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1. Introduction

Let L(H) be the algebra of bounded linear operators on a separable complex Hilbert space H with its 
inner product 〈·, ·〉 which is linear on the first and antilinear on the second. A conjugation C on H is an 
antilinear isometric involution on H. In other words, for any vectors x and y in H, the equality

〈Cx,Cy〉 = 〈y, x〉 (1)

holds. In particular, C2 = I where I is the identity operator on H. We call an operator T ∈ L(H) complex 
symmetric if there exists a conjugation C on H such that T = CT ∗C.

A vector x ∈ H is called isotropic (with respect to C) if 〈Cx, x〉 = 0. For example, when H = C2 and C
is the canonical conjugation on C2, i.e., C(x, y) = (x, y), any vector of the form (a, ±ia) with any complex 
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number a becomes isotropic with respect to the canonical conjugation C. It seems that the existence of 
these isotropic vectors gives some difficulty in understanding the structure of conjugations. See [4] for more 
examples and details.

On these isotropic vectors on H, Garcia et al. [4,5] showed two well-known results: the existence of 
isotropic vectors in any subspace of H whose dimension is at least two (which is Lemma 4.11 in [4] or 
Lemma 2.2 in this paper) and the relation between the simplicity of an eigenvalue λ of T and the non-
existence of its isotropic eigenvectors for λ when T is complex symmetric (which is Theorem 4.12 in [4]). 
Here an eigenvalue λ is called simple if its algebraic multiplicity is 1, or equivalently dim ker(λI − T ) = 1.

Recently, Chō and Tanahashi [2] extended the concept of conjugations to a complex Banach space X
(with its norm ‖ · ‖) as antilinear involutions whose operator norms are at most 1. More precisely, any 
operator C : X → X is called a conjugation on X , if C satisfies

C2 = I, ‖C‖ ≤ 1, C(x + y) = Cx + Cy, C(λx) = λCx, (2)

where x and y are in X and λ is a complex number. Note that (2) implies that ‖Cx‖ = ‖x‖ for all x ∈ X . 
They showed that the definition above is the same as the usual one for conjugations in a complex Hilbert 
space H.

With these extended conjugations C on X , in this paper, we would like to give affirmative answers to two 
results related to isotropic vectors in [4], but on X . More precisely, after generalizing isotropic vectors to X , 
we show in Theorem 2.4 that they always exist if dimX ≥ 2. In the proof of this we use linear functionals 
in the dual space of X , denoted by X ∗. This gives us strong idea that, instead of an inner product, linear 
functionals can be employed on X .

Based on this impression, Proposition 3.1 gives an equivalent condition for the C-symmetry of linear 
operators on H via its dual space H∗. (For the definition of the C-symmetry, see Section 3.) This equivalent 
condition is applied to define complex symmetric operators or more generally C-symmetric operators on 
X . Since the papers to deal with the C-symmetry on X are very rare (for example we knew only [2] where 
normal and C-symmetric operators are considered), we believe that our equivalent definition of C-symmetric 
operators via X ∗ sheds lights on understanding their true meaning and dealing with them on X . After the 
new definition of the C-symmetry on X , we discuss several properties of these C-symmetric operators and 
Theorem 3.11. The latter is the extension of Theorem 4.12 in [4].

2. Isotropic vectors in Banach spaces

Due to the lack of an inner product, we cannot directly use the original definition of isotropic vectors in 
a complex Hilbert space H in order to extend them to a complex Banach space X . Instead observe that

〈Cx, x〉 = 0 ⇐⇒ Cx ⊥ x ⇐⇒ Cx ⊥ Mx,

where Mx is the one-dimensional subspace generated by x.
As a generalization of orthogonality to X , we adapt the orthogonality in the Birkhoff-James sense on 

[2,1,8,9]. For given two elements x and y in X , x is called orthogonal to y in the Birkhoff-James sense, in 
short x ⊥B y, if

‖x + λy‖ ≥ ‖x‖ for all λ ∈ C (3)

or, equivalently

‖x + m‖ ≥ ‖x‖ for all m ∈ My,
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where My is the one-dimensional subspace generated by y. Note that, by the Hahn-Banach theorem, x ⊥B y

if and only if there is a norm-one linear functional f in X ∗ such that f(x) = ‖x‖ and f(y) = 0. For more 
details, see [8] and the references therein.

Based on our discussion, isotropic vectors on X are defined as follows:

Definition 2.1. A vector x in X is called isotropic, if Cx ⊥B x, or equivalently, for all λ ∈ C,

‖Cx + λx‖ ≥ ‖Cx‖.

Since C is norm-preserving, Cx ⊥B x implies that x ⊥B Cx (which is notable since the orthogonality in 
the Birkhoff-James sense is not symmetric. See [1,8] for more details). Again, by the Hahn-Banach theorem, 
x ⊥B Cx if and only if there is f in X ∗ such that ‖f‖ = 1, f(x) = ‖x‖ and f(Cx) = 0. Keep in mind 
that the latter will be very useful later in order to show the orthogonality in the Birkhoff-James sense, or 
equivalently isotropic property.

From now on let us focus on the existence of isotropic vectors. To express the idea and to be self-contained, 
we insert their existence on H in [4].

Lemma 2.2. ([4, Lemma 4.11]) If C : H → H is a conjugation, then every subspace whose dimension is at 
least two contains isotropic vectors for the bilinear form 〈·, C·〉.

For example, if S is the unilateral shift on �2(N), then T = S ⊕ S∗ is complex symmetric from [6]. 
Moreover, every eigenvector of T is isotropic because T has each point in D (open unit disk) as a simple 
eigenvalue from [4].

Proof of Lemma 2.2. We consider the span of two linearly independent vectors x1 and x2. If x1 or x2 is 
isotropic, then it is trivial. If neither x1 nor x2 is isotropic, then

y1 = x1 and y2 = x2 −
〈x2, Cx1〉
〈x1, Cx1〉

x1

are C-orthogonal and have the same span as x1, x2. In this case, either y2 is isotropic (which is trivial) 
or neither y1 nor y2 is isotropic. If the latter happens, we may assume that y1 and y2 satisfy 〈y1, Cy1〉 =
〈y2, Cy2〉 = 1. Then the vectors y1 ± iy2 are both isotropic and have the same as x1 and x2. �

In order to show our affirmative answer on Banach-space version of the lemma above, introduce the 
Gram-Schmidt process on X via linear functionals in [7].

Lemma 2.3. ([7, Proposition 2.1]) Let x1, x2 be vectors of X . Then the following are equivalent;

(i) {x1, x2} is linearly independent.
(ii) There exist functionals f1, f2 in X ∗ such that f1(x1) 
= 0, f2(x1) = 0, and f2(x2) 
= 0.

Proof. This result is an easy application of Hahn-Banach theorem. �
We now see the existence of isotropic vectors on X via a similar idea of Lemma 2.2.

Theorem 2.4. If C : X → X is a conjugation, then every subspace whose dimension is at least two contains 
isotropic vectors for the conjugation C.
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Proof. We consider the span of two linearly independent vectors x1 and x2. If x1 or x2 is isotropic, then 
we are done. If neither x1 nor x2 is isotropic, then by Lemma 2.3, there exist functionals f1, f2 in X ∗ with 
‖f1‖ = ‖f2‖ = 1 such that f1(Cx1) 
= 0, f2(Cx1) = 0 and f2(Cx2) 
= 0. Put

x
(1)
2 = x2 −

f1(Cx2)
f1(Cx1)

x1, y1 := x1

f1(Cx1)
and y2 := x

(1)
2

f2(Cx
(1)
2 )

.

Then f1(Cy1) = 1, f2(Cy1) = 0, f2(Cy2) = 1 and f1(Cy2) = 0. Indeed, by Gram-Schmidt process in [7],

f1(Cy2) = f1(Cx
(1)
2 )

f2(Cx
(1)
2 )

=
f1(Cx2 − f1(Cx2)

f1(Cx1)Cx1)

f2(Cx2 − f1(Cx2)
f1(Cx1)Cx1)

=
f1(Cx2) − f1(Cx2)

f1(Cx1)f1(Cx1)

f2(Cx2) − f1(Cx2)
f1(Cx1)f2(Cx1)

= f1(Cx2) − f1(Cx2)
f2(Cx2)

= 0.

Thus Cy1 (resp. y1) is Birkhoff-James orthogonal to Cy2 (resp. y2), and the linear span of y1 and y2 is the 
same one spanned by x1 and x2. In this case, either y2 is isotropic (which is trivial), or neither y1 nor y2 is 
isotropic.

If the latter happens, observe that f1(y1) 
= 0, f1(y2) = 0, f2(y1) = 0 and f2(y2) 
= 0. This is because, 
for example if f1(y1) = 0 happens, then Cy1 is orthogonal to y1. Therefore y1 becomes isotropic, which is 
impossible in this case. A similar argument also shows the other three cases.

Take f := f1 ± if2. Then

f(C(y1 ∓ iy2)) = f(Cy1 ± iCy2) = (f1 ± if2)(Cy1 ± iCy2)

= f1(Cy1) ± if1(Cy2) ± if2(Cy1) − f2(Cy2)

= 1 − 1 = 0.

On the other hand,

f(y1 ∓ iy2) = (f1 ± if2)(y1 ∓ iy2)

= f1(y1) ∓ if1(y2) ± if2(y1) + f2(y2)

= f1(y1) + f2(y2).

The quantity f1(y1) + f2(y2) can be chosen to be nonzero via selecting f1 and f2 such that f1(y1) > 0 and 
f2(y2) > 0 (for example by replacing f1 by eiθf1 with a real number θ). All this means that the vectors 
y1 ∓ iy2 are both isotropic. �

Therefore, we have the following corollary.

Corollary 2.5. Let T ∈ L(X ) be complex symmetric and let λ be an eigenvalue of T . If T has no isotropic 
eigenvectors for λ, then dim ker(T − λ) = 1.
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Here L(X ) is the algebra of bounded linear operators on X .

Proof. Suppose not, i.e., if dim ker(T − λ) ≥ 2, then Theorem 2.4 indicates that the subspace ker(T − λ)
contains an isotropic eigenvector which is impossible. �

In Section 3 this corollary (and its converse) will be discussed again, especially when T is C-symmetric 
in some sense on X . It will also be seen how useful linear functionals are to deal with isotropic vectors and 
even to extend the C-symmetry to X .

We now consider a natural dual element related to a given conjugation C. Let C be a conjugation on a 
complex Banach space X . We define a dual conjugation C∗ of C defined by

(
C∗(f)

)
(x) := f(Cx). (4)

Then C∗ is a conjugation on the dual space X ∗ of X . See [2] for more details. Then we have the following 
theorem:

Proposition 2.6. Let x be a unit vector of a Banach space X and let C be a conjugation on X . Let f be a 
linear functional on X such that ‖f‖ = f(x) = ‖x‖ = 1 and f(Cx) = 0. If x ⊥B Cx, then f ⊥B C∗(f). In 
particular, x is isotropic.

Proof. Let x̂ be defined by x̂(g) = g(x) (g ∈ X ∗), that is, Gelfand transformation of x. Then x̂ ∈ X ∗∗ and 
it satisfies

‖x̂‖ = x̂(f) = f(x) = 1 and x̂(C∗(f)) = f(Cx) = 0 = 0.

Hence we have f ⊥B C∗(f). �
Note that this natural dual conjugation C∗ of C in (4) will be discussed and used in Section 3.

3. C-symmetric operators in Banach spaces

Let L(X ) be the algebra of bounded linear operators on a complex Banach space X . In this section, we 
would like to extend the concept of complex symmetric operators or more generally C-symmetric operators 
from a complex Hilbert space H to a complex Banach space X . After that, we also want to see their 
properties. To do this, let us first recall that, in H, the C-symmetry of a bounded linear operator T on H
is expressed by CT ∗C = T . In particular, with the aid of (1), for any vectors x and y in H,

〈CTy, x〉 = 〈CTCCy, x〉 = 〈T ∗Cy, x〉 = 〈Cy, Tx〉 = 〈CTx, y〉. (5)

However, due to the lack of an inner product, we cannot use the original condition to define complex 
symmetric operators on X . Instead, we interpret (5) via linear functionals in the dual space H∗ of H in 
order to generalize the notion of C-symmetric operators to X .

Proposition 3.1. For a bounded linear operator T on H, CT ∗C = T if and only if for every pair of unit 
vectors, say x and y, there are two functionals f and g in H∗ such that ||f || = ||g|| = 1, f(x) = g(y) = 1, 
f(Cy) = g(Cx) and f(CTy) = g(CTx).
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Proof. Choose two unit vectors x and y in H. Then the necessity is trivially true by putting f(·) = 〈·, x〉 and 
g(·) = 〈·, y〉. For the sufficiency, observe that three conditions ||f || = 1, ||x|| = 1 and f(x) = 1 imply that 
f(·) = 〈·, x〉 by Riesz representation theorem. (More precisely, by Riesz representation theorem f(·) = 〈·, x0〉
with some x0 ∈ H. Moreover, x0 should be exactly x, since the operator norm condition ||f || = 1 implies 
that x0 is some unit vector and in this case the function value condition f(x) = 1 is true only when x0 = x

among unit vectors.) Since 〈CTx, y〉 = 〈Cy, Tx〉 = 〈T ∗Cy, x〉 = 〈Cx, CT ∗Cy〉, it follows that

f(CTy) = g(CTx) ⇐⇒ 〈CTy, x〉 = 〈CTx, y〉
⇐⇒ 〈Cx, Ty〉 = 〈Cx,CT ∗Cy〉,

which says that T is C-symmetric. �
Note that, in Proposition 3.1, we used the fact that, for given a unit vector x ∈ H, there is a unique

norm-one linear functional f with f(x) = 1, which is just f(·) = 〈·, x〉. Based on this observation, we would 
like to extend the C-symmetry of linear operators to Banach spaces and in particular to those satisfying 
the property above, that is, for each unit vector x, there is a unique norm-one functional f with f(x) = 1. 
It is then well-known that Phelps [10] and Taylor [11] characterize the condition for such a property on X
as follows:

Theorem 3.2. ([10,11]) If X ∗ is strictly convex, then every subspace, say M, has a unique norm-preserving 
extension of continuous linear functionals on M. The converse holds when X is reflexive.

Recall that a normed space X is called strictly convex, if x, y ∈ S and x 
= y imply ‖λx + (1 − λ)y‖ < 1
for 0 < λ < 1, where S is the unit sphere {x ∈ X | ‖x‖ = 1} in X , i.e., S contains no line segments. See [10]
for more details. It is worth to mention that, due to the theorem above, when X ∗ is strictly convex, then 
for given a unit vector x there exists the unique norm-one functional f in X ∗ satisfying f(x) = 1.

A typical example of such a complex Banach space in our mind is Lp(T , dμ) with p > 1 but p 
= 2, where 
T is the unit circle and dμ is a finite measure on T . More precisely, by Riesz representation theorem for 
Lp(T ) says that, for a given norm-one linear functional φ, there exists unique g ∈ Lq(T , dθ) (essentially up 
to measure dμ) with 1/p + 1/q = 1, such that ||g||q = ||φ|| = 1 and

φ(f) =
∫

T

fg dμ, f ∈ Lp(T , dμ).

It is also worth to mention the well-known James’ theorem which says that X is a reflexive Banach space if 
and only if there exists x ∈ X with ||x|| ≤ 1 such that ||f || = f(x). This means that every continuous linear 
functional on X attains its supremum on the closed unit ball.

Based on Proposition 3.1 and the observation above, we extend the C-symmetry of linear operators to 
complex Banach spaces X via their dual spaces as follows:

Definition 3.3. Let T ∈ L(X ) and let C be a conjugation on X . Then T is called C-symmetric in the sense 
of X ∗, if, for every pair of unit vectors x and y in X , there exist two norm-one functionals f and g in X ∗

such that f(x) = g(y) = 1, f(Cy) = g(Cx) and f(CTy) = g(CTx).

Here L(X ) is the set of all bounded linear operators on X . The functionals are sometimes denoted by 
fx,T and gy,T , especially when we emphasize the dependence of these functionals on x, y and T . However, 
in many cases when they are unambiguous, let us ignore these subscripts for convenience.
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Remarks. 1. Even though the definition above seems a very natural extension of the C-symmetry of linear 
operators from H to X via its dual space, it would not be clear if the identity operator I of X would be 
C-symmetric in the sense of X ∗.

2. It is worthy mentioning that, if there exists T ∈ L(X ) which is C-symmetric in the sense of X ∗, then 
so is the identity operator I. The functionals f and g can be chosen for both T and I at the same time (i.e., 
fx,T = fx,I and gy,T = gy,I).

3. Even though T and S are C-symmetric in the sense of X ∗, we do not know if fx,T = fx,S nor if 
f(CTy) = g(CTx) implies f(TCy) = g(TCx) in general.

4. On general complex Banach spaces, Definition 3.3 seems weaker. One of the reasons is that 〈y, x〉 =
〈Cx, Cy〉 in H, which can be re-written to

fx(y) := 〈y, x〉 = 〈Cx,Cy〉 =: gCy(Cx)

via linear functionals in X ∗. This would, however, be hard to achieve on general Banach spaces.

To overcome the weakness of Definition 3.3 (which was addressed on 3 and 4 in Remarks above), in 
most cases we will assume that X ∗ is strictly convex. Then, due to Theorem 3.2, these functionals fx,T and 
gy,T are uniquely chosen independently of C-symmetric operators T in the sense of X ∗. Besides this, the 
following proposition expresses several useful properties when X ∗ is strictly convex:

Proposition 3.4. Let X ∗ be strictly convex and let the identity operator I on X be C-symmetric in the sense 
of X ∗. Let T ∈ L(X ). For two given unit vectors x and y denote by f and g two functionals satisfying 
f(x) = g(y) = 1 and f(Cy) = g(Cx). Then the following statements hold:

(i) the (unique) norm-one functional whose function value at Cx is 1 is C∗f . (Note that ‖Cx‖ = 1 again.)
(ii) f(y) = g(x) and f(y) = (C∗g)(Cx).
(iii) If T is C-symmetric in the sense of X ∗, then f(TCy) = g(TCx).
(iv) T is C-symmetric in the sense of X ∗ if and only if CTC is also C-symmetric in the sense of X ∗.

In any Hilbert space these are very easy to show. For example, (ii) is true due to f(y) = 〈y, x〉 = 〈x, y〉 =
g(x) and f(y) = 〈y, x〉 = 〈Cx, Cy〉 = (C∗g)(Cx).

Proof. With the computation (C∗f)(Cx) = f(x) = 1 and (C∗g)(Cy) = g(y) = 1, the strict convexity of X ∗

leads (i). For (ii), apply the C-symmetry of I in the sense of X ∗ on (two unit vectors) x and Cy. Then this 
and (i) show that

f(y) = f(C(Cy)) = (C∗g)(Cx) = g(C(Cx)) = g(x).

For (iii), the C-symmetry of T in the sense of X ∗ on Cx and Cy (with (i)) implies that

f(TCy) = f(C(CTCy)) = (C∗f)(CTCy) = (C∗g)(CTCx) = g(TCx),

which shows (iii). For the last (iv), due to the strict convexity of X ∗, it is enough to show that f(C(CTC)y) =
g(C(CTC)x), which is just (iii). �

From now on let us see some properties of the C-symmetric operators in the sense of X ∗.
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Proposition 3.5. If T ∈ L(X ) is C-symmetric in the sense of X ∗, then the following properties hold:

(i) λT and T − λI are C-symmetric in the sense of X ∗ for any complex number λ (and vice versa).
(ii) T |M is C-symmetric in the sense of X ∗ for any nonzero subspace M of X .

Note that in the proposition above we do not assume that X ∗ is strictly convex.

Proof. Since these are straightforward, they are left to the readers. �
Theorem 3.6. Let X ∗ be strictly convex and let T, S ∈ L(X ) be C-symmetric in the sense of X ∗. Then the 
following statements hold.

(i) T + S is C-symmetric in the sense of X ∗.
(ii) If TS = ST , then TS is C-symmetric in the sense of X ∗.

Proof. (i) Choose two unit vectors x and y in X . Since T and S are C-symmetric in the sense of X ∗, 
there are four norm-one functionals fT , fS , gT and gS such that fT (x) = fS(x) = gT (y) = gS(y) = 1, 
fT (Cy) = gT (Cx), fT (CTy) = gT (CTx), fS(Cy) = gS(Cx) and fS(CSy) = gS(CSx). Due to the strict 
convexity of X ∗, fT = fS and gT = gS . Put f = fT (= fS) and g = gT (= gS) simply. Therefore, we have 
that

f(C(T + S)y) = f(CTy) + f(CSy) = g(CTx) + g(CSx) = g(C(T + S)x),

which means that T + S is C-symmetric in the sense of X ∗.
(ii) To see that TS is C-symmetric in the sense of X ∗, for given two unit vectors x and y, we need 

to show that there exist two norm-one linear functionals fTS and gTS such that fTS(x) = gTS(y) = 1, 
fTS(Cy) = gTS(Cx) and fTS(CTSy) = gTS(CTSx).

Due to the C-symmetry in the sense of X ∗ of T and S, there are norm-one functionals fT , fS , gT and 
gS satisfying the following:

fT (x) = fS(x) = gT (y) = gS(y) = 1,

fT (Cy) = gT (Cx), fS(Cy) = gS(Cx),

fT (CTy) = gT (CTx), fS(CSy) = gS(CSx).

Since X ∗ is strictly convex, Theorem 3.2 reveals that fT = fS and gT = gS . (This is because fT and fS
are the same on the one-dimensional linear span of x and gT and gS are the same on that of y.) Due to 
the same reason, if such fTS and gTS exist, they should also be f and g, respectively. So we get rid of the 
subscripts and put them by f and g. They then satisfy

f(x) = g(y) = 1, f(Cy) = g(Cx),

f(CTy) = g(CTx), f(CSy) = g(CSx)

and it suffices to show that f(CTSy) = g(CTSx).
Let us now assume that Tx 
= 0 and Sy 
= 0. Since Tx/‖Tx‖ and Sy/‖Sy‖ are unit vectors, a similar 

argument above indicates that there are norm-one functionals h and k such that

h
( Tx )

= k
( Sy )

= 1, h
(
C

Sy )
= k

(
C

Tx )
, (6)
‖Tx‖ ‖Sy‖ ‖Sy‖ ‖Tx‖
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h
(
CT

Sy

‖Sy‖
)

= k
(
CT 2x/‖Tx‖

)
and h

(
CS2y/‖Sy‖

)
= k

(
CS

Tx

‖Tx‖
)
.

Similarly we apply T and S’s C-symmetry on two other pairs of unit vectors, {x, Sy/‖Sy‖} and 
{y, Tx/‖Tx‖}. Then, by the uniqueness of the norm-one functional of each unit vector, it implies that

f(x) = k(Sy/‖Sy‖) = 1, g(y) = h(Tx/‖Tx‖) = 1,

f(CSy/‖Sy‖) = k(Cx), g(CTx/‖Tx‖) = h(Cy),

f(CTSy/‖Sy‖) = k(CTx), g(CSTx/‖Tx‖) = h(CSy). (7)

Due to (6), (7) and TS = ST , we have that

f(CT (Sy)) = ‖Sy‖k(CTx) = ‖Tx‖h(CSy) = g(CS(Tx)) = g(CTSx), (8)

as desired.
If Tx = Sy = 0, then the commutativity of T and S, TS = ST , leads f(CTSy) = g(CTSx) trivially. 

Hence, let us assume that Tx = 0 but Sy 
= 0. (A similar proof works for the other case when Sy = 0 but 
Tx 
= 0.) Then the first equality on (7) shows that

f(CTSy) = ‖Sy‖k(CTx) = 0,

which implies f(CTSy) = g(CTSx). Therefore TS becomes C-symmetric in the sense of X ∗. �
To see more intuitively what is going on, note that, when X is a Hilbert space, our four functionals are 

just f(·) = 〈·, x〉, g(·) = 〈·, y〉, ‖Tx‖h(·) = 〈·, Tx〉 and ‖Sy‖k(·) = 〈·, Sy〉. This means that (8) is nothing 
but

〈CTSy, x〉 = 〈CTx, Sy〉 = 〈CSy, Tx〉 = 〈CSTx, y〉 = 〈CTSx, y〉,

which is clear due to the C-symmetry of T and S, i.e., CTC = T ∗ and CSC = S∗ and the properties of 
any conjugation C such as 〈Cx, Cy〉 = 〈y, x〉 and C2 = I.

As an easy consequence of the theorem above, we have the following:

Corollary 3.7. Let X ∗ be strictly convex. If T ∈ L(X ) is C-symmetric in the sense of X ∗, then so is p(T )
for any polynomial p(z).

Proposition 3.8. Let X ∗ be strictly convex and let T ∈ L(X ) be C-symmetric in the sense of X ∗. If T−1

exists, then it is also C-symmetric in the sense of X ∗.

It is worth to mention that this proof is similar to that of (ii) in Theorem 3.6.

Proof. Choose any two unit vectors x and y in X . Due to the C-symmetry in the sense of X ∗ of T , there 
are two norm-one functionals f and g such that

f(x) = g(y) = 1, f(Cy) = g(Cx), f(CTy) = g(CTx).

Since X ∗ is strictly convex, it suffices to show that f(CT−1y) = g(CT−1x) for the C-symmetry of T−1 in 
the sense of X ∗.



M. Chō et al. / J. Math. Anal. Appl. 479 (2019) 752–764 761
The invertibility of T says that both T−1x and T−1y should not be zero vectors. We now apply the 

similar argument in the proof of (ii) in Theorem 3.6 except that T−1x

‖T−1x‖ and 
T−1y

‖T−1y‖ are two chosen unit 

vectors. Denote by h and k two norm-one functionals which satisfy

h
( T−1x

‖T−1x‖
)

= k
( T−1y

‖T−1y‖
)

= 1,

h
(
C

T−1y

‖T−1y‖
)

= k
(
C

T−1x

‖T−1x‖
)
,

h
(
C

y

‖T−1y‖
)

= k
(
C

x

‖T−1x‖
)
. (9)

By performing the C-symmetry in the sense of X ∗ of T on two other pairs of unit vectors {x, T−1y/‖T−1y‖}
and {y, T−1x/‖T−1x‖}, the strict convexity of X ∗ indicates that

f(x) = k(T−1y/‖T−1y‖) = 1, g(y) = h(T−1x/‖T−1x‖) = 1,

f(CT−1y/‖T−1y‖) = k(Cx), g(CT−1x/‖T−1x‖) = h(Cy), (10)

f(Cy/‖T−1y‖) = k(CTx), g(Cx/‖T−1x‖) = h(CTy).

Then (9) and (10) say that

f(C(T−1y)) = ‖T−1y‖k(Cx) = ‖T−1x‖h(Cy) = g(C(T−1x)),

which means that T−1 is also C-symmetric in the sense of X ∗. �
Proposition 3.9. Let X ∗ be strictly convex. If the sequence {Tn} of C-symmetric operators in the sense of 
X ∗ converges to T ∈ L(X ) in the strong operator norm topology, then T is also C-symmetric in the sense 
of X ∗.

Proof. With a similar argument in the proof of Theorem 3.6 it suffices to show that f(CTy) = g(CTx) for 
given two unit vectors x and y. Due to the continuity of f and g and the assumption on the convergence 
above, it follows that

f(CTy) = lim
n→∞

f(CTny) = lim
n→∞

g(CTnx) = g(CTx). �
So far we have examined basic properties of C-symmetric operators in the sense of X ∗ and showed the 

closedness of the set of all such operators under the strong operator norm topology. Let us extend Theorem 
4.12 in [4] on H which shows the relation between the simplicity of an eigenvalue and the non-existence of 
its isotropic eigenvectors. For this, we generalize so-called C-projections to X .

Definition 3.10. A projection P is called a C-projection in the sense of X ∗ if it is C-symmetric in the sense 
of X ∗.

Let λ be an isolated eigenvalue of a bounded linear operator T on X . Then the Riesz idempotent E of T
with respect to λ is defined by

E := 1
2πi

∫
(z − T )−1dz
∂D
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where D is an open disk centered at λ with D ∪ σ(T ) = {λ}. It is then well-known from [3] that E2 =
E, ET = TE, σ(T |ran(E)) = {λ} and ker(T − λI) ⊂ ran (E). When T is C-symmetric in the sense of X ∗, 
Theorem 3.6 and Proposition 3.9 imply that E is a C-projection in the sense of X ∗, i.e., for given two 
unit vectors x and y, there exist two norm-one linear functionals f and g satisfying f(x) = g(y) = 1, 
f(Cy) = g(Cx) and f(CEy) = g(CEx).

The following theorem is a generalization of Theorem 4.12 in [4] with the C-symmetry in the sense of X ∗:

Theorem 3.11. Let T ∈ L(X ) be C-symmetric in the sense of X ∗ and λ an isolated eigenvalue of T . If T
has no isotropic eigenvectors for λ, then λ is simple. Moreover, the converse is true if X ∗ is strictly convex.

Proof. Let us mention that the theorem above will be proven in the contrapositive way. Assume that λ
is not a simple eigenvalue. Then there are two cases to discuss as follows. If dim ker(T − λ) > 1, then 
Theorem 2.4 says that T has an isotropic eigenvector corresponding to λ. If dimker(T −λ) = 1, then choose 
two (generalized) eigenvectors x and y satisfying (T −λ)x = 0 and (T −λ)y = x. Put the condition ‖x‖ = 1
for convenience. Since T is C-symmetric in the sense of X ∗, we can choose two norm-one linear functionals 
f and g satisfying f(x) = g(y/‖y‖) = 1, f(Cy) = ‖y‖g(Cx) and f(CTy) = ‖y‖g(CTx). Then

f(Cx) = f(C(T − λ)y) = ‖y‖g(C(T − λ)x) = 0.

Since we have found one functional f with f(x) = 1 and f(Cx) = 0, x becomes isotropic, which is impossible. 
Therefore, λ is simple.

For the converse, assume that X ∗ is strictly convex and λ is a simple eigenvalue with an isotropic 
eigenvector x, i.e., Tx = λx. Since x is isotropic, there exists a unique norm-one functional f such that 
f(x) = 1 and f(Cx) = 0. Since the Riesz idempotent E with respect to λ is a C-projection in the sense 
of X ∗ onto the span of x, the C-symmetry of T and E in X ∗ and the strict convexity of X ∗ imply that, 
for given any unit vector z, there exist unique norm-one functionals f and g such that f(x) = 1, g(z) = 1, 
f(Cz) = g(Cx), f(CEz) = g(CEx) and f(CTz) = g(CTx). Then (when Ez = αx with some number α)

f(Cz) = f(CEz) + f(C(I −E)z) = αf(Cx) + g(C(I −E)x) = 0.

This means that f(Cz) = 0 for every z ∈ X , so f = 0, which contradicts to the fact that f(x) = 1. 
Therefore, x should not be isotropic, as desired. �

Note that, for given T ∈ L(X ), there exists a natural element in L(X ∗), say T ∗ by

(T ∗f)(x) := f(Tx) (11)

where x ∈ X and f ∈ X ∗. We now apply Definition 3.3 to the dual space X ∗ naturally as follows:

Definition 3.12. Let S ∈ L(X ∗) and let J be a conjugation on X ∗. Then S is called J-symmetric in the sense 
of X (or X ∗∗), if, for every pair of norm-one functionals f and g in X ∗, there exist two unit vectors x and 
y satisfying x̂(f) = ŷ(g) = 1, x̂(Jg) = ŷ(Jf) and x̂(SJg) = ŷ(SJf), where x̂ and ŷ are point evaluations 
(or Gelfand transformations) of x and y, respectively.

Be careful for the reverse order SJ in the definition above, compared to Definition 3.3. However, due to 
the same reason for (iii) in Proposition 3.4, the order of SJ can be reversed, when X ∗ is strictly convex.
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Proposition 3.13. Let X ∗ be strictly convex. If T ∈ L(X ) is C-symmetric in the sense of X ∗, then T ∗ is 
C∗-symmetric in the sense of X .

Proof. Choose two norm-one functional f and g in X ∗. Since ‖f‖ = sup{|f(x)| : x ∈ X , ‖x‖ = 1} = 1 = ‖g‖
and X is complete, there exist unit vectors x and y in X such that f(x) = g(y) = 1. Due to the C-symmetry of 
T in the sense of X ∗, there exist norm-one functionals f ′ and g′ such that f ′(x) = g′(y) = 1, f ′(Cy) = g′(Cx)
and f ′(CTy) = g′(CTx). Since X ∗ is strictly convex, we have f ′ = f and g′ = g. Hence it holds that 
f(Cy) = g(Cx) and f(CTy) = g(CTx). Therefore, we have

ŷ(T ∗C∗g) = (T ∗C∗g)(y) = (C∗g)(Ty) = g(CTy)

x̂(T ∗C∗f) = (T ∗C∗f)(x) = (C∗f)(Tx) = f(CTx).

Similarly, we can show that x̂(C∗g) = ŷ(C∗f). Therefore T ∗ is C∗-symmetric in the sense of X . �
Let us recall that X1 ⊗ X2 denotes the completion (endowed with a sensible uniform cross-norm) of the 

algebraic tensor product X1⊗X2 of X1 and X2, where X1 and X2 are complex Banach spaces. For operators 
T ∈ L(X1) and S ∈ L(X2), we define the tensor product operator T ⊗ S on L(X1 ⊗X2) by

(T ⊗ S)
( n∑
j=1

αjxj ⊗ yj
)

=
n∑

j=1
αj

(
Txj ⊗ Syj

)
.

Then it is well-known that T ⊗S ∈ L(X1 ⊗X2). The definition of T ⊗S is extended from these finite linear 
combinations of simple tensors to the whole space.

Proposition 3.14. Let X ∗
1 and X ∗

2 be strictly convex. If T , S are C1-symmetric and C2-symmetric in the 
sense of X ∗

1 and X ∗
2 respectively, then the following properties hold:

(i) T ⊕ S is C1 ⊕ C2-symmetric in the sense of X ∗
1 ⊕X ∗

2 .
(ii) T ⊗ S is C1 ⊗ C2-symmetric in the sense of X ∗

1 ⊗X ∗
2 .

Proof. Let us see (i) first. It is clear that C1 ⊕ C2 is a conjugation on X1 ⊕X2. Choose two unit vectors in 
X1 ⊕X2, say x1 ⊕ y1 and x2 ⊕ y2. In other words, ‖xi‖2 + ‖yi‖2 = 1 for i = 1, 2. Let us first assume that xi

and yi are not zero vectors. Since T and S are C1-symmetric and C2-symmetric in the sense of X ∗
1 and X ∗

2
respectively, there are four norm-one functionals f1, f2, g1 and g2 such that

f1(x1/‖x1‖) = f2(x2/‖x2‖) = g1(y1/‖y1‖) = g2(y2/‖y2‖) = 1,

f1(C1x2/‖x2‖) = f2(C1x1/‖x1‖), g1(C2y2/‖y2‖) = g1(C2y1/‖y1‖),
f1(C1Tx2/‖x2‖) = f2(C1Tx1/‖x1‖), g1(C2Sy2/‖y2‖) = g2(C2Sy1/‖y1‖).

To deal with the remaining case, assume that one of xi or yi are the zero vector. (Since xi ⊕ yi is a unit 
vector, both xi and yi cannot be zero vector at the same time.) In this case we assume that the corresponding 
functional ‖xi‖fi or ‖yi‖gi is the trivial functional, i.e., if y1 = 0, then ‖y1‖g1 is interpreted as the zero 
functional.

Then ‖x1‖f1 ⊕ ‖y1‖g1 and ‖x2‖f2 ⊕ ‖y2‖g2 are such functionals we looked for. (Again, if y1 is the zero 
vector, then ‖y1‖g1(z) = 0 for all z ∈ X2, and all the computations below work for this case, too.) Indeed, 
for i, j = 1, 2 and i 
= j,

(‖xi‖fi ⊕ ‖yi‖gi)(xi ⊕ yi) := ‖xi‖fi(xi) + ‖yi‖gi(yi) = ‖xi‖2 + ‖yi‖2 = 1,
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(‖xi‖fi ⊕ ‖yi‖gi)
(
(C1 ⊕ C2)(xj ⊕ yj)

)
= (‖xi‖fi ⊕ ‖yi‖gi)(C1xj ⊕ C2yj)

= ‖xi‖fi(C1xj) + ‖yi‖gi(C2yj)

= ‖xj‖fj(C1xi) + ‖yj‖gj(C2yi)

= (‖xj‖fj ⊕ ‖yj‖gj)(C1xi ⊕ C2yi)

= (‖xj‖fj ⊕ ‖yj‖gj)
(
(C1 ⊕ C2)(xi ⊕ yi)

)
,

and

(‖xi‖fi ⊕ ‖yi‖gi)
(
(C1 ⊕ C2)(T ⊕ S)(xj ⊕ yj)

)
= (‖xi‖fi ⊕ ‖yi‖gi)(C1Txj ⊕ C2Syj)

= ‖xi‖fi(C1Txj) + ‖yi‖gi(C2Syj)

= ‖xj‖fj(C1Txi) + ‖yj‖gj(C2Syi)

= (‖xj‖fj ⊕ ‖yj‖gj)(C1Txi ⊕ C2Syi)

= (‖xj‖fj ⊕ ‖yj‖gj)
(
(C1 ⊕ C2)(T ⊕ S)(xi ⊕ yi)

)
.

Therefore T ⊕ S is C1 ⊕ C2-symmetric in the sense of X ∗
1 ⊕X ∗

2 .

For (ii), it is clear that C1 ⊗ C2 is a conjugation on X1 ⊗ X2. Then choose two unit tensors, say x1 ⊗ y1
and x2 ⊗ y2. Since ‖x ⊗ y‖ = ‖x‖ ‖y‖, select four norm-one functionals f1, f2, g1 and g2 such that

f1(x1) = f2(x2) = g1(y1) = g2(y2) = 1,

f1(C1x2) = f2(C1x1), g1(C2y2) = g1(C2y1),

f1(C1Tx2) = f2(C1Tx1), g1(C2Sy2) = g2(C2Sy1).

Then by a similar (but easier) computation for (i), T ⊗S is C1 ⊗C2-symmetric in the sense of X ∗
1 ⊗X ∗

2 . �
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