min{ui | i ∈ {1, ..., d}} satisfies
M ∈ Ca for every a ∈ (0,1].

(3) The reflected Fréchet–Hoeffding upper bound ν1(M) satisfies ν1(M) ∈ Ca if, and only if, a1 +
min{a2, ..., ad} > 1. Note that, for d = 2, ν1(M) coincides with the Fréchet–Hoeffding lower
bound W .

Moreover, for every a ∈ (0,1] and every π ∈ Γπ, C ∈ Ca if, and only if, π(C) ∈ C(T (π))(a).
The next result is evident:

3.2 Lemma.
(1) The inclusions Ca ⊆ Cb ⊆ C1 = C hold for all a,b ∈ (0,1] such that a ≤ b.
(2) The identity Cηk(1,a ek) = C holds for every k ∈ {1, ..., d} and every a ∈ (0, 1].

For a ∈ (0,1], C ∈ Ca and k ∈ {1, ..., d}, we define the map δk
a,C : [0, ak]→ I by letting

δk
a,C(sk) :=

C
(
ηk(a, skek)

)
C(a)

and hence the map δa,C : [0,a]→ Id by letting δa,C(s) :=
(
δ1a,C(s1), ..., δd

a,C(sd)
)′. Note that δk

a,C is a
normalized version of the univariate section from 0 to ak in the k–th coordinate of the copula C and
hence a continuous distribution function on [0, ak] satisfying δk

ηk(1,a),C(sk) = sk/ak. Also note that
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δ1,C(s) = s and δa,C(a) = 1. The maps (δk
a,C)←, (δk

a,C)→ : I → [0, ak] given by

(δk
a,C)←(uk) := inf{sk ∈ [0, ak] | δk

a,C(sk) = uk}
(δk

a,C)→(uk) := sup{sk ∈ [0, ak] | δk
a,C(sk) = uk}

are the lower respectively upper quantile functions of δk
a,C and we define the maps (δa,C)←, (δa,C)→ :

Id → [0,a] by letting

(δa,C)←(u) :=
(
(δ1a,C)←(u1), ..., (δd

a,C)←(ud)
)′

(δa,C)→(u) :=
(
(δ1a,C)→(u1), ..., (δd

a,C)→(ud)
)′

Then we have (δk
ηk(1,a),C)→(uk) = akuk as well as (δ1,C)→(u) = u and (δa,C)→(1) = a. In addition,

the identities χ[δa,C(s),1](u) = χ[0,(δa,C)→(u)](s) and

(δa,C ◦ (δa,C)←)(u) = u = (δa,C ◦ (δa,C)→)(u)

and the inequality
((δa,C)← ◦ δa,C)(s) ≤ s ≤ ((δa,C)→ ◦ δa,C)(s)

hold for all s ∈ [0,a] and all u ∈ Id.

We base our definition of conditioning of copulas on Theorem 3.3 below. Note that the unique
solution Ca of the functional equation in Theorem 3.3 is a copula for the conditional distribution
function whenever C is a copula for the initial distribution function; see also Theorems 4.1 and 4.2.

3.3 Theorem. For every a ∈ (0,1] and every C ∈ Ca, there exists a unique copula Ca ∈ C satisfying

(
Ca ◦ δa,C

)
(s) =

C(s)
C(a)

for all s ∈ [0,a], and the copula Ca satisfies

Ca =
C ◦ (δa,C)←

C(a)
=
C ◦ (δa,C)→

C(a)

Moreover,
(
C ◦ (δa,C)← ◦ δa,C

)
(s) = C(s) =

(
C ◦ (δa,C)→ ◦ δa,C

)
(s) holds for all s ∈ [0,a].

Proof. Consider a ∈ (0,1], C ∈ Ca and define the map Fa,C : Id → I by letting

Fa,C(u) :=
C(u ∧ a)
C(a)

where the minimum u ∧ a is defined coordinatewise. Then Fa,C is a continuous distribution function
and the vector Fa,C of its univariate marginal distribution functions satisfies Fa,C(u) = δa,C(u ∧ a)
for all u ∈ Id. Therefore, by Sklar’s Theorem (see, e.g., [11, 28]), there exists a unique copula Ca

satisfying Fa,C = Ca ◦ Fa,C , and hence

(
Ca ◦ δa,C

)
(u ∧ a) =

(
Ca ◦ Fa,C

)
(u) = Fa,C(u) =

C(u ∧ a)
C(a)

for all u ∈ Id. Now, we prove the identities. Due to the properties of the lower and upper quantile
function, we obtain

C ◦ (δa,C)←

C(a)
= Ca ◦ δa,C ◦ (δa,C)← = Ca = Ca ◦ δa,C ◦ (δa,C)→ =

C ◦ (δa,C)→

C(a)

Moreover, since Ca is increasing in each coordinate, we also obtain(
C◦(δa,C)←◦δa,C

)
(s) ≤ C(s) ≤ (

C◦(δa,C)→◦δa,C

)
(s) = C(a)

(
Ca◦δa,C

)
(s) =

(
C◦(δa,C)←◦δa,C

)
(s)
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for all s ∈ [0,a]. �

3.4 Remark. A converse version of Theorem 3.3 is true as well: Consider a ∈ (0,1] and a copula
C ∈ Ca satisfying C ◦ (δa,C)← = C ◦ (δa,C)→. If

D :=
C ◦ (δa,C)←

C(a)
=
C ◦ (δa,C)→

C(a)

is a copula, then the identity (
D ◦ δa,C

)
(s) =

C(s)
C(a)

holds for all s ∈ [0,a].

For a ∈ (0,1], we define the map ϑa : Ca → C by letting
ϑa(C) := Ca

where Ca is the unique copula satisfying the functional equation in Theorem 3.3. The transformation
ϑa is called the (multivariate) conditioning with respect to a. In the sequel, we shall suppress the
adjective multivariate. According to the literature, in the special case where a = ηk(1, a ek) holds for
some k ∈ {1, ..., d} and some a ∈ (0, 1], the transformation ϑa = ϑηk(1,a ek) is called the univariate
conditioning with respect to k and a. We adopt this linguistic distinction and hence consider univariate
conditioning as a special case of conditioning.

Due to Theorem 3.3, in the following, we restrict ourselves to representations concerning the upper
quantile function; results concerning the lower quantile function (or any quantile function) can be
obtained analogously. The following result is evident from Theorem 3.3; here and in the sequel we
denote by QC the probability measure associated with the copula C, and by (QC)δa,C

the pushforward
of QC under the measurable map δa,C :

3.5 Corollary. For every a ∈ (0,1] and every C ∈ Ca, the copula ϑa(C) satisfies

(
ϑa(C)

)
(u) =

1
C(a)

(
C ◦ (δa,C)→

)
(u) =

1
C(a)

∫
Id

χ[0,u]

(
δa,C(s)

)
χ[0,a](s) dQC(s)

for all u ∈ Id and

Qϑa(C) =
1

C(a)
(
QC

)
δa,C

In particular, ϑ1(C) = C for every C ∈ C.

Because of the previous result, the copula ϑa(C) is determined by the restriction of C to the interval
[0,a].
4. Applications to conditional distribution functions

In this section, we present a version of Sklar’s Theorem for all those conditional distribution functions
that are conditioned with respect to the event that observations lie below some threshold. In a
second step we generalize this result and we present a version of Sklar’s Theorem also for all those
conditional distribution functions where the conditioning event is somehow reflected. In contrast to
the literature, we do not assume that the coordinates of the distribution function are continuous, such
that the initial copula and the transformed copula may fail to be unique; we refer to [6] for more
information on copulas for non–continuous distribution functions.

Consider a probability space (Ω,F , P ) and a random vector X : Ω → R
d. We denote by F the

distribution function of X and by F := (F1, ..., Fd)′ the vector of its univariate marginal distribution
functions, and we consider a fixed copula C satisfying

F = C ◦ F

which exists by Sklar’s Theorem (see, e.g., [11, 28]). If the marginal distribution functions are contin-
uous, then C is unique, but this will not be required here and in the sequel.
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For q ∈ Rd for which P
[{X ≤ q}] > 0, we further define the map Fq : Rd → I by letting

Fq(x) := P [{X ≤ x} | {X ≤ q}]
Then F(q) ∈ (0,1] and Fq is the distribution function of the conditional distribution of X under the
event X ≤ q. We denote by Fq the vector of univariate margins of Fq.

We show that the copula ϑF(q)(C) is a copula for the conditional distribution function Fq whenever C
is a copula for the distribution function F . While this result is well–known under certain assumptions
(see, e.g., [4, 18]), no such assumptions will be made in the sequel.

4.1 Theorem. Consider q ∈ Rd for which C ∈ CF(q). Then

ϑF(q)(C)

is a copula for Fq. If the margins of F are continuous, then the copulas C and ϑF(q)(C) are unique.

Proof. Fq and the vector of its univariate marginal distribution functions Fq satisfy

Fq(x) =
C
(
F(x) ∧ F(q)

)
C(F(q))

and Fq(x) = δF(q),C

(
F(x) ∧ F(q)

)
for all x ∈ Rd, where the minimum F(x) ∧ F(q) is defined coordinatewise. We hence obtain

Fq(x) =
C
(
F(x) ∧ F(q)

)
C(F(q))

=
(
ϑF(q)(C) ◦ δF(q),C

)(
F(x) ∧ F(q)

)
=

(
ϑF(q)(C)

)(
Fq(x)

)
for all x ∈ Rd. Thus, ϑF(q)(C) is a copula for Fq. �

In the following we demonstrate how the conditioning ϑa can be used as a tool to obtain copulas also
for those conditional distribution functions where the conditioning event is somehow reflected. To this
end, for q ∈ Rd and K ⊆ {1, ..., d} for which P

[⋂
k∈K{Xk > qk} ∩

⋂
k∈{1,...,d}\K{Xk ≤ qk}

]
> 0, we

define the map Fq,K : Rd → I by letting

Fq,K(x) := P

⎡
⎣{X ≤ x}

∣∣∣∣ ⋂
k∈K

{Xk > qk} ∩
⋂

k∈{1,...,d}\K
{Xk ≤ qk}

⎤
⎦

Then ηK(F(q),1−F(q)) ∈ (0,1] and Fq,K is the distribution function of the conditional distribution
of X under the event Xk > qk for all k ∈ K and Xk ≤ qk for all k ∈ {1, ..., d}\K. We denote by
Fq,K := (Fq,K,1, ..., Fq,K,d)′ the vector of univariate margins of Fq,K .

We next show that (νK ◦ ϑηK(F(q),1−F(q)) ◦ νK)(C) (where νK(C) is the reflection of C with respect
to the coordinates k ∈ K) is a copula for the conditional distribution function Fq,K whenever C is
a copula for F ; in the case of univariate conditioning of the first coordinate compare also [17, 21].
Again, note that, in contrast to the literature, we here do not require any assumption neither on the
distribution function F nor on the copula C, i.e. the presented copula (νK ◦ϑηK(F(q),1−F(q)) ◦νK)(C)
for the conditional distribution function Fq,K may fail to be unique.

4.2 Theorem. Consider q ∈ Rd and K ⊆ {1, ..., d} for which νK(C) ∈ CηK(F(q),1−F(q)). Then(
νK ◦ ϑηK(F(q),1−F(q)) ◦ νK

)
(C)

is a copula for Fq,K . If the margins of F are continuous, then the copulas C and (νK◦ϑηK(F(q),1−F(q))◦
νK)(C) are unique.

Proof. Define a := F(q). Then ηK(a,1− a) ∈ (0,1]. Note that, by [15, Theorem 2.2], we first have

Fq,K(x) =
P [

⋂
k∈K{qk < Xk ≤ xk} ∩

⋂
k/∈K{Xk ≤ xk ∧ qk}]

P [
⋂

k∈K{qk < Xk} ∩
⋂

k/∈K{Xk ≤ qk}]

6



=
PX

[∏
k∈K(qk, xk]×∏

k/∈K(−∞, xk ∧ qk]
]

PX

[∏
k∈K(qk,∞)×∏

k/∈K(−∞, qk]
]

=
QC

[∏
k∈K

(
ak, Fk(xk)

]×∏
k/∈K

[
0, Fk(xk) ∧ ak

]]
QC

[∏
k∈K(ak, 1]×∏

k/∈K [0, ak]
]

=
(QνK(C))T (νK)

[∏
k∈K

(
ak, Fk(xk)

]×∏
k/∈K

[
0, Fk(xk) ∧ ak

]]
(QνK(C))T (νK)

[∏
k∈K(ak, 1]×∏

k/∈K [0, ak]
]

=
QνK(C)

[∏
k∈K

(
1− Fk(xk), 1− ak

]×∏
k/∈K

[
0, Fk(xk) ∧ ak

]]
QνK(C)

[∏
k∈K [0, 1− ak]×∏

k/∈K [0, ak]
]

=
QνK(C)

[∏
k∈K

(
1− Fk(xk), 1− ak

]×∏
k/∈K

[
0, Fk(xk) ∧ ak

]]
(νK(C))(ηK(a,1− a))

for all x ∈ Rd and hence

1− Fq,K,k(xk) = 1−
QνK(C)

[∏
l∈K\{k}

[
0, 1− al

]× (
1− Fk(xk), 1− ak

]×∏
l/∈K

[
0, al

]]
QνK(C)

[∏
l∈K [0, 1− al]×

∏
l/∈K [0, al]

]

=
QνK(C)

[∏
l∈K\{k}

[
0, 1− al

]× [
0, 1− Fk(xk)

]×∏
l/∈K

[
0, al

]]
QνK(C)

[∏
l∈K [0, 1− al]×

∏
l/∈K [0, al]

]
=

(νK(C))
(
ηk

(
ηK(a,1− a), (1− Fk(xk)) ek

))
(νK(C))(ηK(a,1− a))

= δk
ηK(a,1−a),νK(C)(1− Fk(xk))

for all xk ∈ R and all k ∈ K, as well as

Fq,K,m(xm) =
QνK(C)

[∏
l∈K

[
0, 1− al

]× [
0, Fm(xm) ∧ am

]×∏
l∈{1,...,d}\(K∪{m})

[
0, al

]]
(νK(C))(ηK(a,1− a))

=
(νK(C))

(
ηm

(
ηK(a,1− a), (Fm(xm) ∧ am) em

))
(νK(C))(ηK(a,1− a))

= δm
ηK(a,1−a),νK(C)(Fm(xm) ∧ am)

for all xm ∈ R and all m ∈ {1, ..., d}\K. Thus,(
T (νK) ◦ Fq,K

)
(x) = ηK

(
Fq,K(x),1− Fq,K(x)

)
= δηK(a,1−a),νK(C)

(
ηK

(
F(x) ∧ a,1− F(x)

))
for all x ∈ Rd. By [13, Theorem 4.1], we finally obtain((
νK ◦ ϑηK(a,1−a) ◦ νK

)
(C)

)(
Fq,K(x)

)
=

∑
L⊆K

(−1)|K|−|L|
((
ϑηK(a,1−a) ◦ νK

)
(C)

)(
ηL

(
ηK

(
Fq,K(x),1− Fq,K(x)

)
,1

))

=
∑
L⊆K

(−1)|K|−|L|
((
ϑηK(a,1−a) ◦ νK

)
(C)

)(
ηL

(
ηK

(
Fq,K(x),1− Fq,K(x)

)
, δηK(a,1−a),νK(C)

(
ηK(a,1− a)

)))

=
∑
L⊆K

(−1)|K|−|L|
((
ϑηK(a,1−a) ◦ νK

)
(C) ◦ δηK(a,1−a),νK(C)

)(
ηL

(
ηK

(
F(x) ∧ a,1− F(x)

)
,ηK(a,1− a)

))

=
∑
L⊆K

(−1)|K|−|L|
((
ϑηK(a,1−a) ◦ νK

)
(C) ◦ δηK(a,1−a),νK(C)

)(
ηL

(
ηK

(
F(x) ∧ a,1− F(x)

)
,1− a

))

=
∑
L⊆K

(−1)|K|−|L|
(
νK(C)

)(
ηL

(
ηK

(
F(x) ∧ a,1− F(x)

)
,1− a

))
(νK(C))(ηK(a,1− a))

=
QνK(C)

[∏
k∈K

(
1− Fk(xk), 1− ak

]×∏
k/∈K

[
0, Fk(xk) ∧ ak

]]
(νK(C))(ηK(a,1− a))

= Fq,K(x)
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for all x ∈ Rd. Thus, (νK ◦ ϑηK(F(q),1−F(q)) ◦ νK)(C) is a copula for Fq,K . �

4.3 Remark.
(1) For K = ∅, Theorem 4.2 presents a copula for the conditional distribution function that is

conditioned with respect to the event that the observations lie below some threshold q. It thus
coincides with Theorem 4.1.

(2) For K = {1, ..., d}, Theorem 4.2 presents a copula for the conditional distribution function that
is conditioned with respect to the event that the observations lie above some threshold q.

(3) We note that, similar to Theorem 4.2, conditionings of copulas and reflections of copulas can also
be used as a tool to obtain copulas for conditional survival functions.

5. The class Θ

In the present section we study some properties of the class

Θ := {ϑa |a ∈ (0,1]}

of all conditionings. First, we investigate the behaviour of conditioning under composition; see also
[4, Lemma 4.2 (ii)] who showed a similar result in the bivariate case under the assumption that the
copula under consideration is strictly increasing in each coordinate:

5.1 Lemma. Consider a,b ∈ (0,1]. The identity(
ϑa ◦ ϑb

)
(C) = ϑ(δb,C)→(a)(C)

holds for all C ∈ Cb such that ϑb(C) ∈ Ca. In particular, ϑa ◦ ϑ1 = ϑa = ϑ1 ◦ ϑa.

Proof. First, note that (δb,C)→(a) ∈ (0,b] for all C ∈ Cb, and hence s ∈ [0,b] such that δb,C(s) ∈
[0,a] if, and only if, s ∈ [0, (δb,C)→(a)]. Now, consider C ∈ C, and observe that C ∈ Cb such that
ϑb(C) ∈ Ca if, and only if, C ∈ C(δb,C)→(a). In this case, by Corollary 3.5 and Theorem 3.3, we have

(δk
a,ϑb(C) ◦ δk

b,C)(sk) =
1

(ϑb(C))(a)
(
ϑb(C)

)(
ηk

(
a, δk

b,C(sk) ek

))
=

C(b)
C
(
(δb,C)→(a)

) 1
C(b)

(
C ◦ (δb,C)→

)(
ηk

(
a, δk

b,C(sk) ek

))
=

1
C
(
(δb,C)→(a)

) (
C ◦ (δb,C)→

)(
ηk

(
(δb,C ◦ (δb,C)→)(a), δk

b,C(sk) ek

))
=

1
C
(
(δb,C)→(a)

) (
C ◦ (δb,C)→ ◦ δb,C

)(
ηk

(
(δb,C)→(a), sk ek

))
=

1
C
(
(δb,C)→(a)

) C(
ηk

(
(δb,C)→(a), sk ek

))
= δk

(δb,C)→(a),C(sk)

for all sk ∈ [0, bk] such that δk
b,C(sk) ∈ [0, ak] and all k ∈ {1, ..., d}, and hence (δa,ϑb(C) ◦ δb,C)(s) =

δ(δb,C)→(a),C(s) for all s ∈ [0,b] such that δb,C(s) ∈ [0,a]. Thus, by Corollary 3.5, we finally obtain

(
(ϑa ◦ ϑb)(C)

)
(u) =

1
(ϑb(C))(a)

(
ϑb(C) ◦ (δa,ϑb(C))→

)
(u)

=
C(b)

C
(
(δb,C)→(a)

) 1
C(b)

(
C ◦ (δb,C)→ ◦ (δa,ϑb(C))→

)
(u)

=
1

C
(
(δb,C)→(a)

) QC
[{

s ∈ [0,b]
∣∣ s ≤ (

(δb,C)→ ◦ (δa,ϑb(C))→
)
(u)

}]
=

1
C
(
(δb,C)→(a)

) QC
[{

s ∈ [0,b]
∣∣ δb,C(s) ∈ [0,a], δb,C(s) ≤ (δa,ϑb(C))→(u)

}]
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=
1

C
(
(δb,C)→(a)

) QC
[{

s ∈ [0,b]
∣∣ δb,C(s) ∈ [0,a],

(
δa,ϑb(C) ◦ δb,C

)
(s) ≤ u

}]
=

1
C
(
(δb,C)→(a)

) QC
[{

s ∈ [0,b]
∣∣ δb,C(s) ∈ [0,a], δ(δb,C)→(a),C(s) ≤ u

}]
=

1
C
(
(δb,C)→(a)

) QC
[{

s ∈ [0, (δb,C)→(a)]
∣∣ s ≤ (δ(δb,C)→(a),C)→(u)

}]
=

1
C
(
(δb,C)→(a)

) (
C ◦ (δ(δb,C)→(a),C)→

)
(u)

=
(
ϑ(δb,C)→(a)(C)

)
(u)

for all u ∈ Id. This proves the identity. �

5.2 Remark. The class Θ fails to be closed under composition since the transformation on the right
hand side of Lemma 5.1 depends on the argument C. In addition, Θ is non–commutative (see, e.g.,
Example 3 in [26]).

It turns out that, for the composition of two univariate conditionings of the same coordinate, the
conditioning transformation on the right hand side of Lemma 5.1 is independent of the copula to be
transformed. Therefore, for every k ∈ {1, ..., d}, the class

Θk := {ϑηk(1,a ek) | a ∈ (0, 1]}
of all univariate conditionings with respect to k has a particularly nice property; see also [19, 20, 26]:

5.3 Proposition.
(1) The identity

ϑηk(1,a ek) ◦ ϑηk(1,b ek) = ϑηk(1,ab ek)

holds for all k ∈ {1, ..., d} and all a, b ∈ (0, 1].
(2) For every k ∈ {1, ..., d}, (Θk, ◦) is a commutative subsemigroup of Φ including the identity of Φ.

A converse version of Lemma 5.1 is given by the following result; see also [4, Lemma 4.2 (i)] who
showed the result in the bivariate case under the assumption that the copula under consideration is
strictly increasing in each coordinate:

5.4 Lemma. The identity (
ϑδb,C(a) ◦ ϑb

)
(C) = ϑa(C)

holds for all b ∈ (0,1], all a ∈ (0,b] and all C ∈ Cb such that δb,C(a) ∈ (0,1] and ϑb(C) ∈ Cδb,C(a).

Proof. Consider b ∈ (0,1] and a ∈ (0,b]. First note that, for every C ∈ C with δb,C(a) ∈ (0,1],
C ∈ Cb such that ϑb(C) ∈ Cδb,C(a) if, and only if, C ∈ Ca. In this case, we have

(δk
δb,C(a),ϑb(C) ◦ δk

b,C)(sk) =
1(

ϑb(C) ◦ δb,C

)
(a)

(
ϑb(C)

)(
ηk

(
δb,C(a), δk

b,C(sk) ek

))
=

1(
ϑb(C) ◦ δb,C

)
(a)

(
ϑb(C) ◦ δb,C

)(
ηk(a, skek)

)
=

C(b)
C(a)

1
C(b)

C
(
ηk(a, skek)

)
=

1
C(a)

C
(
ηk(a, skek)

)
= δk

a,C(sk)

for all sk ∈ [0, ak] such that δk
b,C(sk) ∈ [0, δk

b,C(ak)] and all k ∈ {1, ..., d}, and hence (δδb,C(a),ϑb(C) ◦
δb,C)(s) = δa,C(s) for all s ∈ [0,a] such that δb,C(s) ∈ [0, δb,C(a)]. Due to Theorem 3.3 we further
obtain the (in–)equality

0 ≤ QC
[{

s ∈ (a,b]
∣∣ δb,C(s) ∈ [0, δb,C(a)], δb,C(s) ≤ (δδb,C(a),ϑb(C))→(u)

}]
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= QC
[{

s ∈ (a,b]
∣∣ s ≤ ((δb,C)→ ◦ δb,C)(a), s ≤ (

(δb,C)→ ◦ (δδb,C(a),ϑb(C))→
)
(u)

}]
≤ QC

[(
a, ((δb,C)→ ◦ δb,C)(a)

]]
≤ QC

[[
0, ((δb,C)→ ◦ δb,C)(a)

]]−QC
[
[0,a]

]
=

(
C ◦ (δb,C)→ ◦ δb,C

)
(a)− C(a)

= 0

for all u ∈ Id and Corollary 3.5 hence yields(
(ϑδb,C(a) ◦ ϑb)(C)

)
(u)

=
1(

ϑb(C) ◦ δb,C

)
(a)

(
ϑb(C) ◦ (δδb,C(a),ϑb(C))→

)
(u)

=
C(b)
C(a)

1
C(b)

(
C ◦ (δb,C)→ ◦ (δδb,C(a),ϑb(C))→

)
(u)

=
1

C(a)
QC

[{
s ∈ [0,b]

∣∣ s ≤ (
(δb,C)→ ◦ (δδb,C(a),ϑb(C))→

)
(u)

}]
=

1
C(a)

QC
[{

s ∈ [0,b]
∣∣ δb,C(s) ∈ [0, δb,C(a)], δb,C(s) ≤ (δδb,C(a),ϑb(C))→(u)

}]
=

1
C(a)

QC
[{

s ∈ [0,a]
∣∣ δb,C(s) ∈ [0, δb,C(a)], δb,C(s) ≤ (δδb,C(a),ϑb(C))→(u)

}]
=

1
C(a)

QC
[{

s ∈ [0,a]
∣∣ δb,C(s) ∈ [0, δb,C(a)],

(
δδb,C(a),ϑb(C) ◦ δb,C

)
(s) ≤ u

}]
=

1
C(a)

QC
[{

s ∈ [0,a]
∣∣ δb,C(s) ∈ [0, δb,C(a)], δa,C(s) ≤ u

}]
=

1
C(a)

QC
[{

s ∈ [0,a]
∣∣ s ≤ ((δb,C)→ ◦ δb,C)(a), s ≤ (δa,C)→(u)

}]
=

1
C(a)

QC
[{

s ∈ [0,a]
∣∣ s ≤ (δa,C)→(u)

}]
=

1
C(a)

(
C ◦ (δa,C)→

)
(u)

=
(
ϑa(C)

)
(u)

for all u ∈ Id. This proves the identity. �

6. The class Θ and the group Γ

In this section we investigate the behaviour of conditioning with respect to the transformations in the
group Γ. We start with a quite helpful result concerning permutations π ∈ Γπ and reflections ν ∈ Γν :

6.1 Lemma. Consider a ∈ (0,1].
(1) The identity

δ(T (π))(a),π(C) ◦ T (π) = T (π) ◦ δa,C

holds for all π ∈ Γπ and all C ∈ Ca.
(2) The identity

δηK(a,1),νL(C) ◦ T (νL) = T (νL) ◦ δηK(a,1),C

holds for all K ⊆ {1, ..., d}, all L ⊆ K and all C ∈ CηK(a,1).

Proof. To prove (1), consider C ∈ Ca and i, j ∈ {1, ..., d} such that i 	= j. Then

δi
(T (πi,j))(a),πi,j(C)(sj) =

(
πi,j(C)

)(
ηi

(
(T (πi,j))(a), sj ei

))(
πi,j(C)

)(
(T (πi,j))(a)

) =
C
(
ηj(a, sj ej)

)
C(a)

= δj
a,C(sj)

for all sj ∈ [0, aj ] and, analogously, we have δj
(T (πi,j))(a),πi,j(C)(si) = δi

a,C(si) for all si ∈ [0, ai] and
δl
(T (πi,j))(a),πi,j(C) = δl

a,C for all l ∈ {1, ..., d}\{i, j}. Thus, δ(T (πi,j))(a),πi,j(C) ◦T (πi,j) = T (πi,j)◦δa,C .
The assertion hence follows from the fact that the set {πi,j | i, j ∈ {1, ..., d}, i 	= j} generates Γπ.
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To prove (2), consider K ⊆ {1, ..., d}, L ⊆ K and C ∈ CηK(a,1). Then, for every l, k ∈ L such that
l 	= k, we have

δl
ηK(a,1),νl(C)(1− sl) =

(
νl(C)

)(
ηl

(
ηK(a,1), (1− sl) el

))(
νl(C)

)(
ηK(a,1)

)
=

C
(
ηK(a,1)

)− C(
ηl

(
ηK(a,1), sl el

))
C
(
ηK(a,1)

)− 0

= 1− δl
ηK(a,1),C(sl)

and

δl
ηK(a,1),νk(C)(sl) =

(
νk(C)

)(
ηl

(
ηK(a,1), sl el

))(
νk(C)

)(
ηK(a,1)

) =
C
(
ηl

(
ηK(a,1), sl el

))− 0
C
(
ηK(a,1)

)− 0
= δl

ηK(a,1),C(sl)

for all sl ∈ [0, 1], and (analogously) δm
ηK(a,1),νl(C) = δm

ηK(a,1),C for all l ∈ L and all m ∈ {1, ..., d}\L.
Thus, δηK(a,1),νL(C) ◦ T (νL) = T (νL) ◦ δηK(a,1),C . This proves (2). �

We first point out the behaviour of conditioning with respect to permutations. It turns out that (1)
univariate conditionings of different coordinates are interchangeable using transpositions, and that (2)
every univariate conditioning commutes with permutations of other coordinates (see also [19]).

6.2 Theorem. Consider a ∈ (0,1]. The identity

ϑa = π ◦ ϑ(T (π))(a) ◦ π

holds for all π ∈ Γπ. In particular, for a ∈ (0, 1],
(1) the identity ϑηi(1,a ei) = πi,j ◦ ϑηj(1,a ej) ◦ πi,j holds for all i, j ∈ {1, ..., d} such that i 	= j, and
(2) the identity ϑηk(1,a ek) = πi,j◦ϑηk(1,a ek)◦πi,j holds for all k ∈ {1, ..., d} and all i, j ∈ {1, ..., d}\{k}

such that i 	= j.

Proof. Consider C ∈ Ca and π ∈ Γπ. By [15, Theorem 2.2], Corollary 3.5 and Lemma 6.1, we obtain

Q(π◦ϑ(T (π))(a)◦π)(C) =
(
Q(ϑ(T (π))(a)◦π)(C)

)
T (π)

=
1(

π(C)
)(

(T (π))(a)
) (

Qπ(C)
)
δ(T (π))(a),π(C)◦T (π)

=
1

C(a)
(
Qπ(C)

)
T (π)◦δa,C

=
1

C(a)
(
QC

)
δa,C

= Qϑa(C)

This proves the assertion. �

Now, we point out the behaviour of conditioning with respect to reflections. It turns out that every
univariate conditioning also commutes with reflections of other coordinates; see also [19].

6.3 Theorem. Consider a ∈ (0,1]. The identity

ϑηK(a,1) = νL ◦ ϑηK(a,1) ◦ νL

holds for all K ⊆ {1, ..., d} and all L ⊆ K. In particular, for a ∈ (0, 1], the identity

ϑηk(1,a ek) = νl ◦ ϑηk(1,a ek) ◦ νl

holds for k, l ∈ {1, ..., d} such that k 	= l.
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Proof. Consider K ⊆ {1, ..., d}, L ⊆ K and C ∈ CηK(a,1). By [15, Theorem 2.2], Corollary 3.5 and
Lemma 6.1, we obtain

Q(νL◦ϑηK (a,1)◦νL)(C) =
(
Q(ϑηK (a,1)◦νL)(C)

)
T (νL)

=
1(

νL(C)
)(

ηK(a,1)
) (

QνL(C)
)
δηK (a,1),νL(C)◦T (νL)

=
1

C
(
ηK(a,1)

) (
QνL(C)

)
T (νL)◦δηK (a,1),C

=
1

C
(
ηK(a,1)

) (
QC

)
δηK (a,1),C

= QϑηK (a,1)(C)

This proves the assertion. �

7. The class Θ and invariance

Copulas which are invariant under conditioning have been studied frequently in literature (see, e.g.,
[2, 4, 9, 10, 18, 19, 29, 31]), and they are of particular interest since for such copulas the values
of copula–based measures of association (like measures of concordance) remain unchanged under
conditioning.

A copula C ∈ C is said to be invariant under Θ (or invariant under conditioning ) if it satisfies
ϑa(C) = C for all a ∈ (0,1] such that C ∈ Ca. The following examples show that the product copula
Π and the Fréchet–Hoeffding upper bound M are invariant under Θ; see also [18]. We additionally
show that every reflection of M is invariant under Θ as well; note that, for d = 2, this includes the
Fréchet–Hoeffding lower bound W .

7.1 Examples.
(1) The product copula Π is invariant under Θ.

Indeed, for every a ∈ (0,1], the copula Π satisfies Π ∈ Ca and
(
Π◦ (δa,Π)→

)
(u) = Π(a)Π(u) and,

by Corollary 3.5, we obtain

(
ϑa(Π)

)
(u) =

(
Π ◦ (δa,Π)→

)
(u)

Π(a)
=

Π(a)Π(u)
Π(a)

= Π(u)

for all u ∈ Id.
(2) For every ν ∈ Γν , the reflected Fréchet–Hoeffding upper bound ν(M) is invariant under Θ. In

particular,
– the Fréchet–Hoeffding upper bound M = ι(M) is invariant under Θ.
– for d = 2, the Fréchet–Hoeffding lower bound W = ν1(M) is invariant under Θ.
Indeed, consider K ⊆ {1, ..., d} and a ∈ (0,1] such that νK(M) ∈ Ca. First, by [15, Lemma 2.3],
we have

(
νK(M)

)
(u) =

∫
Id

χ[0,u](s) dQνK(M)(s)

=
∫

Id

χ[0,u](ηK(s,1− s)) dQM (s)

=
∫

I

χ[ηK(0,1−u),ηK(u,1](s1) dλ(s)

=
(
min{uk | k /∈ K} −max{1− uk | k ∈ K}

)+

Thus, for l ∈ K and s ∈ [max{1− ak | k ∈ K},min{ak | k /∈ K}], we have

δl
a,νK(M)(1− s) =

(
νK(M)

)(
ηl(a, (1− s) el)

)(
νK(M)

)
(a)

=
min{ak | k /∈ K} − s(

νK(M)
)
(a)
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Similarly, for l /∈ K and s ∈ [max{1− ak | k ∈ K},min{ak | k /∈ K}], we have

δl
a,νK(M)(s) =

(
νK(M)

)(
ηl(a, s el)

)(
νK(M)

)
(a)

=
s−max{1− ak | k ∈ K}(

νK(M)
)
(a)

Thus, by Corollary 3.5 and [15, Lemma 2.3], we obtain(
ϑa

(
νK(M)

))
(u)

=
1(

νK(M)
)
(a)

∫
Id

χ[0,u]

(
δa,νK(M)(s)

)
χ[0,a](s) dQνK(M)(s)

=
1(

νK(M)
)
(a)

∫
Id

χ[0,u]

(
δa,νK(M)

(
ηK(s,1− s)

))
χ[0,a]

(
ηK(s,1− s)

)
dQM (s)

=
1(

νK(M)
)
(a)

∫
I

χ[0,u]

(
δa,νK(M)

(
ηK(s1,1− s1)

))
χ[0,a]

(
ηK(s1,1− s1)

)
dλ(s)

=
1(

νK(M)
)
(a)

∫
I

χ[min{ak | k/∈K}−(νK(M))(a) min{uk | k∈K},(νK(M))(a) min{uk | k/∈K}+max{1−ak | k∈K}](s)

χ[0,a]

(
ηK(s1,1− s1)

)
dλ(s)

=
1(

νK(M)
)
(a)

(
(νK(M))(a) min{uk | k /∈ K} −

(
νK(M)

)
(a) + (νK(M))(a) min{uk | k ∈ K}

)+

=
(
min{uk | k /∈ K} − 1 + min{uk | k ∈ K}

)+

=
(
min{uk | k /∈ K} −max{1− uk | k ∈ K}

)+

=
(
νK(M)

)
(u)

for all u ∈ Id.

A copula C ∈ C is said to be invariant under Θk (or invariant under univariate conditioning with
respect to k) if it satisfies ϑηk(1,a ek)(C) = C for all a ∈ (0, 1].

In Theorem 7.2 we show that a copula C is invariant under Θ if, and only if, it is invariant under Θk

for every k ∈ {1, ..., d}; see also [9] who proved the result in the bivariate case using the fact that the
copulas which are invariant under conditioning belong to the closure of the Clayton family of copulas:

7.2 Theorem. For a copula C ∈ C, the following are equivalent:
(a) C is invariant under Θ.
(b) C is invariant under Θk for every k ∈ {1, ..., d}.

Proof. It is evident that (a) implies (b). Assume now that (b) holds and consider C ∈ C. We prove
(a) by induction. To this end, for a ∈ (0,1] and for k ∈ {1, ..., d}, define ak := η{1,...,k}(1,a). Then,
by assumption, ϑa1(C) = C, ak ≤ ak−1 and hence Cak ⊆ Cak−1 for all a ∈ (0,1] and all k ∈ {2, ..., d}.
Further, let m ∈ {2, ..., d} and assume that the identity ϑak(C) = C holds for all a ∈ (0,1] and all
k ∈ {1, ...,m− 1} such that C ∈ Cak . Then

δam−1,C(am) = ηm

(
1,

C(am)
C(am−1)

em

)
∈ (0,1]

for all a ∈ (0,1] such that C ∈ Cam . Since Cδam−1,C(am) = C, by Lemma 5.4 and the assumption, we
hence obtain

ϑam(C) = (ϑδam−1,C(am) ◦ ϑam−1)(C) = ϑδam−1,C(am)(C) = C

for all a ∈ (0,1] such that C ∈ Cam . This proves (a). �

A copula C ∈ C is said to be symmetric if π(C) = C holds for every π ∈ Γπ. For symmetric copulas
we obtain the following refinement of Theorem 7.2; see also [9]:

7.3 Corollary. For a symmetric copula C ∈ C, the following are equivalent:

13



(a) C is invariant under Θ.
(b) C is invariant under Θk for every k ∈ {1, ...d}.
(c) C is invariant under Θk for some k ∈ {1, ...d}.

Proof. The assertion immediately follows applying Theorem 6.2 and Theorem 7.2. �

8. The class Θ and measures of concordance

In this final section we study conditioning of copulas in connection with the usual multivariate gener-
alizations of Kendall’s tau and Spearman’s rho. These measures of concordance can be expressed in
terms of the biconvex form [. , .] : C × C → R which is given by

[C,D] :=
∫

Id

C(u) dQD(u)

and was introduced in [15]. Our aim is to express Kendall’s tau and Spearman’s rho for the transformed
copula ϑa(C) in terms of the initial copula C ∈ Ca.

Let us first consider Kendall’s tau:

The map κ(τ) : C → R given by

κ(τ)[C] :=
[C,C]− [Π,Π]
[M,M ]− [Π,Π]

=
1

2d−1 − 1

(
2d [C,C]− 1

)
is called Kendall’s tau. This definition is in accordance with the definition proposed in [27]. Since
[C,C] ≥ 0 = [ν1(M), ν1(M)] (see [15]), it is evident that C minimizes Kendall’s tau if, and only if,
[C,C] = 0. We shall need the following lemma:

8.1 Lemma. The identity

[ϑa(C), ϑb(C)] =
1

C(a)C(b)

∫
Id

(
C ◦ (δa,C)→ ◦ δb,C

)
(u)χ[0,b](u) dQC(u)

holds for all a,b ∈ (0,1] and all C ∈ Ca ∩ Cb. In particular, the identity

[ϑa(C), ϑa(C)] =
1

C(a)2

∫
Id

C(u)χ[0,a](u) dQC(u)

holds for all a ∈ (0,1] and all C ∈ Ca, and [C,C] = 0 implies [ϑa(C), ϑa(C)] = 0.

Proof. Consider a,b ∈ (0,1]. By Corollary 3.5, we obtain

[ϑa(C), ϑb(C)] =
∫

Id

(
ϑa(C)

)
(u) dQϑb(C)(u)

=
1

C(a)

∫
Id

∫
Id

χ[0,u]

(
δa,C(s)

)
χ[0,a](s) dQC(s) dQϑb(C)(u)

=
1

C(a)C(b)

∫
Id

∫
Id

χ[0,u]

(
δa,C(s)

)
χ[0,a](s) dQC(s) d

(
QC

)
δb,C

(u)

=
1

C(a)C(b)

∫
Id

∫
Id

χ[0,δb,C(u)]

(
δa,C(s)

)
χ[0,a](s)χ[0,b](u) dQC(s) dQC(u)

=
1

C(a)C(b)

∫
Id

∫
Id

χ[0,((δa,C)→◦δb,C)(u)](s)χ[0,a](s)χ[0,b](u) dQC(s) dQC(u)

=
1

C(a)C(b)

∫
Id

(
C ◦ (δa,C)→ ◦ δb,C

)
(u)χ[0,b](u) dQC(u)

for all C ∈ Ca ∩ Cb, and Theorem 3.3 hence yields

[ϑa(C), ϑa(C)] =
1

C(a)2

∫
Id

(
C ◦ (δa,C)→ ◦ δa,C

)
(u)χ[0,a](u) dQC(u)

14



=
1

C(a)2

∫
Id

C(u)χ[0,a](u) dQC(u)

for all C ∈ Ca. This proves the assertion. �

The following result is immediate from Lemma 8.1; see also [29]:

8.2 Theorem. Kendall’s tau satisfies

κ(τ)[ϑa(C)] =
1

2d−1 − 1

(
2d

∫
Id

1
C(a)2

C(u)χ[0,a](u) dQC(u)− 1
)

for all a ∈ (0,1] and all C ∈ Ca. In particular, if C minimizes Kendall’s tau, then ϑa(C) minimizes
Kendall’s tau as well.

Let us now consider Spearman’s rho:

The map κ(ρ) : C → R given by

κ(ρ)[C] :=
1
2 [C,Π] + 1

2 [τ(C),Π]− [Π,Π]
[M,Π]− [Π,Π]

=
d+ 1

2d − (d+ 1)

(
2d−1

(
[C,Π] + [τ(C),Π]

)
− 1

)

is called Spearman’s rho. This definition is in accordance with that in [16, 27]. Unlike Kendall’s tau,
Spearman’s rho evaluates not only the copula C but also its survival copula τ(C), which is obtained
from C via the total reflection τ . We shall need the following lemma:

8.3 Lemma. The identity

[ϑa(C),D] =
1

C(a)

∫
Id

(
C ◦ (δa,C)→

)
(u) dQD(u)

=
1

C(a)

∫
Id

(
τ(D)

)(
1− δa,C(u)

)
χ[0,a](u) dQC(u)

holds for all a ∈ (0,1], all C ∈ Ca and all D ∈ C.

Proof. Consider a ∈ (0,1], C ∈ Ca and D ∈ C. The first identity is a consequence of Corollary 3.5.
Moreover, applying Corollary 3.5, Fubini’s Theorem and [15, Theorem 2.2], we obtain

[ϑa(C),D] =
∫

Id

(
ϑa(C)

)
(u) dQD(u)

=
1

C(a)

∫
Id

∫
Id

χ[0,u]

(
δa,C(s)

)
χ[0,a](s) dQC(s) dQD(u)

=
1

C(a)

∫
Id

(∫
Id

χ[δa,C(s),1](u) dQD(u)
)
χ[0,a](s) dQC(s)

=
1

C(a)

∫
Id

QD
[
[δa,C(s),1]

]
χ[0,a](s) dQC(s)

=
1

C(a)

∫
Id

(
Qτ(D)

)
T (τ)

[
[δa,C(s),1]

]
χ[0,a](s) dQC(s)

=
1

C(a)

∫
Id

Qτ(D)
[
[0,1− δa,C(s)]

]
χ[0,a](s) dQC(s)

=
1

C(a)

∫
Id

(
τ(D)

)(
1− δa,C(s)

)
χ[0,a](s) dQC(s)

This proves the assertion. �
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The previous lemma yields the following result:

8.4 Theorem. Spearman’s rho satisfies

κ(ρ)[ϑa(C)] =
d+ 1

2d − (d+ 1)

(
2d−1

∫
Id

1
(C(a))d+1

d∏
k=1

(
C(a)− C(

ηk(a, ukek)
))
χ[0,a](u)

+
1

((τ(C))(a))d+1

d∏
k=1

(
(τ(C))(a)− (τ(C))

(
ηk(a, (1− uk) ek)

))
χ[1−a,1](u) dQC(u)− 1

)

for all a ∈ (0,1] and all C ∈ Ca.

Proof. Note that τ(Π) = Π and consider a ∈ (0,1] and C ∈ Ca. By Lemma 8.3 and [15, Lemma 2.3],
we obtain(

2d − (d+ 1)
d+ 1

κ(ρ)[ϑa(C)] + 1
)

1
2d−1

= [C,Π] + [τ(C),Π]

=
∫

Id

(
τ(Π)

)(
1− δa,C(u)

)
C(a)

χ[0,a](u) dQC(u) +
∫

Id

(
τ(Π)

)(
1− δa,τ(C)(u)

)
(τ(C))(a)

χ[0,a](u) dQτ(C)(u)

=
∫

Id

Π
(
1− δa,C(u)

)
C(a)

χ[0,a](u) +
Π
(
1− δa,τ(C)(1− u)

)
(τ(C))(a)

χ[0,a](1− u) dQC(u)

=
∫

Id

1
(C(a))d+1

d∏
k=1

(
C(a)− C(

ηk(a, ukek)
))
χ[0,a](u)

+
1

((τ(C))(a))d+1

d∏
k=1

(
(τ(C))(a)− (τ(C))

(
ηk(a, (1− uk) ek)

))
χ[1−a,1](u) dQC(u)

This proves the assertion. �

9. Conclusion

We have introduced conditioning of copulas as a map which transforms every copula into another one,
and we have shown, given a copula for a distribution function, how this transformation can be used
as a tool to obtain copulas for all those conditional distribution functions that are conditioned with
respect to a tail event. We have further investigated the behaviour of conditioning under composition
and with respect to permutations and reflections, and we have shown that invariance of a copula under
conditioning is equivalent to invariance of a copula under univariate conditioning in each coordinate.
We have finally presented representations of the usual multivariate generalizations of Kendall’s tau
and Spearman’s rho for the transformed copula in terms of the initial copula.
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