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We present some inequalities for trigonometric sums. Among others, we prove the 
following refinements of the classical Young inequality.

(1) Let m ≥ 3 be an odd integer, then for all n ≥ m − 1,

n∑
k=1

cos(kθ)
k

≥
m∑

k=1

(−1)k

k
.

The sign of equality holds if and only if n = m and θ = π. The special case 
m = 3 is due to Brown and Koumandos (1997).

(2) For all even integers n ≥ 2 and real numbers r ∈ (0, 1] and θ ∈ [0, π] we have

n∑
k=1

cos(kθ)
k

rk ≥ − 5
48

(5 +
√

5) = −0.75375....

The sign of equality holds if and only if n = 4, r = 1 and θ = 4π/5. We apply 
this result to prove the absolute monotonicity of a function which is defined in 
terms of the log-function.

© 2018 Published by Elsevier Inc.

1. Introduction and statement of main results

In 1912, W.H. Young [11] published interesting inequalities for the cosine polynomial

Cn(θ) =
n∑

k=1

cos(kθ)
k

.
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Among others, he proved that for all integers n ≥ 2 and real numbers θ ∈ [0, π] we have

Cn(θ) > −1. (1.1)

This inequality is one of the classical results in the theory of trigonometric polynomials. It has attracted the 
attention of many researchers who presented numerous extensions, variants, related results and applications 
to geometric function theory and other branches. For more information on this subject we refer to Askey [1], 
Askey and Gasper [2], Koumandos [7], and Milovanović et al. [8].

We discovered only recently that there is an error in Young’s original proof of (1.1). He first showed that 
Cn takes its minimum precisely at θ = π if n is odd, and at θ = π − π/(n + 1) if n is even. Then, he noted 
that

Cn(π) > −1 for odd n.

For even n, he proved that

Cn

(
π − π

n + 1

)
> −1

using an incorrect claim, namely, that

Cn

(
π − π

n + 1

)
=

n/2∑
k=1

(−1)kukvk (1.2)

with

uk = 1
k
− 1

n + 1 − k
and vk = cos

( kπ

n + 1

)
. (1.3)

From

u1 > u2 > · · · > un/2 > 0 and v1 > v2 > · · · > vn/2 > 0, (1.4)

he concluded that

Cn

(
π − π

n + 1

)
≥ −u1v1 = −

(
1 − 1

n

)
cos

( π

n + 1

)
> −1. (1.5)

Indeed, formula (1.2) only holds when we replace uk by

u∗
k = 1

k
+ 1

n + 1 − k
.

Although (1.4) remains valid, (1.5) becomes

Cn

(
π − π

n + 1

)
≥ −u∗

1v1 = −
(
1 + 1

n

)
cos

( π

n + 1

)
> −1,

but the inequality

−u∗
1v1 > −1

is only valid for n = 2. It is false for n = 4, 6, 8, .... This means that Young’s proof is still erroneous if we 
just correct the sign error in (1.3).
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Nevertheless, (1.1) is true. If we replace “>” by “≥”, then the inequality holds for all n ≥ 1, θ ∈ [0, π] and 
the constant lower bound −1 is sharp. In 1997, Brown and Koumandos [5] provided the following remarkable 
refinement of this result.

Proposition 1. For all integers n ≥ 2 and real numbers x ∈ [0, π] we have

Cn(θ) ≥ −5
6 . (1.6)

The constant lower bound is best possible.

In this article, we present an extension of (1.6). To that end, we need to know the ordering of the minimum 
values of Cn.

Theorem 1. Let n ≥ 1 be an integer and

an = min
0≤θ≤π

Cn(θ).

Then,

a3 < a5 < a7 < a4 < a2 < a9 < a6 < a8 (1.7)

and

a2m+1 < a2m < a2m+3 for m ≥ 4. (1.8)

As a consequence of Theorem 1 we obtain a generalization of (1.6). In fact, setting m = 3 in (1.9) below 
gives the Brown–Koumandos inequality.

Theorem 2. Let m ≥ 3 be an odd integer. For all integers n ≥ m − 1 and real numbers θ ∈ [0, π] we have

Cn(θ) ≥ Cm(π) =
m∑

k=1

(−1)k

k
. (1.9)

The sign of equality holds if and only if n = m and θ = π.

From (1.7) and (1.8) we conclude that in (1.6) we can replace the lower bound −5/6 by a larger number 
if we assume that n is an even integer.

Theorem 3. For all even integers n ≥ 2 and real numbers θ ∈ [0, π] we have

Cn(θ) ≥ C4

(4π
π

)
= − 5

48(5 +
√

5) = −0.75375.... (1.10)

The sign of equality holds if and only if n = 4 and θ = 4π/5.

Moreover, an application of Theorem 1 leads to a companion of Theorem 2.
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Theorem 4. Let m ≥ 6 be an even integer. For all even integers n ≥ m and real numbers θ ∈ [0, π] we have

Cn(θ) ≥ Cm

(
π − π

m + 1

)
=

m∑
k=1

(−1)k

k
cos

( kπ

m + 1

)
.

The sign of equality holds if and only if n = m and θ = π − π/(m + 1).

In 1950, Turán published the elegant inequality

0 < Pn−1(x)Pn+1(x) − P 2
n(x) (n = 1, 2, ...; −1 < x < 1),

where Pn denotes the nth Legendre polynomial. Since then, numerous papers appeared providing related 
results for other polynomials and special functions. We refer to Baricz et al. [3] and the references cited 
therein. Here, we show that with the help of Theorem 2 we are able to prove the following Turán-type 
inequalities.

Theorem 5. For all integers n ≥ 2 and real numbers θ we have

− 5
12 ≤ Cn−1(θ)Cn+1(θ) − C2

n(θ) ≤ 7
12 . (1.11)

Both bounds are best possible.

In 2015, Barnard et al. [4] proved that for odd integers n ≥ 1 and real numbers r ∈ (0, 1] and θ ∈ [0, π)
we have

n∑
k=1

cos(kθ)
k

rk >
n∑

k=1

(−1)k

k
rk.

Since

−
n∑

k=1

(−1)k

k
rk = r +

[(n−1)/2]∑
j=1

( r

2j + 1 − 1
2j

)
r2j

≤ r +
[(n−1)/2]∑

j=1

( 1
2j + 1 − 1

2j

)
r2j = r −

[(n−1)/2]∑
j=1

r2j

2j(2j + 1)

≤ r ≤ 1,

we obtain a counterpart of Young’s inequality.

Proposition 2. For all odd integers n ≥ 1 and real numbers r ∈ (0, 1] and θ ∈ [0, π] we have

n∑
k=1

cos(kθ)
k

rk ≥ −1. (1.12)

The constant lower bound is best possible.

In view of this result it is natural to ask for a corresponding inequality which is valid for all even integers 
n ≥ 2. An application of Theorem 3 leads to a companion of (1.12) and an extension of (1.10).



484 H. Alzer, M.K. Kwong / J. Math. Anal. Appl. 469 (2019) 480–492
Theorem 6. For all even integers n ≥ 2 and real numbers r ∈ (0, 1] and θ ∈ [0, π] we have

n∑
k=1

cos(kθ)
k

rk ≥ − 5
48(5 +

√
5). (1.13)

The sign of equality holds if and only if n = 4, r = 1, θ = 4π/5.

In the next section, we establish Theorems 1, 5 and 6. We conclude our paper with a few remarks and 
additional results. In Section 3, we apply Theorem 3 to prove the absolute monotonicity of a function defined 
in terms of the log-function, and we offer sharp upper and lower bounds for a trigonometric sum which is 
related to Cn(θ).

The numerical values given in the next section have been calculated via the computer program MAPLE 13.

2. Proofs

Proof of Theorem 1. As mentioned in Section 1 we have for all integers m ≥ 1,

a2m−1 = C2m−1(π) =
2m−1∑
k=1

(−1)k

k
and a2m = C2m

(
π − π

2m + 1

)
.

The numerical values

a2 = −0.75, a3 = −0.833333 · · · , a4 = −0.753757 · · · , a5 = −0.783333 · · · , a6 = −0.744491 · · · ,
a7 = −0.759523 · · · , a8 = −0.736555 · · · , a9 = −0.745634 · · · , a11 = −0.736544 · · · ,

lead to (1.7) and (1.8) with m = 4.
We define

Dn(θ) = Cn(π − θ) =
n∑

k=1

(−1)k cos(kθ)
k

.

Let m ≥ 5. By differentiation, we obtain

D′
2m(θ) =

2m∑
k=1

(−1)k+1 sin(kθ) = −sin(mθ) cos((2m + 1)θ/2)
cos(θ/2) .

Hence,

a2m = D2m

( π

2m + 1

)
= D2m(0) +

π/(2m+1)∫
0

D′
2m(x)dx

=
2m∑
k=1

(−1)k

k
− 2

2m + 1I2m

with

In =
π/2∫ sin(nx/(n + 1)) cos(x)

cos(x/(n + 1)) dx.
0
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Then, (1.8) is equivalent to

4m2 + 8m + 5
4(m + 1)(2m + 3) < I2m <

1
2 . (2.1)

We obtain

I2m ≥
π/2∫
0

sin
( 2mx

2m + 1

)
cos(x)dx

= 1
4m + 1

{
(2m + 1)2 cos

( π

2(2m + 1)

)
− 4m2 − 2m

}

≥ 1
4m + 1

{
(2m + 1)2

(
1 − 1

2

( π

2(2m + 1)

)2)
− 4m2 − 2m

}
.

This implies

I2m − 4m2 + 8m + 5
4(m + 1)(2m + 3) ≥ (24 − 2π2)m2 − (5π2 − 32)m− (3π2 − 14)

8(m + 1)(2m + 3)(4m + 1) (2.2)

≥ 4.2m2 − 17.4m− 15.7
8(m + 1)(2m + 3)(4m + 1)

> 0.

Since

sin(2mx/(2m + 1))
cos(x/(2m + 1)) = sin(x) − cos(x) sin(x/(2m + 1))

cos(x/(2m + 1))
< sin(x)

for x ∈ (0, π/2), we get

I2m <

π/2∫
0

sin(x) cos(x)dx = 1
2 . (2.3)

From (2.2) and (2.3) we conclude that (2.1) is valid. This completes the proof of Theorem 1. �
Proof of Theorem 5. We define

Gn(θ) = Cn−1(θ)Cn+1(θ) − C2
n(θ). (2.4)

Since

Gn(θ + 2π) = Gn(θ) and Gn(π + θ) = Gn(π − θ),

it suffices to prove (1.11) for θ ∈ [0, π].
Let t = cos(θ) ∈ [−1, 1]. We have

G2(θ) = 7 − 1(t + 1)w1(t) and G2(θ) = − 5 + 1(1 − t)w2(t)
12 6 12 6
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with

w1(t) = −2t3 + 8t2 − 8t + 5 and w2(t) = −2t3 + 4t2 + 4t + 1.

Since w1 and w2 are positive on [−1, 1], we conclude that (1.11) is valid for n = 2.
We have

G3(θ) = 1
72w3(t)

with

w3(t) = 16t6 + 48t5 − 120t4 − 24t3 + 90t2 − 18t− 9.

Applying Sturm’s theorem (see [9, section 79]) gives that for t ∈ [−1, 1] we obtain

42 − w3(t) > 0 and 30 + w3(t) > 0.

This leads to (1.11) with n = 3.
Next, we assume that n ≥ 4. We have the representation

Gn(θ) =
(cos((n + 1)θ)

n + 1 − cos(nθ)
n

)
Cn(θ) − cos(nθ) cos((n + 1)θ)

n(n + 1) . (2.5)

Using (2.5) and

cos((n + 1)θ)
n + 1 − cos(nθ)

n
= − 2

n + 1 sin(θ/2) sin((n + 1/2)θ) − cos(nθ)
n(n + 1)

leads to

|Gn(θ)| ≤
( 2
n + 1 sin(θ/2) + 1

n(n + 1)

)
|Cn(θ)| + 1

n(n + 1) . (2.6)

We consider two cases.
Case 1. 0 ≤ θ ≤ 0.64.
Then,

|Gn(θ)| ≤
( 2
n + 1 sin(0.32) + 1

n(n + 1)

) n∑
k=1

1
k

+ 1
n(n + 1) = yn, say.

Since (yn)n≥1 is decreasing with y4 = 0.4163..., we obtain

|Gn(θ)| < 5
12 = 0.4166....

Case 2. 0.64 ≤ θ ≤ π.
We set

c0 = 1
2

( 1
sin(θ/2) − 1

)
, ck = − cos(kθ) (1 ≤ k ≤ n), σk =

k∑
cj (0 ≤ k ≤ n).
j=0
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Then,

σ0 > 0 and σk = 1 − sin((k + 1/2)θ)
2 sin(θ/2) ≥ 0 (1 ≤ k ≤ n).

Let

b0 = b1 = b2 = b3 = 1
4 , bk = 1

k
(4 ≤ k ≤ n), bn+1 = 0.

Summation by parts gives

0 ≤
n∑

k=0

σk(bk − bk+1) =
n∑

k=0

bkck = 1
8

( 1
sin(θ/2) − 1

)
− 1

4

3∑
k=1

cos(kθ) −
n∑

k=4

cos(kθ)
k

.

Thus,

Cn(θ) ≤
3∑

k=1

(1
k
− 1

4

)
cos(kθ) + 1

8

( 1
sin(θ/2) − 1

)
= J(θ), say.

Since

−J ′(θ) = 1
2 sin(θ)

(
cos2(θ) + (1 + cos(θ))2

)
+ cos(θ/2)

16 sin2(θ/2)
,

we conclude that J is decreasing on (0, π]. Now, we distinguish two subcases.
Case 2.1. 0.64 ≤ θ ≤ 2.
We use Theorem 2 (with m = 5) and the monotonicity of J . This gives

−0.783... = −47
60 ≤ Cn(θ) ≤ J(0.64) = 0.917....

Thus,

|Cn(θ)| ≤ 0.92. (2.7)

Applying (2.6) and (2.7) yields

|Gn(θ)| ≤
(2

5 sin(1) + 1
20

)
0.92 + 1

20 = 0.405... < 5
12 .

Case 2.2. 2 ≤ θ ≤ π.
Since

−0.783... = −47
60 ≤ Cn(θ) ≤ J(2) = −0.371...,

we find

|Cn(θ)| ≤ 47
60 . (2.8)

From (2.6) and (2.8) we obtain

|Gn(θ)| ≤
(2 sin(π/2) + 1 ) 47 + 1 = 0.402... < 5

.
5 20 60 20 12
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This completes the proof of (1.11). Moreover, since G2(0) = −5/12 and G2(π) = 7/12, we conclude that 
the given bounds are sharp. �
Proof of Theorem 6. Let n ≥ 2 be an even integer and

F (z) =
n∑

k=1

zk

k
.

Then,

u(x, y) = �F (x + iy)

is harmonic on M = {(x, y) ∈ R
2|x = r cos(θ), y = r sin(θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π}, that is, we have

∂2

∂x2u(x, y) + ∂2

∂y2u(x, y) = 0.

It follows that u takes its minimum on the boundary of M .
Let x ∈ [0, 1]. Then,

u(x, 0) =
n∑

k=1

xk

k
≥ 0.

Let v(x) = u(−x, 0). Since

v′(x) = xn − 1
x + 1 ≤ 0,

we obtain

v(x) ≥ v(1) = −
[n/2]∑
k=1

1
2k(2k − 1)

> −
∞∑
k=1

1
2k(2k − 1)

= − log 2

> c ,

where c = −5(5 +
√

5)/48. Applying Theorem 3 gives for θ ∈ [0, π],

u(cos(θ), sin(θ)) =
n∑

k=1

cos(kθ)
k

≥ c .

Thus, we have u(x, y) ≥ c for (x, y) ∈ ∂M . This implies that (1.13) is valid for all even integers n ≥ 2 and 
real numbers r ∈ (0, 1], θ ∈ [0, π]. Moreover, equality holds if and only if n = 4, r = 1, θ = 4π/5. �
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3. Remarks and additional results

Remark 1. Let ωI(f) be the oscillation of a function f on an interval I. From Theorem 5 we obtain that if 
Gn denotes the function defined in (2.4), then we have for all n ≥ 2,

ωR(Gn) ≤ 1.

Since ωR(G2) = 1, we conclude that the upper bound 1 is best possible.

Remark 2. The identity

n∑
k=1

cos(kθ)
k

rk =
n∑

k=1

cos(k(π − θ))
k

(−r)k

reveals that the inequalities (1.12) and (1.13) are valid not only for r ∈ (0, 1], but for r ∈ [−1, 1].

Remark 3. A function f : I → R (where I ⊂ R is an interval) is called absolutely monotonic if f has 
derivatives of all orders and satisfies

f (n)(x) ≥ 0 for n = 0, 1, 2, ... and x ∈ I.

These functions have interesting applications in probability theory and other fields. The main properties of 
absolutely monotonic functions can be found in Widder [10, chapter 4].

An application of Young’s inequality and (1.10) leads to the following result.

Theorem 7. If a ≥ 5(5 +
√

5)/48 = 0.75375..., b ≥ 1 and c ∈ [−1, 1], then the function

r 	→
(
a + br

1 − r2 − 1
2(1 − r) log(1 − 2cr + r2)

)

is absolutely monotonic on [0, 1).

Proof. Let θ = arccos(c) ∈ [0, π] and

d0 = 0, dk = dk(θ) = cos(kθ)
k

(k ≥ 1).

We define for r ∈ [0, 1),

Uc(r) = −1
2 log(1 − 2cr + r2).

Using the representation

Ucos(θ)(r) =
∞∑

dk(θ)rk,

k=0
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see Gould [6, p. 7], gives

1
1 − r

Uc(r) =
∞∑
k=0

rk
∞∑
k=0

dkr
k

=
∞∑
k=0

k∑
ν=0

dνr
k

=
∞∑

n=0

2n∑
ν=0

dνr
2n +

∞∑
n=0

2n+1∑
ν=0

dνr
2n+1.

Let

Va,b,c(r) = a

1 − r2 + br

1 − r2 + Uc(r)
1 − r

.

Then,

Va,b,c(r) =
∞∑

n=0

( 2n∑
ν=0

dν + a
)
r2n +

∞∑
n=0

(2n+1∑
ν=0

dν + b
)
r2n+1

=
∞∑

n=0
d∗nr

n.

From Young’s inequality and (1.10) we conclude that d∗n ≥ 0 for n ≥ 0. It follows that

dn

drn
Va,b,c(r) ≥ 0 for n = 0, 1, 2, ... and r ∈ [0, 1).

This means that Va,b,c is absolutely monotonic on [0, 1). �
Remark 4. The sine counterpart of Young’s inequality states that for all n ≥ 1 and θ ∈ [0, π] we have

n∑
k=1

sin(kθ)
k

≥ 0. (3.1)

This result is known in the literature as the Fejér–Jackson inequality. A proof as well as historical comments 
on (3.1) are given in Milovanović et al. [8, chapter 4]. We conclude this paper with a companion of (1.1)
and (3.1).

Theorem 8. For all integers n ≥ 2 and real numbers θ we have

−1
2 ≤ − 1

n

n−1∑
k=1

1
k
≤

n−1∑
k=1

cos(kθ) sin((n− k)θ)
k(n− k) ≤ 1

n

n−1∑
k=1

1
k
≤ 1

2 . (3.2)

All bounds are best possible.
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Proof. We denote the interior sum in (3.2) by Hn(θ). By differentiation we obtain

H ′
n(θ) =

n−1∑
k=1

(cos(kθ) cos((n− k)θ)
k

− sin(kθ) sin((n− k)θ)
n− k

)

= 1
2

n−1∑
k=1

{(1
k
− 1

n− k

)
cos((2k − n)θ) +

(1
k

+ 1
n− k

)
cos(nθ)

}
= cos(nθ)

n−1∑
k=1

1
k
.

This leads to the representation

Hn(θ) = sin(nθ)
n

n−1∑
k=1

1
k
.

It follows that

|Hn(θ)| ≤ 1
n

n−1∑
k=1

1
k

= zn, say.

Since

z2 = z3 = 1
2 and zn = zn+1 + 1

n(n + 1)

n−1∑
k=2

1
k
> zn+1 (n ≥ 3),

we obtain

zn ≤ 1/2 for n ≥ 2.

This settles (3.2). Moreover, from

Hn

(3π
2n

)
= − 1

n

n−1∑
k=1

1
k
, Hn

( π

2n

)
= 1

n

n−1∑
k=1

1
k

and

H2

(3π
4

)
= H3

(π
2

)
= −1

2 , H2

(π
4

)
= H3

(π
6

)
= 1

2

we conclude that the given bounds are sharp. �
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