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1. Introduction

The study of automorphisms (endomorphisms) of C∗-algebras does not seem to have received as much 
attention as its classical counterpart. Arguably, the groups (semigroups) made up of automorphisms (en-
domorphisms) of a non-commutative C∗-algebra are seldom regarded as inviting objects to deal with in 
that they are not only difficult to describe in concrete terms but they also lack many of those properties 
a group is generally supposed to possess. For instance, these groups are hardly ever locally compact, apart 
from those coming from finite-dimensional C∗-algebras. A few exceptions, however, do exist. A case in point 
is given by the Cuntz algebras On: their endomorphisms and automorphisms have in fact been studied 
rather intensively despite the difficulties alluded to above, perhaps because of their interplay with algebraic 
quantum field theory, whose superselection structure can be phrased in terms of suitable equivalence classes 
of endomorphisms. Indeed, as late as over forty years after their introduction in [14], the Cuntz algebras still 
attract much attention. Unlike many other C∗-algebras, this is particularly true of their endomorphisms 
and automorphisms [15,13,10–12]. Another reason is they display a remarkably rich variety of phenomena 
which range from the study of general structure properties of C∗-algebras to dynamical systems, actions of 
(possibly quantum) groups and subfactors. Moreover, these endomorphisms quite often lead to non-trivial 
computations of important invariants, such as the Jones index or Voiculescu’s topological entropy [20,23,21,
9,7,28]. Nevertheless, far less is known about the general structure of other C∗-algebras which might happen 
to be somewhat related to the Cuntz algebra, and their endomorphism semigroup. For instance, not too long 
ago Cuntz and others introduced a vast class of C∗-algebras naturally associated with algebraic structures 
of various kinds, which seem to indicate that intriguing connections are very likely to be found between 
operator algebra theory on the one hand and other seemingly far different areas, most notably number 
theory, on the other (see e.g. [17] for a wide overview). Having that in mind, in our recent works [1–3] we 
initiated a painstaking analysis of the so-called dyadic C∗-algebra Q2, which was first studied systematically 
by Larsen and Li in [22]. This C∗-algebra contains in a canonical fashion both the Cuntz algebra O2 and 
the Bunce-Deddens algebra of type 2∞ (the latter as the fixed-point subalgebra QT

2 of the gauge action). 
In particular, much of our attention so far has been lavished on its endomorphisms and automorphisms, 
of which very little was known before. To frame the scope and the reach of our analysis, however, it might 
be worth stressing that Q2 is not at all an isolated case. On the contrary, it is perhaps best presented as a 
noticeable example of a broad class of C∗-algebras arising from algebraic dynamical systems, including all 
Qn with n ≥ 2, which have been addressed in [5] in much greater generality than was initially done in [1].

Our final goal was at that time and still is to arrive at a thorough description of the group Out(Q2) of 
the outer automorphisms of Q2 not least because only rarely has such an ambitious task been accomplished. 
Even so, the undertaking is not necessarily bound to fail. Indeed, unlike the Cuntz algebra, the 2-adic ring 
C∗-algebra features a decidedly more rigid structure in that the Cuntz isometries are now intertwined, which 
in fact seems to prevent many cases from occurring. Many obstacles are easily found on the way, though, 
and this might depend on the various facets of Aut(Q2) and End(Q2) entailed by the intricacies of the 
ladder of inclusions

Q2 ⊃ QT
2 = C∗(D2, U) ⊃ C∗(U)

∪ ∪
O2 ⊃ F2 ⊃ D2
∪

C∗(S )
2
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which account for the deep interplay between Q2 and the Cuntz algebra O2. Still far from a complete an-
swer, we have nonetheless obtained partial yet motivating results. Among them, and without any pretense 
of exhaustiveness, we showed that EndC∗(U)(Q2) = AutC∗(U)(Q2) � C(T , T ) and AutD2(Q2) are both 
maximally Abelian in Aut(Q2). As far as Out(Q2) is concerned, at present all we know is it is uncountable 
and not Abelian. Moreover, any extendible localized diagonal automorphism of O2 is the product of a gauge 
and a localized diagonal inner automorphism. Finally, we also spotted an interesting rigidity phenomenon 
relative to the inclusion O2 ⊂ Q2, which forbids any non-trivial endomorphism of Q2 to restrict to O2 triv-
ially. Nevertheless, the inclusion, albeit given quite explicitly, is not easily handled with standard techniques, 
and the principal reason is there is no way to see O2 as a fixed-point subalgebra of Q2, for no conditional 
expectation exists from the larger onto the smaller algebra.

As for the present work, we start by going back to the analysis of the automorphisms of Q2 mapping 
C∗(U) onto itself, for a number of problems had been left open in [1]. More precisely, our attention is 
here turned to those automorphisms which at the level of C∗(U) simply act as a rotation of the generator. 
Remarkably, the only allowed values of the angle turn out to be all roots of order any power of 2. We 
then move on to provide a complete description of those inner automorphisms of Q2 leaving the diagonal 
D2 globally invariant. This should be regarded as the main result of the present work insofar as it not 
only fully settles the problem but also establishes an elegant synthesis of the corresponding results for 
the Bunce-Deddens and Cuntz algebras [26,25]. Interestingly enough, the associated non-trivial part W of 
the normalizing group is a specific extension of the well-known Thompson group V , which have surfaced 
before in the work of Nekrashevych [24]. Moreover, we draw a number of consequences of these results on 
the structure of other normalizers. In particular, the inclusion O2 ⊂ Q2 is proved not to be regular, even 
though to date we do not know whether the unitary normalizer of O2 in Q2 actually reduces to U(O2), 
as we would be inclined to believe. At any rate, we do show that the only unitaries in the Bunce-Deddens 
algebra normalizing O2 are those in the canonical UHF subalgebra F2. Finally, in the last part, which is 
more combinatorial in character, we discuss permutative endomorphisms of O2, namely those obtained by 
extending the permutative endomorphisms of O2. Extendability is no trivial matter here. Roughly speaking, 
if one is given an endomorphism of the Cuntz algebra, the odds are it will fail to extend to an endomorphism 
of the whole Q2. To take but two significant examples of the hurdles one might encounter in trying to 
exhibit an extension of any such endomorphism, it is worth recalling that less than half of the permutative 
endomorphisms of O2 at level two actually extend [3], and among the so-called Bogolubov automorphisms 
of O2 only the gauge automorphisms, the flip-flop and their compositions extend [1]. That being the case, 
one might be led to expect extendible endomorphisms to be increasingly sparse as the level is raised. Quite 
the opposite, we show that the number of permutative endomorphisms of Q2 does grow extremely quickly 
with the level, which came as good news to us. Moreover, we are now in a position to enrich the list of 
the endomorphisms of Q2, which admittedly had remained rather limited since we started working on the 
problem in [1].

2. Preliminaries and notation

This rather quick section provides the reader with the basic notation and definitions needed to make 
the paper as self-consistent and readable as possible. The main object of the present study, the 2-adic ring 
C∗-algebra Q2 is by definition the universal C∗-algebra generated by a unitary U and a (proper) isometry S2
such that S2U = U2S2 and S2S

∗
2 + US2S

∗
2U

∗ = 1. Several characterizations of this C∗-algebra are actually 
known, see [22] for more detail. Among the many interesting properties enjoyed by Q2, it is worth recalling 
it is a simple and purely infinite C∗-algebra. As is known, the Cuntz algebra O2 is the universal C∗-algebra 
generated by two isometries X1, X2 such that X1X

∗
1 + X2X

∗
2 = 1. It is clear that O2 embeds into Q2

through the injective ∗-homomorphism that sends X1 to US2 and X2 to S2. A distinguished representation 
of the 2-adic ring C∗-algebra, which will actually play a major role in this work, is the so-called canonical 
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representation ρc of Q2, which is a (faithful) irreducible representation acting on the Hilbert space �2(Z), 
with canonical orthonormal basis {ek : k ∈ Z}, by ρc(U)ek

.= ek+1 and ρc(S2)ek
.= e2k, k ∈ Z. In order 

to ease the notation, we will often drop the symbol ρc and identify Q2 with its image. The Cuntz algebra 
O2 is acted upon by the one-dimensional torus T through the well-known gauge automorphisms αθ, with 
θ ∈ R. These are given by αθ(Si) = eiθSi for i = 1, 2. The corresponding invariant subalgebra is denoted 
by F2 ⊂ O2, which will often be referred to as the gauge invariant subalgebra of O2. It is worth mentioning 
that F2 is isomorphic with the unique UHF algebra of type 2∞. Now the gauge automorphisms extend to 
automorphisms α̃θ of the whole Q2 by setting α̃θ(U) = U , which allows us to consider the gauge invariant 
subalgebra QT

2 of Q2 as well. Among other things, QT
2 is known to be a Bunce-Deddens algebra. It is 

not difficult to see that QT
2 can also be described as the C∗-subalgebra of Q2 generated from D2 and U , 

where D2 ⊂ F2 is the diagonal subalgebra, namely the subalgebra generated by the diagonal projections 
Pα

.= SαS
∗
α, where for any multi-index α = (α1, α2, . . . , αk) ∈ W2

.=
⋃

n≥0{1, 2}n the isometry Sα is 
the product Sα1Sα2 . . . Sαk

. Sometimes it will be more convenient to identify D2 with the C∗-algebra of 
continuous functions on its Gelfand spectrum, which is known to be the Cantor set K = {1, 2}N . As 
a matter of fact, D2 is a Cartan subalgebra both of O2 and Q2. Since the multi-index notation will be 
adopted extensively throughout the paper, we take this opportunity to recall that |α| denotes the length of 
the multi-index α.

The canonical endomorphism of O2 is defined on each element x ∈ O2 as ϕ(x) = S1xS
∗
1 + S2xS

∗
2 . It is 

rather obvious that it extends to Q2. We also point out the intertwining rules Six = ϕ(x)Si for every x ∈ Q2, 
with i = 1, 2, which will come in useful in the sequel. Lastly, we recall that thanks to the Cuntz-Takesaki 
correspondence, every endomorphism of O2 is uniquely determined by a unitary in O2. To be precise, given 
u ∈ U(O2) there exists an endomorphism λu defined as λu(Si) 

.= uSi for i = 1, 2 and conversely every 
endomorphism has this form. Aware that this overview can by no means be regarded as a comprehensive 
introduction, we refer the interested reader to [1,22], and the references therein, for a fuller coverage of the 
material instead.

3. Automorphisms preserving C∗(U)

The present brief section aims to refine some results concerning the C∗-subalgebra of Q2 generated by 
U . To begin with, in [1] the commutative subalgebra C∗(U) was proved to be maximal Abelian in Q2, and 
it was also seen to be the image of a unique conditional expectation from Q2. However, our subalgebra fails 
to be a Cartan subalgebra, as shown by the following result.

Proposition 3.1. The normalizer

{v ∈ Q2 | v∗v, vv∗ ∈ P(Q2), vC∗(U)v∗ ⊂ C∗(U), v∗C∗(U)v ⊂ C∗(U)}

coincides with the unitary normalizer NC∗(U)(Q2) and sits in the Bunce-Deddens subalgebra QT
2 . In partic-

ular, the subalgebra C∗(U) is not Cartan in Q2.

Proof. Let v be a partial isometry in the normalizer. The projections v∗v and vv∗ are both in C∗(U). 
Since T is connected, they can only be both equal to 0 or 1. Therefore, without loss of generality we may 
suppose that v is a unitary in NC∗(U)(Q2). By definition we have vUv∗ = g(U) for some g ∈ C(T ). If we 
apply the gauge automorphism αz to the previous equality we get αz(v)Uαz(v)∗ = g(U), which leads to 
v∗αz(v)Uαz(v)∗v = U . The maximality of C∗(U) in Q2 implies that αz(v) = vhz(U) for some function 
hz ∈ C(T ). We observe that αz1z2(v) = vhz1z2(U) = αz1(αz2(v)) = αz1(vhz2(U)) = αz1(v)αz1(hz2(U)) =
vhz1(U)hz2(U) and thus hz1z2(U) = hz1(U)hz2(U). Set fw(z) := hz(w) where w ∈ T . The function fw(·)
is a continuous function on T (as a function in the variable z) which is also a character. Indeed, it holds 
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fw(z1z2) = hz1z2(w) = hz1(w)hz2(w) = fw(z1)fw(z2). It follows that fw(z) = zk(w) for some k(w) ∈ Z. 
Now k(w) is the winding number of the curve fw(z) (where w is fixed). All the curves {fw(·)}w∈T are 
homotopic. Since the winding number is homotopy invariant, we see that k(w) has to be constant, say k. 
Now, a straightforward argument shows that k has to be equal to 0, cf. Proposition 6.8. The claim about 
the Cartan subalgebra is obvious. �

In [1] it was shown that corresponding to any root of unity z of order a power of 2 there existed an inner 
automorphism Ad(Uz), implemented by a unitary Uz ∈ D2, such that Ad(Uz)(U) = zU . Our guess was that 
automorphisms of this sort should cease to exist as soon as z was no longer such a root. What the next 
result does is bridge this gap and show that no automorphism of Q2 can send U to zU unless z is a root of 
unity of order a power of two.

Proposition 3.2. Let α be an automorphism of Q2 such that α(U) = zU for some z ∈ T , then z2n = 1 for 
some n.

Proof. We already know that if z2n = 1 for some n, then there exists an automorphism mapping U to 
zU . Indeed, one can consider Ad(Uz), where Uz is the unitary in the diagonal subalgebra D2 defined in 
[1, Section 6.3] by the formula Uzek

.= zkek for all k ∈ Z. Suppose that z has order different from 2n
for all n. From now on Q2 will be understood in the interval picture, we refer to [5] for the definition 
of such representation. Denote by 1 ∈ L2([0, 1]) the unit constant function. It is easy to see that 1 is an 
eigenvector for U . Now for any multi-index α, the vector vα := Pα1 is an eigenvector for U2|α| . Indeed, we 
have U2|α|(Pα1) = PαU

2|α|1 = Pα1. The family of vectors {vα}α∈W2 is a complete system for L2([0, 1]). If 
there existed an automorphism mapping U to zU , then U2 would have z̄ as an eigenvalue. Indeed, let α
be such an automorphism. Then α(U2)α(S2)1 = z2U2α(S2)1 = α(S2)α(U)1 = zα(S2)1 which shows that 
α(S2)1 is an eigenvector for U2 with eigenvalue z̄. As z has order different from 2n for all n ∈ N, the vector 
α(S2)1 would be orthogonal to all the vα, which is absurd. �
4. The normalizer of D2 in Q2

The normalizer of the diagonal D2 has been completely described in both the Cuntz algebra O2 and 
the Bunce-Deddens algebra QT

2 . More precisely, ND2(QT
2 ) = U(D2) ·

{
u ∈ QT

2 | u =
∑

i∈F piU
i, F ⊂

Z, |F | < ∞, p2
i = p∗i = pi ∈ D2, ∀i ∈ F, 

∑
i∈F pi = 1 =

∑
i∈F Ad(U−i)(pi)

}
, see [26, Lemma 5.1], while 

ND2(O2) = U(D2) · S2 [25], where S2 is the group of unitaries in O2 that can be written as a finite sum 
of words in the generators Si, i = 1, 2 and their adjoints, cf. [10]. In this section we generalize both these 
results.

The next proposition provides a good many examples of unitary in Q2 normalizing the diagonal subalge-
bra D2. Before stating it, a couple of points are needed. First, any monomial SαS

∗
βU

k, α, β ∈ W2 and k ∈ Z, 
can be rewritten as SαU

lS∗
γ , for suitable l ∈ Z and γ ∈ W2 depending on k and β. Moreover, the latter 

representation is more convenient not only because it is symmetric under taking the adjoint but because it 
is also canonical insofar as it is unique. In other terms, the equality SαU

kS∗
β = Sα′Uk′

S∗
β′ is possible only 

if α = α′, β = β′ and k = k′.

Proposition 4.1. Given a finite family of triples (αi, βi, ki) ∈ W2 × W2 × Z, with i = 1, 2, . . . , N , define 
u 

.=
∑N

i=1 Sαi
UkiS∗

βi
∈ Q2. The element u is unitary if and only if 

∑N
i=1 Sαi

S∗
αi

=
∑N

i=1 Sβi
S∗
βi

= 1. In 
that case, the unitary u also belongs to ND2(Q2).

Proof. We begin by observing that each summand appearing in the sum that defines u is a partial isometry. 
More precisely, any element of the form SαU

kS∗
β is a partial isometry whose initial and final projections are 
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SβS
∗
β and SαS

∗
α respectively. Therefore, the condition 

∑N
i=1 Sβi

S∗
βi

= 1 guarantees that u is a full isometry, 
while the condition 

∑N
i=1 Sαi

S∗
αi

= 1 says that u is in addition a surjective isometry. This obviously proves 
the if part. Conversely, let us assume that u is unitary. The first thing we need to prove is that the projections 
Sβi

S∗
βi

are pairwise orthogonal. If we work in the canonical representation of Q2, this amounts to showing 
that given n ∈ Z such that Sβl

S∗
βl
en �= 0 and Sβm

S∗
βm

en �= 0 then l = m. But if this were not the case, we 
would find the absurd inequality

1 = ‖uen‖ =
∥∥ N∑

i=1
Sαi

UkiS∗
βi
en

∥∥

=
∥∥Sαl

UklS∗
βl
en + Sαm

UkmS∗
βm

en +
∑
i�=l,m

Sαi
UkiS∗

βi
en

∥∥ ≥
√

2

where the last inequality is due to the fact that every non-zero term is a basis vector. This clearly shows 
that 

∑N
i=1 Sβi

S∗
βi

≤ 1. By applying the same argument to u∗ we see that the inequality 
∑N

i=1 Sαi
S∗
αi

≤ 1
holds as well. At this point, it is clear that both inequalities must actually be equalities, for otherwise u
could not be unitary.

To conclude, we have to show that u lies in the normalizer of D2 in Q2. To this aim, it is enough to verify 
that both uSγS

∗
γu

∗ and u∗SγS
∗
γu are still in D2 for every multi-index γ. We only deal with the first term, 

for the second is handled in the very same fashion. Now

uSγS
∗
γu

∗ =
( N∑

i=1
Sαi

UkiS∗
βi

)
SγS

∗
γ

( N∑
j=1

Sαj
UkjS∗

βj

)∗

=
N∑

i,j=1
Sαi

Uki
(
S∗
βi
SγS

∗
γSβj

)
U−kjS∗

αj

Now there is no lack of generality if we further assume that the length of γ is greater of max{|αi|, |βi| : i =
1, 2, . . . , N}. In this case, the only way for a term of the form S∗

βi
SγS

∗
γSβj

not to be zero is i = j. In particular, 
in the above sum only one term survives, which means uSγS

∗
γu

∗ = SαiγU
kiγ S∗

βiγ
SγS

∗
γSβiγ

U−kiγ S∗
αiγ

∈
D2. �

It is worth stressing that the powers of U occurring in the sums above can be chosen arbitrarily.

Remark 4.2. All powers of U can be recovered as particular instances of the above unitaries. More precisely, 
they correspond to the case N = 1.

The unitaries yielded by the above proposition clearly form a group W that contains the Thompson 
group S2 ∼= V . It is worthwhile to observe that a natural class of irreducible unitary representations of W
can be obtained by restricting irreducible representations of Q2 to it. cf. [19]. Among these, permutative 
irreducible representations of Q2 represent quite an interesting class of examples inasmuch as they have 
been thoroughly classified in [3]. For the sake of completeness, a diagrammatic description of W will be 
outlined in the next section.

There follows a series of technical results necessary to reach the main theorem of this section.

Lemma 4.3. Given a multi-index β ∈ W2, let Aβ ⊂ Z be the set {k ∈ Z : ek = Pβek}. For any finite set of 
distinct monomials of the form Sαi

U iS∗
β ∈ B(�2(Z)), with i = 1, 2, . . . , l, there exists at least an m ∈ Aβ

such that {Sαi
U iS∗

βem : i = 1, 2, . . . , l} is an orthonormal system.
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Proof. Given any i ∈ {1, 2, . . . , l}, let fi : Aβ → Z be the function such that Sαi
U iS∗

βek = efi(k) for every 
k ∈ Aβ . Each of this function is of the form fi(k) = aik + bi, k ∈ Aβ , where ai, bi are suitable integers. 
Because the monomials Sαi

U iS∗
β are distinct, the functions fi are all distinct as well, which means the 

equation fi(k) = fj(k), k ∈ Aβ , can only have at most one solution for any pair (i, j) with i �= j. Let 
Ci,j ⊂ Z be the set defined as {k ∈ Aβ : fi(k) = fj(k)} The set C .= ∪i�=jCi,j is finite and its cardinality is 
clearly not greater than l(l−1)

2 . In particular, its complement D in Aβ is not empty (actually it is infinite). The 
conclusion now follows by noting that D is nothing but the set {k ∈ Aβ : f1(k) �= f2(k) �= . . . �= fl(k)}. �

By a permutative unitary we mean any unitary operator acting on �2(Z) permuting the elements of the 
canonical basis.

Proposition 4.4. Let V be a permutative unitary in Q2 and let 0 < ε < 1 and γ1, γ2, . . . , γN ∈ C. If

‖V −
(
γ1Sα1U

k1S∗
β + . . . + γlSαl

UklS∗
β +

N∑
i=l+1

γiSαi
UkiS∗

βi

)
‖ < ε

and Pβ ⊥ Pβi
for every i = l + 1, . . . , N , then there exists an i0 ∈ {1, 2, . . . , l} such that |1 − γi0 |2 +∑

i∈{1,2,...,l}\{i0} |γi|
2 < ε2.

Proof. Pick a k0 in D ⊂ Aβ where {Sαi
UkiS∗

βek0 : I = 1, 2, . . . , l} is an orthonormal system.

‖V ek0 −
(
γ1Sα1U

k1S∗
β + . . . + γlSαl

UklS∗
β +

N∑
i=l+1

γiSαi
UkiS∗

βi

)
ek0‖2 =

‖V ek0 −
(
γ1Sα1U

k1S∗
β + . . . + γlSαl

UklS∗
β)ek0‖2 < ε2

Since ε < 1, the inequality is satisfied only if there exists (a unique) i0 ∈ {1, 2, . . . , l} such that 
Sαi0

Uki0S∗
βek0 = V ek0 . But then

|1 − γi0 |2 +
∑

i∈{1,2,...,l}\{i0}
|γi|2 = ‖V ek0 −

(
γ1Sα1U

k1S∗
β + . . . + γlSαl

UklS∗
β)ek0‖2 < ε2

as maintained. �
Corollary 4.5. With the same hypotheses as above, if 0 < ε < 1

2 then the equality Sαi0
Uki0S∗

βek = V ek holds 
for every k ∈ Aβ apart from a finite set.

Proof. Under the condition on ε the equality is clearly satisfied for every k ∈ D, which by definition is 
the set {k ∈ Aβ : Sα1U

k1S∗
βek �= . . . �= Sαl

UklS∗
βek}, whose complement in Aβ was shown to be finite in 

the proof of Lemma 4.3. Indeed, suppose that Sαi0
Uki0S∗

βek0 = V ek0 and Sαi1
Uki1S∗

βek1 = V ek1 for some 
i0 �= i1 and k0 �= k1. This would imply that |1 − γi0 | < 1, |1 − γi1 | < 1, |γi0 | < 1/2, |γi1 | < 1/2 which are 
clearly incompatible. �

We are now in a position to prove a result that gives a simple description of all permutative unitaries of 
�2(Z) which are also elements of Q2.

Theorem 4.6. A permutative unitary V ∈ B(�2(Z)) belongs to Q2 if and only if it is of the form ∑
i∈F Sαi

UkiS∗
βi

, where F is a finite set over which the triples (αi, βi, ki) ∈ W2 × W2 × Z run, with ∑
i∈F Sαi

S∗
αi

=
∑

i∈F Sβi
S∗
βi

= 1.



8 V. Aiello et al. / J. Math. Anal. Appl. 481 (2020) 123395
Proof. Clearly, we only need to worry about the “only if” part. Let V be a permutative unitary in Q2

and let Ψ be the bijection of Z implementing V , i.e. V ek = eΨ(k), k ∈ Z. By definition, V is a norm 
limit of a sequence {Tn : n ∈ N} of operators of the form Tn =

∑
(αi,βi,ki)∈Fn

γiSαi
Uk
i S

∗
βi

, where γi
are all scalar coefficients, and Fn ⊂ W2 × W2 × Z is a finite set. To begin with, we observe that the 
inequalities 

∑
i∈Fn

Sαi
S∗
αi

≥ 1 and 
∑

i∈Fn
Sβi

S∗
βi

≥ 1 hold eventually as Tn is eventually an invertible 
operator. The case in which 

∑
i∈Fn

Sβi
S∗
βi

= 1, for some n, is immediately dealt with, for V is simply given 
by 

∑
i∈Fn

Sαi
UkiS∗

βi
. Indeed, in this case for every k there exists a unique i0 = i0(k) such that S∗

βi0
ek

is different from zero. This means only one term survives in the sum 
∑

i∈Fn
γiSαi

UkiS∗
βi
ek, namely that 

corresponding to i = i0(k). So for the inequality ‖eΨ(k) −
∑

i∈Fn
γiSαi

UkiS∗
βi
ek‖ < ε to hold for any k is 

necessary that Sαi0(k)U
i0(k)(Sβi0(k))∗ek = eΨ(k) for every k ∈ Z as long as ε is chosen strictly less than 

1. Therefore, for every k ∈ Z we have V ek = eψ(k) =
∑

i∈Fn
Sαi

UkiS∗
βi
ek. The conclusion is now got to, 

as the equality 
∑

i Sαi
S∗
αi

= 1 is automatically satisfied thanks to Proposition 4.1. In order to deal with 
the case in which the sum 

∑
i∈Fn

Sβi
S∗
βi

is greater than 1, it is convenient to assume that for any given 
n the lengths of the multi-indices βi are all the same as i runs over Fn, say |βi| = k for every i (k will of 
course depend on n). Fix an n such that Tn is invertible and ‖Tn − V ‖ < 1

2 . Let us simply denote Tn by 
T =

∑
i∈F γiSαi

UkiS∗
βi

, with |βi| = k for every i ∈ F , to ease the notation. Now if 
∑

i∈F Sβi
S∗
βi

is greater 
than 1, then the ranges of the projections Pβi

= Sβi
S∗
βi

overlap. But because the length of all monomials 
Sβi

is the same, the ranges of Pβi
and Pβj

may overlap only if βi = βj . If, for any fixed β ∈ W k
2

.= {1, 2}k, 
we define Fβ

.= {i : βi = β} ⊂ F , then T may be more suitably rewritten as T =
∑

β∈Wk
2

∑
Fβ

Sαi
UkiS∗

β

(it is understood that if Fβ is empty the corresponding term is zero). Corollary 4.5 now says that for 
every β there exists a unique i0 = i0(β) ∈ Fβ such that Sαi0

Uki0S∗
βek = V ek for every k ∈ Aβ apart 

from a finite set of Cβ ⊂ Aβ . Let us now set Tβ
.= Sαi0(β)U

ki0(β)S∗
β and let Rβ be the finite-rank operator 

given by Rβek = V ek − Tβek if k ∈ Cβ and Rek = 0 otherwise. Then we have proved the equality 
V =

∑
β∈Wk

2
(Tβ + Rβ) = R +

∑
β∈Wk

2
Tβ , where R is the sum of all Tβ ’s. Since both V and 

∑
β∈Wk

2
are 

in Q2, the operator R is in Q2 as well. But because Q2 is simple, the intersection Q2 ∩ K(H) is trivial. 
Therefore, T must be zero, that is V =

∑
β∈Wk

2
Tβ , which ends our proof. �

Before stating our main result, we still need to prove a preliminary result which has an interest in its 
own although it should be a well-known fact. To the best of our knowledge, however, it is nowhere remarked 
explicitly, which is why we include a proof.

Proposition 4.7. If V is a unitary on �2(Z) such that Ad(V )(�∞(Z)) = �∞(Z), then V uniquely decomposes 
as V = dP , where d is a diagonal unitary, i.e. d ∈ �∞(Z), and P is a permutative unitary, i.e. Pek = eΨ(k), 
for every k ∈ Z, for a suitable bijection Ψ of Z.

Proof. We denote by δk ∈ �∞(Z) the orthogonal projection onto Cek. Since Ad(V ) restricts to an auto-
morphism of the von Neumann algebra �∞(Z), V δkV

∗ must be a minimal projection of �∞(Z). This means 
that V δkV

∗ = δΨ(k), for a suitable bijection Ψ of Z into itself, that is V δk = δΨ(k)V . If we now evaluate 
the last equality on the vector ek, we find V ek = δΨ(k)V ek. In other words, V ek must be an eigenvector of 
δΨ(k), and so V ek = μkeΨ(k), where each μk is a complex number whose absolute value is one. If we define 
dk

.= μΨ−1(k), then V can be rewritten as the product dP , where d ∈ �∞(Z) is the diagonal operator whose 
action on the basis vectors is given by dek

.= dkek and P the permutative associated with Ψ. Finally, the 
uniqueness of this decomposition is entirely obvious. �
Theorem 4.8. Any unitary v ∈ Q2 that normalizes the diagonal D2 can be uniquely written as v = dP , where 
d is a unitary belonging to D2 and P ∈ Q2 a unitary of the form 

∑N
i=1 Sαi

UkiS∗
βi

, with 
∑N

i=1 Sαi
S∗
αi

=∑N
i=1 Sβi

S∗
βi

= 1.
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Proof. From now till the end of the proof we will be working in the canonical representation of Q2 ⊂
B(�2(Z)). The uniqueness of the decomposition is pretty obvious as the sole operator which is simultaneously 
diagonal and permutative (with respect to the canonical basis of �2(Z)) is the identity 1. Let us now go to 
the existence of such a decomposition. We first note that if a unitary V ∈ B(�2(Z)) normalizes D2, then it 
also normalizes the von Neumann algebra generated by it, namely �∞(Z). In light of Proposition 4.7, our 
unitary V factors as a product dP , where d is a diagonal unitary, that is d ∈ �∞(Z) and P is a permutative 
unitary, that is there exists a bijection Ψ of Z such that Pek = eΨ(k), for every k ∈ Z. Now the proof boils 
down to showing that d and P actually sit in Q2 as a consequence of V being a unitary of Q2.

Because dP lies in Q2, for any ε > 0 there exists an algebraic element Tε of the form 
∑Nε

i=1 γiSαi
UkiS∗

βi
, 

where the γi’s are all complex coefficients, such that ‖dP − Tε‖ < ε. As soon as ε is small enough, the 
operator Tε is invertible itself, which means the sums 

∑
Sαi

S∗
αi

and 
∑

Sβi
S∗
βi

are both greater than 1. 
We now want to rid ourselves of possible overlappings in much the same way as we did in the proof of 
Theorem 4.6. So suppose there is an l-tuple of overlapping terms. We do not harm the generality if we 
further suppose these are just the first l terms. In other terms, our Tε is of the form

l∑
i=1

γiSαi
UkiS∗

β +
Nε∑

i=l+1

γiSαi
UkiS∗

βi

with Pβ ⊥ Pβi
for every i = l + 1, . . . , Nε. A very minor variation of the proof of Corollary 4.5 tells 

us that there exists a subset Iβ ⊂ Aβ
.= {k ∈ Z : ek = Pβek} whose complement in Aβ is finite and 

for a unique i0 ∈ {1, 2, . . . , l} one has Sαi0
Uki0S∗

βek = eΨ(k) for every k ∈ Iβ . Let us now define the 
finite-rank operator Rβ as Rβek = dPek if k ∈ Aβ \ Iβ and Rβek = 0 otherwise. The new operator 
T ′
ε

.= γi0Sαi0
Uki0S∗

β +
∑Nε

i=l+1 γiSαi
UkiS∗

βi
+ Rβ still satisfies the inequality ‖dP − T ′

ε‖ < ε. Furthermore, 
we also have the inequality |γi0 −dΨ(k)| < ε per every k ∈ Iβ . It is now clear that if we repeat this procedure 
as many times as needed we can get rid of all overlappings. By doing so we end up with a new algebraic 
approximant, which with a very slight abuse of notation we continue to denote by Tε, given by a sum of 
the type 

∑Nε

i=1 γiSαi
UkiS∗

βi
with 

∑
i Sβi

S∗
βi

=
∑

i Sαi
S∗
αi

= 1 and ‖dP − (Tε + Rε)‖ < ε, where Rε is a 
finite-rank operator. Furthermore, for every i = 1, 2, . . . , Nε there exists a set Iβi

⊂ Aβi
such that Aβi

\ Iβi

is finite and

|γi − dΨ(k)| < ε for every k ∈ Iβi
. (4.1)

Choosing ε = 1
n we get a sequence {Tn+Rn : n ∈ N}, where Tn is an operator of the form 

∑
i γiSαi

UkiS∗
βi

with all the properties pointed out above and Rn is a finite-rank operator, such that ‖v− (Tn+Rn)‖ goes to 
zero. Note that each Tn factors as a product of the form (

∑l
i=1 γiSαi

S∗
αi

)(
∑l

j=1 Sαj
UkjS∗

βj
). In other terms, 

each Tn can be seen as the product dnPn, where dn is a diagonal operator in D2 and Pn a permutative 
operator in Q2. Now thanks to inequality (4.1), the sequence {dn} is immediately seen to be a Cauchy 
sequence with respect to the uniform norm in B(�2(Z)). Therefore, it converges to a certain d′, which is a 
diagonal operator in D2. We then show that the sequence {Pn : n ∈ N} must stabilize to a certain P ′. We 
will argue by contradiction. Indeed, let Tn and Tm be such that two corresponding permutative factors Pn

and Pm differ. There is no loss of generality if we further assume that the β’s appearing both in Pn and 
in Pm are all of the same length, say k. Because Pn and Pm are different, there must exist at least one 
β ∈ W k

2 such that the two corresponding monomials do not coincide, i.e. Sαi
UkiS∗

β �= Sα′
i
Uk′

iS∗
βi

, hence the 
set I .= {k ∈ Z : Pnek �= Pmek} is infinite.

The inequality ‖v − (Tn + Rn)‖ < 1
n applied to Tn and Tm leads to

‖dnPn − dmPm + S‖ <
1 + 1

n m
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where S is a finite-rank operator as well since it is the difference Rn − Rm. In particular, we find that 
the inequality ‖dnPnek − dmPmek + Sek‖ < 1

n + 1
m holds for every k ∈ I. But, as we next show, this is 

absurd as soon as 1
n + 1

m < 1. Indeed, in order for the inequalities to hold true, it is necessary that neither 
(Sek, eΨn(k)) nor (Sek, eΨm(k)) vanishes. More precisely, their absolute values must be close to 1. But then 
‖Sek‖ is greater than 1 for every k ∈ I. But this is absurd, as the sequence {Sek : k ∈ I} should in fact 
converge to zero, since it is the image through a compact operator of a sequence that weakly converges to 
zero. Since the sequence {Tn} converges in norm as the product of two converging sequences, the sequence 
{Rn} must also converge. Let R be its limit. Since R clearly lies in the intersection Q2∩K(�2(Z)), by virtue 
of the simplicity of Q2 the operator R is zero. In other words, we have proved that V = dP is nothing but 
d′P ′, whence d = d′ ∈ D2 and P = P ′ ∈ Q2. �
Remark 4.9. It is worth stressing that the result obtained above is a genuine generalization of the known 
result on ND2(O2), cf. [25, Lemma 5.4]. In order to see this, it is enough to show that a unitary of the form 
u 

.=
∑N

i=1 Sαi
UkiS∗

βi
will lie in the Cuntz algebra O2 if and only if ki = 0 for every i = 1, 2, . . . , N . To this 

aim, it is convenient to work in the canonical representation. If there exists i0 ∈ {1, 2, . . . , N} such that ki0
is not zero, then we may safely suppose ki0 ≥ 1. Now pick the only k ∈ Z such that S∗

βi0
ek = e−1. Now k

is a negative integer such that uek = Sαi
eki0−1 = en(k) with n(k) ≥ 0. Therefore, our unitary u cannot be 

in O2, for H± ⊂ �2(Z) are invariant subspaces under the action of the Cuntz algebra.

Remark 4.10. Not only does our result cover the normalizer of D2 in the Cuntz algebra O2, but it also allows 
us to recover Putnam’s result on the normalizer of the former algebra in the Bunce-Deddens algebra QT

2
[26, Lemma 5.1]. Indeed, for a unitary of the form 

∑N
i=1 Sαi

UkiS∗
βi

to lie in the gauge-invariant subalgebra 
QT

2 it is necessary to have |αi| = |βi|, for every i = 1, 2, . . . , N , which means for every i there exists an 
integer li ∈ Z, which will depend on αi and βi, such that Sβi

= U liSαi
. But then our unitary takes the 

form 
∑N

i=1 Sαi
S∗
βi
U2|βi|ki =

∑N
i=1 Sαi

S∗
αi
U−liU2|βi|ki which coincides with the formula given in [26] as

N∑
i=1

U−2|βi|kiU liSαi
S∗
αi
U−liU2|βi|ki =

N∑
i=1

U−2|βi|kiSβi
S∗
βi
U2|βi|ki =

N∑
i=1

Sβi
U−kiUkiS∗

βi
= 1

Remark 4.11. Since any unitary of the form 
∑N

i=1 Sαi
UkiS∗

βi
can obviously be rewritten as the product (∑N

i=1 Sαi
UkiS∗

αi

)(∑N
j=1 Sαj

S∗
βj

)
, the foregoing result can also be stated in a slightly more intriguing way 

saying that any unitary in the normalizer ND2(Q2) decomposes into the product of a unitary in ND2(QT
2 )

and a unitary in ND2(O2). However, such a decomposition will fail to be unique, and one reason is for 
example that any diagonal elements d ∈ D2 sits in both ND2(QT

2 ) and ND2(O2).

5. A diagrammatic description of the extended Thompson group W

The group made up of the unitaries in Q2 of the form 
∑

i∈F Sαi
UkiS∗

βi
, where F is a finite set over 

which the triples (αi, βi, ki) ∈ W2 ×W2 × Z run, will be referred to as the extended Thompson group W. 
This section provides a graphical description of its elements, which is similar to that for the elements of the 
genuine Thompson groups F , T , and V .

An element will be described by a 4-tuple (T+, T−, τ, v), where T± are trees with the same number of 
leaves, say n, τ is a permutation of the set {1, . . . , n}, and v is a vector in Zn. Let x =

∑
i∈F Sαi

UkiS∗
βi

be 
an element of W. The collection of the indices αi determines a finite subtree of the infinite binary tree of 
standard dyadic intervals [6]. Indeed, each αi represents a path in the infinite binary tree of the standard 
dyadic intervals, from the root to a leaf. If αi(k) = 1 then the k-th edge of the path is a left edge, whereas 
αi(k) = 2 means that we are taking the right edge. This yields the first tree T+. In the same way we may get 
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another tree T− from the indices βi. As for the permutation, the leaves of T+ and T− can be indexed from 
1 to n starting from the left. If αi is the p-th leaf of T+ and βi is the q-th leaf of T−, then the permutation 
is defined by τ(p) := q. The vector v is given by (k1, . . . , kn).

We now describe how to represent such an element graphically. We draw T+ in the upper-half plane and 
T− upside-down in the lower-half plane. We then join the i-th leaf of T+ to the τ(i)-th leaf of T−. Each leaf of 
the top tree has a charge given by v(i). To take an example, below we represent the graphical description of 
the unitary S2

1U
k1(S2S1)∗ +S1S2U

k2S∗
1 +S2U

k3(S2
2)∗. In this case, the vector v is (k1, k2, k3) and τ = (12).

In this pictorial description, there are actually two reduction moves which may be performed and depend 
on the charge of the leaf.

As shown by the following computations, these reductions correspond to the insertion of the Cuntz relation 
S2S

∗
2 + S1S

∗
1 = 1

SαU
2kS∗

β = SαS1S
∗
1U

2kS∗
β + SαS2S

∗
2U

2kS∗
β = SαS1U

kS∗
1S

∗
β + SαS2U

kS∗
2S

∗
β

= Sα1U
kS∗

β1 + Sα2U
kS∗

β2

= SαU
2kS1S

∗
1S

∗
β + SαU

2kS2S
∗
2S

∗
β

SαU
2k+1S∗

β = SαS1S
∗
1U

2k+1S∗
β + SαS2S

∗
2U

2k+1S∗
β = SαS1U

kS∗
1US∗

β + SαS2U
kS∗

2US∗
β

= Sα1U
kS∗

β2 + Sα2U
k+1S∗

β1

= SαU
2k+1S1S

∗
1S

∗
β + SαU

2k+1S2S
∗
2S

∗
β

Given two elements (T+, T, τ, v) and (T, T−, τ ′, v′), their product as elements of Q2 is given by (T+, T, τ, v) ·
(T, T−, τ ′, v′) := (T+, T−, τ ◦ τ ′, v+ v′). Thanks to the reduction moves, this actually describes the multipli-
cation on the whole W. Clearly, the inverse of an element is given by (T+, T−, τ, v)−1 = (T−, T+, τ−1, −v).

Remark 5.1. We should also mention that the group W has appeared before in the literature, albeit in 
different contexts. For instance, in [24] it is shown how to associate a group Vd(G) to any given a self-similar 
action of a group G over an alphabet X of finite cardinality d. The groups obtained in this fashion are actually 
a generalization of the Higman-Thompson group, and our group W corresponds to the case X = {1, 2} and 
G = Z thought of as the powers of the so-called odometer. Unlike V , the group W is not simple as its 
abelianization is Z [24, Example 9.16].
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6. Other normalizers

A number of results about AutD2(Q2) are contained in [2]. At present the structure of the group 
Aut(Q2, O2) is for the most part unknown, although we do know some remarkable examples, namely the 
extended flip-flop automorphism and the gauge automorphisms. A related question is whether there exist 
automorphisms of Q2 that restrict to proper endomorphisms of O2. At any rate, most of the subsequent 
discussion is concerned only with inner automorphisms of Q2.

6.1. Unitaries in the Bunce-Deddens algebra normalizing O2

If α is an automorphism of Q2 that leaves O2 globally invariant, the natural question immediately arises 
whether the restriction α �O2 is an automorphism of the Cuntz algebra as well. Apart from the trivial 
situation where our automorphism is of finite order, in which case its restriction is immediately seen to be 
an automorphism of O2, a complete answer has not been given, not even in the simpler yet interesting case 
where α is an inner automorphism of Q2. Now the question is recast by asking whether wO2w

∗ ⊂ O2, for 
a given unitary w in Q2, can only hold true if w lies in O2. In its full generality the latter question is still 
unexpectedly hard to answer. Therefore, we ought to start with w of a particular form instead. Assuming 
w ∈ QT

2 seems to be a good work hypothesis to begin our discussion with.
Given any infinite multi-index α ∈ {1, 2}N , we denote by α(k) the multi-index of length k that is obtained 

out of α by taking its first k entries, i.e. α(k) .= (α1, α2, . . . , αk).
We recall from [2, Section 7] the following identity

S∗
i dSi(x) = d(ix) , d ∈ D2, x ∈ K = {1, 2}N .

Lemma 6.1. If w =
∑

i∈F diU
i, where F ⊂ Z is a finite subset, is different from zero, then there exist 

α ∈ {1, 2}N and h ∈ F such that

lim
k

S∗
α(k)wU

−hSα(k) = dh(α)1

with dh(α) different from zero as well.

Proof. By definition if w is different from zero, there must exist an h ∈ F such that dh ∈ D2 is not zero, that 
is dh(α) �= 0 for some α ∈ K = {1, 2}N . We now prove that the limit holds with α and h chosen as above. 
To this aim, it is enough to show limk S

∗
α(k)dhSα(k) = dh(α)1 and limk S

∗
α(k)diU

i−hSα(k) = 0, for every 
i �= h. The first is easily proved as the equality S∗

α(k)dhSα(k)(x) = dh(α(k)x) shows that S∗
α(k)dhSα(k)(x)

converges to dh(α)1 pointwise. But on the other hand, by a straightforward adaptation of a result in [1] we 
also know that the sequence actually converges in norm. The second limit is in fact a consequence of a more 
general fact, namely that for any d ∈ D2 and l �= 0 we have limk S

∗
α(k)dU

lSα(k) = 0. This is in turn proved 

as follows. Pick a sequence {xj : j ∈ N} such that xj ∈ Dj
2 and ‖xj − d‖ → 0, then

‖S∗
α(k)dU

lSα(k)‖ ≤ ‖S∗
α(k)(d− xj)U lSα(k)‖ + ‖S∗

α(k)xjU
lSα(k)‖ ≤ ‖d− xj‖

as soon as k ≥ j + 1 and 2k > |l|, because the second term vanishes if 2k > |l|. �
Our next goal is to extend the reach of the foregoing lemma to cover the whole QT

2 . With this in mind, 
we recall that this algebra can be more conveniently thought of as a crossed product given by the action 
of Z on the diagonal D2 through the odometer map, cf. [2]. In other terms, the map Ψ : D2 � Z → QT

2
given by Ψ(V ) = U Ψ(d) = d for all d ∈ D2, extends to an isomorphism, where D2 � Z is understood as 
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C∗(D2, V ), with V being a unitary whose adjoint action coincides with the odometer, and QT
2 is understood 

as C∗(D2, U). This makes it plain that βz(U) := zU and βz(d) := d, z ∈ T , define a group of automorphism 
of QT

2 . These enable us to define the maps Φi : QT
2 → D2 by setting Φi(x) :=

∫
T βz(xU−i)dz, cf. [18, p. 

223], which can be regarded as generalized Fourier coefficients. Indeed, it is no coincidence that a version 

of Fejér’s theorem holds for QT
2 as well.1 More precisely, if we define Σn(x) .=

∑n
j=−n

(
1 − |j|

n+1

)
Φj(x)U j , 

then Σn(x) can be shown to converge to x in norm for every x ∈ QT
2 , see e.g. [18, Theorem VIII.2.2, p. 223].

Remark 6.2. For any unitary d ∈ D2, one can define the automorphism of the Bunce-Deddens βd given by 
βd(U) := dU , βd(d̃) := d̃ for all d̃ ∈ D2.

Lemma 6.3. For any non-zero w ∈ QT
2 there exist h ∈ Z and α ∈ {1, 2}N such that

lim
k

S∗
α(k)wU

−hSα(k) = Φh(w)(α)1

and Φh(w)(α) is different from zero as well.

Proof. Since w is different from zero, there exists an h ∈ Z such that Φh(w) is not zero, which means 
there is α ∈ {1, 2}N such that Φh(w)(α) �= 0. Now S∗

α(k)wU
−hSα(k) tends to Φh(w)(α) as a straightforward 

application of the aforementioned Fejér theorem. Indeed, we have

‖S∗
α(k)wU

−hSα(k) − Φh(w)(α)1‖ ≤ ‖S∗
α(k)(w − Σn(w))U−hSα(k)‖

+ ‖S∗
α(k)Σn(w)U−hSα(k) − Φh(Σn(w))(α)1‖

+ ‖Φh(Σn(w))(α)1 − Φh(w)(α)1‖
≤ 2‖Σn(w) − w‖ + ‖S∗

α(k)Σn(w)U−hSα(k) − Φh(Σn(w))(α)1‖

Given ε > 0 there is Nε ∈ N such that ‖Σn(w) − w‖ < ε
3 for n ≥ Nε. Now apply Lemma 6.1 to 

Σn(w), where n is any fixed integer greater than Nε and |h|, to get a Kε ∈ N such that k ≥ Kε im-
plies ‖S∗

α(k)Σn(w)U−hSα(k) − Φh(Σn(w))(α)1‖ < ε
3 . �

Theorem 6.4. If w is a unitary in QT
2 such that wO2w

∗ ⊂ O2 then w ∈ F2 and the inclusion is actually a 
set equality.

Proof. Thanks to Lemma 6.3 there exist h ∈ Z and an infinite multi-index α ∈ {1, 2}N such that 
S∗
α(k)wU

−hSα(k) converges to λ1 with λ �= 0 when k goes to infinity.
Since Ad(w) �O2= λwϕ(w)∗ , the unitary wϕ(w)∗ is an element of F2 and such is wϕk(w∗), for every 

k ≥ 1. Now there exist l = l(h, α) ∈ Z and an infinite multi-index β such that U−hSα(k) = Sβ(k)U
−l, i.e. 

UhSβ(k) = Sα(k)U
l, for k sufficiently large. Since we have

F2 � S∗
α(k)wϕ

k(w∗)Sβ(k) = S∗
α(k)wU

−hUhϕk(w∗)Sβ(k) = S∗
α(k)wU

−hUhSβ(k)w
∗

= S∗
α(k)wU

−hSα(k)U
lw∗ →

k→∞
λU lw∗

we see that U lw∗ = w∗
0 ∈ F2. In other terms, w = w0U

l. The proof will be completed as soon as we show 
that l must be zero. But from the inclusion w0U

lO2U
−lw∗

0 ⊂ O2 we get U lO2U
−l ⊂ w∗

0O2w0 = O2, which 
is possible only if l = 0, for U lS1U

−l is never in O2 unless l = 0. �
1 Recently, a Fejér-type theorem has also been proved [4] for quite an ample class of C∗-algebras, which includes the 2-adic ring 

C∗-algebra.
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In particular, with u 
.= wϕ(w)∗, one has λu(F2) = F2 and limk ϕ

k(w)w∗ϕ(w)ϕk(w∗) = w∗ϕ(w) ∈ F2 in 
norm, also cf. Theorem 6.15.

6.2. Some consequences

We can also derive the following results.

Corollary 6.5. The intersection ND2(Q2) ∩NO2(Q2) reduces to ND2(O2)(= U(D2) · S2).

Proof. As the inclusion ND2(O2) ⊂ ND2(Q2) ∩NO2(Q2) is trivial, we only need to prove that any unitary 
u in the intersection ND2(Q2) ∩ NO2(Q2) actually lies in the Cuntz algebra O2. Since our unitary u sits 
in particular in ND2(Q2), it decomposes as u = u1u2 with u1 ∈ ND2(QT

2 ) and u2 ∈ ND2(O2) by virtue of 
Remark 4.11. But because u also normalizes O2, we find that u1(u2xu

∗
2)u∗

1 continues to be in O2 if x is in 
O2. In other terms, u1 is an element of the Bunce-Deddens algebra such that u1O2u

∗
1 ⊂ O2. This being the 

case, Theorem 6.4 applies showing that u1 lies in fact in F2. But then u must be in O2 too as the product 
of two unitaries both lying in O2. �
Corollary 6.6. We have

ND2(QT
2 ) ∩NO2(Q2) = ND2(F2)(= U(D2) · P2) .

Remark 6.7. Among other things, the former results provide more information about NO2(Q2). Notably, it 
seems to vaguely support our guess that the normalizer NO2(Q2) may be exhausted by U(O2). At the very 
least, it certainly settles those unitaries in NO2(Q2) that also leave D2 globally invariant.

The next result gives us an explicit description of the normalizer NQT
2
(Q2), which by definition is the set 

of those unitaries w ∈ Q2 such that wQT
2 w

∗ = QT
2 .

Proposition 6.8. The normalizer NQT
2
(Q2) coincides with U(QT

2 ).

Proof. As the inclusion U(QT
2 ) ⊂ NQT

2
(Q2) is obvious, we only need to prove the reverse inclusion. If w ∈ Q2

is in NQT
2
(Q2), then wxw∗ ∈ QT

2 for every x ∈ QT
2 , which means α̃t(wxw∗) = wxw∗ for every t ∈ R, where 

α̃t is the gauge automorphism of Q2 corresponding to 2it. In particular, we find that w∗α̃t(w)x = xw∗α̃t(w)
for every x ∈ QT

2 , whence w∗α̃t(w) = χ(t)1 as the relative commutant (QT
2 )′∩Q2 is trivial, see [1, Corollary 

3.13]. In other terms, we get that the equality αt(w) = χ(t)w holds for every t ∈ R, where χ is immediately 
seen to be a character of R, i.e. χ(t) = eikt for some k ∈ Z. The proof will then be completed once k
is shown to be zero. This goal can in turn be accomplished by using the β-KMS state ω associated with 
{α̃t : t ∈ R}, where β is actually 1, see [16, Prop. 4.2]. Indeed, on the one hand we have ω(wα̃t(w∗)) = e−ikt, 
but on the other hand ω(wα̃t(w∗)) = ω(α̃t+iβ(w∗)w) = ekβe−ikt, which forces ekβ to equal 1, i.e. k = 0 as 
β = 1 �= 0. �

At this point Theorem 6.4 can be reformulated in a slightly more intrinsic way.

Corollary 6.9. Let α be an inner automorphism of Q2 such that α(QT
2 ) = QT

2 and α(O2) ⊂ O2, then α is 
the canonical extension of an inner automorphism of F2.

Proof. A straightforward application of Proposition 6.8. �
It seems of interest also to determine whether the only unitaries in QT

2 normalizing F2 (or even mapping 
F2 into F2) are those in F2. Unfortunately, we do not have an answer yet. At any rate, we do have the 
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following result, whose proof is omitted as it can be done in exactly the same way as in Proposition 6.8 by 
taking account of the equality F ′

2 ∩Q2 = C1, see [1, Theorem 3.11].

Proposition 6.10. The normalizer NF2(Q2) is equal to NF2(QT
2 ).

We now state a result that describes the intersection ND2(Q2) ∩NF2(Q2) ∩NO2(Q2), for which we need 
not know what the three normalizers separately are.

Corollary 6.11. One has

ND2(Q2) ∩NF2(Q2) ∩NO2(Q2) = ND2(F2) = ND2(O2) ∩NF2(O2)

Proof. We only prove the first equality, as the second is basically known and is easy to check. The inclusion 
ND2(F2) ⊂ ND2(Q2) ∩NF2(Q2) ∩NO2(Q2) is obvious. For the other inclusion, note that any x ∈ ND2(Q2) ∩
NF2(Q2) ∩NO2(Q2) lies in QT

2 by Proposition 6.10. The conclusion is then reached straightforwardly by an 
application of Corollary 6.6. �
Proposition 6.12. The intersection NF2(Q2) ∩NO2(Q2) reduces to U(F2).

Proof. By Proposition 6.10 the normalizer of F2 in Q2 coincides with NF2(QT
2 ). Therefore, the intersection 

NF2(Q2) ∩ NO2(Q2) is actually given by NF2(QT
2 ) ∩ NO2(Q2). All unitaries in the UHF algebra F2 are 

obviously contained in the above inclusion. On the other hand, Theorem 6.4 says the intersection must be 
contained in U(F2) as well, which ends the proof. �

Theorem 6.4 and Corollary 6.9 could be improved in some respects. For instance, one may also want 
to consider more general (possibly outer) automorphisms of Q2 leaving O2 globally invariant. This may in 
fact come in useful to deal with permutative endomorphisms. Furthermore, one may even ask whether the 
normalizer of O2 in Q2 is U(O2).

Remark 6.13. The inclusion O2 ⊂ O2 �λf
Z2 ∼= O2, where λf is the flip-flop automorphism that switches 

the two generating isometries, provides an example where the normalizer of the Cuntz algebra, thought of 
as a subalgebra of a bigger algebra, which in this case is again the Cuntz algebra up to an isomorphism, is 
not exhausted by the unitaries of O2. Indeed, the unitary w ∈ O2 �λf

Z2 that implements the action of the 
flip-flop on O2 is certainly not contained in the Cuntz algebra since λf is outer. It is also worth noting that 
the relative commutant O′

2 ∩ (O2 �λf
Z2) is trivial, cf. [8, Remark 5.9].

6.3. A class of automorphisms of O2

In passing, we would like to take this opportunity to point out a result that yields a complete descrip-
tion of those unitaries in u in the UHF algebra F2 whose corresponding endomorphism λu is actually an 
automorphism, which is much in the spirit of [10, Theorem 3.2]. Its main interest has admittedly little to 
do with the scope of the present paper. Nevertheless, we feel it deserves to be included all the same because 
it might be further developed in future work as well as framing Theorem 6.4 in a more general picture. To 
this end, the following straightforward remark, which is general in character, is vital.

Remark 6.14. If λu is an automorphism and λ−1
u = λv, then λu(v) = u∗ and λv(u) = v∗. Indeed, by 

definition we have λu ◦ λv = λv ◦ λu = idO2 = λ1. Now λu ◦ λv = λλu(v)u and λv ◦ λu = λλv(u)v, hence 
λu(v)u = 1 and λv(u)v = 1, i.e. λu(v) = u∗ and λv(u) = v∗, as maintained. In particular, it follows that if 
λu ∈ Aut(O2) then limk Ad(uk)(v) = λu(v) = u∗.
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Theorem 6.15. Given a unitary u in F2, set uk
.= uϕ(u)ϕ(u2) . . . ϕk−1(u), for any k ∈ N \ {0}. Then the 

following are equivalent:

(1) The endomorphism λu is an automorphism of O2.
(2) There exists a unitary v ∈ F2 such that limk Ad(uk)v = u∗.
(3) The sequence {u∗

ku
∗uk : k ∈ N} is norm convergent.

Moreover, as soon as any of the three conditions above is satisfied, the v in (2) is the limit of the sequence 
in (3) and λ−1

u = λv.

Proof. The implication (1) ⇒ (2) is nothing but the content of Remark 6.14. On the other hand, if there 
exists a unitary v ∈ F2 such that limk Aduk(v) = u∗, then λu(v) = u∗, hence λu is surjective. In other 
terms, the implication (2) ⇒ (1) holds too. We now prove (1) ⇒ (3). If λu is an automorphism, then by 
(2) there exists a unitary v ∈ F2 such that ‖ukvu

∗
k − u∗‖ tends to zero. By the very definition of the UHF 

subalgebra F2 we can assume that v = lim vi with vi ∈ F i
2 for every i ∈ N. By continuity, we get the 

equalities

λu(v) = lim
i

λu(vi) = lim
i

uiviu
∗
i

namely ‖λu(v) − uiviu
∗
i ‖ goes to zero. But then

‖u∗
i u

∗ui − v‖ ≤ ‖u∗
i u

∗ui − vi‖ + ‖vi − v‖ → 0

For (3) ⇒ (1), let us define v
.= limk u

∗
kuuk ∈ U(O2). We then want to show that λu(v) = u∗, whence λu is 

surjective. Now λu(v) = limj ujvu
∗
j = limj uj(limi u

∗
i uui)u∗

j . In other terms, ‖u∗
jλu(v)uj − limi u

∗
i uui‖ → 0, 

that is for any given ε > 0 there exists nε ∈ N such that j ≥ nε implies ‖u∗
jλu(v)uj − limi u

∗
i uui‖ < ε

2 .

‖u∗
jλu(v)uj − u∗

i uui‖ ≤ ‖u∗
jλu(v)uj − lim

i
u∗
i uui‖ + ‖ lim

i
u∗
i uui − u∗

i uui‖ < ε

for every i, j ≥ Nε
.= max{nε, mε}, where mε is any integer such that i ≥ mε implies ‖ limi u

∗
i uui −

u∗
i uui‖ < ε

2 . In particular, if we choose i = j ≥ Nε, we find ‖λu(v) − u∗‖ = ‖u∗
i (λu(v) − u∗)ui‖ ≤ ε, hence 

λu(v) = u∗. �
Remark 6.16. Let u be a unitary in F2 such that λu is an automorphism. Since λ−1

u = λv, with v that is 
still in F2, we see that λu is actually an element of Aut(O2, F2) 

.= {α ∈ Aut(O2) : α(F2) = F2}.

7. The inclusion of O2 ⊂ Q2 is not regular

The present section collects some results on the unitary normalizer of O2 in Q2, namely the group 
NO2(Q2) 

.= {v ∈ U(Q2) | vO2v
∗ = O2} ⊂ U(Q2). Needless to say, this normalizer is AutO2(Q2)-invariant, 

in particular invariant under the action of the extended gauge and flip-flop automorphisms.
We start our discussion with a technical lemma, which roughly says that no unitary operator of Q2 ⊂

B(�2(Z)) can map H+ to H− and H− to H+, where H+ and H− are the closed subspaces of �2(Z) given 
by span{ek : k ≥ 0} and span{ek : k < 0} respectively.

Lemma 7.1. There is no unitary u in Q2 such that uH± = H∓.

Proof. We shall argue by contradiction. Let u be a unitary in Q2 such that uH+ = H−. Let ε > 0 be any real 
number strictly less than 1. Since u belongs to Q2 then there exists an element of the form 

∑N
ciSαi

Sβi
Uki , 
i=1
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ci ∈ C and αi, βi ∈ W2, such that ‖u −
∑N

i=1 ciSαi
Sβi

Uki‖ < ε. Let now M be max{|ki| : i = 1, 2, . . . , N}. 
Then ‖ueM −

∑N
i=1 ciSαi

Sβi
UkieM‖ = ‖ueM −

∑N
i=1 ciSαi

Sβi
eki+M‖ < ε. Since ueM lies in H−, it is 

orthogonal to 
∑N

i=1 ciSαi
Sβi

eki+M ∈ H+, but then ‖ueM‖ < ε < 1, which is clearly absurd. �
Remark 7.2. As a consequence, the only operator in Q2 that sends H± to H∓ is the null operator.

The above lemma is instrumental in proving the next result. Although not still the complete characteri-
zation of NO2(Q2), it does have the merit of limiting the sought normalizer. More precisely, the result says 
that NO2(Q2) cannot be larger than U(Q2 ∩O′′

2 ).

Proposition 7.3. The normalizer NO2(Q2) is contained in O′′
2 ∩Q2.

Proof. Let u ∈ Q2 ⊂ B(�2(Z)) be a unitary that leaves O2 globally invariant, that is uO2u
∗ = O2. Then 

it also leaves O′
2 invariant. But O′

2 = CE+ ⊕ CE−, where E± is the orthogonal projection onto H±, see 
[1, Section 2]. Accordingly, there are only two cases that can occur. Either uE±u

∗ = E± or uE±u
∗ = E∓. 

However, Lemma 7.1 says that the second situation will not occur. But then uE± = E±u, which means u
is in O′′

2 , as we wanted to prove. �
Notably, the result also enables us to see that the inclusion of O2 in Q2 is not regular, to wit the 

C∗-algebra generated by its normalizer fails to be the whole Q2.

Theorem 7.4. The C∗-subalgebra generated by NO2(Q2) is properly contained in Q2.

Proof. Suppose on the contrary this subalgebra does exhaust Q2. The intersection O′′
2 ∩ Q2 should then 

coincide with Q2, because of the inclusion NO2(Q2) ⊂ O′′
2 ∩ Q2 proved in Proposition 7.3. However, the 

generator U does not sit in O′′
2 ∩Q2 since it does not leave H− invariant, cf. [1, Section 2]. �

The C∗-algebra C∗(NO2(Q2)), which is intermediate between O2 and Q2, is obviously invariant under 
the extended gauge and flip-flop automorphisms. As a matter of fact, we would be inclined to believe that 
the inclusion of O2 in Q2 is singular, that is the normalizer NO2(Q2) should reduce to U(O2). However, for 
the time being all we can do is state a partial result that nonetheless seems to support our guess. What 
we prove is the Cuntz algebra O2 is never invariant under the action of a one-parameter group of unitaries 
ut = eita, where a is a self-adjoint element of Q2, unless a is already contained in O2.

Proposition 7.5. If a = a∗ is a self-adjoint element in Q2 such that eitaO2e
−ita = O2 for any t ∈ R, then a

sits in the Cuntz algebra O2.

Proof. The condition that O2 is invariant under the one-parameter group ut
.= eita generated by a says 

that the commutator [x, a] is in O2 for any x ∈ O2. In other terms O2 � x �→ [x, a] ∈ O2 is a bounded 
derivation. Since O2 is simple, the derivation must be inner by virtue of a classical result by Sakai [27]. In 
other words, there exists b ∈ O2 such that [x, a] = [x, b] for any x ∈ O2. Therefore, the difference a − b lies 
in the relative commutant O′

2 ∩ Q2. Since the latter is trivial, see [1, Section 3.2], we find a = b + λ1, for 
some λ ∈ C. In particular, a is an element in O2. �

Before leaving the section, some comments intended as an outlook for the foreseeable future are in order. 
One way to prove that NO2(Q2) does in fact coincide with U(Q2) could be to show that the intersection 
O′′

2 ∩ Q2 is just O2. More concretely, this amounts to asking if any operator in Q2 ⊂ B(�2(Z)) that also 
leaves both H+ and H− invariant must lie in O2. This property might be in turn a consequence of an 
even stronger property which would be worthy of further investigation, namely whether any intermediate 
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subalgebra O2 ⊂ A ⊂ Q2 (possibly with some additional properties, e.g. requiring it is gauge-invariant) is 
trivial, that is A is either O2 or Q2. We plan to go back to this problem elsewhere, not least because we 
would like to keep the present work at a reasonable length.

8. Permutative endomorphisms of Q2 at an arbitrary level

This section aims to present a method by means of which explicit examples can be exhibited of per-
mutative endomorphisms of the Cuntz algebra O2 associated with unitaries in Pk

2
.= {u ∈ U(O2) | u =∑n

i=1 Sαi
S∗
βi
, |αi| = |βi| = k for 1 ≤ i ≤ n, n ∈ N} that extend to Q2 for any k ∈ N. In addition, the 

technique employed also provides a lower bound for the number of such unitaries, which shows it must grow 
at least as fast as (2k!)2.

8.1. Case P2
2

Let u ∈ P2
2 ⊂ F2

2 be a permutation matrix, and let λu be the associated permutative endomorphism of 
O2. Recall that, in general, λu ∈ End(O2) extends to Q2 if and only if, setting S̃1 = uS1 and S̃2 = uS2, 
there exists Ũ ∈ Q2 such that

Ũ S̃2 = S̃1 (8.1)
Ũ S̃1 = S̃2Ũ (8.2)

In [3] it was found that there are exactly ten extendible permutative endomorphisms rising from unitaries 
in P 2

2 . Among other things, their unique extensions all continue to commute with the (extended) gauge 
automorphisms. In this list there also appeared four automorphisms, namely Id, λf , Ad f, Ad f ◦ λf . Their 
extensions send U to U , U∗, fUf , and fU∗f respectively. In fact, the images of U through the remaining 
six proper endomorphisms are less easily guessed. We now tune up a method for recovering those six 
endomorphisms from a somewhat different perspective, thus paving the way to a general analysis that will 
be carried out later on.

We start with case Ũ = U2. Since we have

U2S1S1 = S1S2U, U2S1S2 = S1S1, U2S2S1 = S2S2U, U2S2S2 = S2S1 ,

the multiplication by U2 yields a monomial in O2 only on the above elements of the form SiS2, i = 1, 2. We 
say that the monomials SiS2 are well-suited (for U2). Because uSi is a linear combination of SjShS

∗
k and 

U2Sr = SrU we easily see that if Equation (8.1) is satisfied then, Equation (8.2) is automatically satisfied 
as well. Accordingly, all we have to bother with is Equation (8.1). The u’s below fulfil all requirements:

u23 := S1S2(S2S1)∗ + S1S1(S1S1)∗ + S2S2(S2S2)∗ + S2S1(S1S2)∗ ≡ F

u1342 := S1S2(S2S2)∗ + S1S1(S1S2)∗ + S2S2(S2S1)∗ + S2S1(S1S1)∗

These u’s are obtained by means of the following scheme. We start by taking the first well-suited monomial 
according to the lexicographic order. We then match it with a monomial of the form S2Si. This can be done 
in two different ways, which explains why we end up with two different unitaries. The next summand is 
the image of the chosen well-suited monomial under multiplication by U2, followed by the same matching 
monomial as in the first summand, but with the first index changed to 1. We finally apply the procedure 
to the remaining well-suited monomial, but using matching monomials different from those already used.

The same method continues to work for Ũ = U−2. Now we have

U−2S1S1 = S1S2, U−2S1S2 = S1S1U
−1, U−2S2S1 = S2S2, U−2S2S2 = S2S1U

−1
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which means the well-suited monomial for U−2 are those of the form SiS1, which leads to

u1243 = S1S1(S2S1)∗ + S1S2(S1S1)∗ + S2S1(S2S2)∗ + S2S2(S1S2)∗

u14 = S1S1(S2S2)∗ + S1S1(S1S2)∗ + S2S1(S2S1)∗ + S2S2(S1S1)∗

All is left to do now is treat the case when either Ũ = U2P2 + U−2P1 or Ũ = U2P1 + U−2P2, which can 
be thought of as a mixed case, so to speak.

We start with Ũ = U2P2 + U−2P1. In order to satisfy equation (8.1), we follow a similar method by 
merging the two cases above, namely we pick the only suited monomial for U2 starting with S2, that is 
S2S2, thus determining the first two summands and then we pick the only well-suited monomial for U−2

starting with S1, that is S1S1, determining the remaining two summands. All in all, we obtain

u134 = S2S2(S2S1)∗ + S2S1(S1S1)∗ + S1S1(S2S2)∗ + S1S2(S1S2)∗

u123 = S2S2(S2S2)∗ + S2S1(S1S2)∗ + S1S1(S2S1)∗ + S1S2(S1S1)∗ .

This time, though, it is no longer clear that Equation (8.2) is automatically satisfied. In fact, it is fulfilled 
only with u123, as follows by direct computation.

Now Ũ = U2P1 + U−2P2 can be dealt with in much the same way as above. By repeating the same 
scheme but picking the well-suited monomials S1S2 for U2 and S2S1 for U−2 we obtain

u243 = S1S2(S2S1)∗ + S1S1(S1S1)∗ + S2S1(S2S2)∗ + S2S2(S1S2)∗

u142 = S1S2(S2S2)∗ + S1S1(S1S2)∗ + S2S1(S2S1)∗ + S2S2(S1S1)∗ ,

but only u243 also satisfies Equation (8.2).
Note that λfλu123 = λu123 and λfλu243 = λu243 and therefore λ̃f λ̃u123 = λ̃u123 and λ̃f λ̃u243 = λ̃u243 , 

since λ̃f (U±2P2 + U∓2P1) = U±2P2 + U∓2P1. In particular, λu123 , λu243 and their extensions are proper 
endomorphisms.

8.2. Case P3
2

The same technique would in fact apply to endomorphisms λu coming from a permutation matrix u ∈
P3

2 ⊂ F3
2 too. Corresponding to Ũ = U4 or U−4, it would now yield 24 extensions each, which are all 

proper endomorphisms of Q2, cf. [1, Proposition 6.1], as well as being proper endomorphisms at the level 
of the Cuntz algebra O2 also, cf. [10]. Furthermore, for each of the four mixed cases Ũ = P1U

4 + P2U
−4, 

Ũ = P2U
4 + P1U

−4, Ũ = ϕ(P1)U4 + ϕ(P2)U−4, and Ũ = ϕ(P2)U4 + ϕ(P1)U−4 the technique would also 
yield another 4 extensions. At any rate, we may as well refrain from describing the computations in detail 
here since the technique will be discussed in fuller generality below, where extendible permutative unitaries 
in P k

2 will be found aplenty for any k ∈ N. A complete list of the endomorphisms thus spotted, however, is 
provided in the appendix.

8.3. Case Pk
2

Of course, at each level k we will recover those already obtained at lower levels and possibly more. 
In order to see that indeed we always find new extendible endomorphisms, it is enough to realize that a 
similar method applies to Pk

2 , i.e. permutations of 2k objects, at least when Ũ = U2k−1 or Ũ = U−2k−1 , 
providing 2k−1! different permutative endomorphisms for each case, and thus 2k−1! ·2 new extendible (proper) 
endomorphisms. Of course, there are also the 2k−1!2 inner perturbations of the identity and of the flip-flop, 
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all of which trivially extend to automorphisms. Furthermore, there are those of the form Ad(v) ◦ ϕ and 
Ad(v) ◦ ϕ ◦ λf , with v ∈ Pk−1

2 , again 2k−1!2 (for k > 2 they are different from those above).

Lemma 8.1. There are 2k−1 well-suited monomials for U2k−1 , which are those of length k ending in S2, i.e. 
of the form Si1Si2 . . . Sik−1S2 with i1, i2, . . . ik−1 ∈ {1, 2}. Likewise, there are 2k−1 well-suited monomials 
for U−2k−1 , which are those of length k ending in S1, i.e. of the form Si1Si2 . . . Sik−1S1 with i1, i2, . . . ik−1 ∈
{1, 2}.

Proof. Indeed, it is enough to note that U2k−1
Si1Si2 . . . Sik−1S2 = Si1Si2 . . . Sik−1S1 and

U−2k−1
Si1Si2 . . . Sik−1S1 = Si1Si2 . . . Sik−1S2. �

Theorem 8.2. Let p be a permutation of the set W k−1
2 . Consider the unitaries u±

p ∈ Pk
2 given by

u+
p =

∑
μ∈Wk−1

2

(SμS2)(S2Sp(μ))∗ + (SμS1)(S1Sp(μ))∗ =
∑

μ∈Wk−1
2 , i∈W 1

2

SμSi(SiSp(μ))∗

u−
p =

∑
μ∈Wk−1

2

(SμS1)(S2Sp(μ))∗ + (SμS2)(S1Sp(μ))∗

Then λu±
p

both extend as endomorphisms of Q2 with λ̃u±
p
(U) = U±2k−1 .

Proof. We shall only deal with u+
p , for u−

p can be handled in exactly the same way. We set S̃i
.= u+

p Si and 

Ũ
.= U2k−1 . We need to make sure that both S̃1 = Ũ S̃2 and S̃2Ũ = Ũ S̃1 hold true. But again, since Ũ is 

U2k−1 , the latter is automatically satisfied provided that the former is. Now on the one hand we have

S̃1 =
∑

μ∈Wk−1
2

(
(SμS2)(S2Sp(μ))∗ + (SμS1)(S1Sp(μ))∗

)
S1 =

∑
μ∈Wk−1

2

SμS1S
∗
p(μ)

but on the other hand

Ũ S̃2 = U2k−1
u+
p S2 = U2k−1 ∑

μ∈Wk−1
2

(
(SμS2)(S2Sp(μ))∗ + (SμS1)(S1Sp(μ))∗

)
S2

=
∑

μ∈Wk−1
2

SμUS2S
∗
p(μ) =

∑
μ∈Wk

2

SμS1S
∗
p(μ)

and so the equality is certainly satisfied. �
Remark 8.3. It is worth pointing out that the equality u−

p (k)f = u+
p (k) is satisfied for every integer k

and ever permutation p. In general, it is not true that either u+
p (k) or u−

p (k) is fixed by λf . However, 
straightforward computations show that this is certainly the case for both if the permutation p commutes 
with c, where c is the permutation on W k

2 that swaps 1 and 2.

Example 8.4. We discuss a simple example. For every integer k, let Fk be the unitary in Fk+1
2 implementing 

the endomorphism ϕk. In particular, F1 = F with F =
∑

i,j=1,2 SiSjS
∗
i S

∗
j . We will show that if we take 

p = id then u+
p (k) = Fk−1, i.e. λu+

p (k) = ϕk−1. In this case u+
p (k) =

∑
μ∈Wk−1

2 , i∈W 1
2
SμSi(SiSμ)∗, which for 

k = 2 gives u+
p (2) =

∑
j,i=1,2 SjSiS

∗
j S

∗
i = F = F1. We next prove by induction that the formula is true for 

every k. Supposing we have proved that λu+
p (k) = ϕk−1, we need to show that then λu+

p (k+1) = ϕk as well. 
But now ϕk = ϕ ◦ϕk−1 = ϕ ◦λu+

p (k) = λF ◦λu+
p (k) = λϕ(u+

p (k))F , so all we have to do is compute ϕ(u+
p (k))F , 

which we do below:
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ϕ(u+
p (k))F =

∑
μ,i,j

SjSμSi(SiSμ)∗S∗
jF =

∑
μ,i,j

SjSμSiS
∗
μS

∗
i S

∗
j

∑
l,m=1,2

SlSmS∗
l S

∗
m

=
∑
μ,i,j

SjSμSiS
∗
μS

∗
j S

∗
i =

∑
μ,i,j

SjSμSi(SiSjSμ)∗ = u+
p (k + 1)

It is now natural to expect the equality λu−
p (k) = ϕk−1 ◦ λf = λf ◦ ϕk−1 to hold if p = id. Indeed, 

λf ◦ ϕk = λf ◦ λu+
id(k+1) = λλf (u+

id(k+1))f . But λf (u+
id(k + 1))f is easily computed as follows

λf (u+
id(k + 1))f = λf

⎛
⎝ ∑

μ∈Wk
2

SμS2(S2Sμ)∗ + SμS1(S1Sμ)∗
⎞
⎠ f

=

⎛
⎝ ∑

μ∈Wk
2

SμS1(S1Sμ)∗ + SμS2(S2Sμ)∗
⎞
⎠ f

=

⎛
⎝ ∑

μ∈Wk
2

SμS1(S1Sμ)∗ + SμS2(S2Sμ)∗
⎞
⎠ (S2S

∗
1 + S1S

∗
2 )

=
∑

μ∈Wk
2

SμS1(S2Sμ)∗ + SμS2(S1Sμ)∗ = u−
id(k + 1)

Of course, for every p ∈ Pk−1
2 , the automorphisms Ad(p) and Ad(p) ◦λf of O2 extend to automorphisms 

of Q2, with Ũ equal to pUp∗ and pU∗p, respectively. It follows at once by the results in [1] that for each Ũ
of the above form the u ∈ Pk

2 such that λu extends with λ̃u(U) = Ũ is necessarily unique and is given by 
pϕ(p∗) and pϕ(p∗)f , respectively.

We now deal with the case Ũ = P1U
2k−1 + P2U

−2k−1 . Again, we can adopt the same strategy as before. 
The well-suited monomials for P1U

2k−1 are obviously those of the form S1SαS2, where α ∈ W k−2
2 is any 

multi-index of length k − 2. In this way we get the following (2k−2)! sums

∑
α∈Wk−2

2

S1SαS2(S2S1Sσ1(α))∗ + S1SαS1(S1S1Sσ1(α))∗

where σ1 is a permutation on the set W k−2
2 . The well-suited monomials for P2U

−2k−1 are those of the form 
S2SβS1, where β is any multi-index of length k − 2. As above, these give yield the following (2k−2)! sums

∑
β∈Wk−2

2

S2SβS1(S2S2Sσ2(β))∗ + S2SβS2(S1S2Sσ2(β))∗

where σ2 is another (possibly different from σ1) permutation on the set W k−2
2 . If we now combine the two 

sums, we finally obtain (2k−2!)2 unitaries in the Cuntz algebra given by

uσ1,σ2
.=

∑
α,β∈Wk−2

2

S1SαS2(S2S1Sσ1(α))∗ + S1SαS1(S1S1Sσ1(α))∗+

+ S2SβS1(S2S2Sσ2(β))∗ + S2SβS2(S1S2Sσ2(β))∗

The case Ũ = P1U
−2k−1 +P2U

2k−1 is dealt with in pretty much the same way, and we find the following 
(2k−2!)2 unitaries
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uσ1,σ2
.=

∑
α,β∈Wk−2

2

S1SαS1(S2S1Sσ1(α))∗ + S1SαS2(S1S1Sσ1(α))∗+

+ S2SβS2(S2S2Sσ2(β))∗ + S2SβS1(S1S2Sσ2(β))∗

We now come to the case Ũ = ϕh(P1)U2k−1 + ϕh(P2)U−2k−1 , with h = 1, 2, . . . k − 2 (the case k = 0 has 
been addressed above). Since ϕ(Pi) =

∑
α∈Wh

2
SαSiS

∗
i S

∗
α =

∑
α∈Wh

2
SαiS

∗
αi, the well-suited monomials for 

ϕh(P1)U2k−1 are those of the form Sα1β2 and the well-suited monomials for ϕh(P2)U−2k−1 are those of the 
form Sα2β1, where β is any multi-index of length k− h − 2. Bringing the pieces together, we finally get the 
following Nk,h

.= (2k−h−2!2h)2 unitaries

uσ
.=

∑
α1,α2∈Wh

2
β,γ∈Wk−h−2

2

Sα11β2S
∗
2α11σα1 (β) + Sα11β1S

∗
1α11σα1 (β) + Sα22γ1S

∗
2α22σα2 (γ) + Sα22γ2S

∗
1α22σα2 (γ)

where σ is the set {σα1 , σα2 : α1, α2 ∈ Wh
2 }, with σαi

being a permutation of the set W k−h−2
2 for each α and 

i = 1, 2. There follow the necessary computations to make sure that the endomorphisms λuσ
∈ End(O2)

actually extend to Q2.

S̃1 = uσS1 =
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

Sα11β1S
∗
α11σα1 (β) + Sα22γ2S

∗
α22σα2 (γ)

S̃2 = uσS2 =
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

Sα11β2S
∗
α11σα1 (β) + Sα22γ1S

∗
α22σα2 (γ)

Ũ S̃2 = (U2k−1
ϕh(P1) + U−2k−1

ϕh(P2))

⎛
⎜⎜⎜⎝

∑
α1,α2∈Wh

2
β,γ∈Wk−h−2

2

Sα11β2S
∗
α11σα1 (β) + Sα22γ1S

∗
α22σα2 (γ)

⎞
⎟⎟⎟⎠

=
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

U2k−1
Sα11β2S

∗
α11σα1 (β) + U−2k−1

Sα22γ1S
∗
α22σα2 (γ)

=
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

Sα11β1S
∗
α11σα1 (β) + Sα22γ2S

∗
α22σα2 (γ) = S̃1

Ũ S̃1 = (U2k−1
ϕh(P1) + U−2k−1

ϕh(P2))

⎛
⎜⎜⎜⎝

∑
α1,α2∈Wh

2
β,γ∈Wk−h−2

2

Sα11β1S
∗
α11σα1 (β) + Sα22γ2S

∗
α22σα2 (γ)

⎞
⎟⎟⎟⎠

=
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

U2k−1
Sα11β1S

∗
α11σα1 (β) + U−2k−1

Sα22γ2S
∗
α22σα2 (γ)

=
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

Sα11βUS1S
∗
α11σα1 (β) + Sα22γU

∗S2S
∗
α22σα2 (γ)
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S̃2Ũ =

⎛
⎜⎜⎜⎝

∑
α1,α2∈Wh

2
β,γ∈Wk−h−2

2

Sα11β2S
∗
α11σα1 (β) + Sα22γ1S

∗
α22σα2 (γ)

⎞
⎟⎟⎟⎠ (U2k−1

ϕh(P1) + U−2k−1
ϕh(P2))

=
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

Sα11β2S
∗
α11σα1 (β)U

2k−1
+ Sα22γ1S

∗
α22σα2 (γ)U

−2k−1

=
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

Sα11β2US∗
α11σα1 (β) + Sα22γ1U

∗S∗
α22σα2 (γ)

The case Ũ = ϕh(P2)U2k−1 +ϕ(P1)hU−2k−1 can be dealt with in pretty much the same way. The formula 
thus got to reads as follows:

uσ
.=

∑
α1,α2∈Wh

2
β,γ∈Wk−h−2

2

Sα12β2S
∗
2α12σα1 (β) + Sα12β1S

∗
1α12σα1 (β) + Sα21γ1S

∗
2α21σα2 (γ) + Sα21γ2S

∗
1α21σα2 (γ)

where σ is the set {σα1 , σα2 : α1, α2 ∈ Wh
2 }, with σαi

being a permutation of the set W k−h−2
2 for each αi

and i = 1, 2. In particular, we still have Nk,h
.= (2k−h−2!2h)2 extendible endomorphisms. For the reader’s 

convenience, we can finally sum up our findings in the following statement.

Theorem 8.5. Given a natural number k ≥ 2, for each h ∈ {0, 1, 2, . . . , k − 2} let Nk,h be (2k−h−2!2h)2.
First, there are Nk,h unitaries u(1)

σ in Pk
2 such that the associated endomorphism λ

u
(1)
σ

is extendible with 

λ̃
u

(1)
σ

(U) = ϕh(P1)U2k−1 + ϕh(P2)U−2k−1 , and these are given by

u(1)
σ

.=
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

Sα11β2S
∗
2α11σα1 (β) + Sα11β1S

∗
1α11σα1 (β) + Sα22γ1S

∗
2α22σα2 (γ) + Sα22γ2S

∗
1α22σα2 (γ)

where, for any α1, α2 ∈ Wh
2 , σα1 and σα2 are permutations on W k−h−2

2 .
Second, there are Nk,h unitaries u(2)

σ in Pk
2 such that the associated endomorphism λ

u
(2)
σ

is extendible 

with Ũ = ϕh(P2)U2k−1 + ϕh(P1)U−2k−1 , and these are given by

u(2)
σ

.=
∑

α1,α2∈Wh
2

β,γ∈Wk−h−2
2

Sα12β2S
∗
2α12σα1 (β) + Sα12β1S

∗
1α12σα1 (β) + Sα21γ1S

∗
2α21σα2 (γ) + Sα21γ2S

∗
1α21σα2 (γ)

with the same notation as in the first case.

Remark 8.6. It goes without saying that there might be more possibilities for Ũ , other than those considered 
above, that still give rise to extendible endomorphisms. In addition, already with the values of Ũ we have 
considered, there is no evidence that the unitaries listed in Theorem 8.5 actually exhaust all possible cases.

Remark 8.7. All of the endomorphisms we have produced so far are clearly endomorphisms of the Bunce-
Deddens algebra QT

2 too.
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Appendix A. Permutative endomorphisms of Q2 at level 3

The notation we adopt here is similar to that already used in [3], where monomials SαS
∗
β are denoted 

by Sα1,α2,...,α|α|,β1,β2,...,β|β| for any α, β ∈ W2. There follows a table where the permutative unitaries in Pk
2

yielded by the general method described in the previous section are shown along with the action of the 
corresponding endomorphisms on U .

u ∈ P3
2 λ̃u(U)

S112,211 + S111,111 + S122,212 + S121,112 + S212,221 + S211,121 + S222,222 + S221,122 U4

S112,211 + S111,111 + S122,212 + S121,112 + S212,221 + S211,121 + S222,221 + S221,121 U4

S112,211 + S111,111 + S122,212 + S121,112 + S212,212 + S211,112 + S222,222 + S221,122 U4

S112,211 + S111,111 + S122,212 + S121,112 + S212,212 + S211,112 + S222,212 + S221,112 U4

S112,211 + S111,111 + S122,222 + S121,122 + S212,212 + S211,112 + S222,221 + S221,121 U4

S112,211 + S111,111 + S122,222 + S121,122 + S212,221 + S211,121 + S222,212 + S221,112 U4

S112,212 + S111,112 + S122,211 + S121,111 + S212,221 + S211,121 + S222,222 + S221,122 U4

S112,212 + S111,112 + S122,211 + S121,111 + S212,222 + S211,122 + S222,221 + S221,121 U4

S112,212 + S111,112 + S122,211 + S121,121 + S212,211 + S211,111 + S222,222 + S221,122 U4

S112,212 + S111,112 + S122,211 + S121,121 + S212,222 + S211,122 + S222,211 + S221,111 U4

S112,212 + S111,112 + S122,222 + S121,122 + S212,211 + S211,111 + S222,221 + S221,121 U4

S112,212 + S111,112 + S122,222 + S121,122 + S212,221 + S211,121 + S222,211 + S221,111 U4

S112,221 + S111,121 + S122,211 + S121,111 + S212,212 + S211,112 + S222,222 + S221,122 U4

S112,221 + S111,121 + S122,211 + S121,111 + S212,222 + S211,122 + S222,212 + S221,112 U4

S112,221 + S111,121 + S122,212 + S121,112 + S212,211 + S211,111 + S222,222 + S221,122 U4

S112,221 + S111,121 + S122,212 + S121,112 + S212,222 + S211,122 + S222,211 + S221,111 U4

S112,221 + S111,121 + S122,222 + S121,122 + S212,211 + S211,111 + S222,212 + S221,112 U4

S112,221 + S111,121 + S122,222 + S121,122 + S212,212 + S211,112 + S222,211 + S221,111 U4

S112,222 + S111,122 + S122,211 + S121,111 + S212,212 + S211,112 + S222,221 + S221,121 U4

S112,222 + S111,122 + S122,211 + S121,111 + S212,221 + S211,121 + S222,212 + S221,112 U4

S112,222 + S111,122 + S122,212 + S121,112 + S212,211 + S211,111 + S222,221 + S221,121 U4

S112,222 + S111,122 + S122,212 + S121,112 + S212,221 + S211,121 + S222,211 + S221,111 U4

S112,222 + S111,122 + S122,221 + S121,121 + S212,211 + S211,111 + S222,212 + S221,112 U4

S112,222 + S111,122 + S122,221 + S121,121 + S212,212 + S211,112 + S222,211 + S221,111 U4

S112,211 + S111,111 + S122,212 + S121,112 + S211,221 + S212,121 + S221,222 + S222,122 P1U
4 + P2U

−4

S112,211 + S111,111 + S122,212 + S121,112 + S211,222 + S212,122 + S221,221 + S222,121 P1U
4 + P2U

−4

S112,212 + S111,112 + S122,211 + S121,111 + S211,221 + S212,121 + S221,222 + S222,122 P1U
4 + P2U

−4

S112,212 + S111,112 + S122,211 + S121,111 + S211,222 + S212,122 + S221,221 + S222,121 P1U
4 + P2U

−4

S212,221 + S211,121 + S222,222 + S221,122 + S111,211 + S112,111 + S121,212 + S122,112 P1U
−4 + P2U

4

S212,221 + S211,121 + S222,222 + S221,122 + S111,212 + S112,112 + S121,211 + S122,111 P1U
−4 + P2U

4

S212,222 + S211,122 + S222,221 + S221,121 + S111,211 + S112,111 + S121,212 + S122,112 P1U
−4 + P2U

4

S212,222 + S211,122 + S222,221 + S221,121 + S111,212 + S112,112 + S121,211 + S122,111 P1U
−4 + P2U

4

S112,211 + S111,111 + S212,221 + S211,121 + S121,212 + S122,112 + S221,222 + S222,122 ϕ(P1)U4 + ϕ(P2)U−4

S112,211 + S111,111 + S212,221 + S211,121 + S121,222 + S122,122 + S221,212 + S222,112 ϕ(P1)U4 + ϕ(P2)U−4

S112,221 + S111,121 + S212,211 + S211,111 + S121,212 + S122,112 + S221,222 + S222,122 ϕ(P1)U4 + ϕ(P2)U−4

S112,221 + S111,121 + S212,211 + S211,111 + S121,222 + S122,122 + S221,212 + S222,112 ϕ(P1)U4 + ϕ(P2)U−4

S122,212 + S121,112 + S222,222 + S221,122 + S111,211 + S112,111 + S211,221 + S212,121 ϕ(P1)U−4 + ϕ(P2)U4

S122,212 + S121,112 + S222,222 + S221,122 + S111,221 + S112,121 + S211,211 + S212,111 ϕ(P1)U−4 + ϕ(P2)U4

S122,222 + S121,122 + S222,212 + S221,112 + S111,211 + S112,111 + S211,221 + S212,121 ϕ(P1)U−4 + ϕ(P2)U4

S122,222 + S121,122 + S222,212 + S221,112 + S111,221 + S112,121 + S211,211 + S212,111 ϕ(P1)U−4 + ϕ(P2)U4
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