J. Math. Anal. Appl. 481 (2020) 123395

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Normalizers and permutative endomorphisms of the 2-adic ring
C*-algebra ™

Check for
Updates

Valeriano Aiello®*, Roberto Conti”, Stefano Rossi®

& Section de Mathématiques, Université de Genéve, 2-4 rue du Liévre, Case Postale 64, 1211 Genéve 4,
Switzerland

b Dipartimento di Scienze di Base e Applicate per 'Ingegneria, Sapienza Universita di Roma,

Via A. Scarpa 16, 00161 Roma, Italy

¢ Dipartimento di Matematica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133
Roma, Italy

ARTICLE INFO ABSTRACT
Article history: A complete description is provided for the unitary normalizer of the diagonal Cartan
Received 10 March 2019 subalgebra D> in the 2-adic ring C*-algebra Q2, which generalizes and unifies

Available online 4 September 2019

' ] analogous results for Cuntz and Bunce-Deddens algebras. Furthermore, the inclusion
Submitted by H. Lin

Oy C Q> is proved not to be regular. Finally, countably many novel permutative
endomorphisms of Q2 are exhibited with prescribed images of the generator U.
© 2019 Elsevier Inc. All rights reserved.

Keywords:

2-adic ring C*-algebra
Normalizers

Automorphism group
Permutative endomorphisms
Cuntz algebra

Contents
1. Introduction . . . . . . . e 2
2. Preliminaries and notation . . . . . . . . . e 3
3. Automorphisms preserving C*(U) . . .. .. .. .. 4
4.  The normalizer of Do in Qo . . . . . o 0 e 5
5. A diagrammatic description of the extended Thompson group W . . .. . ... .. . i 10
6.  Other normalizers . . . . . . . . . e e e 12
6.1.  Unitaries in the Bunce-Deddens algebra normalizing O2 . ... ... ... ... . ... ... . ... ... . ..... 12
6.2, SOME CONSEQUEIICES . .+ . . vt v v v ettt e e e et e et e e e e e e e e e e e e e e e e e e 14
6.3. A class of automorphisms of O . . . . . . .. 15
7. The inclusion of Oy C Qg is not regular . . . . . . . . . .. e 16
8.  Permutative endomorphisms of Qs at an arbitrary level . .. ... ... .. ... . . ... 18
8.1, Case P2 oottt 18
8.2, Case P35 ..o 19

* Valeriano Aiello acknowledges support of the Swiss National Science Foundation. Roberto Conti acknowledges partial support
by Sapienza Universita di Roma. Stefano Rossi is supported by European Research Council Advanced Grant 669240 QUEST.
* Corresponding author.

E-mail addresses: valerianoaiello@gmail.com (V. Aiello), roberto.conti@sbai.uniromal.it (R. Conti), rossis@mat.uniromaZ2.it
(S. Rossi).

https://doi.org/10.1016/j.jmaa.2019.123395
0022-247X/© 2019 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jmaa.2019.123395
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:valerianoaiello@gmail.com
mailto:roberto.conti@sbai.uniroma1.it
mailto:rossis@mat.uniroma2.it
https://doi.org/10.1016/j.jmaa.2019.123395
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2019.123395&domain=pdf

2 V. Aiello et al. / J. Math. Anal. Appl. 481 (2020) 123395

8.3.  Case P . . 19
Appendix A.  Permutative endomorphisms of Qs at level 3. .. ... ... . L 24
References . . . . . e 24

1. Introduction

The study of automorphisms (endomorphisms) of C*-algebras does not seem to have received as much
attention as its classical counterpart. Arguably, the groups (semigroups) made up of automorphisms (en-
domorphisms) of a non-commutative C*-algebra are seldom regarded as inviting objects to deal with in
that they are not only difficult to describe in concrete terms but they also lack many of those properties
a group is generally supposed to possess. For instance, these groups are hardly ever locally compact, apart
from those coming from finite-dimensional C*-algebras. A few exceptions, however, do exist. A case in point
is given by the Cuntz algebras O,: their endomorphisms and automorphisms have in fact been studied
rather intensively despite the difficulties alluded to above, perhaps because of their interplay with algebraic
quantum field theory, whose superselection structure can be phrased in terms of suitable equivalence classes
of endomorphisms. Indeed, as late as over forty years after their introduction in [14], the Cuntz algebras still
attract much attention. Unlike many other C*-algebras, this is particularly true of their endomorphisms
and automorphisms [15,13,10-12]. Another reason is they display a remarkably rich variety of phenomena
which range from the study of general structure properties of C'*-algebras to dynamical systems, actions of
(possibly quantum) groups and subfactors. Moreover, these endomorphisms quite often lead to non-trivial
computations of important invariants, such as the Jones index or Voiculescu’s topological entropy [20,23,21,
9,7,28]. Nevertheless, far less is known about the general structure of other C*-algebras which might happen
to be somewhat related to the Cuntz algebra, and their endomorphism semigroup. For instance, not too long
ago Cuntz and others introduced a vast class of C*-algebras naturally associated with algebraic structures
of various kinds, which seem to indicate that intriguing connections are very likely to be found between
operator algebra theory on the one hand and other seemingly far different areas, most notably number
theory, on the other (see e.g. [17] for a wide overview). Having that in mind, in our recent works [1-3] we
initiated a painstaking analysis of the so-called dyadic C*-algebra Qs, which was first studied systematically
by Larsen and Li in [22]. This C*-algebra contains in a canonical fashion both the Cuntz algebra Oy and
the Bunce-Deddens algebra of type 2°° (the latter as the fixed-point subalgebra QF of the gauge action).
In particular, much of our attention so far has been lavished on its endomorphisms and automorphisms,
of which very little was known before. To frame the scope and the reach of our analysis, however, it might
be worth stressing that Qs is not at all an isolated case. On the contrary, it is perhaps best presented as a
noticeable example of a broad class of C*-algebras arising from algebraic dynamical systems, including all
Q,, with n > 2, which have been addressed in [5] in much greater generality than was initially done in [1].

Our final goal was at that time and still is to arrive at a thorough description of the group Out(Qs) of
the outer automorphisms of Qs not least because only rarely has such an ambitious task been accomplished.
Even so, the undertaking is not necessarily bound to fail. Indeed, unlike the Cuntz algebra, the 2-adic ring
C*-algebra features a decidedly more rigid structure in that the Cuntz isometries are now intertwined, which
in fact seems to prevent many cases from occurring. Many obstacles are easily found on the way, though,
and this might depend on the various facets of Aut(Qz2) and End(Q2) entailed by the intricacies of the
ladder of inclusions

Q D Q) =C"(DU) > C*(U)

] U
O D) Fo D) Do
]

C*(S2)
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which account for the deep interplay between Qs and the Cuntz algebra Os. Still far from a complete an-
swer, we have nonetheless obtained partial yet motivating results. Among them, and without any pretense
of exhaustiveness, we showed that Endc« ) (Q2) = Autes)(Q2) ~ C(T,T) and Autp,(Q2) are both
maximally Abelian in Aut(Qz). As far as Out(Qs) is concerned, at present all we know is it is uncountable
and not Abelian. Moreover, any extendible localized diagonal automorphism of Q5 is the product of a gauge
and a localized diagonal inner automorphism. Finally, we also spotted an interesting rigidity phenomenon
relative to the inclusion Oy C Qs, which forbids any non-trivial endomorphism of Qs to restrict to Oy triv-
ially. Nevertheless, the inclusion, albeit given quite explicitly, is not easily handled with standard techniques,
and the principal reason is there is no way to see O3 as a fixed-point subalgebra of Qs, for no conditional
expectation exists from the larger onto the smaller algebra.

As for the present work, we start by going back to the analysis of the automorphisms of Qs mapping
C*(U) onto itself, for a number of problems had been left open in [1]. More precisely, our attention is
here turned to those automorphisms which at the level of C*(U) simply act as a rotation of the generator.
Remarkably, the only allowed values of the angle turn out to be all roots of order any power of 2. We
then move on to provide a complete description of those inner automorphisms of Qs leaving the diagonal
D5 globally invariant. This should be regarded as the main result of the present work insofar as it not
only fully settles the problem but also establishes an elegant synthesis of the corresponding results for
the Bunce-Deddens and Cuntz algebras [26,25]. Interestingly enough, the associated non-trivial part W of
the normalizing group is a specific extension of the well-known Thompson group V', which have surfaced
before in the work of Nekrashevych [24]. Moreover, we draw a number of consequences of these results on
the structure of other normalizers. In particular, the inclusion Oy C Qs is proved not to be regular, even
though to date we do not know whether the unitary normalizer of Qs in Qg actually reduces to U(Os),
as we would be inclined to believe. At any rate, we do show that the only unitaries in the Bunce-Deddens
algebra normalizing O, are those in the canonical UHF subalgebra F5. Finally, in the last part, which is
more combinatorial in character, we discuss permutative endomorphisms of O, namely those obtained by
extending the permutative endomorphisms of Oy. Extendability is no trivial matter here. Roughly speaking,
if one is given an endomorphism of the Cuntz algebra, the odds are it will fail to extend to an endomorphism
of the whole Q5. To take but two significant examples of the hurdles one might encounter in trying to
exhibit an extension of any such endomorphism, it is worth recalling that less than half of the permutative
endomorphisms of Oy at level two actually extend [3], and among the so-called Bogolubov automorphisms
of Oy only the gauge automorphisms, the flip-flop and their compositions extend [1]. That being the case,
one might be led to expect extendible endomorphisms to be increasingly sparse as the level is raised. Quite
the opposite, we show that the number of permutative endomorphisms of Qs does grow extremely quickly
with the level, which came as good news to us. Moreover, we are now in a position to enrich the list of
the endomorphisms of Qs, which admittedly had remained rather limited since we started working on the
problem in [1].

2. Preliminaries and notation

This rather quick section provides the reader with the basic notation and definitions needed to make
the paper as self-consistent and readable as possible. The main object of the present study, the 2-adic ring
C*-algebra Q5 is by definition the universal C*-algebra generated by a unitary U and a (proper) isometry Sy
such that SoUU = U2S5 and S995 + US> S5U* = 1. Several characterizations of this C*-algebra are actually
known, see [22] for more detail. Among the many interesting properties enjoyed by Qa, it is worth recalling
it is a simple and purely infinite C*-algebra. As is known, the Cuntz algebra O is the universal C*-algebra
generated by two isometries X, Xo such that X1 X7 4+ XoX5 = 1. It is clear that Oy embeds into Qs
through the injective *~-homomorphism that sends X; to USy and X5 to Ss. A distinguished representation
of the 2-adic ring C*-algebra, which will actually play a major role in this work, is the so-called canonical
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representation p. of Qo, which is a (faithful) irreducible representation acting on the Hilbert space ¢5(Z),
with canonical orthonormal basis {ex : k € Z}, by p.(U)er, = er11 and p.(S2)er = eax, k € Z. In order
to ease the notation, we will often drop the symbol p. and identify Qs with its image. The Cuntz algebra
Os is acted upon by the one-dimensional torus T through the well-known gauge automorphisms ay, with
6 € R. These are given by ay(S;) = €?S; for i = 1,2. The corresponding invariant subalgebra is denoted
by Fo C O3, which will often be referred to as the gauge invariant subalgebra of Os. It is worth mentioning
that F3 is isomorphic with the unique UHF algebra of type 2°°. Now the gauge automorphisms extend to
automorphisms ay of the whole Qs by setting ay(U) = U, which allows us to consider the gauge invariant
subalgebra QF of Qy as well. Among other things, QF is known to be a Bunce-Deddens algebra. It is
not difficult to see that Q%r can also be described as the C*-subalgebra of Qs generated from Dy and U,
where Dy C F3 is the diagonal subalgebra, namely the subalgebra generated by the diagonal projections
P, = 5,5}, where for any multi-index a = (aq,a,...,a;) € Wo = (J,,50{1,2}" the isometry S, is
the product Su,Sa, - .. Sa,. Sometimes it will be more convenient to identify D, with the C*-algebra of
continuous functions on its Gelfand spectrum, which is known to be the Cantor set K = {1,2}N. As
a matter of fact, Dy is a Cartan subalgebra both of Oy and Q. Since the multi-index notation will be
adopted extensively throughout the paper, we take this opportunity to recall that |a| denotes the length of
the multi-index «.

The canonical endomorphism of O is defined on each element x € Oy as p(x) = S1257 + SexS5. It is
rather obvious that it extends to Qs. We also point out the intertwining rules S;z = ¢(x).S; for every x € Qa,
with 4 = 1,2, which will come in useful in the sequel. Lastly, we recall that thanks to the Cuntz-Takesaki
correspondence, every endomorphism of Qs is uniquely determined by a unitary in Os. To be precise, given
u € U(O3) there exists an endomorphism A, defined as A\, (S;) = wS; for i = 1,2 and conversely every
endomorphism has this form. Aware that this overview can by no means be regarded as a comprehensive
introduction, we refer the interested reader to [1,22], and the references therein, for a fuller coverage of the
material instead.

3. Automorphisms preserving C*(U)

The present brief section aims to refine some results concerning the C*-subalgebra of Qs generated by
U. To begin with, in [1] the commutative subalgebra C*(U) was proved to be maximal Abelian in Q, and
it was also seen to be the image of a unique conditional expectation from Qs. However, our subalgebra fails
to be a Cartan subalgebra, as shown by the following result.

Proposition 3.1. The normalizer
{v e Qy | v v,vv* € P(Qq), vC*(U)v* C C*(U), v*C*(U)v Cc C*(U)}

coincides with the unitary normalizer Nc- ) (Q2) and sits in the Bunce-Deddens subalgebra Q%r. In partic-
ular, the subalgebra C*(U) is not Cartan in Qs.

Proof. Let v be a partial isometry in the normalizer. The projections v*v and vv* are both in C*(U).
Since T is connected, they can only be both equal to 0 or 1. Therefore, without loss of generality we may
suppose that v is a unitary in Ne- () (Qz). By definition we have vUv* = g(U) for some g € C(T). If we
apply the gauge automorphism «, to the previous equality we get o, (v)Ua,(v)* = g(U), which leads to
v*a,(v)Ua,(v)*v = U. The maximality of C*(U) in Qs implies that a,(v) = vh,(U) for some function
h, € C(T). We observe that o, ., (V) = vhz, 2, (U) = 0z (a2, (0) = oy, (VA (U)) = oy, (v)ay, (he, (U)) =
Vhy (U)h, (U) and thus hy, ., (U) = hy (U)h,, (U). Set fu,(2) := h,(w) where w € T. The function f,(-)
is a continuous function on T (as a function in the variable z) which is also a character. Indeed, it holds
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fuw(z122) = hayoy(W) = hay (W)hay (W) = fu(21) fuw(z2). It follows that f,(z) = 2**) for some k(w) € Z.
Now k(w) is the winding number of the curve f,,(z) (where w is fixed). All the curves {f,(-)}wer are
homotopic. Since the winding number is homotopy invariant, we see that k(w) has to be constant, say k.
Now, a straightforward argument shows that k£ has to be equal to 0, cf. Proposition 6.8. The claim about
the Cartan subalgebra is obvious. 0O

In [1] it was shown that corresponding to any root of unity z of order a power of 2 there existed an inner
automorphism Ad(U,), implemented by a unitary U, € D,, such that Ad(U,)(U) = zU. Our guess was that
automorphisms of this sort should cease to exist as soon as z was no longer such a root. What the next
result does is bridge this gap and show that no automorphism of Qs can send U to zU unless z is a root of
unity of order a power of two.

Proposition 3.2. Let o be an automorphism of Qy such that a(U) = zU for some z € T, then 22" =1 for
some n.

Proof. We already know that if 22" = 1 for some n, then there exists an automorphism mapping U to
2U. Indeed, one can consider Ad(U,), where U, is the unitary in the diagonal subalgebra Dy defined in
[1, Section 6.3] by the formula U,e, = z¥ej for all k € Z. Suppose that z has order different from 2"
for all n. From now on Qs will be understood in the interval picture, we refer to [5] for the definition
of such representation. Denote by 1 € L?([0,1]) the unit constant function. It is easy to see that 1 is an
eigenvector for U. Now for any multi-index «, the vector v, := P,1 is an eigenvector for U 2ol Indeed, we
have U2 (Pyl) = P,U?"'1 = P,1. The family of vectors {vataew, is a complete system for L2([0,1]). If
there existed an automorphism mapping U to zU, then U? would have z as an eigenvalue. Indeed, let o
be such an automorphism. Then a(U?)a(S2)1 = 22U2a(S2)1 = a(S2)a(U)1 = 2a(S2)1 which shows that
a(S2)1 is an eigenvector for U? with eigenvalue z. As z has order different from 2" for all n € N, the vector
a(S2)1 would be orthogonal to all the vy, which is absurd. O

4. The normalizer of D5 in Q-

The normalizer of the diagonal D, has been completely described in both the Cuntz algebra Oy and
the Bunce-Deddens algebra QF . More precisely, Np,(Q3) = U(D2) - {u € QF | u =Y, .ppU', F C
Z,|F| <o, p? =p; =p; € Do,Vi € F,Y cppi =1 =3 ,cp AdU ) (pi)}, see [26, Lemma 5.1], while
Np,(O2) = U(D3) - S3 [25], where Sy is the group of unitaries in Oy that can be written as a finite sum
of words in the generators S;, i = 1,2 and their adjoints, cf. [10]. In this section we generalize both these
results.

The next proposition provides a good many examples of unitary in @, normalizing the diagonal subalge-
bra D;. Before stating it, a couple of points are needed. First, any monomial 5,57 Uk, a,B € Wyand k € Z,
can be rewritten as S,U ZS:’;, for suitable | € Z and v € W5 depending on k and . Moreover, the latter
representation is more convenient not only because it is symmetric under taking the adjoint but because it
is also canonical insofar as it is unique. In other terms, the equality SaUkS; =S.U k,S;;, is possible only
ifa=a,8=08 and k=K.

Proposition 4.1. Given a finite family of triples (o, i, ki) € Wo x Wo X Z, with i = 1,2,..., N, define
u = Zf\il SaiUkiS;j € Qy. The element u is unitary if and only if Zf\il S, S5 = Zfil S, S5, = 1. In

i Moy

that case, the unitary w also belongs to Np,(Qz).

Proof. We begin by observing that each summand appearing in the sum that defines u is a partial isometry.
More precisely, any element of the form SaUkSZ; is a partial isometry whose initial and final projections are
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SpSi and 5,5, respectively. Therefore, the condition ZZ\LI Sp; S5, = 1 guarantees that u is a full isometry,
while the condition Zfil Sa; S5, = 1 says that u is in addition a surjective isometry. This obviously proves
the if part. Conversely, let us assume that u is unitary. The first thing we need to prove is that the projections
Sg, SE; are pairwise orthogonal. If we work in the canonical representation of Qs, this amounts to showing
that given n € Z such that Sg, 55 e, # 0 and Sg,, Sj en 7 0 then I = m. But if this were not the case, we
would find the absurd inequality

N
L= Juenll = || D Sa, U Sk en
i=1
= |80, U St en + Sa,, UM S5 en+ > Sa, UM Sk en|| > V2
i#l,m

where the last inequality is due to the fact that every non-zero term is a basis vector. This clearly shows
that sz\il Sp;Sh, < 1. By applying the same argument to u* we see that the inequality Zfil Sa; S, <1
holds as well. At this point, it is clear that both inequalities must actually be equalities, for otherwise u
could not be unitary.

To conclude, we have to show that u lies in the normalizer of Dy in Qs. To this aim, it is enough to verify
that both wS,SJu* and u*S,Sju are still in D for every multi-index 7. We only deal with the first term,
for the second is handled in the very same fashion. Now

us,S7u” = ( i Sa U3, )55 i Sa, U955,

i=1 j=1

N
=) Sa,U"(85,5,8:85,) U 5z

ij=1

Now there is no lack of generality if we further assume that the length of v is greater of max{|«;|, |8;| : i =
1,2,..., N}. In this case, the only way for a term of the form S5, 5+555p; not to be zerois i = j. In particular,
in the above sum only one term survives, which means wS,Sju* = Sa, Uk SZ;i7 545758, U~ P S;H €
Dy. O

It is worth stressing that the powers of U occurring in the sums above can be chosen arbitrarily.

Remark 4.2. All powers of U can be recovered as particular instances of the above unitaries. More precisely,
they correspond to the case N = 1.

The unitaries yielded by the above proposition clearly form a group W that contains the Thompson
group So = V. It is worthwhile to observe that a natural class of irreducible unitary representations of W
can be obtained by restricting irreducible representations of Qs to it. cf. [19]. Among these, permutative
irreducible representations of Qs represent quite an interesting class of examples inasmuch as they have
been thoroughly classified in [3]. For the sake of completeness, a diagrammatic description of W will be
outlined in the next section.

There follows a series of technical results necessary to reach the main theorem of this section.

Lemma 4.3. Given a multi-index 8 € W, let Ag C Z be the set {k € Z : e, = Pgey}. For any finite set of
distinct monomials of the form So,U'S} € B(la(Z)), with i = 1,2,...,1, there exists at least an m € Ag
such that {Sa,U'S}em 11 =1,2,...,1} is an orthonormal system.
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Proof. Given any i € {1,2,...,1}, let f; : Ag — Z be the function such that SaiUiS;;ek = ey, (k) for every
k € Ag. Each of this function is of the form f;(k) = a;k + b;, k € Ag, where a;,b; are suitable integers.
Because the monomials SaiUiSZf, are distinct, the functions f; are all distinct as well, which means the
equation f;(k) = f;(k), k € Ag, can only have at most one solution for any pair (7,j) with ¢ # j. Let

Ci,j C Z be the set defined as {k € Ag : fi(k) = f;j(k)} The set C = U;»;C; ; is finite and its cardinality is

clearly not greater than w In particular, its complement D in Ag is not empty (actually it is infinite). The

conclusion now follows by noting that D is nothing but the set {k € Ag: f1(k) # fa(k) # ... # fi(k)}. O

By a permutative unitary we mean any unitary operator acting on ¢2(Z) permuting the elements of the
canonical basis.

Proposition 4.4. Let V' be a permutative unitary in Qo and let 0 < e <1 and v1,7v2,...,vynv € C. If

N
IV = (11 Saa UM S5 + o+ 1S UM S5+ S 7180, UFS5) | < 2
i=l+1

and Pg L Pg, for every i = 1+ 1,...,N, then there exists an iy € {1,2,...,1} such that |1 — ~;,|> +
Zi€{1,2,...,l}\{io} [il* < €.

Proof. Pick a ko in D C Ag where {So,U* Sher, : I =1,2,...,1} is an orthonormal system.

N
[Ver, — (7150, UleE + ...+ %Sa, Uk’SE + Z %SaiUkiSEi)eko 1> =
i=1+1

IVer, — ('ylSa1 UleE + ...+ 7Sq, U’“’S’E)ekoﬂ2 < &?

Since € < 1, the inequality is satisfied only if there exists (a unique) ig € {1,2,...,l} such that
Say Ukio Skek, = Vey,. But then

Lomol 4 Y P = Ve, — (0 US S5+ o 0Sa, U™ S5)er, |2 < ¢
i€{1)27"')l}\{i0}

as maintained. O

Corollary 4.5. With the same hypotheses as above, if 0 < & < % then the equalily Sa,, Ukio Sier = Ve holds
for every k € Ag apart from a finite set.

Proof. Under the condition on ¢ the equality is clearly satisfied for every k € D, which by definition is
the set {k € Ag : S, Uk S;ek # ... # Sy U’”Sgek}, whose complement in Ag was shown to be finite in
the proof of Lemma 4.3. Indeed, suppose that Sai0 Ukio S;eko = Ve, and SOHIU’“I'I S;ekl = Vey, for some
i # i1 and ko # k1. This would imply that |1 — ;.| < 1, |1 — v, | < 1, || < 1/2, |7, | < 1/2 which are
clearly incompatible. 0O

We are now in a position to prove a result that gives a simple description of all permutative unitaries of
£5(Z) which are also elements of Q.

Theorem 4.6. A permutative unitary V. € B(l2(Z)) belongs to Qs if and only if it is of the form
Yier SaiUkiSEi, where F is a finite set over which the triples (o, Bi, ki) € Wa x Wa X Z run, with
ZieF SaiSZi = ZieF SﬁzSEL =1
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Proof. Clearly, we only need to worry about the “only if” part. Let V be a permutative unitary in Qs
and let ¥ be the bijection of Z implementing V, i.e. Ver = eg), ¥ € Z. By definition, V' is a norm
limit of a sequence {T;, : n € N} of operators of the form T,, = . 5 1 er, ’yiSaiUfSEi, where ~;
are all scalar coefficients, and F,, C Wy x Wy X Z is a finite set. To begin with, we observe that the
inequalities ) ;cp Sa,; S5, > 1 and Y ;cp Sp, S5 > 1 hold eventually as T), is eventually an invertible
operator. The case in which ), F, 98595, = 1, for some n, is immediately dealt with, for V' is simply given
by > i F, SaiUk’?SZ;i. Indeed, in this case for every k there exists a unique ig = ip(k) such that SZ;iD en
is different from zero. This means only one term survives in the sum ), F, Yida, U i Sj,ex, namely that
corresponding to i = ig(k). So for the inequality |lew k) — > icr. ¥i S, Uk Si ekl < e to hold for any k is
necessary that Saio(k) U’l‘)(k)(kS’gio(k))*e;€ = ey for every k € Z as long as ¢ is chosen strictly less than

1. Therefore, for every k € Z we have Vey, = eyu) = > S, Uk Sg,ex. The conclusion is now got to,

i€F,
as the equality ), S, S5, = 1 is automatically satisfied tianks to Proposition 4.1. In order to deal with
the case in which the sum ), F, 9855, 1s greater than 1, it is convenient to assume that for any given
n the lengths of the multi-indices 3; are all the same as ¢ runs over F,,, say |3;| = k for every i (k will of
course depend on n). Fix an n such that T}, is invertible and [T}, — V|| < i. Let us simply denote T}, by
T =3 cr7iSa,U" Sj,, with [B;| = k for every i € F, to ease the notation. Now if >, . Sp, 55, is greater
than 1, then the ranges of the projections P, = Sg, S}, overlap. But because the length of all monomials
Sp, is the same, the ranges of Pg, and Pg, may overlap only if 3; = 3;. If, for any fixed 3 € WE = {1,2}%,
we define Fjg = {i : §; = 8} C I, then T may be more suitably rewritten as 7' = 35 s ZFB SaiUkiS;
(it is understood that if Fj is empty the corresponding term is zero). Corollary 4.5 now says that for
every [ there exists a unique ig = io(3) € Fj such that Se, Ukio Sier, = Vey for every k € Ag apart
from a finite set of Czg C Ag. Let us now set Tg = Sq, , Ukio(f”SE and let R be the finite-rank operator
given by Rger, = Ver — Igey if K € Cg and Rep, = 0 otherwise. Then we have proved the equality
V=% gews(Ts + Rg) = R+ > 5cp T, where R is the sum of all Tp’s. Since both V' and 35y are
in Qs, the operator R is in Qy as well. But because Qs is simple, the intersection Qo N K(H) is trivial.
Therefore, T must be zero, that is V =>" Bews Ts, which ends our proof. O

Before stating our main result, we still need to prove a preliminary result which has an interest in its
own although it should be a well-known fact. To the best of our knowledge, however, it is nowhere remarked
explicitly, which is why we include a proof.

Proposition 4.7. If V' is a unitary on l3(Z) such that Ad(V)({eo(Z)) = £ (Z), then V uniquely decomposes
as V = dP, where d is a diagonal unitary, i.e. d € {o(Z), and P is a permutative unitary, i.e. Pey = ey k),
for every k € Z, for a suitable bijection ¥ of Z.

Proof. We denote by d € ¢°°(Z) the orthogonal projection onto Cey. Since Ad(V') restricts to an auto-
morphism of the von Neumann algebra ¢, (Z), VV* must be a minimal projection of ¢, (Z). This means
that Vo, V™ = dy 1), for a suitable bijection ¥ of Z into itself, that is Vx = dyr)V. If we now evaluate
the last equality on the vector ey, we find Vey = dy(x)Vey. In other words, Ve, must be an eigenvector of
dw(k), and so Vey = prew(x), where each iy, is a complex number whose absolute value is one. If we define
dy = pty-1(k), then V' can be rewritten as the product dP, where d € £,,(Z) is the diagonal operator whose
action on the basis vectors is given by dep = dper and P the permutative associated with W. Finally, the
uniqueness of this decomposition is entirely obvious. O

Theorem 4.8. Any unitary v € Qg that normalizes the diagonal Dy can be uniquely written as v = dP, where

d is a unitary belonging to Dy and P € Qs a unitary of the form Zil SaiUkiSEi, with Zf\il Sa; S8, =
N

Zi:l SﬁiSEi =1.
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Proof. From now till the end of the proof we will be working in the canonical representation of Qs C
B(¢2(Z)). The uniqueness of the decomposition is pretty obvious as the sole operator which is simultaneously
diagonal and permutative (with respect to the canonical basis of ¢5(Z)) is the identity 1. Let us now go to
the existence of such a decomposition. We first note that if a unitary V' € B(¢2(Z)) normalizes D, then it
also normalizes the von Neumann algebra generated by it, namely £ (Z). In light of Proposition 4.7, our
unitary V factors as a product dP, where d is a diagonal unitary, that is d € £, (Z) and P is a permutative
unitary, that is there exists a bijection W of Z such that Pey = ey ), for every k € Z. Now the proof boils
down to showing that d and P actually sit in Qs as a consequence of V being a unitary of Qs.

Because dP lies in Qa, for any € > 0 there exists an algebraic element T of the form Zivjl ¥i S, Uk S5,
where the ~;’s are all complex coefficients, such that |[[dP — T.|| < €. As soon as ¢ is small enough, the
operator T; is invertible itself, which means the sums }_ S, 55, and ) S, 53, are both greater than 1.
We now want to rid ourselves of possible overlappings in much the same way as we did in the proof of
Theorem 4.6. So suppose there is an [-tuple of overlapping terms. We do not harm the generality if we
further suppose these are just the first [ terms. In other terms, our 7} is of the form

l N.

ki Qx* ki Qx*
DS US54 3 7iSa UM,
i=1 i=l+1

with Pg 1L Pg, for every i = [ 4+ 1,...,N.. A very minor variation of the proof of Corollary 4.5 tells
us that there exists a subset Ig C Ag = {k € Z : e;, = Pger} whose complement in Ag is finite and
for a unique ig € {1,2,...,l} one has Se, U’%S;ek = ey for every k € Ig. Let us now define the
finite-rank operator Rg as Rgey = dPey if k € Ag \ Ig and Rger, = 0 otherwise. The new operator
T! = Yig Sy, UM S5 + ZﬁV;lH %S, UM S + Ry still satisfies the inequality [|[dP — T/|| < e. Furthermore,
we also have the inequality |vi, —dy )| < € per every k € Ig. It is now clear that if we repeat this procedure
as many times as needed we can get rid of all overlappings. By doing so we end up with a new algebraic
approximant, which with a very slight abuse of notation we continue to denote by 7., given by a sum of
the type SN, YiSe, UM S5 with 37, 83,55 = 3, 84,54, = 1 and [|[dP — (T. + R.)|| < &, where R. is a
finite-rank operator. Furthermore, for every i = 1,2, ..., N, there exists a set Ig, C Ag, such that Ag, \ I,
is finite and

|vi — dy@y| < e for every k € Ip,. (4.1)

Choosing € = % we get a sequence {T),+ Ry, : n € N}, where T}, is an operator of the form }_, Yi S, UF S5,
with all the properties pointed out above and R, is a finite-rank operator, such that ||v — (T}, + R, )|| goes to
zero. Note that each T;, factors as a product of the form (Zﬁzl 'yiS’aiS;i)(Zzzl So, Uk S5%,)- In other terms,
each T, can be seen as the product d,P,, where d,, is a diagonal operator in Dy and P, a permutative
operator in Qy. Now thanks to inequality (4.1), the sequence {d,,} is immediately seen to be a Cauchy
sequence with respect to the uniform norm in B(¢2(Z)). Therefore, it converges to a certain d’, which is a
diagonal operator in Dy. We then show that the sequence {P, : n € N} must stabilize to a certain P’. We
will argue by contradiction. Indeed, let T,, and T,,, be such that two corresponding permutative factors P,
and P, differ. There is no loss of generality if we further assume that the 3’s appearing both in P, and
in P, are all of the same length, say k. Because P, and P,, are different, there must exist at least one
B € Wk such that the two corresponding monomials do not coincide, i.e. S, U*: S5 # S U K S5, hence the
set I ={k € Z : P,ey, # Pney} is infinite.

The inequality ||v — (T, + R,)|| < % applied to T}, and T, leads to

11
ldnPr — dp P + S| < = 4+ —
n m
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where S is a finite-rank operator as well since it is the difference R,, — R,,. In particular, we find that
the inequality ||dy,Pnex — dmPmer + Sex|| < % + % holds for every k& € I. But, as we next show, this is
absurd as soon as % + % < 1. Indeed, in order for the inequalities to hold true, it is necessary that neither
(Sex, ew,, (k) nor (Sex, ey, (x)) vanishes. More precisely, their absolute values must be close to 1. But then
|ISek] is greater than 1 for every k € I. But this is absurd, as the sequence {Sey : k € I'} should in fact
converge to zero, since it is the image through a compact operator of a sequence that weakly converges to
zero. Since the sequence {T,} converges in norm as the product of two converging sequences, the sequence
{R,} must also converge. Let R be its limit. Since R clearly lies in the intersection Qs NK(¢5(Z)), by virtue
of the simplicity of Qs the operator R is zero. In other words, we have proved that V = dP is nothing but

d' P, whence d=d € Dyand P=P' € Q,. O

Remark 4.9. It is worth stressing that the result obtained above is a genuine generalization of the known
result on Np, (Oz), cf. [25, Lemma 5.4]. In order to see this, it is enough to show that a unitary of the form
u = sz\il Sy, Uk Sg, will lie in the Cuntz algebra Oy if and only if k; = 0 for every ¢ = 1,2,..., N. To this
aim, it is convenient to work in the canonical representation. If there exists ig € {1,2,..., N} such that k;,
is not zero, then we may safely suppose k;, > 1. Now pick the only k& € Z such that ng ex =e_1. Now k
is a negative integer such that uer = Sa, e, —1 = €,y With n(k) > 0. Therefore, our unitary u cannot be
in Oy, for Hy C ¢2(Z) are invariant subspaces under the action of the Cuntz algebra.

Remark 4.10. Not only does our result cover the normalizer of Dy in the Cuntz algebra O, but it also allows
us to recover Putnam’s result on the normalizer of the former algebra in the Bunce-Deddens algebra Qg
[26, Lemma 5.1]. Indeed, for a unitary of the form Zivzl Sy, Uk S%, to lie in the gauge-invariant subalgebra
OT it is necessary to have |o;| = |Bi], for every i = 1,2,..., N, which means for every i there exists an
integer l; € Z, which will depend on «; and 3;, such that Sg, = UlS,,. But then our unitary takes the
form Zfil S0, S5, U2’k = 21]\;1 SaiS;iU_“UQ‘ﬁ”ki which coincides with the formula given in [26] as

N N N
N e SR LR SN

=1 =1 =1

Remark 4.11. Since any unitary of the form Zfil Sy, Uk Sj, can obviously be rewritten as the product
(Zfil Sg, Uk S;i> (Z;\f: 15a; ng)7 the foregoing result can also be stated in a slightly more intriguing way
saying that any unitary in the normalizer Np,(Qs) decomposes into the product of a unitary in Np,(Q3 )

and a unitary in Np,(O2). However, such a decomposition will fail to be unique, and one reason is for
example that any diagonal elements d € Dy sits in both Np,(Q3 ) and Np,(Os).

5. A diagrammatic description of the extended Thompson group W

The group made up of the unitaries in Qo of the form . . SaiU’f'iSEi, where F' is a finite set over
which the triples (a, 8, ki) € Wa x Wa x Z run, will be referred to as the extended Thompson group W.
This section provides a graphical description of its elements, which is similar to that for the elements of the
genuine Thompson groups F, T, and V.

An element will be described by a 4-tuple (T, T_,7,v), where Ty are trees with the same number of
leaves, say n, T is a permutation of the set {1,...,n}, and v is a vector in Z™. Let © = ZieF S’aiUk'ngi be
an element of W. The collection of the indices a; determines a finite subtree of the infinite binary tree of
standard dyadic intervals [6]. Indeed, each a; represents a path in the infinite binary tree of the standard
dyadic intervals, from the root to a leaf. If a;(k) = 1 then the k-th edge of the path is a left edge, whereas
a; (k) = 2 means that we are taking the right edge. This yields the first tree T'y. In the same way we may get
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another tree T_ from the indices f3;. As for the permutation, the leaves of T and 7_ can be indexed from
1 to n starting from the left. If «; is the p-th leaf of T, and f§; is the g-th leaf of T, then the permutation
is defined by 7(p) := ¢q. The vector v is given by (k1, ..., kp).

We now describe how to represent such an element graphically. We draw 7'y in the upper-half plane and
T_ upside-down in the lower-half plane. We then join the i-th leaf of T’ to the 7(7)-th leaf of T_. Each leaf of
the top tree has a charge given by v(¢). To take an example, below we represent the graphical description of
the unitary SZUF1(S297)* +S15,U%2 S5 4 SoU*3(S2)*. In this case, the vector v is (ki, k2, k3) and 7 = (12).

In this pictorial description, there are actually two reduction moves which may be performed and depend

/K %k+1=k k+1

k

:

As shown by the following computations, these reductions correspond to the insertion of the Cuntz relation
SQS; + Slsf =1

on the charge of the leaf.

2k

N

SaU Sh = 85aS1S7USh + 5a52535U% S5 = 5,51U% 8785 + 805U S355
= Sa1U"S% + 5a2U" S5,
= S U 815755 + SaU? 825555
SaUM 1S5 = SoS1STUM LSS + S0 S2S5UM 1 Sh = S0 S1USTUSE + SaS2UrS5U S
= Sa1U*Sjy + SaaU* 1Sk
= SeUM 18181 S) + S U H15,555
Given two elements (T, T, 7,v) and (T,T_,7’,v"), their product as elements of Qs is given by (T, T, 7,v) -

(T,7_,7',v') = (T, T_,To7r’,v+v"). Thanks to the reduction moves, this actually describes the multipli-
cation on the whole W. Clearly, the inverse of an element is given by (T, T_,7,v)" ! = (T_, Ty, 771, —v).

Remark 5.1. We should also mention that the group W has appeared before in the literature, albeit in
different contexts. For instance, in [24] it is shown how to associate a group V4(G) to any given a self-similar
action of a group G over an alphabet X of finite cardinality d. The groups obtained in this fashion are actually
a generalization of the Higman-Thompson group, and our group W corresponds to the case X = {1,2} and
G = Z thought of as the powers of the so-called odometer. Unlike V, the group W is not simple as its
abelianization is Z [24, Example 9.16].
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6. Other normalizers

A number of results about Autp,(Qz) are contained in [2]. At present the structure of the group
Aut(Qs2, D9) is for the most part unknown, although we do know some remarkable examples, namely the
extended flip-flop automorphism and the gauge automorphisms. A related question is whether there exist
automorphisms of Q5 that restrict to proper endomorphisms of Os. At any rate, most of the subsequent
discussion is concerned only with inner automorphisms of Qs.

6.1. Unitaries in the Bunce-Deddens algebra normalizing Os

If « is an automorphism of Qs that leaves Oy globally invariant, the natural question immediately arises
whether the restriction a [p, is an automorphism of the Cuntz algebra as well. Apart from the trivial
situation where our automorphism is of finite order, in which case its restriction is immediately seen to be
an automorphism of Oy, a complete answer has not been given, not even in the simpler yet interesting case
where « is an inner automorphism of Q5. Now the question is recast by asking whether wOsw* C O,, for
a given unitary w in Qs, can only hold true if w lies in Oy. In its full generality the latter question is still
unexpectedly hard to answer. Therefore, we ought to start with w of a particular form instead. Assuming
w € QF seems to be a good work hypothesis to begin our discussion with.

Given any infinite multi-index o € {1,2}N, we denote by a(k) the multi-index of length & that is obtained
out of a by taking its first k entries, i.e. a(k) = (aq, ag,..., ).

We recall from [2, Section 7] the following identity

S;dS;(z) = d(ix), deDq, zc K={1,2}".

Lemma 6.1. If w = >, p d;U?, where F C 7 is a finite subset, is different from zero, then there exist
a € {1,2}N and h € F such that

lim Sy WU " Say = dn(a)1
with dp () different from zero as well.

Proof. By definition if w is different from zero, there must exist an h € F' such that dj € D5 is not zero, that
is dj, () # 0 for some o € K = {1,2}N. We now prove that the limit holds with a and h chosen as above.
To this aim, it is enough to show limy Sg(k)tha(k) = dp(a)l and limyg S;(k)diUi’hSa(k) = 0, for every
i # h. The first is easily proved as the equality Sz(k)tha(k)(a:) = dp(a(k)x) shows that S;(k)tha(k)(x)
converges to dj(a)1 pointwise. But on the other hand, by a straightforward adaptation of a result in [1] we
also know that the sequence actually converges in norm. The second limit is in fact a consequence of a more
general fact, namely that for any d € Dy and [ # 0 we have limy, S;(k)dUlSa(k) = 0. This is in turn proved

as follows. Pick a sequence {z; : j € N} such that z; € D} and ||z; — d|| — 0, then
||SZ(k)dUlSOL(k)” < HS;(k) (d— ij)UlSa(k)H + HSZ(k)ijlSa(k)H < |ld — =]l
as soon as k > j + 1 and 2* > ||, because the second term vanishes if 28 > |I|. O

Our next goal is to extend the reach of the foregoing lemma to cover the whole QF . With this in mind,
we recall that this algebra can be more conveniently thought of as a crossed product given by the action
of Z on the diagonal Dy through the odometer map, cf. [2]. In other terms, the map ¥ : Dy x Z — QF
given by ¥(V) = U ¥(d) = d for all d € Dy, extends to an isomorphism, where Dy x Z is understood as
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C*(Do, V), with V being a unitary whose adjoint action coincides with the odometer, and Q3 is understood
as C* (D4, U). This makes it plain that 5,(U) := zU and ,(d) :=d, z € T, define a group of automorphism
of QF . These enable us to define the maps ®; : QF — Dy by setting ®;(z) := [ B.(aU ")dz, cf. [18, p.
223], which can be regarded as generalized Fourier coefficients. Indeed, it is no coincidence that a version
of Fejér’s theorem holds for QF as well.! More precisely, if we define ¥, (z) = Z?:_n ( - n‘%_ll) P, (z)UY,
then 3, (x) can be shown to converge to x in norm for every = € Q%r, see e.g. [18, Theorem VIIL.2.2, p. 223].

Remark 6.2. For any unitary d € Do, one can define the automorphism of the Bunce-Deddens 34 given by
Ba(U) :=dU, B4(d) :=d for all d € Ds.

Lemma 6.3. For any non-zero w € QY there exist h € Z and a € {1,2}N such that
liin S;(k)wU_hSa(k) = Pp(w)(a)l
and ®p(w)(«) is different from zero as well.

Proof. Since w is different from zero, there exists an h € Z such that ®,(w) is not zero, which means
there is a € {1, 2} such that @5, (w)(a) # 0. Now S;(k)wU’hSa(k) tends to @ (w)(w) as a straightforward
application of the aforementioned Fejér theorem. Indeed, we have

155 ey wU ™" Sy = @n(w)(@)1| < 1157 oy (w = S (w))U ™" Sy |
+ 119509 Zn (W)U ™" Saiy = Pa(En(w)(@)1]
+ 124 (X0 (w)) (@)1 = Pp(w)(a)1]]
< 2 S (w) = wll + 11851 Zn (W)U ™" Sy = @i (S (w)) ()1

Given € > 0 there is N. € N such that ||X,(w) —w| < § for n > N.. Now apply Lemma 6.1 to
Yo (w), where n is any fixed integer greater than N. and |h|, to get a K. € N such that & > K. im-
plies ||S:;(k)2n(w)U’hSa(k) — &p(Bp(w)) ()1 < 5. O

Theorem 6.4. If w is a unitary in Q;r such that wOsw* C Oy then w € Fy and the inclusion is actually a
set equality.

Proof. Thanks to Lemma 6.3 there exist h € Z and an infinite multi-index o € {1,2}N such that
S;(k)wU*hSa(k) converges to A1 with A # 0 when k goes to infinity.

Since Ad(w) [0,= Awp(w)+, the unitary we(w)* is an element of F5 and such is we*(w*), for every
k > 1. Now there exist | = l(h,«) € Z and an infinite multi-index 8 such that U~"S, ) = Sgu)U~", ie.

UhSﬁ(k) = Sa(k)Ul, for k sufficiently large. Since we have

F2 3 SZ(k)wSOk(w*)SB(k) = SZ(k)UJUthh@k(W*)Sﬂ(k) = SZ(k)WUthhSB(k)w*
= ;(k)wU*hSa(k)Ulw* k*) N w*
—00
we see that Ulw* = wgy € Fo. In other terms, w = woU'. The proof will be completed as soon as we show

that [ must be zero. But from the inclusion 'LUOUZOQU_lIUS C Oy we get U'O,U C wiO2wy = Oz, which
is possible only if [ = 0, for U'S;U " is never in Oy unless [ = 0. 0O

1 Recently, a Fejér-type theorem has also been proved [4] for quite an ample class of C*-algebras, which includes the 2-adic ring
C*-algebra.
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In particular, with u = wp(w)*, one has A, (F2) = Fo and limy, ¢* (w)w*o(w)e* (w*) = w*p(w) € Fy in
norm, also cf. Theorem 6.15.

6.2. Some consequences

We can also derive the following results.
Corollary 6.5. The intersection Np,(Q2) N Neo,(Qs2) reduces to Np,(O2)(=U(Ds) - Sa).

Proof. As the inclusion Np,(O2) C Np,(Q2) N No,(Qs2) is trivial, we only need to prove that any unitary
u in the intersection Np,(Qz) N No,(Q2) actually lies in the Cuntz algebra Os. Since our unitary w sits
in particular in Np,(Qz), it decomposes as u = ujug with u; € Np,(QF) and uy € Np,(O2) by virtue of
Remark 4.11. But because u also normalizes Oq, we find that u; (ugzul)ui continues to be in Oy if z is in
Os. In other terms, u; is an element of the Bunce-Deddens algebra such that uiOyu] C Os. This being the
case, Theorem 6.4 applies showing that u; lies in fact in F>. But then u must be in Oy too as the product
of two unitaries both lying in O,. O

Corollary 6.6. We have

Np,(Q3 ) N No,(Q2) = Np,(F2)(=U(Ds) - Pa) .

Remark 6.7. Among other things, the former results provide more information about Np,(Q2). Notably, it
seems to vaguely support our guess that the normalizer Np,(Q2) may be exhausted by U(O5). At the very
least, it certainly settles those unitaries in Np,(Qs2) that also leave Dy globally invariant.

The next result gives us an explicit description of the normalizer Ngr (Q2), which by definition is the set
of those unitaries w € Qy such that wQ3 w* = QF .

Proposition 6.8. The normalizer Ngy (Q2) coincides with uen.

Proof. As the inclusion 4(QY) C N, or (Q2) is obvious, we only need to prove the reverse inclusion. If w € Q>
is in Ngr (Q2), then waw* € QT for every x € QF , which means &;(wzw*) = wrw* for every t € R, where
@ is the gauge automorphism of Qs corresponding to 2. In particular, we find that w*é&;(w)r = rw*dy (w)
for every x € QF , whence w*@;(w) = x(t)1 as the relative commutant (QF )’ N Q, is trivial, see [1, Corollary
3.13]. In other terms, we get that the equality oy (w) = x(¢)w holds for every t € R, where x is immediately
seen to be a character of R, i.e. x(t) = e** for some k € Z. The proof will then be completed once k
is shown to be zero. This goal can in turn be accomplished by using the 5-KMS state w associated with
{a; : t € R}, where 3 is actually 1, see [16, Prop. 4.2]. Indeed, on the one hand we have w(wd;(w*)) = e,
but on the other hand w(wd;(w*)) = w(dtis(w*)w) = e*Pe=*t which forces e to equal 1, i.e. k = 0 as

B=1#0. O
At this point Theorem 6.4 can be reformulated in a slightly more intrinsic way.

Corollary 6.9. Let o be an inner automorphism of Qs such that a(QY) = QF and a(Os) C Os, then a is
the canonical extension of an inner automorphism of Fs.

Proof. A straightforward application of Proposition 6.8. O

It seems of interest also to determine whether the only unitaries in Q3 normalizing F, (or even mapping
Fo into F3) are those in Fs. Unfortunately, we do not have an answer yet. At any rate, we do have the
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following result, whose proof is omitted as it can be done in exactly the same way as in Proposition 6.8 by
taking account of the equality F4 N Qs = C1, see [1, Theorem 3.11].

Proposition 6.10. The normalizer Nx,(Qz) is equal to Nx,(QF).

We now state a result that describes the intersection Np,(Q2) N N£,(Q2) N Np,(Q2), for which we need
not know what the three normalizers separately are.

Corollary 6.11. One has

ND2(Q2) ON-F2(Q2) m‘]\/'(92(92) = NDz(fQ) - ND2(02) n N]:2(02)

Proof. We only prove the first equality, as the second is basically known and is easy to check. The inclusion
Np,(F2) C Np,(Q2)NNx,(Q2) N Np, (Q2) is obvious. For the other inclusion, note that any = € Np,(Q2)N
Nr,(Q2)N No,(Qs2) lies in QF by Proposition 6.10. The conclusion is then reached straightforwardly by an
application of Corollary 6.6. O

Proposition 6.12. The intersection Nz,(Qa) N No,(Q2) reduces to U(Fz).

Proof. By Proposition 6.10 the normalizer of 7, in Qy coincides with Nz, (QF ). Therefore, the intersection
N7z, (Q2) N No,(Qz) is actually given by Nz, (QF) N No,(Qz). All unitaries in the UHF algebra F, are
obviously contained in the above inclusion. On the other hand, Theorem 6.4 says the intersection must be
contained in U(F3) as well, which ends the proof. O

Theorem 6.4 and Corollary 6.9 could be improved in some respects. For instance, one may also want
to consider more general (possibly outer) automorphisms of Qs leaving Oy globally invariant. This may in
fact come in useful to deal with permutative endomorphisms. Furthermore, one may even ask whether the
normalizer of Oy in Qs is U(Os).

Remark 6.13. The inclusion Oy C O3 X, Za = O3, where )y is the flip-flop automorphism that switches
the two generating isometries, provides an example where the normalizer of the Cuntz algebra, thought of
as a subalgebra of a bigger algebra, which in this case is again the Cuntz algebra up to an isomorphism, is
not exhausted by the unitaries of O. Indeed, the unitary w € Oz x5, Z2 that implements the action of the
flip-flop on O is certainly not contained in the Cuntz algebra since Ay is outer. It is also worth noting that
the relative commutant 05 N (O x5, Z2) is trivial, cf. [8, Remark 5.9].

6.3. A class of automorphisms of Og

In passing, we would like to take this opportunity to point out a result that yields a complete descrip-
tion of those unitaries in u in the UHF algebra F5> whose corresponding endomorphism )\, is actually an
automorphism, which is much in the spirit of [10, Theorem 3.2]. Its main interest has admittedly little to
do with the scope of the present paper. Nevertheless, we feel it deserves to be included all the same because
it might be further developed in future work as well as framing Theorem 6.4 in a more general picture. To
this end, the following straightforward remark, which is general in character, is vital.

Remark 6.14. If )\, is an automorphism and A\;! = \,, then \,(v) = u* and \,(u) = v*. Indeed, by
definition we have A, o Ay, = A\, 0 A\, = idp, = A1. Now A, 0\, = M (@yu ad Ay 0 Ay = Ay (4)v, hence
Au()u =1 and A\, (u)v = 1, i.e. Ay (v) = v* and A, (u) = v*, as maintained. In particular, it follows that if
Ay € Aut(O2) then limy Ad(ug)(v) = Ay (v) = u*.
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Theorem 6.15. Given a unitary u in Fa, set u, = up(u)p(u?)...o* 1(u), for any k € N\ {0}. Then the
following are equivalent:

(1) The endomorphism A, is an automorphism of Os.
(2) There exists a unitary v € Fo such that limy Ad(ug)v = u*.
(3) The sequence {uju*uy : k € N} is norm convergent.

Moreover, as soon as any of the three conditions above is satisfied, the v in (2) is the limit of the sequence
in (3) and A\t = \,.

Proof. The implication (1) = (2) is nothing but the content of Remark 6.14. On the other hand, if there
exists a unitary v € F» such that limy Adug(v) = u*, then A, (v) = u*, hence A, is surjective. In other
terms, the implication (2) = (1) holds too. We now prove (1) = (3). If A, is an automorphism, then by
(2) there exists a unitary v € F5 such that ||upvuj — u*|| tends to zero. By the very definition of the UHF
subalgebra F, we can assume that v = limv; with v; € F} for every i € N. By continuity, we get the
equalities

Ay (v) = lim Ay, (v;) = lim w;v;u]
7 3
namely ||A,(v) — u;v;uf|| goes to zero. But then
[Juiuu; —of| < flujutu; —vil| + [[vi = vf| =0
For (3) = (1), let us define v = limy ujuuy € U(O2). We then want to show that \,(v) = u*, whence A, is
surjective. Now A, (v) = lim; ujvu} = lim; u; (lim; ujuu;)u}. In other terms, [[uf Ay (v)u; — lim; wjuwl| — 0,
that is for any given ¢ > 0 there exists n. € N such that j > n. implies [[u} Ay (v)u; — lim; ufuu;|| < 5.
||u;)\u(v)uj — ufuu;]| < Hu;)\u(v)uj — lim wf || 4 || Um v vw; — ufuw|| < e
K3 K2

for every 4,5 > N. = max{n.,m.}, where m. is any integer such that i > m, implies | lim; ufuu; —
ujuug| < 5. In particular, if we choose i = j > N¢, we find || A, (v) — u*|| = [Juj (Au(v) — v*)u]| < €, hence

A(v)=w*. O

Remark 6.16. Let u be a unitary in F» such that A, is an automorphism. Since A\;! = \,, with v that is
still in Fa, we see that A, is actually an element of Aut(Oz, F2) = {a € Aut(O2) : a(F2) = Fa}.

7. The inclusion of O, C Q5 is not regular

The present section collects some results on the unitary normalizer of Oy in Qs, namely the group
Np,(Q2) = {v € U(Q2) | vOzv* = Oz} C U(Qz2). Needless to say, this normalizer is Autp, (Qs)-invariant,
in particular invariant under the action of the extended gauge and flip-flop automorphisms.

We start our discussion with a technical lemma, which roughly says that no unitary operator of Qy C
B(¢2(Z)) can map H to H_ and H_ to Hy, where Hy and H_ are the closed subspaces of ¢2(Z) given
by span{e : k> 0} and span{ey : k < 0} respectively.

Lemma 7.1. There is no unitary u in Qo such that uHi = H+.

Proof. We shall argue by contradiction. Let u be a unitary in Qg such that uH = H_. Let € > 0 be any real
number strictly less than 1. Since v belongs to Qs then there exists an element of the form Zf\il i S, Sp, U,
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¢; € C and «y, B; € Wa, such that ||u — ZZ]\LI €iSa,;S5,U% || < e. Let now M be max{|k;| : i =1,2,...,N}.
Then |juey — vazl ¢iSa; Sp, Uk en|| = |Juenr — Zil €iSa; S, ek, +M| < €. Since uep lies in H_, it is
orthogonal to Zf;l ¢iSa; 98, €k;+M € Hy, but then |Juey|| < e < 1, which is clearly absurd. O

Remark 7.2. As a consequence, the only operator in Q that sends H+ to H+ is the null operator.

The above lemma is instrumental in proving the next result. Although not still the complete characteri-
zation of Np,(Q2), it does have the merit of limiting the sought normalizer. More precisely, the result says
that Np,(Q2) cannot be larger than U(Qs N OY).

Proposition 7.3. The normalizer No,(Q2) is contained in Of N Q.

Proof. Let u € Q3 C B(¢2(Z)) be a unitary that leaves Oy globally invariant, that is uOsu* = Og. Then
it also leaves O} invariant. But 04 = CEL @ CE_, where Ey is the orthogonal projection onto Hy, see
[1, Section 2]. Accordingly, there are only two cases that can occur. Either uEiu* = E4 or uEiu* = E.
However, Lemma 7.1 says that the second situation will not occur. But then uF+ = Eiu, which means u
is in OF, as we wanted to prove. 0O

Notably, the result also enables us to see that the inclusion of Oy in Qs is not regular, to wit the
C*-algebra generated by its normalizer fails to be the whole Q.

Theorem 7.4. The C*-subalgebra generated by No,(Q2) is properly contained in Qs.

Proof. Suppose on the contrary this subalgebra does exhaust Qa. The intersection OF N Qs should then
coincide with Qs, because of the inclusion Np,(Qz2) C OF N Qs proved in Proposition 7.3. However, the
generator U does not sit in Of N Qs since it does not leave H_ invariant, cf. [1, Section 2]. O

The C*-algebra C*(Np,(Q2)), which is intermediate between Oy and Q,, is obviously invariant under
the extended gauge and flip-flop automorphisms. As a matter of fact, we would be inclined to believe that
the inclusion of O in Qs is singular, that is the normalizer No,(Q2) should reduce to U(O2). However, for
the time being all we can do is state a partial result that nonetheless seems to support our guess. What
we prove is the Cuntz algebra Os is never invariant under the action of a one-parameter group of unitaries
u; = e where a is a self-adjoint element of Qy, unless a is already contained in Os.

Proposition 7.5. If a = a* is a self-adjoint element in Qo such that e''*Oye~ %% = Oy for any t € R, then a
sits in the Cuntz algebra O,.

Proof. The condition that O, is invariant under the one-parameter group u; = e'*® generated by a says
that the commutator [z,a] is in O for any z € Os. In other terms Oy > z +— [z,a] € Oz is a bounded
derivation. Since Q5 is simple, the derivation must be inner by virtue of a classical result by Sakai [27]. In
other words, there exists b € Qs such that [z,a] = [z, ] for any x € O,. Therefore, the difference a — b lies
in the relative commutant 05 N Qs. Since the latter is trivial, see [1, Section 3.2], we find a = b+ A1, for
some A € C. In particular, a is an element in O,. O

Before leaving the section, some comments intended as an outlook for the foreseeable future are in order.
One way to prove that Np,(Qs2) does in fact coincide with ¢ (Qs2) could be to show that the intersection
04 N Qy is just 0. More concretely, this amounts to asking if any operator in Qo C B(¢2(Z)) that also
leaves both H; and H_ invariant must lie in Oy. This property might be in turn a consequence of an
even stronger property which would be worthy of further investigation, namely whether any intermediate
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subalgebra Oy C A C Qs (possibly with some additional properties, e.g. requiring it is gauge-invariant) is
trivial, that is A is either Oy or Q5. We plan to go back to this problem elsewhere, not least because we
would like to keep the present work at a reasonable length.

8. Permutative endomorphisms of Q- at an arbitrary level

This section aims to present a method by means of which explicit examples can be exhibited of per-
mutative endomorphisms of the Cuntz algebra O, associated with unitaries in P5¥ = {u € U(Oy) | u =
> Se;i S5, ;| = |Bi] = kfor 1 < i < n,n € N} that extend to Qy for any k € N. In addition, the
technique employed also provides a lower bound for the number of such unitaries, which shows it must grow
at least as fast as (2F1)2.

8.1. Case P32

Let u € P37 C F3 be a permutation matrix, and let A, be the associated permutative endomorphism of
Os. Recall that, in general, A\, € End(O3) extends to Qs if and only if, setting S; = wS; and Sy = uSs,
there exists U € Qs such that

US, =5

US; = SoU

—_
o ‘o
N
D=

In [3] it was found that there are exactly ten extendible permutative endomorphisms rising from unitaries
in PZ. Among other things, their unique extensions all continue to commute with the (extended) gauge
automorphisms. In this list there also appeared four automorphisms, namely Id, A¢, Ad f, Ad f o Ay. Their
extensions send U to U, U*, fUf, and fU*f respectively. In fact, the images of U through the remaining
six proper endomorphisms are less easily guessed. We now tune up a method for recovering those six
endomorphisms from a somewhat different perspective, thus paving the way to a general analysis that will
be carried out later on.

We start with case U = U2. Since we have

U?81S1 = 818U, U?S18y = 5151, U?S58) = S2S,U, U?S385 = S5 ,

the multiplication by U? yields a monomial in O, only on the above elements of the form S;S;, i = 1,2. We
say that the monomials S;Sy are well-suited (for U?). Because uS; is a linear combination of S;SpS; and
U2S, = S,U we easily see that if Equation (8.1) is satisfied then, Equation (8.2) is automatically satisfied
as well. Accordingly, all we have to bother with is Equation (8.1). The u’s below fulfil all requirements:

Uz 1= 5152(5251)% + S151(S151)* + S252(5252)* + S251(5152)* = F
U1342 := 5152(5252)" + 5151(5152)* + 5252(5251)" + S251(51.51)*

These u’s are obtained by means of the following scheme. We start by taking the first well-suited monomial

according to the lexicographic order. We then match it with a monomial of the form 555;. This can be done

in two different ways, which explains why we end up with two different unitaries. The next summand is

the image of the chosen well-suited monomial under multiplication by U?2, followed by the same matching

monomial as in the first summand, but with the first index changed to 1. We finally apply the procedure

to the remaining well-suited monomial, but using matching monomials different from those already used.
The same method continues to work for U = U~2. Now we have

U288 = 8182, U72518y = S151U ™, U 28958 =558y, U 2858, = S,8,U !
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which means the well-suited monomial for U2 are those of the form S;S;, which leads to

U1243 = 5151(5251)* + 5152(5151)* + 5251(5252)* + 5252(5152)*
U = 181 (S25)" + 151 (S185) + 251 (S21)* + S2.55(S1.51)*

All is left to do now is treat the case when either U = U2P, + U~ 2P, or U = U2P; + U~2P,, which can
be thought of as a mixed case, so to speak.

We start with U = U?P, + U~2P;. In order to satisfy equation (8.1), we follow a similar method by
merging the two cases above, namely we pick the only suited monomial for U? starting with So, that is
5585, thus determining the first two summands and then we pick the only well-suited monomial for U2
starting with Sp, that is S1.57, determining the remaining two summands. All in all, we obtain

Uiga = 5252(5251)" + 5251(51.51)" + S151(5252)™ + 51.52(S5152)*
uiog = 5252(5252)" + S5251(5152)" + S1.51(5251)* + S1.52(S5151) .

This time, though, it is no longer clear that Equation (8.2) is automatically satisfied. In fact, it is fulfilled
only with w23, as follows by direct computation.

Now U = U2P, + U™2P, can be dealt with in much the same way as above. By repeating the same
scheme but picking the well-suited monomials S;S» for U2 and S5S; for U~2 we obtain

U943 = 5152(5251)* + 5151(5151)* + 5251(5252)* + 5252(5152)*
Urgg = S152(5252)™ + 5151(5152)" + 5251(5251)" + 5252(5151)"

but only us43 also satisfies Equation (8.2).

Note that AfAy,,; = Aupg and AfAy,,, = Ay,,, and therefore S\fj\um = 5\u123 and S\fj\uw_ = 5\@43,
since Ap(UF2Py + UT2P,) = U*2P, + UF2P;. In particular, Ay, ,,, Auy,, and their extensions are proper
endomorphisms.

8.2. Case P3

The same technique would in fact apply to endomorphisms A, coming from a permutation matrix u €
P3 C Fy too. Corresponding to U = U* or U™, it would now yield 24 extensions each, which are all
proper endomorphisms of Qs, cf. [1, Proposition 6.1], as well as being proper endomorphisms at the level
of the Cuntz algebra Oy also, cf. [10]. Furthermore, for each of the four mixed cases U= PU*+ PU*,
U=PRU*+ PU U = @P)U*+ o(P)U* and U = o(P2)U* + p(P1)U* the technique would also
yield another 4 extensions. At any rate, we may as well refrain from describing the computations in detail
here since the technique will be discussed in fuller generality below, where extendible permutative unitaries
in P} will be found aplenty for any k € N. A complete list of the endomorphisms thus spotted, however, is
provided in the appendix.

8.3. Case P

Of course, at each level k we will recover those already obtained at lower levels and possibly more.
In order to see that indeed we always find new extendible endomorphisms, it is enough to realize that a
similar method applies to P, i.e. permutations of 2* objects, at least when U=0""or U= U72k_1,
providing 2#~!! different permutative endomorphisms for each case, and thus 2¥~1!-2 new extendible (proper)
endomorphisms. Of course, there are also the 2¥~112 inner perturbations of the identity and of the flip-flop,
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all of which trivially extend to automorphisms. Furthermore, there are those of the form Ad(v) o ¢ and
Ad(v) o po A\, with v € P¥1 again 28112 (for k > 2 they are different from those above).

Lemma 8.1. There are 28~ well-suited monomials for U2k71, which are those of length k ending in Ss, i.e.
of the form S;;S;, ... Si,_,S2 with i1,1a,...1k—1 € {1,2}. Likewise, there are 2k=1 well-suited monomials
for U*2k71, which are those of length k ending in S1, i.e. of the form S;, S;, ... Si,_,
{1,2}.

Proof. Indeed, it is enough to note that U2kflSiISZ- S S = 8,8, ...8,_,51 and
U-27"8,8,...8, S =258,...5, .5 O

S1 with 11,02, ...0k—1 €

Theorem 8.2. Let p be a permutation of the set Wzk_l. Consider the unitaries upi € P} given by

u; = Z (51:52)(52Sp() )™ + (SuS1)(S18p()" = Z Su3i(55Sp(n)”
peWr=1 neW; ™, iews
U, = Z (5151)(S28p())™ + (552) (515p(y))”
peWS

Then A+ both extend as endomorphisms of Q with S\ﬁ (U) = U2t

Proof. We shall only deal with u;‘ , for u,; can be handled in exactly the same way. We set S; = u; S; and

U = U?"". We need to make sure that both Sl = U'SQ and 520 = U'Sl hold true. But again, since U is
U Qk_l, the latter is automatically satisfied provided that the former is. Now on the one hand we have

Si= Y ((5u92)(S2Sp()" + (SuS1)(S1Sp() ) St = > SuS1S5,

pEWF1 pewh-1

but on the other hand

USQ = UQkilu;SQ = UQkil Z ((SMSQ)(S2SP(M))* + (SMSI)(SISP(H))*)S2
neWy !
= 2 SUSSim= X SuSiSiu
peWwSt peEWS

and so the equality is certainly satisfied. O

Remark 8.3. It is worth pointing out that the equality u, (k)f = uz(k) is satisfied for every integer k

and ever permutation p. In general, it is not true that either w} (k) or u, (k) is fixed by As. However,

straightforward computations show that this is certainly the case for both if the permutation p commutes
with ¢, where ¢ is the permutation on W} that swaps 1 and 2.

Example 8.4. We discuss a simple example. For every integer k, let Fy be the unitary in .7-'5"'1 implementing
the endomorphism ¢*. In particular, I} = F with F = Zij:l 9 9i5;5757. We will show that if we take
p = id then u} (k) = Fy_1, i.e. A+ ) = ¢~ 1. In this case u (k) = D pewr—1 iewy SuSi(SiSu)*, which for
k=2 gives uf(2) =32, ,_, ,58;5:5;S] = F = F;. We next prove by induction that the formula is true for
every k. Supposing we have proved that A+ ) = "', we need to show that then A+ ;) = ¢" as well.

k—1

But now pF = okt = PONF (k) = AFON it (1) = Agut (k)£ 50 all we have to do is compute p(u} (k))F,

which we do below:
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p(uf (R)F = 8;8,8i(SiS)*S;F = 8;8,8:8587Sr > SiSmSi Sy,

RN 2,7 l,m=1,2
= 8888588y = 8;8,Si(S5iS;8,)" = uf (k+1)
1,3, X%

F=1o X = Ap o ¢*! to hold if p = id. Indeed,

It is now natural to expect the equality )\u;(k) =y
Aok =Xso0 Aut (e 1) = Ang (udh (k1)) - But A(uf(k+1))f is easily computed as follows

Aufi(E+ D) =X [ D0 8u82(828,)" + S,S1(818,)" | f

peWw§

= Y SuSi(518,)" + 5,52(525,)" | f
newW})

= | D SuS1(S18,)" + Su82(825,)" | (5257 + S1.95)

neEW§

= > 5uS1(528.)" + SuSa2(S18,)" = ug(k +1)

REWS

Of course, for every p € P51 the automorphisms Ad(p) and Ad(p) o A ¢ of Oy extend to automorphisms
of Q,, with U equal to pUp* and pU*p, respectively. It follows at once by the results in [1] that for each U
of the above form the u € P¥ such that \, extends with \,(U) = U is necessarily unique and is given by
pe(p*) and po(p*) f, respectively.

We now deal with the case U = PlU?kf1 + PgU_zkfl. Again, we can adopt the same strategy as before.
The well-suited monomials for P,U 27 are obviously those of the form 515,52, where a € VVQk_2 is any
multi-index of length k — 2. In this way we get the following (2¥~2)! sums

D 515052(525150, ()" + S15a51 (51510 (o))"

a€W§72

where o is a permutation on the set W52, The well-suited monomials for Pyl ~2""" are those of the form

2k—2

525551, where § is any multi-index of length k — 2. As above, these give yield the following ( )! sums

D 9259551(5252S0,(8))" + 525552(515295,(5))"
BeWr—2

where o9 is another (possibly different from o) permutation on the set WQk_Q. If we now combine the two
sums, we finally obtain (2¥~2!)2 unitaries in the Cuntz algebra given by

Ugrgs = D 5184592(525150,(a)" + 5152:51(515155, ()" +
a,feWr—2

+ 525551 (SQSQSO-Q(B))* + SQSgSQ(SlSQS@(B))*

The case U = P,U -2t RU 27" g dealt with in pretty much the same way, and we find the following
(2F=21)2 unitaries
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Uoios = Y 518451(525150,(a)" + 515252515155, ()" +
oz,ﬁEWzkfz

+ SQS@SQ(SQSQSo-z(B))* + 525551(51S2302(6))*

We now come to the case U = @"(P) U2 + @"(P)U~2"", with h = 1,2,...k — 2 (the case k = 0 has
been addressed above). Since ¢(P;) = 3_ ey Sa9iS; 95 = X aews SaiSs;, the well-suited monomials for
<,0h(P1)U2kf1 are those of the form S,12 and the well-suited monomials for c,oh(Pg)U_Qkf1 are those of the
form Sy2p1, where 8 is any multi-index of length k& — h — 2. Bringing the pieces together, we finally get the
following Ny, = (2F~"=212")2 unitaries

Ug = Z Sa1152S;a110Q1(ﬁ) + Sallﬁlsikallaal (B) + Sa22’Y15;a220a2 (v) + SQQQ’YQSTQQZJuz (v)
a17a26W2h
ByeWy "2

where o is the set {0w,,0n, : a1, a2 € WEY, with o,, being a permutation of the set WQk_h_2 for each a and
i = 1,2. There follow the necessary computations to make sure that the endomorphisms A, € End(O2)
actually extend to Qs.

S1=usS = Z Sml/ﬁlszlloal(m + S()‘?Q’YQS;z?Uag(’Y)
0417042€W2h
prewt 2
Sy = ugSs = Z 50118250110, (8) T S0229153,20.., ()
a1,a2EWS
ByeWy "2
77 & 2k=1 —2k—1
USy = (U ¢"(P)+U ©"(P2)) Y Sa182Si10u. (8) T Ser2n1 S0, ()
DL1,DL2€W2h
Byewy "2
2k71 * _2k71 *
= Z U SallﬁQSallaal(ﬁ) +U Sa22’715a220&2 )
a1, €W
ByEWy "2
= D Sanp1Siie, (s) T Sea2v25020,, (1) = 51
ar,a2 €W
ByEWs "2
~ ~ 2k—1 h 72k—1 h
US1= (U ")+ U7 MP)) | Y SanisrSiiimn ) + Sesz2Sinn, o)
a1,0¢2€W2h
Byewy "2
gk—1 * —ok-1 *
= Z U™ Sai1815a10,, () TU 503272505200, (7)
a1, €W
ByEWy; "2
= Z SallﬁU‘S’ls;llaal 8) + Sa22’\/U*SQSé220-Q2(,Y)
a1, €W

prewy "2
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- o~ N N k—1 ok—1
SU = D Sa1p2Sit0n, (5) T Serz1Sinzen, o | U @M (P)+UTT O (P2))

a1,a2EWS
fewp?

* ok—1 * —2k—1
E SallﬁQSalloal (5)U + Sa22715a22oa2(v)U
011,012€W2h
Byewy "2

= Y Sa1pUSiie., 5 T S USha0., ()

CVLOQGW;
Byewy "2

The case U = gph(Pg)UQI%1 + gz)(P;l)hU_Qkf1 can be dealt with in pretty much the same way. The formula
thus got to reads as follows:

Up = Z Sa125255a120a1(,3) + 50112515ika120',11 B) + Sa21’YlS;aglo’a2 (v) + Sazl’ﬂsfazlo'az (v
a1, €W
prewy "2

where o is the set {0a,,0a, : @1,0 € Wi}, with o,, being a permutation of the set I/Vzkfhf2 for each o;

2k—h—2!2h)2

and ¢ = 1,2. In particular, we still have Ny = ( extendible endomorphisms. For the reader’s

convenience, we can finally sum up our findings in the following statement.

Theorem 8.5. Given a natural number k > 2, for each h € {0,1,2,...,k — 2} let Ny, be (2F="=2121)2,

First, there are Ny ;, unitaries ugl) m P§ such that the associated endomorphism )\u(l) is extendible with

/\;:)(U) = gph(Pl)Ulef1 + goh(Pg)U_Qkfl, and these are given by

1) - *
uc(J )= Z SOél 15255041 loa, (B) + Sal 1515111 loa, (B) + Sa22’7152a220(,2 (v) + SO‘22'YZSTOL220'@2 (v)
1,02 EWS
prew; "2

where, for any oy, as € Wl, 04, and o4, are permutations on Wa="72,

Second, there are Ny unitaries u((f) m 775 such that the associated endomorphism )\u@) is extendible

with U = gph(Pg)UQkf1 + @h(Pl)U_Qkfl, and these are given by

2) - * * * *
ug' ) = E Sa12ﬁ252a12001(5) + Sa125151a12001(ﬁ) + SD¢21’Y1S204210(X2 (v) + Sa21725104210'a2 (v)
Otl’OtQEth
prews3

with the same notation as in the first case.

Remark 8.6. It goes without saying that there might be more possibilities for U, other than those considered
above, that still give rise to extendible endomorphisms. In addition, already with the values of U we have
considered, there is no evidence that the unitaries listed in Theorem 8.5 actually exhaust all possible cases.

Remark 8.7. All of the endomorphisms we have produced so far are clearly endomorphisms of the Bunce-
Deddens algebra Q%r too.
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Appendix A. Permutative endomorphisms of Q- at level 3

The notation we adopt here is similar to that already used in [3], where monomials SQSE are denoted

by Sal,azy___,ala‘7517527,”75“3‘ for any a, 8 € Wy. There follows a table where the permutative unitaries in ’Pé“
yielded by the general method described in the previous section are shown along with the action of the

corresponding endomorphisms on U.

u € 'Pg A (D)
S112,211 + St111,111 + S122,212 + S121,112 + S212,221 + S211,121 + S222,222 + S221,122 Ut
S112,211 + St111,111 + S122,212 + S121,112 + S212,221 + S211,121 + S222,221 + S221,121 vt
S112,211 + St11,111 + S122,212 + S121,112 + S212,212 + S211,112 + S222 222 + S221,122 Ut
S112,211 + S111,111 + S122,212 + S121,112 + S212,212 + S211,112 + S222,212 + S221,112 U4
S112,211 + S111,111 + S122,222 + S121,122 + S212,212 + S211,112 + S222,221 + S221,121 Ut
S112,211 + S111,111 + S122,222 + S121,122 + S212,221 + S211,121 + S222,212 + S221,112 U+
S112,212 + S111,112 + S122,211 + S121,111 + S212,221 + S211,121 + S222,222 + S221,122 Ut
S112,212 + St11,112 + S122,211 + S121,111 + S212,222 + S211,122 + S222,221 + S221,121 Ut
S112,212 + S111,112 + S122,211 + S121,121 + S212,211 + S211,111 + S222,222 + S221,122 Ut
S112,212 + St11,112 + S122,211 + S121,121 + S212,222 + S211,122 + S222,211 + S221,111 vt
S112,212 + S111,112 + S122,222 + S121,122 + S212,211 + S211,111 + S222,221 + S221,121 Ut
S112,212 + S111,112 + S122,222 + S121,122 + S212,221 + S211,121 + S222,211 + S221,111 Ut
S112,221 + S111,121 + S122,211 + S121,111 + S212,212 + S211,112 + S222,222 + S221,122 Ut
S112,221 + S111,121 + S122,211 + S121,111 + S212,222 + S211,122 + S222,212 + S221,112 U+
S112,221 + St111,121 + S122,212 + S121,112 + S212,211 + S211,111 + S222,222 + S221,122 Ut
S112,221 + St111,121 + S122,212 + S121,112 + S212,222 + S211,122 + S222,211 + S221,111 Ut
S112,221 + S111,121 + S122,222 + S121,122 + S212,211 + S211,111 + S222,212 + S221,112 Ut
S112,221 + St111,121 + S122,222 + S121,122 + S212,212 + S211,112 + S222 211 + S221,111 Ut
S112,222 + S111,122 + S122,211 + S121,111 + S212,212 + S211,112 + S222,221 + S221,121 Ut
S112,222 + S111,122 + S122,211 + S121,111 + S212,221 + S211,121 + S222,212 + S221,112 Ut
S112,222 + S111,122 + S122,212 + S121,112 + S212,211 + S211,111 + S222,221 + S221,121 U+
S112,222 + S111,122 + S122,212 + S121,112 + S212,221 + S211,121 + S222,211 + S221,111 U+
S112,222 + St111,122 + S122,221 + S121,121 + S212,211 + S211,111 + S222,212 + S221,112 Ut
S112,222 + St111,122 + S122,221 + S121,121 + S212,212 + S211,112 + S222,211 + S221,111 Ut

S112,211 + S111,
S112,211 + S111,
S112,212 + S111,
S112,212 + S111,
S212,221 + Sa211,
S212,221 + S211,
S212,222 + Sa11,
S212,222 + Sa211,
St112,211 + S111,
S112,211 + S111,
S112,221 + S111,
S112,221 + S111,
S122,212 + S121,
S122,212 + S1i21,
S122,222 + S121,
S122,222 + S121,

111 + S122,212 + S121,112 + S211,221 + S212,121 + S221,222 + S222,122
111 + S122,212 + S121,112 + S211,222 + S212,122 + S221,221 + S222,121
112 + S122,211 + S121,111 + S211,221 + S212,121 + S221,222 + S222,122
112 + S122,211 + S121,111 + S211,222 + S212,122 + S221,221 + S222,121
121 + S222,222 + S221,122 + S111,211 + S112,111 + S121,212 + S122,112
121 + S222,222 + S221,122 + S111,212 + S112,112 + S121,211 + S122,111
122 + S222,221 + S221,121 + S111,211 + S112,111 + S121,212 + S122,112
122 + S222,221 + S221,121 + S111,212 + S112,112 + S121,211 + S122,111
111 + S212,221 + S211,121 + S121,212 + S122,112 + S221,222 + S222,122
111 + S212,221 + S211,121 + S121,222 + S122,122 + S221,212 + S222,112
121 + S212,211 + S211,111 + S121,212 + S122,112 + S221,222 + S222,122
121 + S212,211 + S211,111 + S121,222 + S122,122 + S221,212 + S222,112
112 + S222,222 + S221,122 + S111,211 + S112,111 + S211,221 + S212,121
112 + S222,222 + S221,122 + S111,221 + S112,121 + S211,211 + S212,111
122 + S222,212 + S221,112 + S111,211 + S112,111 + S211,221 + S212,121
122 + S222,212 + S221,112 + S111,221 + S112,121 + S211,211 + S212,111

PU™* + PU*
PU* 4+ PU*
U+ PU*
PU* + P,U*
e(PL)U* + (P U
e(PU* + o(P)U™*
e(PU* + o(P)U™*
e(PU* 4+ p(P)U™*
e(PHUT + o(P2)U*
e(PU™* + o(P)U*
e(PHU™ + o(Py)U*
e(PU* + o(P)U*
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