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In this paper, we introduce a new concept named the weak flocking behavior. That 
is, if the complex system has the weak flocking property, the agents do not need have 
the same velocities to keep together when t → ∞. This shows the biggest difference 
between weak flocking behavior and the flocking behavior. The advantage of this 
concept is that its practical significance—the agents don’t need always keep in step 
in lots of the complex systems but they still keep together. Then, we propose a 
weak flocking model with two agents and study two different mechanisms for this 
model. Moreover, we also consider a system with N agents. Under the weak link 
mechanism, the system with N agents can keep weak flocking.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Clustered-Control in complex system and targets tracking have the wide application in industries and 
military fields [5,1,13]. How can these be realized automatically? Inspired by the research about the behavior 
of the similar biological group such as the flocking of birds migration, schools of fish and herds of wolves 
[17,18,2], many mathematical models have been proposed to reveal the inner mechanism of these animals’ 
flocking behavior [15,6]. It is pointed out that, in 2007 Smale and Cucker introduced a classical flocking 
model which is called CS model [5,3,4]. This model describes how agents interact with each other by following 
the simple rule such as [5,3,4]:

dxi(t)
dt = vi(t),

dvi(t)
dt = α

N∑
j=1

φij(t)(vj(t) − vi(t)), (1)
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where α denotes a positive constant, and φij quantifies the pairwise influence of agent “j” on the alignment 
of agent “i” as a function of their distance. The motion characters of each agent “i” is described by the 
position xi(t) ∈ Rn and the velocity vi(t) ∈ Rn. More precisely, in the CS model, it has

φij(t) = φ(‖xj(t) − xi(t)‖)
N

, φ(‖xj(t) − xi(t)‖) = 1
(1 + ‖xj(t) − xi(t)‖2)β

,

where φ denotes given above or, in general, is a strictly positive decreasing function, and β stands for a 
parameter. This influence function possesses the symmetric property, that is, the agent “i” and the agent 
“j” have the same influence on each other (φij = φji).

In [5,3,4], Smale and Cucker gave a classical definition of flocking in mathematics. For any agents “i” 
and “j” in the complex system. For time t > 0, the positions and velocities are given as follows [5,3,4]:

sup
t>0

dX(t) = ‖xj(t) − xi(t)‖ < ∞,

lim
t→∞

dV (t) = lim
t→∞

‖vj(t) − vi(t)‖ = 0.

According to the definition of flocking given by Smale and Cucker, there are two principles: i) bounded 
distance–individuals stay at bounded distance from each other; ii) alignment–they all move in the same 
direction and their velocities will become the same. Based on the mathematics definition of Smale and 
Cucker [5,3,4], present work can largely be categorized into ecology, robotics, control and economy and so 
on [14,8,7,19]. Up to now, many studies are mainly on what models can keep the system with the flocking 
behavior. For example, professor Shen proposed a hierarchical leadership flocking (HL) model [16]. Professor 
Li improved the HL model. They introduced an overall leader in their model where any other agents are 
led by the overall leader directly or in directly [11,12,10]. Both Shen and Li considered the free-will in 
their models. While their research was based on how the system can keep flocking. Moreover, the norm 
of difference between any two agents’ free-will functions were required to convergence to zero. Also, in [9], 
a flocking model involving was built. However, this paper [9] only gave the condition to keep the system be 
flocking. It means that the impact from the out force to the system is very weak and even will be ignored at 
last. Meanwhile, in the numerical simulation experiment of the paper [9], an interesting phenomenon was 
found. That is to say, even though the impact from the out force always exist, the agents in the system 
can still keep together. However the paper [9] did not give the strict theoretical proof. So in this paper, 
we define a weak flocking behavior. It is defined as: if the complex system has the weak flocking behavior, 
it only to keep a property—the distance between any two agents has least upper bound. The research of 
this paper is benefit by the free-will. Through the free-will, we can control the system keep weak flocking. 
The significance of the weak flock are as follows: 1) The flock defined by the biologist does not require the 
velocity all always be same; 2) In the weak flocking system, the distance between any time is bounded. 
While in the real biology or the application of the flock to military, control, ecology and robotics fields, we 
cannot wait for the time t → ∞ to realise the flock. We can realise our target easily by using weak flocking 
model.

In chart 2, we propose the mathematical definition of the weak flocking behavior. Also, we build a weak 
flocking model which contains two agents and strictly show that this model will be weak flocking if it satisfies 
the Theorem 2.1. In chart 3, we apply the weak flocking model to military field. Such as missile tracking, 
torpedo intercepting and so on. In chart 4, we extend the model (15), (16) to a complex system with N
agents. Through the Theorem 4.1, we show that the distance of any two agents will be bounded, even the 
velocities always are different.
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2. Weak flocking and weak flocking models with two agents

2.1. The definition of weak flocking

A complex system has N agents. The position and velocity of agents “i” and “j” are defined as 
(xi(t), vi(t)) and (xj(t), vj(t)). For any i ∈ N, xi(t) ∈ Rd and vi(t) ∈ Rd. We define

dX(t) = max
i,j∈N

‖xi(t) − xj(t)‖,

dV (t) = max
i,j∈N

‖vi(t) − vj(t)‖.
(2)

If the positions and velocities of the agents satisfy

sup
t>0

dX(t) <M1,

lim
t→∞

dV (t) <M2.
(3)

Here, constants M1 > 0 and M2 > 0 Then, the complex system has weak flocking behavior.

2.2. Weak flocking model with two agents

Consider a complex system with two agents. This model has two agents “1” and “2”. For any time t, the 
position and velocity of “1” are denoted by x1(t) ∈ Rn, and v1(t) ∈ Rn, satisfy

dx1

dt =v1(t),

dv1

dt =αb12(‖x1(t) − x2(t)‖)(v2(t) − v1(t)) + g1(t);
(4)

At any time t, the position of “2” is x2(t) ∈ Rn, and the velocity of “2” are v2(t) ∈ Rn, satisfy

dx2

dt =v2(t),

dv2

dt =αb21(‖x2(t) − x1(t)‖)(v1(t) − v2(t)) + g2(t).
(5)

Here, α(α > 0) measures the interaction strength, b12(t) = b21(t) = 1
2φ(‖x2(t) − x1(t)‖), the influence 

function φ(r) = 1
(1+|r|2)β , parameter β > 0 and g1(t), g2(t) are free-will function.

Theorem 2.1. The positions and velocities of the agents “1” and “2” are denoted by (x1, v1), (x2, v2) and 
satisfy the system (3), (4). If the influence function φ(r) satisfies 

∫∞
0 φ(r)dr = ∞, and the free-will function 

satisfies ‖ 
∫∞
0 (g1(t) − g2(t))dt‖ < ∞ and 

∫∞
0 ‖(g1(t) − g2(t))‖dt = ∞, then the system (3), (4) has weak 

flocking behavior.

Proof. For xj(t) ∈ Rn and vj(t) ∈ Rn, let xj(t) = (x1
j(t), x2

j (t), · · · , xn
j (t)), vj(t) = (v1

j (t), v2
j (t), · · · , vnj (t))

(j = 1, 2).

dxj(t)
dt = (

dx1
j

dt ,
dx2

j

dt , · · ·
dn
j

dt ) = (v1
j (t), v2

j (t), · · · , vnj (t)),

dvj(t) =αb21(‖x2(t) − x1(t)‖)(v1
i (t) − v1

j (t), v2
i (t) − v2

j (t), · · · , vni (t) − vnj (t))
dt
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+ (g1
j (t), g2

j (t), · · · , g1
N (t)).

First we want to proof

lim
t→∞

‖v1(t) − v2(t)‖ < ∞.

Let v(t) = v1(t) −v2(t), vi(t) = vi1(t) −vi2(t). Using the reduction to absurdity to prove that ‖v1(t) −v2(t)‖
is bounded.

It supposes that lim
t→∞

‖v1(t) − v2(t)‖ = ∞ or lim
t→∞

sup ‖v1(t) − v2(t)‖ = ∞.
Obviously v(t) is continue, for lim

t→∞
‖v1(t) − v2(t)‖ = ∞, at least there exists one vi(t) satisfies one of 

the two following conditions:

i). lim
t→∞

vi(t) = ∞, (6)

ii). lim
t→∞

vi(t) = −∞. (7)

As lim
t→∞

sup ‖v1(t) − v2(t)‖ = ∞, it is easy to deduce that there at least exists a velocity satisfying vi(t)

iii). lim
t→∞

vi(t) �= ∞, lim
t→∞

vi(t) �= −∞, lim
t→∞

sup |vi(t)| = ∞. (8)

It supposes that i). lim
t→∞

vi(t) = ∞ is right. Then it can find a time t1 and a constant K, such that for 
any time t > t1, we have vi(t) ≥ K > 0. From the formula (4.3) and (4.4) known, for t > t1, it can deduce 
that xi(t) = xi

1(t) − xi
2(t) is increasing and lim

t→∞
xi(t) = ∞. Furthermore lim

t→∞
‖x1(t) − x2(t)‖ = ∞. For 

formula

d
dtv

i(t) = −2αb12(‖x2(t) − x1(t)‖)vi(t) + gi1(t) − gi2(t) (9)

the integral of this formula on [t1, t) is

vi(t) − vi(t1) = −2α
t∫

t1

1
(1 + ‖x2(s) − x1(s)‖2)β v

i(s)ds +
t∫

t1

(gi1(s) − gi2(s))ds.

As lim
t→∞

‖x2(t) − x1(t)‖2 → ∞ there are two conditions:
1). It exists a time t0 > 0, when t ∈ (t0, ∞), ‖x2(t) − x1(t)‖2 is increasing. So 1

(1+‖x2(s)−x1(s)‖2)β is 
monotonous. Using mean value theorem of integrals, it exists a ξ ∈ (t1, t), such as

t∫
t1

1
(1 + ‖x2(s) − x1(s)‖2)β v

i(s)ds

= xi
2(t) − xi

1(t)
(1 + ‖x2(t) − x1(t)‖2)β −

i
2(ξ) −i

1 (ξ)
(1 + ‖x2(t) − x1(t)‖2)β

+ xi
2(ξ) − xi

1(ξ)
(1 + ‖x2(t1) − x1(t1)‖2)β − xi

2(t1) −i
1 (t1)

(1 + ‖x2(t1) − x1(t1)‖2)β .

From the above analysis, it can easily deduce that for any ξ ∈ (t1, t),
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− xi
2(ξ) − xi

1(ξ)
(1 + ‖x2(t) − x1(t)‖2)β + xi

2(ξ) − xi
1(ξ)

(1 + ‖x2(t1) − x1(t1)‖2)β > 0,

is right. And xi
2(t)−i

1(t)
(1+‖x2(t)−x1(t)‖2)β satisfies one the following two conditions:

lim
t→∞

xi
2(t) − xi

1(t)
(1 + ‖x2(t) − x1(t)‖2)β = ∞,

or

0 ≤ lim
t→∞

xi
2(t) − xi

1(t)
(1 + ‖x2(t) − x1(t)‖2)β < ∞.

So there exists a constant M0, such that

M0 ≤ lim
t→∞

t∫
t1

1
(1 + ‖x2(s) − x1(s)‖2)β v

i(s)ds.

As lim
t→∞

| 
∫ t

t1
(gi1(s) − gi2(s))ds| ≤ M < ∞, one of the following conditions must correct:

−2α lim
t→∞

t∫
t1

1
(1 + ‖x2(s) − x1(s)‖2)β v

i(s)ds + lim
t→∞

t∫
t1

(gi1(s) − gi2(s))ds = −∞

or

0 < −2α lim
t→∞

t∫
t1

1
(1 + ‖x2(s) − x1(s)‖2)β v

i(s)ds + lim
t→∞

t∫
t1

(gi1(s) − gi2(s))ds < ∞.

While lim
t→∞

vi(t) = ∞, it emerges a contradiction, so the condition i) is false.
2). There exists a time t0 > 0, when t ∈ (t0, ∞), ‖x2(t) − x1(t)‖2 dose not have monotonous, but 

lim
t→∞

‖x2(t) − x1(t)‖2 → ∞. For any enough big time tn > t0, there exist t0 < t1 < t2 < · · · < tn, such that 
when t ∈ (ti−1, ti)(i = 1, 2, · · · , n), ‖x2(t) − x1(t)‖2 has monotonous, then it exists ξi ∈ (ti−1, ti), such as:

tn∫
t0

1
(1 + ‖x2(s) − x1(s)‖2)β v

i(s)ds

=
∑

i=1,···n

ti∫
ti−1

1
(1 + ‖x2(s) − x1(s)‖2)β v

i(s)ds

=
∑

i=1,···n
{ xi

2(ti) − xi
1(ti)

(1 + ‖x2(ti) − x1(ti)‖2)β − xi
2(ξi) − xi

1(ξi)
(1 + ‖x2(ti) − x1(ti)‖2)β

+ xi
2(ξi) − xi

1(ξi)
(1 + ‖x2(ti−1) − x1(ti−1)‖2)β − xi

2(ti−1) − xi
1(ti−1)

(1 + ‖x2(ti−1) − x1(ti−1)‖2)β }

= xi
2(tn) − xi

1(tn)
(1 + ‖x2(tn) − x1(tn)‖2)β +

∑
i=1,···n

{− xi
2(ξi) − xi

1(ξi)
(1 + ‖x2(ti) − x1(ti)‖2)β

+ xi
2(ξi) − xi

1(ξi)
(1 + ‖x2(ti−1) − x1(ti−1)‖2)β } −

xi
2(t0) − xi

1(t0)
(1 + ‖x2(t0) − x1(t0)‖2)β .
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There is a time tk−1, when t ∈ (tk−1, tk), the function ‖x2(t) − x1(t)‖2 is decreasing. Also we can find a 
time tk+1 > tk, such that

| − 1
(1 + ‖x2(tk) − x1(tk)‖2)β + 1

(1 + ‖x2(tk−1) − x1(tk−1)‖2)β |

<| − 1
(1 + ‖x2(tk+1) − x1(tk+1)‖2)β + 1

(1 + ‖x2(tk) − x1(tk)‖2)β |.

I). For t ∈ (tk, tk+1), we consider this condition: when t ∈ (tk, tk+1), ‖x2(t) −x1(t)‖2 is increasing. There exist 
time t0 and tn, such that xi

2(t) −xi
1(t) is increasing for t ∈ (t0, tn). For ξk ∈ (tk−1, tk) and ξk+1 ∈ (xk, xk+1), 

obviously ξk < ξk+1, furthermore,

xi
2(ξk) − xi

1(ξk)
(1 + ‖x2(tk) − x1(tk)‖2)β − xi

2(ξk) − xi
1(ξk)

(1 + ‖x2(tk−1) − x1(tk−1)‖2)β

<− xi
2(ξk+1) − xi

1(ξk+1)
(1 + ‖x2(tk+1) − x1(tk+1)‖2)β + xi

2(ξk+1) − xi
1(ξk+1)

(1 + ‖x2(tk) − x1(tk)‖2)β .

II). For the interval t ∈ (tk, tk+1), consider when t ∈ (tk, tk+1), ‖x2(t) − x1(t)‖2 is not monotonous. t ∈
(tk, tk+1) can be divided finite intervals, such that ‖x2(t) −x1(t)‖2 is monotonous on every interval. Similar 
to the above discussion can get

xi
2(ξk) − xi

1(ξk)
(1 + ‖x2(tk) − x1(tk)‖2)β − xi

2(ξk) − xi
1(ξk)

(1 + ‖x2(tk−1) − x1(tk−1)‖2)β

<− xi
2(ξk+1) −i

1 (ξk+1)
(1 + ‖x2(tk+1) − x1(tk+1)‖2)β + xi

2(ξk+1) − xi
1(ξk+1)

(1 + ‖x2(tk) − x1(tk)‖2)β .

In conclusion,

∑
i=0,1,··· ,n

− xi
2(ξi) − xi

1(ξi)
(1 + ‖x2(ti) − x1(ti)‖2)β + xi

2(ξi) − xi
1(ξi)

(1 + ‖x2(ti−1) − x1(ti−1)‖2)β > 0,

similar with the discussion from 1), it can easily get the contradiction, so i) is false.
ii). lim

t→∞
(vi1(t) − vi2(t)) = −∞. From similar analysis with i), it also gets the contradiction, so ii) is false.

iii). lim
t→∞

(vi1(t) − vi2(t)) �= ∞, lim
t→∞

(vi1(t) − vi2(t)) �= −∞ and lim
t→∞

sup |vi1(t) − vi2(t)| = ∞. Now can find a 

time t2, such that the function v(t) is increasing on (t2, t3), and |vi(t3)| > |vi(t2)| + 2M .
It constructors a function

V (t) = vi
2(t) − 2

t∫
0

vi(s)(gi1(s) − gi2(s))ds,

then,

V ′(t) =2vi(t)v′ i(t) − 2v(t)(gi1(t) − gi2(t))

= − 2vi2(t)(b12(t) + b21(t)) + 2vi(t)(gi1(t) − gi2(t)) − 2vi(t)(gi1(t) − gi2(t))

= − 4b12(t)vi
2(t)

≤0.
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As V ′(t) < 0, then

V (t2) ≤V (t3),

vi
2(t3) − 2

t3∫
0

vi(s)(gi1(s) − gi2(s))ds ≤vi
2(t2) − 2

t2∫
0

vi(s)(gi1(s) − gi2(s))ds,

that is,

vi
2(t3) ≤vi

2(t2) − 2
t3∫

t2

vi(s)(gi1(s) − gi2(s))ds. (10)

Using mean value theorem of integrals, there is a constant ξ ∈ (t2, t3), such as

t3∫
t2

vi(s)(gi1(s) − gi2(s))ds =vi(t3)
t3∫
ξ

(gi1(s) − gi2(s))ds

+ vi(t2)
ξ∫

t2

(gi1(s) − gi2(s))ds.

Into the formula (4.2.13),

vi
2(t3) ≤vi

2(t2) − 2(vi(t3)
t2∫
ξ

(gi1(s) − gi2(s))ds + vi(t2)
ξ∫

t1

(gi1(s) − gi2(s))ds).

As | 
∫∞
t1

(gi1(s) − gi2(s))ds| < M , so,

vi
2(t3) ≤vi

2(t2) + 2Mvi(t3) + 2Mvi(t2),

furthermore,

(vi(t3) −M)2 ≤ (vi(t2) + M)2. (11)

From the condition iii), it is easy to know (vi(t3) −M)2 > (vi(t2) +M)2, it emerges a contradiction, so iii) 
is false.

From the discussion above, it can deduce that for all t > 0, the formula ‖vi1(t) − vi2(t)‖ < ∞ is right. So 
for any vi(t), (here i ∈ N), it has ‖vi(t)‖ < ∞. Then it can deduce ‖v(t)‖ < ∞.

Following it needs to proof that for all t ≥ 0, the formula ‖x1(t) − x2(t)‖ < ∞ is right.
For: d

dtv
i(t) = −2αb12(‖x2(t) −x1(t)‖)vi(t) +gi1(t) −gi2(t). Using integration by parts, there is a constant 

C,

vi(t) = e−α
∫ t
0 b12(‖x1(s)−x2(s)‖)ds(

t∫
0

(eα
∫ h
0 b12(‖x1(s)−x2(s)‖)ds(gi1(h) − gi2(h)))dh + C)

For the formula ‖x1(t) − x2(t)‖, has:
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i). For any time t > 0, ‖x1(t) − x2(t)‖ ≤ d∗ < ∞, it has 
∫ t

0 b12(‖x1(t) − x2(t)‖)ds ≥ d∗t, as 
lim
t→∞

∫ t

0 b12(‖x1(t) − x2(t)‖)ds = ∞.

ii). If lim
t→∞

‖x1(t) − x2(t)‖ = ∞, for 
∫∞
0 b12(s)ds = ∞, it has lim

t→∞

∫ t

0 b12(‖x1(s) − x2(s)‖)ds = ∞.

So lim
t→∞

Ce−α
∫ t
0 b12(‖x1(s)−x2(s)‖)ds = 0. Consider

f(t) =e−α
∫ t
0 b12(‖x1(s)−x2(s)‖)ds(

t∫
0

eα
∫ h
0 b12(‖x1(s)−x2(s)‖)ds(gi1(h) − gi2(h))dh)

=
∫ t

0 eα
∫ h
0 b12(‖x1(s)−x2(s)‖)ds(gi1(h) − gi2(h))dh

eα
∫ t
0 b12(‖x1(s)−x2(s)‖)ds

.

Using L’Hospital’s rule,

lim
t→∞

f(t) = lim
t→∞

eα
∫ t
0 b12(‖x1(s)−x2(s)‖)ds(gi1(t) − gi2(t))

b12(‖x1(t) − x2(t)‖)eα
∫ t
0 b12(‖x1(s)−x2(s)‖)ds

= lim
t→∞

gi1(t) − gi2(t)
b12(‖x1(t) − x2(t)‖)

.

If lim
t→∞

‖x1(t) − x2(t)‖ = ∞, then it has

lim
t→∞

(f(t) + Ce−α
∫ t
0 b12(‖x1(s)−x2(s)‖)ds) = lim

t→∞
vi(t) = ∞,

from the formula above lim
t→∞

‖v(t)‖ = ∞.
While lim

t→∞
‖v(t)‖ < ∞, it emerges a contradiction. So it must have a constant d, for any time t > 0, it 

has ‖x1(t) − x2(t)‖ ≤ d < ∞.
In conclusion, we prove that this system (3), (4) has a weak flocking behavior. �
In this chart, we consider a system with two agents and analyze the weak behavior. First, we give the 

concept of weak flocking behavior and construct a model (4), (5), and study their weak flocking behavior 
in mathematics. In Theorem 2.1, it gives a condition (free-will) to keep the system with a weak flocking 
behavior. Although here it only gives a special system with two agents, it could still have wide applications. 
For example, in China’s regional economics, the position xi(t) (i = 1, 2) represents the region’s economy, the 
velocity vi(t) (i = 1, 2) represents the regional economic growth, free-will stands for the local government’s 
economic policy. Here the two regions represent Guizhou province and Guangdong province. In three decades 
of reform and opening up, the economic development of Guangdong province is very fast, while the economic 
development in Guizhou is relatively slow. On national level, it will introduce some global economic policy 
to promote economic development of Guizhou province. So that it can realize the common development 
of regional economy in this two province. While every province has its own situation and characteristics, 
these may become some factors which could promote and restrict the development of the economy. These 
factors are not affected by national policy and economic factors of other provinces. So these factors can 
be consider as free-will in the model. From the study on the system (4), (5), it could realize the common 
development of the two provinces’ economy by adjust the free-will. For example, there are lots of high quality 
pollution-free fruits and vegetables in Guizhou. But Due to the traffic inconvenience products are unsalable. 
We could improve the traffic conditions in Guizhou and process the fruits and vegetables to extend their 
sales cycle. Doing these will promote the economic development of Guizhou province. Also this model can 
apply on military field, such as submarines and missile tracking and interception. Taking missile tracking 
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Fig. 1. Agent “1” and “2” form a system with weak flocking behavior. Parameter α = 0.5, β = 1/3. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

for example, the tracking signal will be affected by weather geography enemy deliberately to the factors 
of jamming signal. From the study of this model, it could make the intervention to the missile (adjust the 
free-will function) to track the enemy missile.

2.3. Example

In a two-dimensional plane system, there are two agents in a system. The position and velocity of agent 
“1” are denoted by (x1(t), v1(t)). Its free-will function is g1(t) = (sin t, sin t), then,

dx1(t)
dt =v1(t),

dv1(t)
dt =α

1
(1 + ‖x1(t) − x2(t)‖2)β (v2(t) − v1(t)) + (cos t,− sin t);

(12)

The position and velocity of agent “2” are denoted by (x2(t), v2(t)). Its free-will function is g2(t) =
(cos t, sin t). Then,

dx2(t)
dt =v2(t),

dv2(t)
dt =α

1
(1 + ‖x2(t) − x1(t)‖2)β (v1(t) − v2(t)) + (sin t, cos t).

(13)

Here β = 1
3 , and ‖ 

∫∞
0 (g1(t) − g2(t))dt‖ < ∞, it takes notice of 

∫∞
0 ‖g1(t) − g2(t)‖dt = ∞.

Through Fig. 1, it can notice that when the system (12), (13) satisfies the Theorem 2.1. The agents 
“1” and “2” will form a weak flocking system, which can indicate that the condition shown in theorem is 
reasonable. Considering the requirement of free-will in Theorem 2.1, ‖ 

∫∞
0 (g1(t) −g2(t))dt‖ < ∞, it indicates 

that the function lim
t→∞

‖g1(t) − g2(t)‖ �= 0. This proper brings great convenience in practical application.
Next it is another system with agents “1” and “2”, the free-will of these two agents satisfy ‖ 

∫∞
0 (g1(t) −

g2(t))dt‖ = ∞. the position and velocity of agent “1” denoted by (x1(t), v1(t)), satisfy

dx1(t)
dt =v1(t),

dv1(t)
dt =α

1
(1 + ‖x1(t) − x2(t)‖2)β (v2(t) − v1(t)) + (1,− sin t);

(14)

the position and velocity of agent “2” denoted by (x2(t), v2(t)), satisfy



10 L. Li et al. / J. Math. Anal. Appl. 480 (2019) 123404
Fig. 2. Agent “1” and “2” form a system with weak flocking behavior. Parameter α = 0.5, β = 1/3.

dx2(t)
dt =v2(t),

dv2(t)
dt =α

1
(1 + ‖x2(t) − x1(t)‖2)β (v1(t) − v2(t)) + (sin t, t);

(15)

Here β = 1
3 , and ‖ 

∫∞
0 (g1(t) −g2(t))dt‖ = ∞, not satisfy Theorem 2.1, notice that 

∫∞
0 ‖g1(t) −g2(t)‖dt =

∞.
In system (14), (15), the free-will function requirements is loosed which means this system does not

satisfy Theorem 2.1. Through Fig. 2, it is easy to deduce that the distance between the two agents is not 
bounded, and the weak flock won’t occur. The results of numerical simulation from Fig. 1 and Fig. 2 shows 
that the condition of the free-will is very sharp. For the free-will does not satisfy the Theorem 2.1, the 
system will lose the weak flocking behavior.

3. Intelligent weak cluster complex system control application in missile tracking and defense

In Modern Warfare, missile is more and more obvious in the war. It is important to track and intercept 
enemy missiles and submarines. When the enemy missile or submarines are found, how to realise track and 
intercept them effectively and whether it could depict this process through rational mathematical models? 
It is a very interesting problem.

When we track the enemy missile in a war, its flight trajectory is without our interference before the 
tracking behavior is noticed. And after our tracking behavior is discovered, the enemy missile will make 
motor to get rid of the track. While how can we realise this tracking or automatic tracking? In current 
situation, the velocity of these two missiles cannot keep consistent. So the model given before cannot reflect 
it well. In this chart, it builds a model with weak flocking behavior which can fit the situation above. 
Although we cannot realise that the velocity of our missile match with the velocity of the enemy, we can 
control the free-will to realise tracking.

3.1. Missile tracking model

This model make up of a own missile “q” and an enemy missile “p”. At time t, the position and velocity 
of “q” denote by (xq(t), vq(t)), the position and velocity of “p” are (xp(t), vp(t)).
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For “p”, (xp(t), vp(t)) satisfy

dxp(t)
dt =vp(t),

dvp(t)
dt =gp(t);

(16)

For “q” are (xq(t), vq(t)) satisfy

dxq(t)
dt =vq(t),

dvq(t)
dt =αbqp(‖xp(t) − xq(t)‖)(vp(t) − vq(t)) + gq(t).

(17)

The influence function bqp(‖xp(t) − xq(t)‖) = 1
(1+‖xp(t)−xq(t)‖2)β , parameters α > 0, β > 0.

The motion trail of “q” is control by the enemy command center. Even though the enemy finds that its 
missile “q” is tracked “p”. The enemy command will send the motor command to “q” in order to avoid being 
tracked. In math model, the motor of “q” reflects on the accelerated velocity gp(t). Own missile’s task is 
to track “P”. But how to keep finish the track and intercept is very important. In this chart it builds the
system (15), (16). The following Theorem 3.1 will give a method how to realise it in mathematical.

Theorem 3.1. Let (xp(t), vp(t)) and (xq(t), vq(t)) of the solutions of system (15), (16). If the parameter 
β < 1

2 , and ‖ 
∫∞
0 (gp(t) − gq(t))dt‖ ≤ M < ∞, then the system (15), (16) has the weak flocking behavior.

Proof. As xp(t) ∈ Rn, vp(t) ∈ Rn are n-dimension vectors. Denote xp(t) = (x1
p(t), x2

p(t), · · · , xn
p (t)), 

vp(t) = (v1
p(t), v2

p(t), · · · , vnp (t)), then,

dxp(t)
dt =

(
dx1

p

dt ,
dx2

p

dt , · · ·
dxn

p

dt

)
= (v1

p(t), v2
p(t), · · · , vnp (t))

dvp(t)
dt = gp(t) = (g1

p(t), g2
p(t), · · · , gnp (t)).

xq(t) ∈ Rn, vq(t) ∈ Rn, denote xq(t) = (x1
q(t), x2

q(t), · · · , xn
q (t)) vq(t) = (v1

q (t), v2
q (t), · · · , vnq (t)), then,

dxq(t)
dt =

(
dx1

q

dt ,
dx2

q

dt , · · ·
dxn

q

dt

)
= (v1

q (t), v2
q (t), · · · , vnq (t)),

dvq(t)
dt =αbpq(‖xq(t) − xp(t)‖)(v1

p(t) − v1
q (t), v2

p(t) − v2
q (t), · · · , vnp (t) − vnq (t))

+ (g1
q (t), g2

q (t), · · · , gnq (t)).

First it wants to prove that

‖vp(t) − vq(t)‖ < ∞.

Let v(t) = vp(t) − vq(t), vi(t) = vip(t) − viq(t). Using the reduction to absurdity to prove ‖vp(t) − vq(t)‖ is 
bounded.

Suppose that lim
t→∞

‖vp(t) − vq(t)‖ = ∞ or lim
t→∞

sup ‖vp(t) − vq(t)‖ = ∞.
For the function v(t) is continue and lim

t→∞
‖vp(t) − vq(t)‖ = ∞, then these at least exist one component 

vi(t) which satisfies one of the following two situations:
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i). lim
t→∞

vi(t) = ∞, (18)

ii). lim
t→∞

vi(t) = −∞. (19)

For lim
t→∞

sup ‖vp(t) − vq(t)‖ = ∞, it also exist one component satisfy

iii). lim
t→∞

vi(t) �= ∞, lim
t→∞

vi(t) �= −∞, lim
t→∞

sup |vi(t)| = ∞. (20)

Suppose that i). lim
t→∞

vi(t) = ∞ is right. Then it can find a time t1 > 0 and K, such as for any time t > t1, 
it has vi(t) ≥ K > 0. From (15), (16), when t > t1, the function xi(t) = xi

q(t) − xi
p(t) is increasing and 

lim
t→∞

xi(t) = ∞. It easily deduces lim
t→∞

‖xp(t) − xq(t)‖ = ∞. Consider the formula

d
dtv

i(t) = −αbqp(‖xp(t) − xq(t)‖)vi(t) + gip(t) − giq(t) (21)

integer (20) on [t1, t), it has

vi(t) − vi(t1) = −α

t∫
t1

1
(1 + ‖xq(s) − xp(s)‖2)β v

i(s)ds +
t∫

t1

(gip(s) − giq(s))ds.

For the formula lim
t→∞

‖xq(t) − xp(t)‖2 → ∞, there exist two situations:
1) It exist time t0 > 0, when t ∈ (t0, ∞), ‖xq(t) − xp(t)‖2 is increasing. Then 1

(1+‖xq(s)−xp(s)‖2)β is 
monotonous. By the integral mean value theorem, there exists ξ ∈ (t1, t), such that

t∫
t1

1
(1 + ‖xq(s) − xp(s)‖2)β v

i(s)ds

=
xi
q(t) − xi

p(t)
(1 + ‖xq(t) − xp(t)‖2)β −

xi
q(ξ) − xi

p(ξ)
(1 + ‖xq(t) − xp(t)‖2)β

+
xi
q(ξ) − xi

p(ξ)
(1 + ‖xq(t1) − xp(t1)‖2)β −

xi
q(t1) − xi

p(t1)
(1 + ‖xq(t1) − xp(t1)‖2)β .

For any ξ ∈ (t1, t), it has

−
xi
q(ξ) − xi

p(ξ)
(1 + ‖xq(t) − xp(t)‖2)β +

xi
p(ξ) − xi

q(ξ)
(1 + ‖xq(t1) − xp(t1)‖2)β > 0,

and the formula 
xi
q(t)−i

p(t)
(1+‖xq(t)−xp(t)‖2)β must satisfy one of the following two conditions:

lim
t→∞

xi
p(t) − xi

q(t)
(1 + ‖xp(t) − xq(t)‖2)β = ∞

or

0 ≤ lim
t→∞

xi
q(t) − xi

p(t)
(1 + ‖xq(t) − xp(t)‖2)β < ∞.

So there exists a constant M0, such as
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M0 ≤ lim
t→∞

t∫
t1

1
(1 + ‖xp(s) − xq(s)‖2)β v

i(s)ds.

As lim
t→∞

| 
∫ t

t1
(gip(s) − giq(s))ds| ≤ M < ∞, then one of the following conditions satisfies:

−α lim
t→∞

t∫
t1

1
(1 + ‖xq(s) − xp(s)‖2)β v

i(s)ds + lim
t→∞

t∫
t1

(gip(s) − giq(s))ds = −∞

or

0 < −α lim
t→∞

t∫
t1

1
(1 + ‖xq(s) − xp(s)‖2)β v

i(s)ds + lim
t→∞

t∫
t1

(gip(s) − giq(s))ds < ∞.

While lim
t→∞

vi(t) = ∞, it emerges a contradiction, so the condition i) is false.
2). It exists a time t0 > 0, when t ∈ (t0, ∞), ‖xq(t) − xp(t)‖2 is not monotonous. But lim

t→∞
‖xq(t) −

xp(t)‖2 → ∞. For any enough big time tn > t0, there exist time t0 < t1 < t2 < · · · < tn, such that on any 
interval (ti−1, ti)(i = 1, 2, · · · , n), ‖xq(t) − xp(t)‖2 is monotonous. Then exists ξi ∈ (ti−1, ti), such as

tn∫
t0

1
(1 + ‖xp(s) − xq(s)‖2)β v

i(s)ds

=
∑

i=1,···n

ti∫
ti−1

1
(1 + ‖xq(s) − xp(s)‖2)β v

i(s)ds

=
∑

i=1,···n
{

xi
q(ti) − xi

p(ti)
(1 + ‖xq(ti) − xp(ti)‖2)β −

xi
q(ξi) − xi

p(ξi)
(1 + ‖xq(ti) − xp(ti)‖2)β

+
xi
q(ξi) − xi

p(ξi)
(1 + ‖xq(ti−1) − xp(ti−1)‖2)β −

xi
q(ti−1) − xi

p(ti−1)
(1 + ‖xq(ti−1) − xp(ti−1)‖2)β }

=
xi
q(tn) − xi

p(tn)
(1 + ‖xq(tn) − xp(tn)‖2)β +

∑
i=1,···n

{−
xi
q(ξi) − xi

p(ξi)
(1 + ‖xq(ti) − xp(ti)‖2)β

+
xi
q(ξi) − xi

p(ξi)
(1 + ‖x2(ti−1) − xp(ti−1)‖2)β } −

xi
q(t0) − xi

p(t0)
(1 + ‖xq(t0) − xp(t0)‖2)β .

There exists time tk−1, when t ∈ (tk−1, tk), ‖xq(t) − xp(t)‖2 is decreasing. Furthermore it can find the first 
time tk+1 > tk, such as

| − 1
(1 + ‖xq(tk) − xp(tk)‖2)β + 1

(1 + ‖xq(tk−1) − xp(tk−1)‖2)β |

<| − 1
(1 + ‖xq(tk+1) − xp(tk+1)‖2)β + 1

(1 + ‖xq(tk) − xp(tk)‖2)β |.

I). For the interval (tk, tk+1), we consider when t ∈ (tk, tk+1), ‖xq(t) −xp(t)‖2 is increasing. When t ∈ (t0, tn), 
it has xi

q(t) − xi
p(t) is increasing. For ξk ∈ (tk−1, tk) and ξk+1 ∈ (tk, tk+1), easily ξk < ξk+1, furthermore,
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xi
q(ξk) − xi

p(ξk)
(1 + ‖xq(tk) − xp(tk)‖2)β −

xi
q(ξk) − xi

p(ξk)
(1 + ‖xq(tk−1) − xp(tk−1)‖2)β

<−
xi
q(ξk+1) − xi

p(ξk+1)
(1 + ‖xq(tk+1) − xp(tk+1)‖2)β +

xi
q(ξk+1) − xi

p(ξk+1)
(1 + ‖xq(tk) − xp(tk)‖2)β .

II). For the interval (tk, tk+1), we consider when t ∈ (tk, tk+1), ‖xq(t) − xp(t)‖2 is not monotonous. The 
interval (tk, tk+1) can be divided into finite subintervals. Such as ‖xq(t) − xp(t)‖2 is monotonous on every 
subinterval. Similar discussion from I) it has

xi
q(ξk) − xi

p(ξk)
(1 + ‖xq(tk) − xp(tk)‖2)β −

xi
q(ξk) − xi

p(ξk)
(1 + ‖xq(tk−1) − xp(tk−1)‖2)β

<−
xi
q(ξk+1) − xi

p(ξk+1)
(1 + ‖xq(tk+1) − xp(tk+1)‖2)β +

xi
q(ξk+1) − xi

p(ξk+1)
(1 + ‖xq(tk) − xp(tk)‖2)β .

Above all

∑
i=0,1,··· ,n

−
xi
q(ξi) − xi

p(ξi)
(1 + ‖xq(ti) − xp(ti)‖2)β +

xi
q(ξi) − xi

p(ξi)
(1 + ‖xq(ti−1) − xp(ti−1)‖2)β > 0.

Similar analysis from 1) it is easily to get the contradiction. So i) is false.
For condition ii) lim

t→∞
(vip(t) − viq(t)) = −∞. Similar analysis from i) it can get the contradiction. So 

condition ii) is false.
For condition iii) lim

t→∞
(vip(t) − viq(t)) �= ∞, lim

t→∞
(vip(t) − viq(t)) �= −∞ and lim

t→∞
sup |vip(t) − viq(t)| = ∞. It 

can find time t2, such as function v(t) is increasing on (t2, t3), and |vi(t3)| > |vi(t2)| + 2M .
Construct a function

V (t) = vi
2(t) − 2

t∫
0

vi(s)(gip(s) − giq(s))ds.

Then it has,

V ′(t) =2vi(t)v′ i(t) − 2v(t)(gip(t) − giq(t))

= − 2bqp(t)vi
2(t) + 2vi(t)(gip(t) − giq(t)) − 2vi(t)(gip(t) − giq(t))

= − 2bqp(t)vi
2(t)

≤0.

From V ′(t) < 0, it has

V (t2) ≤V (t3),

vi
2(t3) − 2

t3∫
0

vi(s)(gip(s) − giq(s))ds ≤vi
2(t2) − 2

t2∫
0

vi(s)(gip(s) − giq(s))ds.

Furthermore,

vi
2(t3) ≤vi

2(t2) − 2
t3∫

t2

vi(s)(gip(s) − giq(s))ds. (22)
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From the second mean value theorem of calculus, there exists constant ξ ∈ (t2, t3), such as

t3∫
t2

vi(s)(gip(s) − giq(s))ds =vi(t3)
t3∫
ξ

(gip(s) − giq(s))ds

+ vi(t2)
ξ∫

t2

(gip(s) − giq(s))ds,

substitute into (21),

vi
2(t3) ≤vi

2(t2) − 2(vi(t3)
t2∫
ξ

(gip(s) − giq(s))ds + vi(t2)
ξ∫

t1

(gip(s) − giq(s))ds).

For | 
∫∞
t1

(gip(s) − giq(s))ds| < M , it has

vi
2(t3) ≤vi

2(t2) + 2Mvi(t3) + 2Mvi(t2).

Furthermore,

(vi(t3) −M)2 ≤ (vi(t2) + M)2. (23)

From the situation iii), it has (vi(t3) −M)2 > (vi(t2) + M)2, it is a contradiction, so iii) is false.
To sum up all, it has prove that for all t > 0, |vip(t) − viq(t)| < ∞ is right. So for any vi(t), here i ∈ N, it 

has |vi(t)| < ∞, furthermore ‖v(t)‖ < ∞.
Next we want to prove that ‖xp(t) − xq(t)‖ < ∞ for all t ≥ 0. Consider the following formula:

d
dtv

i(t) = −αbqp(‖xp(t) − xq(t)‖)vi(t) + gip(t) − giq(t). (24)

Using the part integral, there exists a constant C.

vi(t) = e−α
∫ t
0 bqp(‖xp(s)−xq(s)‖)ds(

t∫
0

(eα
∫ h
0 bqp(‖xp(s)−xq(s)‖)ds(gip(h) − giq(h)))dh + C)

For ‖xp(t) − xq(t)‖, it has
i). For any time t > 0, if ‖xp(t) − xq(t)‖ ≤ d∗ < ∞, we have 

∫ t

0 bpq(‖xp(t) − xq(t)‖)ds ≥ d∗t, mean 
lim
t→∞

∫ t

0 bqp(‖xp(t) − xq(t)‖)ds = ∞.

ii). As 
∫∞
0 bqp(s)ds = ∞, if lim

t→∞
‖xp(t) − xq(t)‖ = ∞, then it has lim

t→∞

∫ t

0 bqp(‖xp(s) − xq(s)‖)ds = ∞.

From the two above situations, it can deduce lim
t→∞

Ce−α
∫ t
0 bqp(‖xp(s)−xq(s)‖)ds = 0. Consider

f(t) =e−α
∫ t
0 bqp(‖xp(s)−xq(s)‖)ds(

t∫
0

eα
∫ h
0 bqp(‖x1(s)−x2(s)‖)ds(gi1(h) − gi2(h))dh)

=
∫ t

0 eα
∫ h
0 bqp(‖xp(s)−xq(s)‖)ds(gip(h) − giq(h))dh

eα
∫ t
0 bqp(‖x1(s)−x2(s)‖)ds

.
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Using L’Hospital’s rule, it has

lim
t→∞

f(t) = lim
t→∞

eα
∫ t
0 bqp(‖xp(s)−xq(s)‖)ds(gip(t) − giq(t))

bpq(‖xp(t) − xq(t)‖)eα
∫ t
0 bpq(‖xp(s)−xq(s)‖)ds

= lim
t→∞

gip(t) − giq(t)
bqp(‖xp(t) − xq(t)‖)

.

If lim
t→∞

‖xp(t) − xq(t)‖ = ∞, then it has

lim
t→∞

(f(t) + Ce−α
∫ t
0 bpq(‖xp(s)−xq(s)‖)ds) = lim

t→∞
vi(t) = ∞.

By the above formula can launch lim
t→∞

‖v(t)‖ = ∞. While lim
t→∞

‖v(t)‖ < ∞, it is a contradiction. So it must 
exist a constant d, so that ‖xp(t) − xq(t)‖ ≤ d < ∞ for any time t > 0.

To sum up in conclusion, it has prove that the system has a weak flocking proper. �
The way to prove Theorem 2.1 and Theorem 3.1 are similar. While the model (3), (4) and model (15), 

(16) are inherently difference. In model (3), (4) the velocities of the two agents are bounded. It can describe 
the formation flight of Pterosaurs uav. When two Pterosaurs uavs finish the automatic formation, during 
their flight process there are all kinds of interference from external environment. If it applies the model (3), 
(4) to the formation flight of Pterosaurs uav, it can calculate what influence from external environment can 
keep the Pterosaurs uavs flying together. If the external disturbance is too strong, the ground command 
center only need make appropriate instructions to one of the uavs which satisfy our model requirement 
‖ 
∫∞
0 (g1(t) − g2(t))dt‖ < ∞. This will improve operational efficiency, saving the cost of resources and 

improve the degree of automation.
It can describe another military combat mode—on enemy missile torpedo or warplane intercept by using 

model (15), (16). Obviously, the enemy missile torpedo and warplane will try to avoid the track and intercept,
and the accelerated velocity of the enemy missile torpedo or warplane is depended on its own control. If 
we want to track with them, we should adjust the velocity to keep efficient trace and intercept. The model 
(15), (16) can describe it very well. Using this model it can realise the track and intercept.

4. Intelligent weak cluster complex system with a leader

In this chapter It considers a model which its agents are not all connected. There are N +1 agents in the 
model. The leader remarks with “0”. Any other agents’s behavior has no influence on it. There N followers 
in the model. The position and velocity of the leader are denoted by (x0(t), v0(t)). The position and velocity 
of the follower “i” are denoted by (xi(t), vi(t)), and its free-will function is fi(t).

For the leader “0”, (x0(t), v0(t)) satisfy

dx0(t)
dt =v0(t),

dv0(t)
dt =f0(t);

(25)

For the follower “i”(i ∈ N), (xi(t), vi(t)) satisfy

dxi(t)
dt =vi(t),

dvi(t)
dt =αai,i−1(‖xi(t) − xi−1(t)‖)(vi−1(t) − vi(t)) + fi(t).

(26)
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Theorem 4.1. At time t, let the velocity and position of the leader “0” and the follower “i” are (x0(t), v0(t))
and (xi(t), vi(t)). They satisfy system (24), (25). If the parameter β < 1

2 , and there exists a constant M0 > 0, 
Mi > 0 (i ∈ N), such that the free-will functions satisfy ‖ 

∫∞
0 f0(t)dt‖ ≤ M0 < ∞, ‖ 

∫∞
0 (f1(t) − f0(t))dt‖ ≤

M1 < ∞, and ‖ 
∫∞
0 (fi(t) − fi−1(t))dt‖ ≤ Mi < ∞ (i ∈ N), then system (24), (25) has weak flocking proper.

Proof. Using mathematical induction to prove this theorem.
First, when i = 1, the system (24), (25) become into the system (15), (16). From the Theorem 3.1, it is 

easy to deduce the system with weak flocking proper. So for any time t, it can find two constants A1 > 0, 
K1 > 0, such as ‖x1(t) − x0(t)‖ < A1 and ‖v1(t) − v0(t)‖ < K1. As

lim
t→∞

‖v0(t) − v0(0)‖ = lim
t→∞

‖
t∫

0

f0(t)dt‖ ≤ M0.

So there exists a constant K0 > 0, such as ‖v0(t)‖ < K0, for any time t. Furthermore

‖v1(t)‖ ≤ ‖v0(t)‖ + ‖v1(t) − v0(t)‖
≤ K0 + K1.

To sum up, it can deduce that there exists a constant K∗
1 = K0 + K1, such as ‖v1(t)‖ < K∗

1 .
When i = 2, it wants to study ‖x2(t) − x1(t)‖ and ‖v2(t) − v1(t)‖. Firstly, it considers v21(t) = v2(t) −

v1(t), for any time t > 0, it has

dv21(t)
dt = − αa21(‖x1(t) − x2(t)‖)(v2(t) − v1(t)) + f2(t)

− [a10(‖x1(t) − x0(t)‖)(v0(t) − v1(t)) + f1(t)].
(27)

Let h2(t) = f2(t) − [a10(‖x1(t) − x0(t)‖)(v0(t) − v1(t)) + f1(t)], the formula (26) can be turned into

d
dt(v21(t)) = − αa21(‖x1(t) − x2(t)‖)(v2(t) − v1(t)) + h2(t)

= − αa21(‖x1(t) − x2(t)‖)v21(t) + h2(t).
(28)

As ‖ 
∫∞
0 f0(t)dt‖ < M0 and ‖ 

∫∞
0 (f1(t) − f0(t))dt‖ < M1, then

‖
∞∫
0

f1(t)dt‖ ≤ ‖
∞∫
0

(f1(t) − f0(t))dt‖ + ‖
∞∫
0

f0(t)dt‖

< M0 + M1.

The same procedure may be easily adapted to obtain ‖ 
∫∞
0 f2(t)dt‖ < M0 + M1 + M2. From h2(t) =

f2(t) − v′1(t) it can deduce

‖
∞∫
0

h2(t)dt‖ =‖
∞∫
0

f2(t) − v′1(t)dt‖

=‖
∞∫

f2(t)dt−
∞∫
v′1(t)dt‖
0 0
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≤‖
∞∫
0

f2(t)dt‖ + ‖
∞∫
0

v′1(t)dt‖

≤M0 + M1 + M2 + K∗
1 + ‖v1(0)‖.

Let M∗
2 = M0 + M1 + M2 + K∗

1 + ‖v1(0)‖, then

‖
∞∫
0

h2(t)‖ < M∗
2 .

The displacement and velocity difference of the agent “1” and “2” (x21(t), v21(t)) satisfy

d
dt (x21(t)) =v21(t), (29)

d
dt(v21(t)) = − αa21(‖x1(t) − x2(t)‖)v21(t) + h2(t). (30)

Similar analysis from Theorem 3.1, there are two constants A2 and K2, for any time t > 0, it can deduce 
that ‖x21(t)‖ < A2, ‖v21(t)‖ < K2.

Suppose when N = k, system has the weak flocking behavior.
For N = k + 1, it wants to prove the system also has the weak flocking behavior.
When N = k the system has the weak flocking behavior. Denote by xk+1,k(t) = xk+1(t) − xk(t), 

vk+1,k(t) = vk+1(t) − vk(t), it is easy to obtain that

d
dtvk+1,k(t) = αak+1,k(vk(t) − vk+1(t)) − αak,k−1(vk−1(t) − vk(t)) + gk+1(t) − gk(t).

For there exists two constants M0 > 0, Ki,i−1 > 0, such that ‖v0(t)‖ ≤ M0 and ‖vi,i−1(t)‖ ≤ Ki,i−1, for 
any time t > 0. For any time t > 0, it could easily deduce that there is a constant Mi, such as ‖vi(t)‖ < Mi. 
Let Mk = max

i∈1,2,··· ,k
{M0, · · · , Mi,i−1}. Integral the formula above, then

‖vk(t)‖ = ‖vk(0) −
t∫

0

(αak,k−1(vk−1(s) − vk(s)) + gk(s))ds‖ < Mk.

Let M∗ = vk(0) + Mk, then

‖
t∫

0

(αak,k−1(vk−1(s) − vk(s)) + gk(s))ds‖ < M∗.

Here it is easy to know 
∫ t

0 gk+1(s)ds for all t > 0. Similar proof method from above, it is easily to know 
‖xk+1(t) −xk(t)‖ < ∞, and ‖vk+1(t) −vk(t)‖ < ∞ for all t > 0. As the number of the agents in the system 
id finite. By the triangle inequality, it can deduce that for any time t > 0, the position and velocity of the 
leader “0” and follower “i” (x0(t), v0(t)), (xi(t), vi(t)) satisfy

‖x0(t) − xi(t)‖ < ∞,

‖v0(t) − vi(t)‖ < ∞.

Then the system (24), (25) has the weak flocking behavior. �
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In this chapter, it describes a complex system with simply connected directed graph proper. Theorem 4.1
gives the initial conditions to keep the weak flocking behavior and strictly proved this conclusion. This 
model can be widely application to various domains.

4.1. Numerical simulation example

In 2-dimensional planar, consider a system (31), (32), (33), (34) with a leader and three followers. At 
time t, let the position and velocity of leader “0” is (x0(t), v0(t)), the position and velocity of the follower 
“i = 1, 2, 3” is (xi(t), vi(t)). The free-will function of “0” is g0(t) = (cos t, sin t), the free-will function of 
“i” are g1(t) = (sin t, cos t), g2(t) = (− cos t, e−t) and g3(t) = (e−t, sin t). The position and velocity of the 
leader (x0(t), v0(t)) satisfy

dx0(t)
dt =v0(t),

dv0(t)
dt =(cos t, sin t);

(31)

The position and velocity of the follower “1” (x1(t), v1(t)) satisfy

dx1(t)
dt =v1(t),

dv1(t)
dt =α

1
2(1 + ‖x1(t) − x0(t)‖2) 1

3
(v0(t) − v1(t)) + (sin t, cos t);

(32)

The position and velocity of the follower “2” (x2(t), v2(t)) satisfy

dx2(t)
dt =v2(t),

dv2(t)
dt =α

1
2(1 + ‖x2(t) − x1(t)‖2) 1

3
(v1(t) − v2(t)) + (− cos t, e−2t);

(33)

The position and velocity of the follower “3” (x3(t), v3(t)) satisfy

dx3(t)
dt =v3(t),

dv3(t)
dt =α

1
2(1 + ‖x3(t) − x2(t)‖2) 1

3
(v2(t) − v3(t)) + (e−t, sin(t)).

(34)

Here ‖ 
∫∞
0 (gi(t) − gi−1(t))dt‖ < ∞, satisfy Theorem 4.1. Notice that 

∫∞
0 ‖gi(t) − gi−1(t))‖dt = ∞ for 

(i = 1, 2, 3, 4).
It is easy to verify this system satisfies the Theorem 4.1. Through Fig. 3, it can deduce that this system 

has the weak flocking behavior.
Next for the system (35) (36) (37) (38), it gives another free-will function for the agents, such that 

‖ 
∫∞
0 (gi(t) − gi−1(t))dt‖ = ∞. Through the numerical simulation results, it reveals that if the free-will 

functions don’t satisfy the Theorem 4.1, the system don’t have the weak flocking behavior.
Here the free-will functions the system (35) (36) (37) (38) are changed. The free-will of the leader 

“0” is h0(t) = (cos t, sin t), the free-will of the followers are h1(t) = (1
t , cos t), h2(t) = (− cos t, 1

t1/2 ) and 
h3(t) = (1, sin t). Then the position and velocity of “0” (x0(t), v0(t)) satisfy
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Fig. 3. The system contains a leader “0” and three followers “i = 1, 2, 3” with the weak flocking behavior. Parameter α = 0.5, 
β = 1/3.

dx0(t)
dt =v0(t),

dv0(t)
dt =(cos t, sin t);

(35)

The position and velocity of “1” (x1(t), v1(t)) satisfy

dx1(t)
dt =v1(t),

dv1(t)
dt =α

1
2(1 + ‖x1(t) − x0(t)‖2) 1

3
(v0(t) − v1(t)) + (1

t
, cos t);

(36)

The position and velocity of “2” (x2(t), v2(t)) satisfy

dx2(t)
dt =v2(t),

dv2(t)
dt =α

1
2(1 + ‖x2(t) − x1(t)‖2) 1

3
(v1(t) − v2(t)) + (− cos t, 1

t1/2
);

(37)

The position and velocity of “3” (x3(t), v3(t)) satisfy

dx3(t)
dt =v3(t),

dv3(t)
dt =α

1
2(1 + ‖x3(t) − x2(t)‖2) 1

3
(v2(t) − v3(t)) + (1, sin(t)).

(38)

Here ‖ 
∫∞
0 (fi(t) −fi−1(t))dt‖ < ∞, satisfy the conditions of Theorem 4.1. Notice that 

∫∞
0 ‖fi(t) −fi−1(t)‖dt =

∞. Here β = 1
3 , ‖ 

∫∞
0 (f1(t) −f2(t))dt‖ = ∞, do not satisfy Theorem 4.1 notice that 

∫∞
0 ‖f1(t) −f2(t)‖dt = ∞.

Obviously, the free-will functions do not satisfy Theorem 4.1 in this model. Through the Fig. 4, it is easy 
to see the agents are getting further and further apart and the position between the agents is not bounded. 
So this model does not have the weak flocking behavior.

5. Conclusions

This paper give a definition of weak flocking behavior in mathematics. One of the major contributions 
for this paper is that we use the different method to strictly prove: when the agents’ velocities do not 
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Fig. 4. The system has a leader “0” and three agents “i = 1, 2, 3”. Parameters α = 0.5, β = 1/3.

convergence the same at last, the distance of any two agents is bound at any time. In many classical paper 
to analysis the flocking behavior, the condition that the agents’ velocities convergence to the same is the 
necessary condition to keep distance to keep bound. While in the realize world, keeping the velocities agents 
in complex system same is hard to realize. Our model has more wide applications, such as target tracking 
model. Also, this model still need to be improved. Such as, we only consider the agents will be boundary, 
in factory, whether we can consider that how the agents can avoid to collide to each others. In the further 
work, we will continue to study these problems.

In this paper, we consider a factor called free-will that can be viewed as noise or external interference. 
The weak flocking models proposed in this paper are relatively ideal models. In these models, we assume 
that all variables can be measured. Nevertheless, in a real application, the velocities and positions of the 
agents in the system are very complex to measure. Especially, the noise will bring uncertainty which will add 
the difficulty to measure the variables such as position and velocity. In our future work, we will consider to 
build the model in which the variables cannot be measured in sometimes. And we will carry out numerical 
simulations and then try to conduct theoretical analysis.
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