
J. Math. Anal. Appl. 480 (2019) 123433
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On a necessary condition for an entire function with the 

increasing second quotients of Taylor coefficients to belong to the 

Laguerre-Pólya class

Thu Hien Nguyen ∗, Anna Vishnyakova
Department of Mathematics & Computer Sciences, V. N. Karazin Kharkiv National University, 
4 Svobody Sq., Kharkiv, 61022, Ukraine

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 March 2019
Available online 21 August 2019
Submitted by D. Khavinson

Keywords:
Laguerre-Pólya class
Entire functions of order zero
Real-rooted polynomials
Multiplier sequences
Complex zero decreasing sequences

For an entire function f(z) =
∑∞

k=0 akzk, ak > 0, we show that f does not belong 
to the Laguerre-Pólya class if the quotients a2

n−1
an−2an

are increasing in n, and c :=

lim
n→∞

a2
n−1

an−2an
is smaller than an absolute constant q∞ (q∞ ≈ 3.2336).

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The zero distribution of entire functions, its sections and tails have been studied many authors, see, for 
example, the remarkable survey of the topic in [21]. In this paper we investigate new necessary conditions 
under which some special entire functions have only real zeros. First, we need the definition of the famous 
Laguerre-Pólya class.

Definition 1. A real entire function f is said to be in the Laguerre-Pólya class, written f ∈ L − P, if it can 
be expressed in the form

f(x) = cxne−αx2+βx
∞∏
k=1

(
1 − x

xk

)
exx

−1
k , (1)
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where c, α, β, xk ∈ R, xk �= 0, α ≥ 0, n is a nonnegative integer and 
∑∞

k=1 x
−2
k < ∞. As usual, the product 

on the right-hand side can be finite or empty (in the latter case the product equals 1).
This class is essential in the theory of entire functions due to the fact that the polynomials with only real 

zeros converge locally uniformly to these and only these functions. The following prominent theorem states 
an even stronger fact.

Theorem A. (E. Laguerre and G. Pólya, see, for example, [4, pp. 42–46]).
(i) Let (Pn)∞n=1, Pn(0) = 1, be a sequence of complex polynomials having only real zeros which converges 

uniformly in the circle |z| ≤ A, A > 0. Then this sequence converges locally uniformly to an entire function 
from the L − P class.

(ii) For any f ∈ L − P there is a sequence of complex polynomials with only real zeros which converges 
locally uniformly to f .

In our research, we also need the following important subclass of the class L− P.

Definition 2. A real entire function f is said to be in the Laguerre-Pólya class of type I, written f ∈ L − PI, 
if it can be expressed in the following form

f(x) = cxneβx
∞∏
k=1

(
1 + x

xk

)
, (2)

where c ∈ R, β ≥ 0, xk > 0, n is a nonnegative integer, and 
∑∞

k=1 x
−1
k < ∞.

The famous theorem by E. Laguerre and G. Pólya (see, for example, [18, chapter VIII, §3]) states that 
the polynomials with only real nonpositive zeros converge locally uniformly to the function from the class 
L − PI. The following theorem states a stronger fact.

Theorem B. (E. Laguerre and G. Pólya, see, for example, [18, chapter VIII, §3]).
(i) Let (Pn)∞n=1, Pn(0) = 1, be a sequence of complex polynomials having only real negative zeros which 

converges uniformly in the circle |z| ≤ A, A > 0. Then this sequence converges locally uniformly to an entire 
function from the class L − PI.

(ii) For any f ∈ L − PI there is a sequence of complex polynomials with only real nonpositive zeros which 
converges locally uniformly to f .

For various properties and characterizations of the Laguerre-Pólya class and the Laguerre-Pólya class of 
type I, see [23, p. 100], [24] or [20, Kapitel II].

Note that for a real entire function (not identically zero) of order less than 2 having only real zeros is 
equivalent to belonging to the Laguerre-Pólya class. The situation is different when an entire function is 
of order 2. For example, the function f1(x) = e−x2 belongs to the Laguerre-Pólya class, but the function 
f2(x) = ex

2 does not.
Let f(z) =

∑∞
k=0 akz

k be an entire function with positive coefficients. We define the quotients pn and 
qn:

pn = pn(f) := an−1

an
, n ≥ 1; (3)

qn = qn(f) := pn
pn−1

=
a2
n−1

an−2an
, n ≥ 2.

The following formulas can be verified by straightforward calculations.

an = a0
, n ≥ 1 ; (4)
p1p2 . . . pn
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an = a1

qn−1
2 qn−2

3 . . . q2
n−1qn

(
a1

a0

)n−1

, n ≥ 2.

Deciding whether a given entire function has only real zeros is a rather subtle problem. In 1926, 
J.I. Hutchinson found the following sufficient condition for an entire function with positive coefficients 
to have only real zeros.

Theorem C. (J.I. Hutchinson, [5]). Let f(z) =
∑∞

k=0 akz
k, ak > 0 for all k. Then qn(f) ≥ 4, for all n ≥ 2, 

if and only if the following two conditions are fulfilled:
(i) The zeros of f(z) are all real, simple and negative, and
(ii) the zeros of any polynomial 

∑n
k=m akz

k, m < n, formed by taking any number of consecutive terms 
of f(z), are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, [3, §4].
We also use the well-known notion of a complex zero decreasing sequence. For a real polynomial P we 

denote by Zc(P ) the number of nonreal zeros of P counting multiplicities.

Definition 3. A sequence (γk)∞k=0 of real numbers is said to be a complex zero decreasing sequence (we write 
(γk)∞k=0 ∈ CZDS), if

Zc

(
n∑

k=0

γkakz
k

)
≤ Zc

(
n∑

k=0

akz
k

)
, (5)

for any real polynomial 
∑n

k=0 akz
k.

The existence of nontrivial CZDS sequences is a consequence of the following remarkable theorem proved 
by Laguerre and extended by Pólya.

Theorem D. (G. Pólya, see [22] or [23, pp. 314–321]). Let f be an entire function from the Laguerre-Pólya 
class having only negative zeros. Then (f(k))∞k=0 ∈ CZDS.

As it follows from the theorem above,

(
a−k2

)∞

k=0
∈ CZDS, a ≥ 1,

(
1
k!

)∞

k=0
∈ CZDS. (6)

The entire function ga(z) =
∑∞

j=0 z
ja−j2 , a > 1, a so-called partial theta-function, was investigated in 

the paper [6]. Simple calculations show that qn(ga) = a2 for all n. Since 
(
a−k2

)∞

k=0
∈ CZDS, for a ≥ 1, 

we conclude that for every n ≥ 2 there exists a constant cn > 1 such that Sn(z, ga) :=
∑n

j=0 z
ja−j2 ∈

L − P ⇔ a2 ≥ cn.
The survey [26] by S.O. Warnaar contains the history of investigation of the partial theta-function and 

its interesting properties.

Theorem E. (O. Katkova, T. Lobova, A. Vishnyakova, [6]). There exists a constant q∞ (q∞ ≈ 3.23363666 . . .)
such that:

(1) ga(z) ∈ L − P ⇔ a2 ≥ q∞;
(2) ga(z) ∈ L − P ⇔ there exists x0 ∈ (−a3, −a) such that ga(x0) ≤ 0;
(3) for a given n ≥ 2 we have Sn(z, ga) ∈ L − P ⇔ there exists xn ∈ (−a3, −a) such that Sn(xn, ga) ≤ 0;
(4) 4 = c2 > c4 > c6 > . . . and limn→∞ c2n = q∞;
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(5) 3 = c3 < c5 < c7 < . . . and limn→∞ c2n+1 = q∞.

There is a series of works by V.P. Kostov dedicated to the interesting properties of zeros of the partial 
theta-function and its derivative (see [8], [9], [10], [11], [12], [13], [14], [15] and [16]). For example, in [9]
V.P. Kostov studied the so called spectrum of the partial theta function, i.e. the set of values of a > 1 for 
which the function ga has a multiple real zero.

Theorem F. (V.P. Kostov, [9]).

(1) The spectrum Γ of the partial theta-function consists of countably many values of a denoted by ã1 >

ã2 > . . . > ãk > . . . > 1, limj→∞ ãj = 1.
(2) For ãk ∈ Γ the function gãk

has exactly one multiple real zero which is of multiplicity 2 and is the 
rightmost of its real zeros.

(3) For a ∈ (ãk+1, ̃ak) the function ga has exactly k complex conjugate pairs of zeros (counted with multi-
plicities).

A wonderful paper [17] among the other results explains the role of the constant q∞ in the study of the 
set of entire functions with positive coefficients having all Taylor truncations with only real zeros.

Theorem G. (V.P. Kostov, B. Shapiro, [17]). Let f(z) =
∑∞

k=0 akz
k be an entire function with positive 

coefficients and Sn(z) =
∑n

j=0 ajz
j be its sections. Suppose that there exists N ∈ N, such that for all n ≥ N

the sections Sn(z) =
∑n

j=0 ajz
j belong to the Laguerre-Pólya class. Then lim infn→∞ qn(f) ≥ q∞.

In [7], some entire functions with a convergent sequence of second quotients of coefficients are investigated. 
The main question of [7] is whether a function and its Taylor sections belong to the Laguerre-Pólya class. 
In [2] and [1], some important special functions with increasing sequence of second quotients of Taylor 
coefficients are studied.

In the previous paper [19], we have studied the entire functions with positive Taylor coefficients such that 
qn(f) are decreasing in n.

Theorem H. (T.H. Nguyen, A. Vishnyakova, [19]). Let f(z) =
∑∞

k=0 akz
k, ak > 0 for all k, be an entire 

function. Suppose that qn(f) are decreasing in n, i.e. q2 ≥ q3 ≥ q4 ≥ . . ., and lim
n→∞

qn(f) = b ≥ q∞. Then 

all the zeros of f are real and negative, in other words f ∈ L − P.

It is easy to see that, if only the estimation of qn(f) from below is given and the assumption of mono-
tonicity is omitted, then the constant 4 in qn(f) ≥ 4 is the smallest possible to conclude that f ∈ L − P.

In this paper, we study the case when qn(f) are increasing in n and obtained the following theorem.

Theorem 1.1. Let f(z) =
∑∞

k=0 akz
k, ak > 0 for all k, be an entire function. Suppose that the quotients qn(f)

are increasing in n, and lim
n→∞

qn(f) = c < q∞. Then the function f does not belong to the Laguerre-Pólya 

class.

The theorem above provides the following necessary condition for an entire function with positive coef-
ficients and with the increasing second quotients to belong to the Laguerre-Pólya class.

Corollary 1.2. Let f(z) =
∑∞

k=0 akz
k, ak > 0 for all k, be an entire function such that the quotients qn(f)

are increasing in n. If f belongs to the Laguerre-Pólya class, then lim
n→∞

qn(f) ≥ q∞.
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2. Proof of Theorem 1.1

Without loss of generality, we can assume that a0 = a1 = 1, since we can consider a function g(x) =
a−1
0 f(a0a

−1
1 x) instead of f(x), due to the fact that such rescaling of f preserves its property of having real 

zeros and preserves the second quotients: qn(g) = qn(f) for all n. During the proof we use notation pn and 
qn instead of pn(f) and qn(f). So, we can write

f(x) = 1 + x +
∞∑
k=2

xk

qk−1
2 qk−2

3 . . . q2
k−1qk

.

Let us introduce some more notations. For an entire function f , by Sn(x, f) and Rn(x, f) we denote the 
nth partial sum and the nth remainder of the series, i.e.

Sn(x, f) =
n∑

k=0

xk

qk−1
2 qk−2

3 . . . q2
k−1qk

,

and

Rn(x, f) =
∞∑

k=n

xk

qk−1
2 qk−2

3 . . . q2
k−1qk

.

We also consider a function

ϕ(x) = f(−x) = 1 − x +
∞∑
k=2

(−1)kxk

qk−1
2 qk−2

3 . . . q2
k−1qk

instead of f .
Since the quotients qn are increasing in n, and lim

n→∞
qn = c < q∞, we conclude that q2 ≤ q∞ < 4. The 

following lemma shows that for q2 < 3 we have ϕ /∈ L − P.

Lemma 2.1. Let ϕ(z) =
∑∞

k=0(−1)kakzk be an entire function, ak > 0 for all k, a0 = a1 = 1, and qn = qn(ϕ)
are increasing in n, i.e. q2 ≤ q3 ≤ q4 ≤ . . .. If ϕ ∈ L − P, then q2(f) ≥ 3.

Proof. Denote by 0 < z1 ≤ z2 ≤ z3 ≤ . . . the real roots of ϕ. We observe that

0 ≤
∞∑
k=1

1
z2
k

=
( ∞∑

k=1

1
zk

)2

− 2
∑

1≤i<j<∞

1
zizj

=
(
a1

a0

)2

− 2a2

a0
,

whence q2 ≥ 2.
According to the Cauchy-Bunyakovsky-Schwarz inequality, we obtain

( 1
z1

+ 1
z2

+ ...)( 1
z3
1

+ 1
z3
2

+ . . .) ≥ ( 1
z2
1

+ 1
z2
2

+ . . .)2.

By Vieta’s formulas, we have σ1 :=
∑∞

k=1
1
zk

= a1
a0

, σ2 =
∑

1<i<j<∞
1

zizj
= a2

a0
, and σ3 =∑

1<i<j<k<∞
1

zizjzk
= a3

a0
. We need further the following identities: 

∑∞
k=1

1
z2
1

= σ2
1 − 2σ2, and 

∑∞
k=1

1
z3
1

=
σ3

1 − 3σ1σ2 + 3σ3. Consequently, we have

σ1(σ3
1 − 3σ1σ2 + 3σ3) ≥ (σ2

1 − 2σ2)2,
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or

a2
1a2

a3
0

+ 3a1a3

a2
0

− 4a
2
2

a2
0
≥ 0.

Since a0 = a1 = 1 and a2 = 1
q2
, a3 = 1

q2
2q3

, we have:

q3(q2 − 4) + 3 ≥ 0.

Since we have the conditions that q2 < 4 and q2 ≤ q3, we conclude that

q2(q2 − 4) + 3 ≥ 0.

Therefore, we get that q2 ≥ 3. �
Further, we assume that 3 ≤ q2 < q∞.
In order to prove Theorem 1.1, we need some more Lemmas.

Lemma 2.2. Let ϕ(x) = 1 − x +
∑∞

k=2
(−1)kxk

qk−1
2 qk−2

3 ...q2
k−1qk

be an entire function. Suppose that q2 ≥ 2, qk are 

increasing in k, i.e. q2 ≤ q3 ≤ q4 . . ., and lim
n→∞

qn = c < q∞. Then for any x ∈ [0, q2] we have ϕ(x) > 0, i.e. 
there are no real roots of ϕ in the segment [0, q2].

Proof. For x ∈ [0, 1] we have

1 ≥ x >
x2

q2
>

x3

q2
2q3

>
x4

q3
2q

2
3q4

> · · · ,

whence

ϕ(x) > 0 for all x ∈ [0, 1]. (7)

Suppose that x ∈ (1, q2]. Then we obtain

1 < x ≥ x2

q2
>

x3

q2
2q3

> · · · > xk

qk−1
2 qk−2

3 . . . q2
k−1qk

> · · · (8)

For an arbitrary m ∈ N we have

ϕ(x) = S2m+1(x, ϕ) + R2m+2(x, ϕ),

where

S2m+1(x, ϕ) := 1 − x +
2m+1∑
k=2

(−1)kxk

qk−1
2 qk−2

3 . . . q2
k−1qk

,

and

R2m+2(x, ϕ) :=
∞∑ (−1)kxk

qk−1qk−2 . . . q2 qk
.

k=2m+2 2 3 k−1
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By (8) and the Leibniz criterion for alternating series, we obtain R2m+2(x, ϕ) > 0 for all x ∈ (1, q2], or

ϕ(x) > S2m+1(x, ϕ) for all x ∈ (1, q2],m ∈ N. (9)

It remains to prove that there exists m ∈ N such that S2m+1(x, ϕ) > 0 for all x ∈ (1, q2]. We have

S2m+1(x, ϕ) = (1 − x) +
(
x2

q2
− x3

q2
2q3

)
+

(
x4

q3
2q

2
3q4

− (10)

x5

q4
2q

3
3q

2
4q5

)
+ . . . +

(
x2m

q2m−1
2 q2m−2

3 · . . . · q2
2m−1q2m

− x2m+1

q2m
2 q2m−1

3 · . . . · q2
2mq2m+1

)
.

Under our assumptions, qk are increasing in k, and lim
n→∞

qn = c. We prove that for any fixed k = 1, 2, . . . , m
and x ∈ (1, q2] the following inequality holds:

x2k

q2k−1
2 q2k−2

3 · . . . · q2k
− x2k+1

q2k
2 q2k−1

3 · . . . · q2
2kq2k+1

≥

x2k

c2k−1 · c2k−2 · . . . · c − x2k+1

c2k · c2k−1 · . . . · c2 · c .

For x ∈ (1, q2] and k = 1, 2, . . . , m, we define the following function

F (q2, q3, . . . , q2k, q2k+1) := x2k

q2k−1
2 q2k−2

3 · . . . · q2k
− x2k+1

q2k
2 q2k−1

3 · . . . · q2
2kq2k+1

.

We can observe that

∂F (q2, q3, . . . , q2k, q2k+1)
∂q2

= − (2k − 1)x2k

q2k
2 q2k−2

3 . . . q2k
+ 2kx2k+1

q2k+1
2 q2k−1

3 . . . q2
2kq2k+1

< 0

⇔ x <
(
1 − 1

2k

)
q2q3 . . . q2kq2k+1.

Thus, under our assumptions, the function F (q2, q3, . . . , q2k, q2k+1) is decreasing in q2. Since q2 ≤ q3,

F (q2, q3, q4, . . . , q2k, q2k+1) ≥ F (q3, q3, q4, . . . , q2k, q2k+1) =

x2k

q4k−3
3 q2k−3

4 . . . q2k
− x2k+1

q4k−1
3 q2k−2

4 . . . q2k+1
.

Further we have

∂F (q3, q3, q4, . . . , q2k, q2k+1)
∂q3

= − (4k − 3)x2k

q4k−2
3 q2k−3

4 . . . q2k
+ (4k − 1)x2k+1

q4k
3 q2k−2

4 . . . q2k+1
< 0

⇔ x <
4k − 3
4k − 1q

2
3q4 . . . q2k+1.

Hence, under our assumptions, F (q3, q3, q4, . . . , q2k, q2k+1) is decreasing in q3, and since q3 ≤ q4 we obtain

F (q3, q3, q4 . . . , q2k, q2k+1) ≥ F (q4, q4, q4, q5, . . . , q2k, q2k+1).
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Analogously, by the same computations, we obtain the following chain of inequalities

F (q2, q3, q4, . . . , q2k, q2k+1) ≥ F (q3, q3, q4, . . . , q2k, q2k+1) ≥

F (q4, q4, q4, q5, . . . , q2k, q2k+1) ≥ . . . ≥ F (q2k+1, q2k+1, . . . , q2k+1, q2k+1).

Further, we have

∂F (q2k+1, q2k+1, . . . , q2k+1, q2k+1)
∂q2k+1

= − (2k2 − k)x2k

q2k2−k+1
2k+1

+ (2k2 + k)x2k+1

q2k2+k+1
2k+1

< 0

⇔ x <
2k2 − k

2k2 + k
q2k
2k+1.

Thus, F (q2k+1, q2k+1, . . . , q2k+1, q2k+1) is decreasing in q2k+1, and since qk are increasing in k, and 
lim
n→∞

qn = c, we conclude that

F (q2k+1, q2k+1, . . . , q2k+1, q2k+1) ≥ F (c, c, . . . , c, c) = x2k

ck(2k−1) − x2k+1

ck(2k+1) .

Substituting the last inequality in (10) for every x ∈ (1, q2] and k = 1, 2, . . . , m, we get

S2m+1(x, ϕ) ≥ (1 − x) +
(
x2

c
− x3

c3

)
+

(
x4

c6
− x5

c10

)
+ . . . (11)

+
(

x2m

cm(2m−1) − x2m+1

cm(2m+1)

)
=

2m+1∑
k=0

(−1)kxk

√
c
k(k−1) = S2m+1(

√
cx, g√c),

where ga is the partial theta-function and S2m+1(y, ga) are its (2m + 1)-th section at the point y. Since, by 
our assumptions, (

√
c)2 < q∞, using the statement (5) of Theorem E, we obtain that there exists m ∈ N

such that S2m+1(y, g√c) /∈ L − P. Let us choose and fix such m. By the statement (3) of Theorem E, we 
obtain that for every x such that 

√
c <

√
cx < (

√
c)3 we have S2m+1(

√
cx, g√c) > 0. It means that for every 

x : 1 < x < c we have S2m+1(
√
cx, g√c) > 0, and, using (11) and (9),

ϕ(x) > S2m+1(x, ϕ) > 0 for all x ∈ (1, q2) ⊂ (1, c).

It remains to prove that ϕ(q2) > 0. We have

ϕ(q2) =
(

1 − q2 + q2 −
q2
q3

)
+

(
q2
q2
3q4

− q2
q3
3q

2
4q5

)
+

(
q2

q4
3q

3
4q

2
5q6

− q2
q5
3q

4
4q

3
5q

2
6q7

)
+ . . . > 0

by our assumptions on qj . �
Lemma 2.3. Let P (z) = 1 − z + z2

a − z3

a2b + z4

a3b2c be a polynomial, 3 ≤ a < 4, and a ≤ b ≤ c. Then

min
0≤θ≤2π

|P (aeiθ)| ≥ a

b2c
.
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Proof. By direct calculation, we have

|P (aeiθ)|2 = (1 − a cos θ + a cos 2θ − a

b
cos 3θ + a

b2c
cos 4θ)2+

(−a sin θ + a sin 2θ − a

b
sin 3θ + a

b2c
sin 4θ)2

= 1 + 2a2 + a2

b2
+ a2

b4c2
− 2a cos θ + 2a cos 2θ − 2a

b
cos 3θ

+ 2 a

b2c
cos 4θ − 2a2 cos θ + 2a

2

b
cos 2θ − 2 a2

b2c
cos 3θ

− 2a
2

b
cos θ + 2 a2

b2c
cos 2θ − 2 a2

b3c
cos θ.

Set t := cos θ, t ∈ [−1, 1]. Since cos 2θ = 2t2 − 1, cos 3θ = 4t3 − 3t, and cos 4θ = 8t4 − 8t2 + 1, we get

|P (aeiθ)|2 = 16a
b2c

t4 +
(
−8a

b
− 8a2

b2c

)
t3 +

(
4a− 16a

b2c
+ 4a2

b
+ 4a2

b2c

)
t2+(

−2a + 6a
b

− 2a2 + 6a2

b2c
− 2a2

b
− 2a2

b3c

)
t

+
(

1 + 2a2 + a2

b2
+ a2

b4c2
− 2a + 2a

b2c
− 2a2

b
− 2a2

b2c

)
.

We want to show that min0≤θ≤2π |P (aeiθ)|2 ≥ a2

b4c2 , or to prove the inequality min0≤θ≤2π |P (aeiθ)|2 −
a2

b4c2 ≥ 0. Using the last expression we see that the inequality we want to get is equivalent to the following: 
for all t ∈ [−1, 1] the next inequality holds

16a
b2c

t4 − 8a
b

(
1 + a

bc

)
t3 + 4a

(
1 − 4

b2c
+ a

b
+ a

b2c

)
t2 − 2a

(
1 − 3

b
+ a− 3a

b2c
+ a

b

+ a

b3c

)
t +

(
1 + 2a2 + a2

b2
− 2a + 2a

b2c
− 2a2

b
− 2a2

b2c

)
≥ 0.

Let y := 2t, y ∈ [−2, 2]. We rewrite the last inequality in the form

a

b2c
y4 − a

b

(
1 + a

bc

)
y3 + a

(
1 − 4

b2c
+ a

b
+ a

b2c

)
y2

−a

(
1 − 3

b
+ a− 3a

b2c
+ a

b
+ a

b3c

)
y+(

1 + 2a2 + a2

b2
− 2a + 2a

b2c
− 2a2

b
− 2a2

b2c

)
≥ 0.

We note that the coefficient of y4 is positive, and the coefficient of y3 is negative. It is easy to show that 
the other coefficients are also sign-changing. For y2: 1 − 4

b2c > 0 since b2c > 4, thus,

1 + a

b
+ a

b2c
− 4

b2c
= (1 − 4

b2c
) + a

b
+ a

b2c
> 0.

For y:

1 + a + a

b
+ a

b3c
− 3

b
− 3a

b2c
= (1 + a− 3

b
)+

(a
b
− 3a

b2c
) + a

b3c
> 0.
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Finally,

1 + 2a2 + a2

b2
− 2a− 2a

2

b
− 2 a2

b2c
+ 2 a

b2c
=

(1 + a2 − 2a) + (a2 − 2a
2

b
) + (a

2

b2
− 2 a2

b2c
) + 2 a

b2c
> 0,

since 1 − 2a + a2 ≥ 0; a2 − 2a2

b > 0 and a
2

b2 − 2 a2

b2c > 0 by our assumptions.
Consequently, the inequality we need holds for any y ∈ [−2, 0], and we have to prove it for y ∈ [0, 2]. 

Multiplying our inequality by b
2c
a , we get

y4 − (bc + a)y3 + (b2c + abc + a− 4)y2 − (b2c + ab2c + abc + a

b
− 3bc− 3a)y

+(b
2c

a
+ 2ab2c + ac− 2b2c− 2abc− 2a + 2) =: ψ(y),

and we want to prove that ψ(y) ≥ 0 for all y ∈ [0, 2].
Let χ(y) := ψ(y) − 1

b (b − a)y, whence χ(y) ≤ ψ(y) for all y ∈ [0, 2]. It is sufficient to prove that χ(y) ≥ 0
for all y ∈ [0, 2]. We have

χ(0) = ψ(0) = b2c

a
+ 2ab2c + ac− 2b2c− 2abc− 2a + 2 ≥ 0,

as it was previously shown. We also have χ(2) = ψ(2) − 2
c (b − a) ≥ 0, since

ψ(2) = −2bc− 2a
b

+ b2c

a
+ ac + 2 =

1
b

(
2(b− a) + b2c

a
(b− a) − bc(b− a)

)
=

1
b
(b− a)

(
2 + bc

a
(b− a)

)
≥ 2

b
(b− a) ≥ 0.

Now we consider the following function:

ν(y) := ∂2χ(y)
∂y2 = ∂2ψ(y)

∂y2 = 12y2 − 6(bc + a)y + 2(b2c + abc + a− 4).

The vertex point of this parabola is yv = bc+a
4 ≥ 3. Accordingly, we can observe that ν(y) decreases for 

y ∈ [0, 2]. We have

ν(0) = 2(b2c + abc + a− 4) > 0,

and

ν(2) = 2abc + 2b2c− 12bc− 10a + 40.

We want to show that ν(2) is positive. We have

abc + b2c− 6bc− 5a + 20 = (20 − 5a) + (b2c− 3bc) + (abc− 3bc) =

5(4 − a) + bc(c− 3) + bc(a− 3) > 0
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due to our assumptions. We conclude that ν(y) is nonnegative for y ∈ [0, 2], and it follows that χ′(y)
increases for y ∈ [0, 2].

We want to show that χ′(y) ≤ 0 for y ∈ [0, 2], and it is sufficient to show that χ′(2) ≤ 0. We have

χ′(2) = ψ′(2) − b− a

b
= 15 − 9bc− 5a + 3b2c + 3abc− ab2c =

5(3 − a) + bc(−9 + 3b + 3a− ab) = 5(3 − a) + bc(a− 3)(3 − b) ≤ 0.

Thus, χ(y) decreases, χ(2) ≥ 0, so it is positive for y ∈ [0, 2]. Since χ(y) ≤ ψ(y), it follows that ψ(y) is 
positive for y ∈ [0, 2]. �

The function ϕ can be presented in the following form:

ϕ(x) = S4(x, ϕ) + R5(x, ϕ),

where

S4(x, ϕ) := (1 − x + x2

q2
− x3

q2
2q3

+ x4

q3
2q

2
3q4

),

and

R5(x, ϕ) :=
∞∑
k=5

(−1)kxk

qk−1
2 qk−2

3 . . . qk
.

By Lemma 2.3 we have

min
0≤θ≤2π

|S4(q2eiθ, ϕ)| ≥ q2
q2
3q4

. (12)

Now we need the estimation on |R5(q2eiθ, ϕ)| from above.

Lemma 2.4. Let R5(z, ϕ) :=
∑∞

k=5
(−1)kzk

qk−1
2 qk−2

3 ...qk
, qn be increasing in n, and let lim

n→∞
qn(f) = c < q∞. Then

max
0≤θ≤2π

|R5(q2eiθ, ϕ)| ≤ q2
q3
3q

3
4 − q2

3
.

Proof. We have

|R5(q2eiθ, ϕ)| ≤
∞∑
k=5

qk2
qk−1
2 qk−2

3 . . . qk
=

∞∑
k=5

q2

qk−2
3 . . . qk

=

q2
q3
3q

2
4q5

+ q2
q4
3q

3
4q

2
5q6

+ . . . + q2

qk−2
3 . . . qk

+ . . .

≤ q2
q3
3q

3
4
(1 + 1

q3q3
4

+ 1
q2
3q

7
4

+ . . . + 1

qk−5
3 q

k(k−5)
2

4

+ . . .) ≤

q2
q3
3q

3
4
· 1
1 − 1

q3q3
4

= q2
q3
3q

3
4 − q2

3
. �
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Let us check that q2
q2
3q4

> q2
q3
3q

3
4−q2

3
, which is equivalent to q4 < q3q

3
4 − 1. The last inequality obviously 

holds under our assumptions. Therefore, according to Rouché’s theorem, the functions S4(z, ϕ) and ϕ(z)
have the same number of zeros inside the circle {z : |z| < q2} counting multiplicities.

It remains to prove that S4(z, ϕ) has zeros in the circle {z : |z| < q2}. To do this we need the notion of 
apolar polynomials and the famous theorem by J.H. Grace.

Definition 4. (See, for example [25, Chapter 2, $ 3, p. 59]). Two complex polynomials P (z) =
∑n

k=0
(
n
k

)
akz

k

and Q(z) =
∑n

k=0
(
n
k

)
bkz

k of degree n are called apolar if

n∑
k=0

(−1)k
(
n

k

)
akbn−k = 0. (13)

The following famous theorem due to J.H. Grace states that the complex zeros of two apolar polynomials 
cannot be separated by a straight line or by a circumference.

Theorem I. (J.H. Grace, see for example [25, Chapter 2, $ 3, Problem 145]). Suppose P and Q are two 
apolar polynomials of degree n ≥ 1. If all zeros of P lie in a circular region C, then Q has at least one zero 
in C. (A circular region is a closed or open half-plane, disk or exterior of a disk).

Lemma 2.5. Let S4(z, ϕ) = 1 − z + 1
q2
z2 − 1

q2
2q3

z3 + 1
q3
2q

2
3q4

z4 be a polynomial and q2 ≥ 3. Then S4(z, ϕ) has 
at least one root in the circle {z : |z| ≤ q2}.

Proof. We have

S4(z, ϕ) =
(

4
0

)
+
(

4
1

)
(−1

4)z +
(

4
2

)
1

6q2
z2 +

(
4
3

)
(− 1

4q2
2q3

)z3 +
(

4
4

)
1

q3
2q

2
3q4

z4.

Let

Q(z) =
(

4
2

)
b2z

2 +
(

4
3

)
b3z

3 +
(

4
4

)
z4.

Then the condition for S4(z, ϕ) and Q(z) to be apolar is the following

(
4
0

)
−
(

4
1

)(
−1

4

)
b3 +

(
4
2

)
1

6q2
b2 = 0.

We have 1 +b3+ b2
q2

= 0. Further, we choose b3 = q2−6
2 , and, by the apolarity condition, b2 = −q2(1 + q2−6

2 ). 
So, we have

Q(z) = −6q2
(

1 + q2 − 6
2

)
z2 + 4

(
q2 − 6

2

)
z3 + z4

= z2 (−3q2(q2 − 4) + 2(q2 − 6)z + z2) .
As we can see, the zeros of Q are z1 = 0, z2 = 0, z3 = q2, z4 = −3(q2 − 4). To show that z4 lies in the 

circle of radius q2, we solve the inequality | − 3(q2 − 4)| ≤ q2. Hence, we obtain that if q2 ≥ 3, then all zeros 
of Q are in the circle {z : |z| ≤ q2}. Since all the zeros of Q are in the circle {z : |z| ≤ q2}, we obtain by the 
Grace theorem that S4(z, ϕ) has at least one zero in the circle {z : |z| ≤ q2}. �
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Thus, S4(z, ϕ) has at least one zero in the circle {z : |z| ≤ q2}, and, by Lemma 2.3 applying to the 
S4(z, ϕ), S4(z, ϕ) does not have zeros on {z : |z| = q2}. So, the polynomial S4(z, ϕ) has at least one zero in 
the open circle {z : |z| < q2}. By Rouché’s theorem, the functions S4(z, ϕ) and ϕ(z) have the same number 
of zeros inside the circle {z : |z| < q2}, whence ϕ has at least one zero in the open circle {z : |z| < q2}. If 
ϕ is in the Laguerre-Pólya class, this zero must be real, and, since coefficients of ϕ are sign-changing, this 
zero belongs to (0, q2). But, by Lemma 2.2 we have ϕ(x) > 0 for all x ∈ [0, q2]. This contradiction shows 
that ϕ /∈ L − P.

Theorem 1.1 is proved.
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