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In this paper we study the Heat Flow on Metric Random Walk Spaces, which unifies 
into a broad framework the heat flow on locally finite weighted connected graphs, the 
heat flow determined by finite Markov chains and some nonlocal evolution problems. 
We give different characterizations of the ergodicity and prove that a metric random 
walk space with positive Ollivier-Ricci curvature is ergodic. Furthermore, we prove a 
Cheeger inequality and, as a consequence, we show that a Poincaré inequality holds 
if, and only if, an isoperimetric inequality holds. We also study the Bakry-Émery 
curvature-dimension condition and its relation with functional inequalities like the 
Poincaré inequality and the transport-information inequalities.
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1. Introduction and preliminaries

A metric random walk space is a metric space (X, d) together with a family m = (mx)x∈X of probability 
measures that encode the jumps of a Markov chain. Given an initial mass distribution μ on X, the measure 
μ ∗m given by

μ ∗m(A) :=
ˆ

X

mx(A)dμ(x), for all Borel sets A ⊂ X,

describes the new mass distribution after a jump. Associated with m, the Laplace operator Δm is defined 
as

Δmf(x) :=
ˆ

X

(f(y) − f(x))dmx(y).

Assuming that there exists an invariant and reversible measure ν for the random walk, the operator −Δm

generates in L2(X, ν) a Markovian semigroup (etΔm)t≥0 (Theorem 2.1) called the heat flow on the metric 
random walk space, which unifies into a broad framework the heat flow on graphs, the heat flow determined 
by finite Markov chains and also some nonlocal heat flows.

It is of great importance in many applications to understand the behaviour of the semigroup (etΔm)t≥0 as 
t → ∞. In this regard, we introduce a new concept, called random walk connectedness or m-connectedness 
of the metric random walk space, which is related to the geometry of the metric random walk space. We 
then prove that it is equivalent to the infinite speed of propagation of the heat flow (Theorem 2.9) and also 
to the ergodicity of the Laplacian (Theorem 2.19), that in this context means that the only solutions of the 
equation Δmf = 0 are the constant functions, recall further that this is, in turn, equivalent to the ergodicity 
of the measure ν (see also Theorem 2.21). Moreover, we relate it with geometric properties of the metric 
random walk space (Theorem 2.24).

In 1969 Jeff Cheeger [16] proved his famous inequality

h2
M

2 ≤ λ1(ΔM ),

where λ1(ΔM ) is the first non-trivial eigenvalue of the Laplace Beltrami operator ΔM on L2(M, vol) of a 
compact manifold M and the Cheeger constant hM is defined as

hM = inf Area(∂S)
min(vol(S), vol(M \ S)) ,

where the infimum runs over all S ⊂ M with sufficiently smooth boundary. This inequality can be traced 
back to the paper by Polya and Szego [46]. The first Cheeger estimates on graphs are due to Dodziuk [20]
and Alon and Milmann [1]. Since then, these estimates have been improved and various variants have been 
proved. For locally finite weighted connected graphs, the following relation between the Cheeger constant 
and the first positive eigenvalue λ1(G) of the graph Laplacian has been proved in [18] (see also [9])

h2
G

2 ≤ λ1(G) ≤ 2hG,

where hG is the Cheeger constant for graphs. For a general metric random walk space [X, d, m] we define 
the Cheeger constant hm(X) and we obtain the Cheeger inequality (Theorem 3.12)

h2
m ≤ gap(−Δm) ≤ 2hm,
2
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where gap(−Δm) is the spectral gap of the Laplace operator. As a consequence, we show that a Poincaré 
inequality holds if, and only if, an isoperimetric inequality holds.

An important tool in the study of the speed of convergence of the heat flow to the equilibrium is the 
Poincaré inequality (see [7]). In the case of Riemannian manifolds and Markov diffusion semigroups, a usual 
condition required to obtain this functional inequality is the positivity of the corresponding Ricci curvature 
of the underlying space (see [7], [54]). In [6], Bakry and Emery found a way to define the lower Ricci curvature 
bound through the heat flow. Moreover, Renesse and Sturm [48] proved that, on a Riemannian manifold M , 
the Ricci curvature is bounded from below by some constant K ∈ R if, and only if, the Boltzmann-Shannon 
entropy is K-convex along geodesics in the 2-Wasserstein space of probability measures on M . This was 
the key observation, used simultaneously by Lott and Villani [33] and Sturm [50], to give a notion of a 
lower Ricci curvature bound in the general context of length metric measure spaces. In these spaces, the 
relation between the Bakry-Émery curvature-dimension condition and the notion of the Ricci curvature 
bound introduced by Lott-Villani-Sturm, was done by Ambrosio, Gigli and Savaré in [3], where they proved 
that these two notions of Ricci curvature coincide under certain assumptions on the metric measure space.

When the space under consideration is discrete, for instance, in the case of a graph, the previous concept 
of a Ricci curvature bound is not as clearly applicable as in the continuous setting. Indeed, the definition 
by Lott-Sturm-Villani does not apply if the 2-Wasserstein space over the metric measure space does not 
contain geodesics. Unfortunately, this is the case if the underlying space is discrete. Recently, Erbas and 
Maas [22], in the framework of Markov chains on discrete spaces, in order to circumvent the nonexistence 
of 2-Wasserstein geodesics, replace the 2-Wasserstein metric by a different metric, which was introduced 
by Maas in [34]. Here, we do not consider this notion of Ricci curvature bound which, in the framework of 
metric random walk spaces, will be the object of the forthcoming paper [39]. Instead, we will use two other 
concepts of a Ricci curvature bound, the one based in the Bakry-Émery curvature-dimension condition and 
the one introduced by Y. Ollivier in [42]. We refer to [41] and the references therein for the vibrant research 
field of discrete curvature.

The use of the Bakry-Émery curvature-dimension condition to obtain a possible definition of a Ricci 
curvature bound in Markov chains was first considered in 1998 by Schmuckenschlager [49]. Moreover, in 2010, 
Lin and Yau [32] used this concept for graphs. Subsequently, this concept of curvature in the discrete 
setting has been frequently used (see [30] and the references therein). Note that, to deal with the Bakry-
Émery curvature-dimension condition, one needs a Carré du champ Γ. In the framework of Markov diffusion 
semigroups in order to get good inequalities from this curvature-dimension condition it is essential that the 
generator A of the semigroup satisfies the chain rule formula

A(Φ(f)) = Φ′(f)A(f) + Φ′′(f)Γ(f),

which characterizes diffusion operators in the continuous setting (see [7]). Unfortunately, this chain rule does 
not hold in the discrete setting and this is one of the main difficulties when working with this curvature-
dimension condition in metric random walk spaces.

In Riemannian geometry, positive Ricci curvature is characterized by the fact that “small balls are closer, 
in the 1-Wasserstein distance, than their centers are” (see [48]). In the framework of metric random walk 
spaces, inspired by this, Y. Ollivier [42] introduced the concept of coarse Ricci curvature, substituting the 
balls by the measures mx. Moreover, he proved that positive coarse Ricci curvature implies positivity of the 
spectral gap. In Section 3 we give conditions on the Laplace operator Δm which ensure the positivity of the 
spectral gap and we relate bounds on the spectral gap with bounds on the Bakry-Émery curvature-dimension 
condition.

Following the papers by Marton and Talagrand ([36], [52]) about transport inequalities that relate Wasser-
stein distances with entropy and information, this research topic has had a great development (see the survey 
[26]). One of the keystones of this theory was the discovery in 1986 by Marton [35] of the link between trans-
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port inequalities and the concentration of measure. Concentration of measure inequalities can be obtained 
by means of other functional inequalities such as isoperimetric and logarithmic Sobolev inequalities, see 
the textbook by Ledoux [31] for an excellent account on the subject. We show that under the positivity 
of the Bakry-Émery curvature-dimension condition or the Ollivier-Ricci curvature a transport-information 
inequality holds (Theorems 3.22 and 3.28). Moreover, we prove that if a transport-information inequality 
holds then a transport-entropy inequality is also satisfied (Theorem 3.25) and that, in general, the converse 
implication does not hold.

1.1. Metric random walk spaces

Let (X, d) be a Polish metric space equipped with its Borel σ-algebra.

Definition 1.1. A random walk m on X is a family of probability measures mx on X, x ∈ X, satisfying the 
following two technical conditions:

(i) the measures mx depend measurably on the point x ∈ X, i.e., for any Borel subset A of X and any 
Borel subset B of R, the set {x ∈ X : mx(A) ∈ B} is Borel,

(ii) each measure mx has finite first moment, i.e. for some (hence any) z ∈ X, and for any x ∈ X one has ´
X
d(z, y)dmx(y) < +∞ (see [42]).

A metric random walk space [X, d, m] is a Polish metric space (X, d) equipped with a random walk m.

Let [X, d, m] be a metric random walk space. A Radon measure ν on X is invariant for the random walk 
m = (mx) if

dν(x) =
ˆ

X

dν(y)dmy(x),

that is, for any ν-measurable set A, it holds that A is mx-measurable for ν-almost all x ∈ X, x �→ mx(A)
is ν-measurable and

ν(A) =
ˆ

X

mx(A)dν(x).

Hence, for any f ∈ L1(X, ν), it holds that f ∈ L1(X, mx) for ν-a.e. x ∈ X, x �→
ˆ

X

f(y)dmx(y) is ν-

measurable and

ˆ

X

f(x)dν(x) =
ˆ

X

⎛⎝ˆ

X

f(y)dmx(y)

⎞⎠ dν(x).

Note that, following the notation in the introduction, ν is invariant if ν ∗m = ν.
The measure ν is said to be reversible if, moreover, the detailed balance condition

dmx(y)dν(x) = dmy(x)dν(y) (1.1)

holds. Under suitable assumptions on the metric random walk space [X, d, m], such an invariant and re-
versible measure ν exists and is unique, as we will see below. Note that the reversibility condition implies 
the invariance condition.
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We will assume that the measure space (X, ν) is σ-finite.

Example 1.2.

(1) Let (RN , d, LN ), with d the Euclidean distance and LN the Lebesgue measure. Let J : RN → [0, +∞[
be a measurable, nonnegative and radially symmetric function verifying 

´
RN J(z)dz = 1. In (RN , d, LN )

we have the following random walk,

mJ
x(A) :=

ˆ

A

J(x− y)dLN (y) for every Borel set A ⊂ RN and x ∈ RN .

Applying Fubini’s Theorem it is easy to see that the Lebesgue measure LN is an invariant and reversible 
measure for this random walk.

(2) Let K : X ×X → R be a Markov kernel on a countable space X, i.e.,

K(x, y) ≥ 0 ∀x, y ∈ X,
∑
y∈X

K(x, y) = 1 ∀x ∈ X.

Then, for

mK
x (A) :=

∑
y∈A

K(x, y),

[X, d, mK ] is a metric random walk space for any metric d on X. For irreducible and positive recurrent 
Markov chains (see for example [28]) there exists a unique stationary probability measure (also called 
steady state) on X, that is, a measure π on X satisfying∑

x∈X

π(x) = 1 and π(y) =
∑
x∈X

π(x)K(x, y) ∀y ∈ X.

This stationary probability measure π is said to be reversible for K if the following detailed balance 
equation

K(x, y)π(x) = K(y, x)π(y)

holds for x, y ∈ X. By Tonelli’s Theorem for series, this balance condition is equivalent to the one given 
in (1.1) for ν = π:

dmK
x (y)dπ(x) = dmK

y (x)dπ(y).

(3) A weighted discrete graph G = (V (G), E(G)) is a graph with vertex set V (G) and edge set E(G) such 
that to each edge (x, y) ∈ E(G) (we will write x ∼ y if (x, y) ∈ E(G)) we assign a positive weight 
wxy = wyx. We consider that wxy = 0 if (x, y) /∈ E(G). We say that a vertex x ∈ V (G) is simple if it 
has no loops, so that wxx = 0. A graph is said to be simple if all the vertices are simple.
A finite sequence {xk}nk=0 of vertices on a graph is called a path if xk ∼ xk+1 for all k = 0, 1, ..., n − 1. 
The length of a path is defined as the number, n, of edges in the path.
A graph G = (V (G), E(G)) is called connected if, for any two vertices x, y ∈ V , there is a path connecting 
x and y, that is, a sequence of vertices {xk}nk=0 such that x0 = x and xn = y. If G = (V (G), E(G)) is 
connected then define the graph distance dG(x, y) between any two distinct vertices x, y as the minimum 
of the lengths of the paths connecting x and y.



JID:YJMAA AID:123645 /FLA Doctopic: Partial Differential Equations [m3L; v1.279; Prn:13/11/2019; 12:17] P.6 (1-53)
6 J.M. Mazón et al. / J. Math. Anal. Appl. ••• (••••) ••••••
For each x ∈ V (G) we define

dx :=
∑
y∼x

wxy.

When wxy = 1 for every x, y ∈ V (G), dx coincides with the degree of the vertex x in the graph, that 
is, the number of edges containing x. A graph G = (V (G), E(G)) is called locally finite if each vertex 
belongs to a finite number of edges.
For each x ∈ V (G) we define the following probability measure

mG
x = 1

dx

∑
y∼x

wxy δy.

If G = (V (G), E(G)) is a locally finite weighted connected graph, we have that [V (G), dG, (mG
x )] is a 

metric random walk space. Furthermore, it is not difficult to see that the measure νG defined as

νG(A) :=
∑
x∈A

dx, A ⊂ V (G)

is an invariant and reversible measure for this random walk.
(4) From a metric measure space (X, d, μ) we can obtain a metric random walk space, the so called ε-

step random walk associated to μ, as follows. Assume that balls in X have finite measure and that 
Supp(μ) = X. Given ε > 0, the ε-step random walk on X, starting at point x, consists in randomly 
jumping in the ball of radius ε around x, with probability proportional to μ; namely

mμ,ε
x := μ B(x, ε)

μ(B(x, ε)) .

Note that μ is an invariant and reversible measure for the metric random walk space [X, d, mμ,ε].
(5) Given a metric random walk space [X, d, m] with invariant and reversible measure ν for m, and given 

a ν-measurable set Ω ⊂ X with ν(Ω) > 0, if we define, for x ∈ Ω,

mΩ
x (A) :=

ˆ

A

dmx(y) +

⎛⎜⎝ ˆ

X\Ω

dmx(y)

⎞⎟⎠ δx(A) for every Borel set A ⊂ Ω,

we have that [Ω, d, mΩ] is a metric random walk space and it is easy to see that ν Ω is reversible for 
mΩ.

Given a metric random walk space [X, d, m], geometrically we may think of mx as a replacement for the 
notion of balls around x, while in probabilistic terms we can rather think of these data as defining a Markov 
chain whose transition probability from x to y in n steps is

dm∗n
x (y) :=

ˆ

z∈X

dmz(y)dm∗(n−1)
x (z) (1.2)

where m∗1
x = mx. Note that m∗n

x = m
∗(n−1)
x ∗mx for any x ∈ X.

Observe that

ˆ
f(y)dm∗n

x (y) =
ˆ ⎛⎝ ˆ

f(y)dmz(y)

⎞⎠ dm∗(n−1)
x (z).
y∈X z∈X y∈X
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Thus, inductively,

ˆ

y∈X

dm∗n
x (y) =

ˆ

z∈X

⎛⎝ ˆ

y∈X

dmz(y)

⎞⎠ dm∗(n−1)
x (z) =

ˆ

z∈X

dm∗(n−1)
x (z) = 1.

Hence, [X, d, m∗n] is also a metric random walk space. Moreover, if ν is invariant and reversible for m, then 
ν is also invariant and reversible for m∗n.

Definition 1.3. Let [X, d, m] be a metric random walk space. We say that [X, d, m] has the strong-Feller 
property if

mx0(A) = lim
n→+∞

mxn
(A) for every Borel set A ⊂ X

whenever xn → x0 as n → +∞ in (X, d).

Note that the examples of metric random walk spaces given in Example 1.2 have the strong-Feller 
property.

In [38] we study the concepts of m-perimeter and m-mean curvature associated with a metric random 
walk space [X, d, m] with invariant and reversible measure ν with respect to m. For this aim, we introduce 
the notion of nonlocal interaction between two ν-measurable subsets A and B of X as

Lm(A,B) :=
ˆ

A

ˆ

B

dmx(y)dν(x).

For Lm(A, B) < +∞, by the reversibility assumption on ν, we have that

Lm(A,B) = Lm(B,A).

We then define the concept of m-perimeter of a ν-measurable subset E ⊂ X as

Pm(E) = Lm(E,X \ E) =
ˆ

E

ˆ

X\E

dmx(y)dν(x).

If ν(E) < +∞, we have

Pm(E) = ν(E) −
ˆ

E

ˆ

E

dmx(y)dν(x). (1.3)

It is easy to see that, on account of the reversibility of ν,

Pm(E) = 1
2

ˆ

X

ˆ

X

|χE(y) − χE(x)|dmx(y)dν(x).

In the particular case of a graph [V (G), dG, mG], the definition of perimeter of a set E ⊂ V (G) is given 
by

|∂E| :=
∑

wxy.

x∈E,y∈V \E
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Then, we have that

|∂E| = PmG(E) for all E ⊂ V (G). (1.4)

In [38], we also introduce the m-total variation of a function u : X → R as

TVm(u) := 1
2

ˆ

X

ˆ

X

|u(y) − u(x)|dmx(y)dν(x)

and we prove the following Coarea formula. Note that

Pm(E) = TVm(χE).

Theorem 1.4. ([38, Theorem 2.7]) For any u ∈ L1(X, ν), let Et(u) := {x ∈ X : u(x) > t}. Then

TVm(u) =
+∞ˆ

−∞

Pm(Et(u)) dt.

Let E ⊂ X be ν-measurable. For a point x ∈ X we define the m-mean curvature of ∂E at x as

Hm
∂E(x) :=

ˆ

X

(
χ
X\E(y) − χE(y)

)
dmx(y) = 1 − 2

ˆ

E

dmx(y).

Note that Hm
∂E(x) can be computed for every x ∈ X, not only for points in ∂E. Furthermore, for a ν-

integrable set E,

ˆ

E

Hm
∂E(x)dν(x) =

ˆ

E

⎛⎝1 − 2
ˆ

E

dmx(y)

⎞⎠ dν(x) = ν(E) − 2
ˆ

E

ˆ

E

dmx(y)dν(x),

hence, having in mind (1.3), we obtain that
ˆ

E

Hm
∂E(x)dν(x) = 2Pm(E) − ν(E). (1.5)

1.2. Ollivier-Ricci curvature

Let (X, d) be a Polish metric space and M+(X) the set of positive Radon measures on X. Fix μ, ν ∈
M+(X) satisfying the mass balance condition

μ(X) = ν(X). (1.6)

The Monge-Kantorovich problem is the minimization problem

min

⎧⎨⎩
ˆ

X×X

d(x, y) dγ(x, y) : γ ∈ Π(μ, ν)

⎫⎬⎭ ,

where Π(μ, ν) := {Radon measures γ in X ×X : π0#γ = μ, π1#γ = ν}, with πα(x, y) := x + α(y − x) for 
α ∈ {0, 1}.
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For 1 ≤ p < ∞, the p-Wasserstein distance between μ, ν is defined as

W d
p (μ, ν) :=

⎛⎝min

⎧⎨⎩
ˆ

X×X

d(x, y)p dγ(x, y) : γ ∈ Π(μ, ν)

⎫⎬⎭
⎞⎠

1
p

.

The Monge-Kantorovich problem has a dual formulation that can be stated in this case as follows (see 
for instance [53, Theorem 1.14]).

Kantorovich-Rubinstein’s Theorem. Let μ, ν ∈ M+(X) be two measures satisfying the mass balance condi-
tion (1.6). Then,

W d
1 (μ, ν) = sup

⎧⎨⎩
ˆ

X

u d(μ− ν) : u ∈ Kd(X)

⎫⎬⎭
= sup

⎧⎨⎩
ˆ

X

u d(μ− ν) : u ∈ Kd(X) ∩ L∞(X, ν)

⎫⎬⎭
where

Kd(X) := {u : X �→ R : |u(y) − u(x)| ≤ d(y, x)} .

In [42] Y. Ollivier gives the following definition of coarse Ricci curvature that we will call Ollivier-Ricci 
curvature.

Definition 1.5 ([42]). On a given metric random walk space [X, d, m], for any two distinct points x, y ∈ X, 
the Ollivier-Ricci curvature of [X, d, m] along (x, y) is defined as

κm(x, y) := 1 − W d
1 (mx,my)
d(x, y) .

The Ollivier-Ricci curvature of [X, d, m] is defined by

κm := inf
x, y ∈ X
x �= y

κm(x, y).

We will write κ(x, y) instead of κm(x, y), and κ = κm, if the context allows no confusion.

In the case that (X, d, μ) is a smooth complete Riemannian manifold, if (mμ,ε
x ) is the ε-step random walk 

associated to μ given in Example 1.2 (4), then it is proved in [48] (see also [42]) that κmμ,ε(x, y) gives back 
the ordinary Ricci curvature when ε → 0, up to scaling by ε2.

Example 1.6. Let [RN , d, mJ ] be the metric random walk space given in Example 1.2 (1). Let us see that 
κ(x, y) = 0. Given x, y ∈ RN , x 
= y, by Kantorovich-Rubinstein’s Theorem, we have

W d
1 (mJ

x ,m
J
y ) = sup

⎧⎨⎩
ˆ

u(z)(J(x− z) − J(y − z)) dz : u ∈ Kd(RN )

⎫⎬⎭

RN
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= sup

⎧⎨⎩
ˆ

RN

(u(x + z) − u(y + z))J(z) dz : u ∈ Kd(RN )

⎫⎬⎭ .

Now, for u ∈ Kd(RN ), we have
ˆ

RN

(u(x + z) − u(y + z))J(z) dz ≤ ‖x− y‖.

Thus, W d
1 (mJ

x , m
J
y ) ≤ ‖x − y‖. On the other hand, taking u(z) := 〈z,x−y〉

‖x−y‖ , we have u ∈ Kd(RN ), hence

W d
1 (mJ

x ,m
J
y ) ≥

ˆ

RN

(u(x + z) − u(y + z))J(z) dz = ‖x− y‖.

Therefore,

W d
1 (mJ

x ,m
J
y ) = ‖x− y‖,

and, consequently, κ(x, y) = 0.

Example 1.7. Let [V (G), dG, (mG
x )] be the metric random walk space associated to the locally finite weighted 

discrete graph G = (V (G), E(G)) given in Example 1.2 (3) and let NG(x) = {z ∈ V (G) : z ∼ x} for 
x ∈ V (G). Then, the Ollivier-Ricci curvature along (x, y) ∈ E(G) is

κ(x, y) = 1 − W dG
1 (mx,my)
dG(x, y) ,

where

W dG
1 (mx,my) = inf

μ∈A

∑
z1∼x

∑
z2∼y

μ(z1, z2)dG(z1, z2),

being A the set of all matrices with entries indexed by NG(x) ×NG(y) such that μ(z1, z2) ≥ 0 and∑
z2∼y

μ(z1, z2) = wxz1

dx
,

∑
z1∼x

μ(z1, z2) = wyz2

dy
, for (z1, z2) ∈ NG(x) ×NG(y).

There is an extensive literature about Ollivier-Ricci curvature on discrete graphs (see for instance, [12], 
[10], [17], [27], [29], [32], [42], [43], [44] and [45]).

2. The heat flow on metric random walk spaces

2.1. The heat flow

Let [X, d, m] be a metric random walk space with invariant measure ν for m. For a function u : X → R

we define its nonlocal gradient ∇u : X ×X → R as

∇u(x, y) := u(y) − u(x) ∀x, y ∈ X,

and for a function z : X ×X → R, its m-divergence divmz : X → R is defined as
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(divmz)(x) := 1
2

ˆ

X

(z(x, y) − z(y, x))dmx(y).

The averaging operator on [X, d, m] (see, for example, [42]) is defined as

Mmf(x) :=
ˆ

X

f(y)dmx(y),

when this expression has sense, and the Laplace operator as Δm := Mm − I, i.e.,

Δmf(x) =
ˆ

X

f(y)dmx(y) − f(x) =
ˆ

X

(f(y) − f(x))dmx(y).

Note that

Δmf(x) = divm(∇f)(x)

and (Mm)n = Mm∗n for n ∈ N.
Due to the invariance of ν for the random walk m, both operators are well defined from L1(X, ν) to 

L1(X, ν), ‖Mmf‖1 ≤ ‖f‖1 and ‖Δmf‖1 ≤ ‖f‖1. Moreover, they send functions which are bounded by 
C > 0 into functions bounded by C. Observe that the invariance of ν can be rewritten the following 
property:

ˆ

X

Δmf(x)dν(x) = 0 ∀ f ∈ L1(X, ν). (2.1)

In the case of the weighted discrete graph G with the random walk defined in the Example 1.2 (3), the 
above operator is the graph Laplacian studied by many authors (see e.g. [21], [9], [10], [29]).

By Jensen’s inequality, we have that, for f ∈ L2(X, ν) ∩ L1(X, ν),

‖Mmf‖2
L2(X,ν) =

ˆ

X

⎛⎝ ˆ

X

f(y)dmx(y)

⎞⎠2

dν(x)

≤
ˆ

X

ˆ

X

f2(y)dmx(y)dν(x) =
ˆ

X

f2(x)dν(x) = ‖f‖2
L2(X,ν).

Therefore, Mm and Δm are linear operators in L2(X, ν) with domain

D(Mm) = D(Δm) = L2(X, ν) ∩ L1(X, ν).

Moreover, in the case ν(X) < +∞, Mm and Δm are bounded linear operators in L2(X, ν) satisfying 
‖Mm‖ ≤ 1 and ‖Δm‖ ≤ 2.

If the invariant measure ν is reversible, the following integration by parts formula is straightforward:
ˆ

X

f(x)Δmg(x)dν(x) = −1
2

ˆ

X×X

(f(y) − f(x))(g(y) − g(x))dmx(y)dν(x) (2.2)

for f, g ∈ L2(X, ν) ∩ L1(X, ν).
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In L2(X, ν) we consider the symmetric form given by

Em(f, g) = −
ˆ

X

f(x)Δmg(x)dν(x) = 1
2

ˆ

X×X

∇f(x, y)∇g(x, y)dmx(y)dν(x),

with domain for both variables D(Em) = L2(X, ν) ∩ L1(X, ν), which is a linear and dense subspace of 
L2(X, ν).

Recall the definition of generalized product ν ⊗ mx (see, for instance, [2, Definition 2.2.7]), which is 
defined as the measure in X ×X such that

ˆ

X×X

g(x, y)d(ν ⊗mx)(x, y) :=
ˆ

X

⎛⎝ˆ

X

g(x, y)dmx(y)

⎞⎠ dν(x)

for every bounded Borel function g with supp(g) ⊂ A ×B, A, B ⊂⊂ X. In the previous definition we need 
to assume that the map x �→ mx(E) is ν-measurable for any Borel set E ∈ B(X). Note that we can write

Em(f, g) = 1
2

ˆ

X×X

∇f(x, y)∇g(x, y)d(ν ⊗mx)(x, y).

Theorem 2.1. Let [X, d, m] be a metric random walk space with invariant and reversible measure ν for m. 
Then, −Δm is a non-negative self-adjoint operator in L2(X, ν) with associated closed symmetric form Em, 
which, moreover, is a Markovian form.

Proof. For f ∈ D(Δm), by the integration by parts formula (2.2), we have
ˆ

X

f(x)(−Δmf)(x)dν(x) = Em(f, f) ≥ 0.

Also, as a consequence of (2.2), we have that −Δm is a self-adjoint operator in L2(X, ν).
To prove the closedness of Em, consider fn ∈ D(Em) such that

Em(fn − fk, fn − fk) → 0, when n, k → ∞,

and

‖fn − fk‖L2(X,ν) → 0, when n, k → ∞.

Since fn → f in L2(X, ν), we can assume that there exists a ν-null set N such that fn(x) → f(x) for all x ∈
X\N . Then, (fn(x) −fn(y))2 → (f(x) −f(y))2 for all (x, y) ∈ (X\N) ×(X\N) = (X×X) \[(N×X) ∪(X×N)]. 
Now, since ν is invariant, we have

ν ⊗mx([(N ×X) ∪ (X ×N)]) =
ˆ

N

⎛⎝ˆ

X

dmx(y)

⎞⎠ dν(x) +
ˆ

X

⎛⎝ ˆ

X

χN (y)dmx(y)

⎞⎠ dν(x)

= ν(N) +
ˆ

X

χN (y)dν(y) = 2ν(N) = 0.

Then, by Fatou’s Lemma we have
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lim
n→∞

Em(fn − f, fn − f) = lim
n→∞

1
2

ˆ

X×X

(∇(fn − f)(x, y))2d(ν ⊗mx)(x, y)

= lim
n→∞

1
2

ˆ

X×X

lim inf
k→∞

(∇(fn − fk)(x, y))2d(ν ⊗mx)(x, y)

≤ lim
n→∞

lim inf
k→∞

1
2

ˆ

X×X

(∇(fn − fk)(x, y))2d(ν ⊗mx)(x, y) = 0.

Therefore, Em is closed. Moreover, for every 1-Lipschitz map η : R → R with η(0) = 0, we have

Em(η ◦ f, η ◦ f) ≤ Em(f, f) for every f ∈ D(Em),

and, hence, Em satisfies the Markov property. �
By Theorem 2.1, as a consequence of the theory developed in [24, Chapter 1], we have that if (Tm

t )t≥0
is the strongly continuous semigroup associated with Em, then (Tm

t )t≥0 is a positivity preserving (i.e., 
Tm
t f ≥ 0 if f ≥ 0) Markovian semigroup (i.e., 0 ≤ Tm

t f ≤ 1 ν-a.e. whenever f ∈ L2(X, ν), 0 ≤ f ≤ 1
ν-a.e.). Moreover, Δm is the infinitesimal generator of (Tm

t )t≥0, that is

Δmf = lim
t↓0

Tm
t f − f

t
, ∀ f ∈ D(Δm).

From now on we denote etΔm := Tm
t and we call {etΔm : t ≥ 0} the heat flow on the metric random 

walk space [X, d, m] with invariant and reversible measure ν for m. For every u0 ∈ L2(X, ν), u(t) := etΔmu0
is the unique solution of the heat equation{

du
dt (t) = Δmu(t) for every t ∈ (0,+∞),

u(0) = u0,
(2.3)

in the sense that u ∈ C([0, +∞) : L2(X, ν)) ∩ C1((0, +∞) : L2(X, ν)) and verifies (2.3), or equivalently,⎧⎪⎨⎪⎩
du

dt
(t, x) =

ˆ

X

(u(t)(y) − u(t)(x))dmx(y) for every t > 0 and ν-a.e. x ∈ X,

u(0) = u0.

By the Hille-Yosida exponential formula we have that

etΔmu0 = lim
n→+∞

[(
I − t

n
Δm

)−1
]n

u0.

As a consequence of (2.1), if ν(X) < +∞, we have that the semigroup (etΔm)t≥0 conserves the mass. In 
fact

d

dt

ˆ

X

etΔmu0(x)dν(x) =
ˆ

X

Δmu0(x)dν(x) = 0,

and, therefore,
ˆ

etΔmu0(x)dν(x) =
ˆ

u0(x)dν(x). (2.4)

X X
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Associated with Em we define the energy functional

Hm(f) := Em(f, f),

that is, Hm : L2(X, ν) → [0, +∞] is defined as

Hm(f) :=

⎧⎪⎨⎪⎩
1
2

ˆ

X×X

(f(x) − f(y))2dmx(y)dν(x) if f ∈ L2(X, ν) ∩ L1(X, ν),

+∞ else.

We denote

D(Hm) := L2(X, ν) ∩ L1(X, ν).

Note that, for f ∈ D(Hm), we have

Hm(f) = −
ˆ

X

f(x)Δmf(x)dν(x).

Remark 2.2. It is easy to see that the functional Hm is convex and, moreover, with a proof similar to the 
proof of closedness in Theorem 2.1, we get that the functional Hm is closed and lower semi-continuous in 
L2(X, ν). Now, it is not difficult to see that ∂Hm = −Δm. Consequently, −Δm is a maximal monotone 
operator in L2(X, ν). We can also consider the heat flow in L1(X, ν). Indeed, if we define in L1(X, ν) the 
operator A as Au = v ⇐⇒ v(x) = −Δmu(x) for all x ∈ X, then A is a completely accretive operator. In 
fact, let

P := {q ∈ C∞(R) : 0 ≤ q′ ≤ 1, supp(q′) is compact and 0 /∈ supp(q)}.

Given f ∈ L1(X, ν), and q ∈ P, applying (2.2), we have

ˆ

X

q(f(x))Af(x)dν(x) = 1
2

ˆ

X×X

(q(f(y)) − q(f(x)))(f(y) − f(x))dmx(y)dν(x) ≥ 0.

Then, by [11, Proposition 2.2], we have that A is a completely accretive operator. Moreover, ∂Hm
L1(X,ν) = A, 

thus A is m-completely accretive in L1(X, ν). Therefore, A generates a C0-semigroup (S(t))t≥0 in L1(X, ν)
(see [15]) such that S(t)f = etΔmf for all f ∈ L1(X, ν) ∩ L2(X, ν), verifying

‖S(t)u0‖Lp(X,ν) ≤ ‖u0‖Lp(X,ν) ∀u0 ∈ Lp(X, ν) ∩ L1(X, ν), 1 ≤ p ≤ +∞. (2.5)

In the case that ν(X) < ∞, we have that S(t) is an extension to L1(X, ν) of the heat flow etΔm in L2(X, ν), 
that we will denote equally.

Example 2.3.

(1) Consider the metric random walk space [X, d, mK ] associated with the Markov kernel K (see Exam-
ple 1.2 (2)) and assume that the stationary probability measure π is reversible. Then, the Laplacian 
ΔmK is given by
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ΔmKf(x) :=
ˆ

X

f(y)dmK
x (y) − f(x) =

∑
y∈X

K(x, y)f(y) − f(x) ∀f ∈ L2(X,π).

Consequently, u(t) := etΔmK u0 is the solution of the equation⎧⎪⎨⎪⎩
du

dt
(t, x) =

∑
y∈X

K(x, y)u(t)(y) − u(t)(x) on (0,+∞),

u(0) = u0.

Therefore, etΔmK = et(K−I) is the heat semigroup on X with respect to the geometry determined by 
the Markov kernel K. In the case that X is a finite set, we have

etΔmK = et(K−I) = e−t
∞∑

n=0

tnKn

n! .

(2) If we consider the metric random walk space [RN , d, mJ ], being mJ = (mJ
x) the random walk defined 

in Example 1.2 (1), we have that, for the invariant measure ν = LN , the Laplacian is given by

ΔmJ f(x) :=
ˆ

RN

(f(y) − f(x))J(x− y)dx.

Then we have that u(t) := etΔmJ u0 is the solution of the J-nonlocal heat equation⎧⎪⎨⎪⎩
du

dt
(t, x) =

ˆ

RN

(u(t)(y) − u(t)(x))J(x− y)dx in RN × (0,+∞),

u(0) = u0.

(2.6)

In the case that Ω is a closed bounded subset of RN , if we consider the metric random walk space 
[Ω, d, mJ,Ω], being mJ,Ω = (mJ)Ω (see Example 1.2 (5)), that is

mJ,Ω
x (A) :=

ˆ

A

J(x− y)dy +

⎛⎜⎝ ˆ

Rn\Ω

J(x− z)dz

⎞⎟⎠ dδx for every Borel set A ⊂ Ω,

we have that

ΔmJ,Ωf(x) =
ˆ

Ω

(f(y) − f(x))dmJ,Ω
x (y) =

ˆ

Ω

J(x− y)(f(y) − f(x))dy.

Then we have that u(t) := etΔmJ,Ωu0 is the solution of the homogeneous Neumann problem for the 
J-nonlocal heat equation:⎧⎪⎨⎪⎩

du

dt
(t, x) =

ˆ

Ω

(u(t)(y) − u(t)(x))J(x− y)dx in (0,+∞) × Ω,

u(0) = u0.

(2.7)

See [4] for a comprehensive study of problems (2.6) and (2.7).
Observe that, in general, for a bounded set Ω ⊂ X, and by using mΩ, we have that u(t) := etΔmΩu0 is 
the solution of



JID:YJMAA AID:123645 /FLA Doctopic: Partial Differential Equations [m3L; v1.279; Prn:13/11/2019; 12:17] P.16 (1-53)
16 J.M. Mazón et al. / J. Math. Anal. Appl. ••• (••••) ••••••
⎧⎪⎨⎪⎩
du

dt
(t, x) =

ˆ

Ω

(u(t)(y) − u(t)(x))dmx(y) in (0,+∞) × Ω,

u(0) = u0,

that, like (2.7), is an homogeneous Neumann problem for the m-heat equation.

In [37], it is shown, by means of the Fourier transform, that if D ⊂ RN has LN -finite measure, then

eΔmJ χD(x) = e−t
∞∑

n=0

ˆ

D

(J∗)n(x− y)dy t
n

n! (2.8)

In the next result we generalize (2.8) for general metric random walk spaces. We use the notation introduced 
in (1.2).

Theorem 2.4. Let [X, d, m] be a metric random walk space with invariant and reversible measure ν. Let 
u0 ∈ L2(X, ν) ∩ L1(X, ν). Then,

etΔmu0(x) = e−t

⎛⎝u0(x) +
∞∑

n=1

ˆ

X

u0(y)dm∗n
x (y) t

n

n!

⎞⎠ = e−t
∞∑

n=0

ˆ

X

u0(y)dm∗n
x (y) t

n

n! , (2.9)

where 
ˆ

X

u0(y)dm∗0
x (y) = u0(x).

In particular, for D ⊂ X with ν(D) < +∞, we have

etΔmχD(x) = e−t

⎛⎝χD(x) +
∞∑

n=1

ˆ

D

dm∗n
x (y) t

n

n!

⎞⎠ = e−t
∞∑

n=0
m∗n

x (D) t
n

n! ,

where m∗0
x (D) = χD(x).

Proof. We define

u(x, t) = e−t

⎛⎝u0(x) +
∞∑

n=1

ˆ

X

u0(y)dm∗n
x (y) t

n

n!

⎞⎠ .

Note that, since u0 ∈ L1(X, ν), then u0 ∈ L1(X, m∗n
x ) for ν-a.e. x ∈ X and every n ∈ N, and

ˆ

X

k∑
n=0

∣∣∣∣∣∣
ˆ

X

u0(y)dm∗n
x (y)

∣∣∣∣∣∣ t
n

n!dν(x) =
k∑

n=0

ˆ

X

∣∣∣∣∣∣
ˆ

X

u0(y)dm∗n
x (y)

∣∣∣∣∣∣ t
n

n!dν(x)

≤
k∑

n=0

ˆ

X

ˆ

X

|u0(y)| dm∗n
x (y)dν(x) t

n

n! =
k∑

n=0

ˆ

X

|u0(x)| dν(x) t
n

n! ≤ et‖u0‖L1(ν) .

Let

fk(x) =
k∑

n=0

∣∣∣∣∣∣
ˆ

u0(y)dm∗n
x (y)

∣∣∣∣∣∣ t
n

n!

X
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then 0 ≤ fk(x) ≤ fk+1(x) < ∞ and 
´
fkdν ≤ et‖u0‖L1(ν) for every k ∈ N so we may apply monotone 

convergence to get that

ˆ

X

∞∑
n=0

∣∣∣∣∣∣
ˆ

X

u0(y)dm∗n
x (y)

∣∣∣∣∣∣ t
n

n!dν(x) ≤ et‖u0‖L1(ν),

thus the function

x �→
∞∑

n=0

∣∣∣∣∣∣
ˆ

X

u0(y)dm∗n
x (y)

∣∣∣∣∣∣ t
n

n!

belongs to L1(X, ν) and, consequently, is finite ν-a.e. Note that the same is true for the function

x �→
∞∑

n=0

ˆ

X

|u0(y)| dm∗n
x (y) t

n

n! .

From this we get that u(x, t) is well defined and also the uniform convergence of the series for t in compact 
subsets of [0, +∞). Hence,

du

dt
(x, t) = −u(x, t) + e−t

∞∑
n=1

ˆ

X

u0(y)dm∗n
x (y) tn−1

(n− 1)! .

Therefore, to prove (2.9), we only need to show that

e−t
∞∑

n=1

ˆ

X

u0(y)dm∗n
x (y) tn−1

(n− 1)! =
ˆ

X

u(z, t)dmx(z).

Now, by induction it is easy to see that

ˆ

X

u0(y)dm∗n
x (y) =

ˆ

X

⎛⎝ ˆ

X

u0(y)dm∗(n−1)
z (y)

⎞⎠ dmx(z).

Thus,

e−t
∞∑

n=1

ˆ

X

u0(y)dm∗n
x (y) tn−1

(n− 1)! = e−t
∞∑

n=1

ˆ

X

⎛⎝ ˆ

X

u0(y)dm∗(n−1)
z (y)

⎞⎠ dmx(z) tn−1

(n− 1)!

=
ˆ

z∈X

⎛⎝e−t
∞∑

n=1

ˆ

X

u0(y)dm∗(n−1)
z (y) tn−1

(n− 1)!

⎞⎠ dmx(z) =
ˆ

X

u(z, t)dmx(z),

where we have interchanged the series and integral applying the dominated convergence Theorem because∣∣∣∣∣∣e−t
k∑

n=1

ˆ

X

u0(y)dm∗(n−1)
z (y) tn−1

(n− 1)!

∣∣∣∣∣∣ ≤ e−t
∞∑

n=1

ˆ

X

|u0(y)|dm∗(n−1)
z (y) tn−1

(n− 1)! =: F (z)

and F belongs to L1(X, ν), thus to L1(X, mx) for ν-a.e. x ∈ X. �
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2.2. Infinite speed of propagation and ergodicity

In this section we study the infinite speed of propagation of the heat flow (etΔm)t≥0, that is, if it holds 
that

etΔmu0 > 0 for all t > 0 whenever 0 ≤ u0 ∈ L2(X, ν), u0 
≡ 0.

We will see that this property is equivalent to a connectedness property of the space, to the ergodicity of 
the m-Laplacian Δm and to the ergodicity of the measure ν.

Let [X, d, m] be a metric random walk space with invariant measure ν. For a ν measurable set D, we set

Nm
D = {x ∈ X : m∗n

x (D) = 0, ∀n ∈ N}.

For n ∈ N, we also define

Hm
D,n = {x ∈ X : m∗n

x (D) > 0},

and

Hm
D :=

⋃
n∈N

Hm
D,n =

{
x ∈ X : m∗n

x (D) > 0 for some n ∈ N
}
.

Note that Nm
D and Hm

D are disjoint and

X = Nm
D ∪Hm

D .

Observe also that Nm
D , Hm

D,n and Hm
D are ν-measurable.

Proposition 2.5. Let [X, d, m] be a metric random walk space with invariant measure ν. For a ν-measurable 
set D, if Nm

D 
= ∅ then:
1.

m∗n
x (Hm

D ) = 0 for every x ∈ Nm
D and n ∈ N,

m∗n
x (Nm

D ) = 1 for every x ∈ Nm
D and n ∈ N.

2. If ν(X) < +∞ or ν is reversible, then

m∗n
x (Hm

D ) = 1 for ν-almost every x ∈ Hm
D , and for all n ∈ N.

m∗n
x (Nm

D ) = 0 for ν-almost every x ∈ Hm
D , and for all n ∈ N.

(2.10)

Consequently, for every x ∈ Nm
D and ν-a.e. y ∈ Hm

D we have mx⊥my, i.e. mx and my are mutually 
singular.

Proof. 1 : Suppose that m∗k
x (Hm

D ) > 0 for some x ∈ Nm
D and k ∈ N, then, since Hm

D = ∪nH
m
D,n there exists 

n ∈ N such that m∗k
x (Hm

D,n) > 0 but in that case we have

m∗(n+k)
x (D) =

ˆ

z∈X

m∗n
z (D)dm∗k

x (z) ≥
ˆ

z∈Hm

m∗n
z (D)dm∗k

x (z) > 0

D,n
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since m∗n
z (D) > 0 for ever z ∈ Hm

D,n, and this contradicts that x ∈ Nm
D . The second statement in 1. is then 

immediate.
2 : Fix n ∈ N. Using statement 1. we have that for any finite ν-measurable set A,

ν(A ∩Hm
D ) =

ˆ

X

m∗n
x (A ∩Hm

D )dν(x) =
ˆ

Hm
D

m∗n
x (A ∩Hm

D )dν(x) (2.11)

because m∗n
x (Hm

D ) = 0 for every x ∈ Nm
D .

If ν(Hm
D ) is finite, by (2.11),

ν(Hm
D ) =

ˆ

Hm
D

m∗n
x (Hm

D )dν(x) ∀n ∈ N,

and, therefore,

m∗n
x (Hm

D ) = 1 for ν almost every x ∈ Hm
D , and for all n ∈ N.

On the other hand, if ν(Hm
D ) is not finite, since the space is σ-finite, we have that Hm

D =
∞⋃
j=1

Hm
D ∩Bj , 

with Bj open and 0 < ν(Bj) < +∞. Now, by (2.11) and using reversibility of ν,

ν(Hm
D ∩Bj) =

ˆ

Hm
D

m∗n
x (Hm

D ∩Bj)dν(x) =
ˆ

HD
m∩Bj

m∗n
x (Hm

D )dν(x);

thus

m∗n
x (Hm

D ) = 1 for ν-almost every x ∈ HD
m ∩Bj .

Consequently,

m∗n
x (Hm

D ) = 1 for ν almost every x ∈ Hm
D , and for all n ∈ N.

The second statement in 2 then follows. �
Proposition 2.6. Let [X, d, m] be a metric random walk space with invariant measure ν such that ν(X) < +∞
or ν is reversible. For a ν-measurable set D, we have that, for every n ∈ N and for any finite ν-measurable 
set A,

ν(A ∩Hm
D ) =

ˆ

Hm
D

m∗n
x (A)dν(x),

and

ν(A ∩Nm
D ) =

ˆ

Nm
D

m∗n
x (A)dν(x).

Proof. If Nm
D = ∅ the result follows trivially, so let us suppose that Nm

D 
= ∅. By (2.11), and using Proposi-
tion 2.5, we have that, for any finite ν-measurable set A,
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ν(A ∩Hm
D ) =

ˆ

Hm
D

m∗n
x (A ∩Hm

D )dν(x) =
ˆ

Hm
D

m∗n
x (A)dν(x)

since

m∗n
x (A) = m∗n

x (A ∩Hm
D ) + m∗n

x (A ∩Nm
D ) = m∗n

x (A ∩Hm
D )

for ν-a.e. x ∈ Hm
D and every n ∈ N. Similarly, one proves the other statement. �

We have the following corollary.

Corollary 2.7. Let [X, d, m] be a metric random walk space with invariant measure ν such that ν(X) < +∞
or ν is reversible. For any ν-measurable set D, we have that

ν(Nm
D ∩D) = 0.

Consequently, if ν(D) > 0, D ⊂ Hm
D up to a ν-null set; therefore, for ν-a.e. x ∈ D there exists n = n(x) ∈ N

such that m∗n
x (D) > 0.

Proof. If D is finite, from Proposition 2.6,

ν(Nm
D ∩D) =

ˆ

Nm
D

m∗n
x (D)dν(x) = 0.

If D is not finite, then D =
∞⋃
j=1

D ∩Bj , with Bj open and 0 < ν(Bj) < +∞. Then,

ν(Nm
D ∩D) ≤

∞∑
j=1

ν(Nm
D ∩D ∩Bj).

Now, from Proposition 2.6, ν(Nm
D ∩D ∩Bj) =

ˆ

Nm
D

m∗n
x (D ∩Bj)dν(x) ≤

ˆ

Nm
D

m∗n
x (D)dν(x) = 0, thus

ν(Nm
D ∩D) = 0. �

Definition 2.8. A metric random walk space [X, d, m] with invariant measure ν is called random-walk-
connected or m-connected if for any D ⊂ X with 0 < ν(D) < +∞ we have that ν(Nm

D ) = 0.
A metric random walk space [X, d, m] with invariant measure ν is called weakly-m-connected if for any 

open set D ⊂ X with 0 < ν(D) < +∞ we have that ν(Nm
D ) = 0.

Theorem 2.9. Let [X, d, m] be a metric random walk space with invariant and reversible measure ν.

1. The space is m-connected if, and only if, for any non-null 0 ≤ u0 ∈ L2(X, ν), we have etΔmu0 > 0
ν-a.e. for all t > 0.

2. The space is weakly-m-connected if, and only if, for any non-null 0 ≤ u0 ∈ L2(X, ν) ∩ C(X), we have 
etΔmu0 > 0 ν-a.e. for all t > 0.
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Proof. (1, ⇒): Given a non-null 0 ≤ u0 ∈ L2(X, ν), there exist D ⊂ X with 0 < ν(D) < +∞ and α > 0, 
such that u0 ≥ αχD. Therefore, by Theorem 2.4,

etΔmu0(x) ≥ αetΔmχD(x) = αe−t
∞∑

n=0
m∗n

x (D) t
n

n! > 0 for ν-a.e. x ∈ X .

Indeed, if x ∈ X \ Nm
D we have that x ∈ Hm

D , so there exists n ∈ N such that m∗n
x (D) > 0. Then, since 

ν(Nm
D ) = 0, we conclude.

(1, ⇐): Take D ⊂ X with 0 < ν(D) < +∞, we have that

etΔmχD(x) = e−t
∞∑

n=0
m∗n

x (D) t
n

n! > 0 for ν-a.e. x ∈ X.

Moreover, since m∗0
x = δx and m∗n

x (D) = 0 for every x ∈ Nm
D and n ≥ 1, we get

e−t
∞∑

n=0
m∗n

x (D) t
n

n! = e−tχD(x) for x ∈ Nm
D ,

thus

χD(x) > 0 for ν-a.e. x ∈ Nm
D .

Hence, by Corollary 2.7, ν(Nm
D ) = 0.

The proof of (2, ⇒) is similar. (2, ⇐): Take D ⊂ X open with 0 < ν(D) < +∞, since ν is regular there 
exists a K ⊂ D compact with ν(K) > 0. By Urysohn’s lemma we may find a continuous function 0 ≤ u0 ≤ 1
such that u0 = 0 on X \D and u0 = 1 on K, thus u0 ≤ χD. Hence

e−t
∞∑

n=0
m∗n

x (D) t
n

n! ≥ etΔmu0(x) > 0 for ν-a.e. x.

So we conclude as before. �
Remark 2.10. In the preceding proof, when Nm

D = ∅, we obtain that in fact

etΔmu0(x) > 0 for all x ∈ X and for all t > 0 .

We will say that the metric random walk space is strong m-connected when this happens for any non-null 
0 ≤ u0 ∈ L2(X, ν), and weakly strong m-connected if it holds for any 0 ≤ u0 ∈ L2(X, ν) ∩ C(X).

The following result gives a characterization of m-connectedness in terms of the m-interaction of sets.

Proposition 2.11. Let [X, d, m] be a metric random walk space with reversible measure ν. The following 
statements are equivalent:

1. X is m-connected.
2. If A, B ⊂ X are ν-measurable non ν-null sets such that A ∪B = X, then Lm(A, B) > 0.

Proof. 1 ⇒ 2 : Assume that X is m-connected and let A, B be as in statement 2. If

0 = Lm(A,B) =
ˆ ˆ

dmx(y)dν(x),

A B
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then

mx(B) = 0 for all x ∈ A \N1, ν(N1) = 0.

Now, since ν is invariant for m,

0 = ν(N1) =
ˆ

X

mx(N1)dν(x),

and, consequently, there exists N2 ⊂ X, ν(N2) = 0, such that

mx(N1) = 0 ∀x ∈ X \N2.

Hence, for x ∈ A \ (N1 ∪N2),

m∗2
x (B) =

ˆ

X

χB(y)dm∗2
x (y) =

ˆ

X

⎛⎝ ˆ

X

χB(y)dmz(y)

⎞⎠ dmx(z)

=
ˆ

X

mz(B)dmx(z) =
ˆ

A

mz(B)dmx(z) +
ˆ

B

mz(B)dmx(z)

︸ ︷︷ ︸
=0, since x ∈ A \ N1

=
ˆ

A\N1

mz(B)dmx(z)

︸ ︷︷ ︸
=0, since z ∈ A \ N1

+
ˆ

N1

mz(B)dmx(z)

︸ ︷︷ ︸
=0, since x /∈ N2

= 0

Working as above, we find N3 ⊂ X, ν(N3) = 0, such that

mx(N1 ∪N2) = 0 ∀x ∈ X \N3.

Hence, for x ∈ A \ (N1 ∪N2 ∪N3), we have that

m∗3
x (B) =

ˆ

X

χB(y)dm∗3
x (y) =

ˆ

X

⎛⎝ ˆ

X

χB(y)dm∗2
z (y)

⎞⎠ dmx(z)

=
ˆ

X

m∗2
z (B)dmx(z) ≤

ˆ

A

m∗2
z (B)dmx(z) +

ˆ

B

m∗2
z (B)dmx(z)

︸ ︷︷ ︸
=0, since x ∈ A \ (N1 ∪ N2)

≤
ˆ

A\(N1∪N2)

m∗2
z (B)dmx(z)

︸ ︷︷ ︸
=0, since z ∈ A \ (N1 ∪ N2)

+
ˆ

N1∪N2

m∗2
z (B)dmx(z)

︸ ︷︷ ︸
=0, since x /∈ N3

= 0.

Inductively, we obtain that

m∗n
x (B) = 0 for ν-a.e. x ∈ A and every n ∈ N.

Consequently,
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A ⊂ Nm
B

up to a ν-null set, which is a contradiction.
2 ⇒ 1 : Assume that statement 2 holds. If X is not m-connected, then there exists a ν-measurable set 

D ⊂ X, 0 < ν(D) < +∞, such that ν(Nm
D ) > 0. Moreover, by Corollary 2.7, D ⊂ Hm

D . Hence, we have that

ν(Nm
D ) > 0, ν(Hm

D ) > 0 and X = Nm
D ∪Hm

D ,

thus, by the hypothesis, Lm(Nm
D , Hm

D ) > 0, which is a contradiction. �
Observe that the metric random walk space given in Example 1.2 (1) is m-connected. This space has 

Ollivier-Ricci curvature equal to zero. In the next result we see that metric random walk spaces with positive 
Ollivier-Ricci curvature are m-connected. We will also see that connected graphs are always m-connected 
in Theorem 2.15.

Theorem 2.12. Let [X, d, m] be a metric random walk space with finite invariant measure ν. Assume that 
the Ollivier-Ricci curvature κ satisfies κ > 0. Then, [X, d, m] with ν is m-connected and weakly strong 
m-connected.

Proof. Under the hypothesis κ > −∞, recall that κ ≤ 1 by definition, Y. Ollivier in [42, Proposition 20]
proves the following W1 contraction property:

Let [X, d, m] be a metric random walk space. Then, for any two probability distributions, μ and μ′,

W d
1 (μ ∗m∗n, μ′ ∗m∗n) ≤ (1 − κ)nW d

1 (μ, μ′). (2.12)

Hence, under the hypothesis κ > 0, Y. Ollivier in [42, Corollary 21] proves that the invariant measure ν
(exists and) is unique up to a multiplicative constant, and that, for ν such that ν(X) = 1, the following 
hold:

(i) W d
1 (μ ∗m∗n, ν) ≤ (1 − κ)nW d

1 (μ, ν) ∀n ∈ N, ∀μ ∈ P(X),

(ii) W d
1 (m∗n

x , ν) ≤ (1 − κ)nW
d
1 (δx,mx)

κ
∀n ∈ N, ∀x ∈ X.

(2.13)

So we will suppose, without loss of generality, that ν(X) = 1. By (2.13) and [54, Theorem 6.9], we have that

μ ∗m∗n ⇀ ν weakly as measures, ∀μ ∈ P(X),

m∗n
x ⇀ ν weakly as measures, for every x ∈ X.

(2.14)

Let us now see that the space is m-connected if κ > 0. Take D ⊂ X with 0 < ν(D) < +∞ and suppose 
that ν(Nm

D ) > 0. By Proposition 2.7, we have ν(Hm
D ) > 0. Let

μ := 1
ν(Hm

D )ν Hm
D ∈ P(X),

and

μ′ := 1
ν(Nm

D )ν Nm
D ∈ P(X).

Now, by Proposition 2.6,
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μ ∗m∗n = μ,

and

μ′ ∗m∗n = μ′,

but then, by (2.12), we get

W1(μ, μ′) = W1(μ ∗m∗n, μ′ ∗m∗n) ≤ (1 − κ)nW1(μ, μ′)

which is only possible if W1(μ, μ′) = 0 since 1 − κ < 1. Hence,

μ = μ′,

and this implies 1 = μ′(Nm
D ) = μ(Nm

D ) = 0 which gives a contradiction. Therefore, ν(Nm
D ) = 0 so the space 

is m-connected.
If D is open and ν(D) > 0 then Nm

D = ∅. Indeed, for x ∈ Nm
D , by (2.14), we have

0 < ν(D) ≤ lim inf
n

m∗n
x (D) = 0. �

Remark 2.13. In [28], it is shown that uniqueness of the invariant probability measure implies its ergodicity. 
Consequently, Theorem 2.12 follows from [42, Corollary 21] (see Theorem 2.19 for the relation between 
ergodicity and m-connectedness). We have presented the result for the sake of completeness and using the 
framework of m-connectedness.

Note that, in the previous result, a condition involving the random walk and the metric on the ambient 
space yields the m-connectedness of the metric random walk space, which is, a priori, unrelated to the 
metric.

Proposition 2.14. Let [X, d, m] be a metric random walk space with invariant measure ν such that supp ν = X

and either ν(X) < +∞, or ν is reversible. Suppose further that [X, d, m] has the strong-Feller property and 
(X, d) is connected, then [X, d, m] with ν is strong m-connected.

Proof. Recall that, since [X, d, m] has the strong-Feller property, [X, d, m∗k] also has this property for any 
k ∈ N. Take D with 0 < ν(D) < +∞. Let us see first that Hm

D is open or, equivalently, that Nm
D is closed; 

indeed, if we have (xn) ⊂ Nm
D such that limn→∞ xn = x ∈ X then

m∗k
x (D) = lim

n→∞
m∗k

xn
(D) = 0

for any k ∈ N, thus x ∈ Nm
D .

On the other hand, if mx(Hm
D ) < 1 for some x ∈ Hm

D , since [X, d, m] has the strong-Feller property, there 
exists r > 0 such that my(Hm

D ) < 1 for every y ∈ Br(x) ⊂ Hm
D . Therefore, by (2.10), ν(Br(x)) = 0, which 

is a contradiction since supp ν = X. Hence,

mx(Hm
D ) = 1 if, and only if, x ∈ Hm

D .

Then, given (xn) ⊂ Hm
D such that limn→∞ xn = x ∈ X, we have

mx(Hm
D ) = lim

n→∞
mxn

(Hm
D ) = 1,

so x ∈ Hm
D . Therefore, Hm

D is also closed and then, since X is connected, we have that X = Hm
D , which 

implies that Nm
D = ∅. �
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Theorem 2.15. Let [V (G), dG, (mG
x )] be the metric random walk space associated with the locally finite 

weighted connected graph G = (V (G), E(G)). Then [V (G), dG, mG] with νG is strong m-connected.

Proof. Take D ⊂ V (G) with νG(D) > 0, and let us see that NmG

D = ∅. Suppose that there exists y ∈ NmG

D , 
this implies that

(mG)∗ny (D) = 0 ∀n ∈ N. (2.15)

Now, given x ∈ D, there is a path of length m, {x, z1, z2, . . . , zm−1, y}, x ∼ z1 ∼ z2 ∼ · · · ∼ zm−1 ∼ y, and 
then

(mG)∗ny ({x}) ≥ wyzm−1wzm−1zm−2 · · ·wz2z1wz1x

dydzm−1dzm−2 · · · dz2dz1
> 0,

which is in contradiction with (2.15). �
The next examples show that there is no relation between m-connectedness and classical connectedness, 

i.e., there are connected metric random walk spaces that are not m-connected and, conversely, there are 
m-connected metric random walk spaces that are not connected.

Example 2.16. Take ([0, 1], d) with d the Euclidean distance and let C be the Cantor set. Let μ be the Cantor 
distribution, that is, the probability measure whose cumulative distribution function F (x) = μ([0, x)) is the 
Cantor function. We have that μ is singular with respect to the Lebesgue measure and its support is the 
Cantor set. We denote η := L1 [0, 1] and define the random walk

mx :=
{

η if x ∈ [0, 1] \ C,

μ if x ∈ C.

Then, ν = η + μ is invariant and reversible. Indeed,
ˆ

(0,1)

ˆ

(0,1)

f(y)dmx(y)dν(x) =
ˆ

(0,1)\C

ˆ

(0,1)

f(y)dydx +
ˆ

C

ˆ

C

f(y)dμ(y)dμ(x) =

=
ˆ

(0,1)

f(y)dy +
ˆ

C

f(y)dμ(y) =
ˆ

(0,1)

f(y)dν(y).

Similarly, we prove that ν is reversible.
On the other hand, m∗n

x = mx for any x ∈ (0, 1) and n ∈ N. In fact, if x ∈ C, we have

ˆ

y∈X

f(y)dm∗2
x (y) =

ˆ

z∈(0,1)

⎛⎜⎝ ˆ

y∈0,1)

f(y)dmz(y)

⎞⎟⎠ dmx(z) =
ˆ

z∈(0,1)

⎛⎜⎝ ˆ

y∈(0,1)

f(y)dmz(y)

⎞⎟⎠ dμ(z)

=
ˆ

z∈C

⎛⎜⎝ ˆ

y∈(0,1)

f(y)dmz(y)

⎞⎟⎠ dμ(z) =
ˆ

z∈C

⎛⎝ ˆ

y∈C

f(y)dμ(y)

⎞⎠ dμ(z) =
ˆ

X

f(y)dmx(y),

and the proof for x ∈ (0, 1) \ C is similar.
Consequently, m∗n

x (C) = 0 for every x ∈ (0, 1) \C and for every n ∈ N, so that ν(Nm
C ) ≥ ν((0, 1) \C) =

1 > 0 and, therefore, the space [(0, 1), d, m] is not m-connected.
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For x, y ∈ (0, 1), x 
= y, if x, y ∈ C, or x, y ∈ (0, 1) \ C, then W1(mx, my) = 0 and hence κ(x, y) =
1; otherwise, if x ∈ C and y ∈ (0, 1) \ C then W1(mx, my) = W1(μ, η). Hence κ(x, y) = 1 − W1(μ,η)

|x−y| . 
Consequently, since κ = inf

x�=y
κ(x, y) and κ(x, y) = 1 if x, y ∈ C or x, y ∈ (0, 1) \ C, we get

κ = inf
x∈C,y/∈C

(
1 − W1(μ, η)

|x− y|

)
= −∞ .

Example 2.17. Let Ω :=
(]

− ∞, 0
]
∪

[1
2 , +∞

[)
× RN−1 and consider the metric random walk space 

[Ω, d, mJ,Ω], with d the Euclidean distance and J(x) = 1
|B1(0)|

χ
B1(0) (see Example (1.2) (1)). It is easy 

to see that this space with reversible and invariant measure ν = L Ω is m-connected, but (Ω, d) is not 
connected. Let us see that its Ollivier-Ricci curvature κ is negative. Indeed, take x = (−1

2 , 0, . . . , 0) ∈ Ω, 
and y = (2, 0, . . . , 0) ∈ Ω. Then, we have that u(x1, x2, . . . xN ) = −x1 is a Kantorovich potential for the 
transport of mJ

x to mJ
y , consequently

W1(mJ,Ω
x ,mJ,Ω

y ) ≥
ˆ

Ω

u(z)
(
dmJ,Ω

x (z) − dmJ,Ω
y (z)

)

=
ˆ

Ω

u(z)
(
dmJ

x(z) − dmJ
y (z)

)
+

⎛⎜⎝ ˆ

RN\Ω

dmJ
x(z)

⎞⎟⎠u(x)

=
ˆ

RN

u(z)
(
dmJ

x(z) − dmJ
y (z)

)
+

ˆ

RN\Ω

(u(x) − u(z))dmJ
x(z)

= W1(mJ
x ,m

J
y ) +

ˆ

RN\Ω

(
1
2 + z1

)
dmJ

x(z)

> d(x, y) .

Therefore, the Ollivier-Ricci curvature of [Ω, d, mJ,Ω]

κ ≤ κ(x, y) = 1 −
W1(mJ,Ω

x ,mJ,Ω
y )

d(x, y) < 0.

For Ω =
(]

−∞, 0
]
∪

[
2, +∞

[)
× RN−1, neither [Ω, d, mJ,Ω] with ν = L Ω is m-connected, nor (Ω, d)

is connected. As above, we can prove that its Ollivier-Ricci curvature is negative.
In a similar way we have that, for Ω = RN \ (0, 2)N , [Ω, d, mJ,Ω] with ν = L Ω is m-connected, (Ω, d)

is connected and its Ollivier-Ricci curvature is κ < 0.

We will now relate the m-connectedness property with other known concepts in the literature. Let us 
begin with the concept of ergodicity (see, for example, [28]).

Definition 2.18. Let [X, d, m] be a metric random walk space with invariant probability measure ν. A Borel 
set B ⊂ X is said to be invariant with respect to the random walk m if mx(B) = 1 whenever x is in B.

The invariant probability measure ν is said to be ergodic if ν(B) = 0 or ν(B) = 1 for every invariant set 
B with respect to the random walk m.
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Theorem 2.19. Let [X, d, m] be a metric random walk space with invariant probability measure ν. Then, the 
following assertions are equivalent:

(i) [X, d, m] with ν is m-connected.
(ii) ν is ergodic.

Proof. (i) ⇒ (ii). If ν is not ergodic, there exists an invariant set B with respect to the random walk m
such that 0 < ν(B) < 1. However, note that B is also invariant with respect to m∗2. Indeed,

m∗2
x (B) =

ˆ

X

mz(B)dmx(z) ≥
ˆ

B

mz(B)dmx(z) = mx(B) = 1

for every x ∈ B. Inductively, we obtain that, in fact, B is invariant for m∗n, for every n ∈ N. Therefore, 
since

ν(B) =
ˆ

X

m∗n
x (B)dν(x) ≥

ˆ

B

m∗n
x (B)dν(x) = ν(B) for every n ∈ N,

we obtain that m∗n
x (B) = 0 for every n ∈ N and ν-a.e. x ∈ X \ B. Therefore, X \ B ⊂ Nm

B ν-a.e., thus 
ν(Nm

B ) > 0 and, consequently, [X, d, m] with ν is not m-connected.
(ii) ⇒ (i). Let D ⊂ X be a ν-measurable set with ν(D) > 0. By Proposition 2.5 we have that Nm

D

is invariant with respect to the random walk m. Then, since ν is ergodic, we have that ν(Nm
D ) = 0 or 

ν(Nm
D ) = 1. Now, since ν(D) > 0, by Corollary 2.7, we have that ν(Nm

D ) = 0 and, consequently, [X, d, m]
with ν is m-connected. �

Following Bakry, Gentil and Ledoux [7], we give the following definition.

Definition 2.20. Let [X, d, m] be a metric random walk space with invariant measure ν. We say that Δm is 
ergodic if, for u ∈ Dom(Δm), Δmu = 0 implies that u is constant (being this constant 0 if ν is not finite).

Theorem 2.21. Let [X, d, m] be a metric random walk space with finite invariant measure ν. Then,

Δm is ergodic ⇔ [X, d,m] is random walk connected.

Proof. (⇒): Suppose that ν(X) < +∞ and [X, d, m] is not m-connected, then there exists D ⊂ X with 
ν(D) > 0 such that ν(Nm

D ) > 0. Recall that ν(Hm
D ) > 0. Consider the function

u(x) = χHm
D

(x),

and note that u ∈ L2(X, ν) since ν is finite. Now,

Δmu(x) =
ˆ

X

(
χHm

D
(y) − χHm

D
(x)

)
dmx(y) = mx(Hm

D ) − χHm
D

(x),

hence, by Proposition 2.5,

Δmu = 0 ν-a.e.,

but u is not equal to a constant ν-a.e., and, consequently, Δm is not ergodic.
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(⇐): Suppose now that [X, d, m] is m-connected and that there exists u ∈ L2(X, ν) such that Δmu = 0
ν-a.e. but u is not ν-a.e. equal to a constant function. Then, we may find U , V ⊂ X with positive ν-measure 
such that u(x) < u(y) for every x ∈ U and y ∈ V . Note that

Δm∗nu(x) =
ˆ

X

(u(y) − u(x))dm∗n
x (y)

=
ˆ

X

ˆ

X

(u(z) − u(x))dmy(z)dm∗(n−1)
x (y)

=
ˆ

X

ˆ

X

(u(z) − u(y))dmy(z)dm∗(n−1)
x (y) +

ˆ

X

ˆ

X

(u(y) − u(x))dmy(z)dm∗(n−1)
x (y)

=
ˆ

X

Δmu(y)dm∗(n−1)
x (y) +

ˆ

X

(u(y) − u(x))dm∗(n−1)
x (y)

=
ˆ

X

Δmu(y)dm∗(n−1)
x (y) + Δm∗(n−1)u(x) ,

thus

|Δm∗nu(x)| ≤
ˆ

X

|Δmu(y)| dm∗(n−1)
x (y) + |Δm∗(n−1)u(x)| . (2.16)

Now, using the invariance of ν,
ˆ

X

ˆ

X

|Δmu(y)| dm∗(n−1)
x (y)dν(x) =

ˆ

X

|Δmu(x)| dν(x) = 0

so
ˆ

X

|Δmu(y)| dm∗(n−1)
x (y) = 0 for ν-a.e. x ∈ X,

thus, by induction on (2.16), Δm∗nu(x) = 0 for ν-a.e. x ∈ X and every n ∈ N. Since [X, d, m] is m-connected 
we have ν(Nm

V ) = ν(X \Hm
V ) = 0, so there exists n ∈ N such that ν(U ∩Hm

V,n) > 0. Consequently, we get 
a contradiction:

0 = Hm∗n(u) =
ˆ

X

ˆ

X

∇u(x, y)2dm∗n
x (y)dν(x) ≥

ˆ

U∩Hm
V,n

ˆ

V

∇u(x, y)2dm∗n
x (y)dν(x) > 0 . �

Let [X, d, m] be a metric random walk space with invariant and reversible measure ν. It is easy to see 
that Δm is ergodic if, and only if, etΔmf = f for all t ≥ 0 implies that f is constant. Moreover, we have the 
following result.

Proposition 2.22. Let [X, d, m] be a metric random walk space with invariant and reversible measure ν. For 
every f ∈ L2(X, ν),

lim etΔmf = f∞ ∈ {u ∈ L2(X, ν) : Δmu = 0}.

t→∞
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Suppose further that Δm is ergodic:

(i) If ν(X) = +∞, then f∞ = 0.
(ii) If ν(X) < +∞, then f∞ = 1

ν(X)

ˆ

X

f(x)dν(x).

Proof. The first result follows from [14, Theorem 3.11]. The second part is a consequence of the ergodicity 
of Δm and the conservation of mass (2.4). �

When the invariant measure is a probability measure, the relation between both concepts of ergodicity, 
the one for the invariant measure and the one for the Laplacian was known; see, for example, [28]. Let us 
now give another characterization of the ergodicity in terms of geometric properties.

Lemma 2.23. Let [X, d, m] be a metric random walk space with invariant and reversible measure ν and 
assume that ν(X) < +∞. Then for every ν-measurable subset D ⊂ X we have

ΔmχD(x) = 0 ⇔ mx(D) = χD(x), (2.17)

and

ΔmχD = 0 ⇔ Pm(D) = 0 ⇔
ˆ

D

Hm
∂D(x)dν(x) = −ν(D).

Proof. Since

ΔmχD(x) =
ˆ

X

(
χD(y) − χD(x)

)
dmx(y) = mx(D) − χD(x)

we have that ΔmχD(x) = 0 if, and only if, χD(x) −mx(D) = 0, and we get (2.17).
Suppose now that ΔmχD = 0, then χD(x) = mx(D), thus integrating this expression over D with respect 

to ν, we get

Pm(D) = ν(D) −
ˆ

D

ˆ

D

dmx(y)dν(x) = 0.

Conversely, if Pm(D) = 0, we have

ν(D) =
ˆ

D

mx(D)dν(x).

Then, on one hand,

mx(D) = χD(x) for ν-a.e. x ∈ D,

and, on the other hand, since

ν(D) =
ˆ

X

mx(D)dν(x) =
ˆ

D

mx(D)dν(x) +
ˆ

Dc

mx(D)dν(x),

we get
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ˆ

Dc

mx(D)dν(x) = 0,

thus

mx(D) = χD(x) for ν-a.e. x ∈ Dc.

Therefore,

mx(D) = χD(x) for ν-a.e. x ∈ X

and, by (2.17), we get ΔmχD = 0.
For the second equivalence, by (1.5), we have that

ˆ

D

Hm
∂D(x)dν(x) = 2Pm(D) − ν(D),

thus Pm(D) = 0 if, and only if, 
ˆ

D

Hm
∂D(x)dν(x) = −ν(D). �

Theorem 2.24. Let [X, d, m] be a metric random walk space with invariant and reversible measure ν and 
assume that ν(X) < +∞. The following facts are equivalent:

(1) Δm is ergodic;
(2) ΔmχD = 0 for a ν-measurable set D implies that χD is constant;
(3) Pm(D) > 0 for every ν-measurable set D such that 0 < ν(D) < ν(X);
(4) The ν-mean value of the m-mean curvature of ∂D in D

1
ν(D)

ˆ

D

Hm
∂D(x)dν(x) > −1 for every ν-measurable set D such that 0 < ν(D) < ν(X).

Proof. Obviously, (1) implies (2), and this yields (3) since Pm(D) = 0 implies, by Lemma 2.23, that 
ΔmχD = 0. Also, by Lemma 2.23, (3) implies (2). Let us now see that (2) implies (1): Suppose that Δm is 
not ergodic, then the space is not m-connected and, consequently, there exists D ⊂ X with ν(D) > 0 such 
that 0 < ν(Nm

D ) < 1; but, from Proposition 2.5,

ΔmχNm
D

(x) = mx(Nm
D ) − χNm

D
(x) = 0,

and this implies that χNm
D

should be constant, which is a contradiction with 0 < ν(Nm
D ) < ν(X). The 

equivalence with (4) is evident by the second equivalence in Lemma 2.23. �
3. Functional inequalities

Let [X, d, m] be a metric random walk space with invariant and reversible measure ν such that ν(X) <
+∞. In this section we will further assume that ν(X) = 1, i.e. that ν is a probability measure. Note that 
we may always work with 1 ν.
ν(X)
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3.1. Spectral gap and Poincaré inequality

We denote the mean value of f ∈ L1(X, ν) (or the expected value of f) with respect to ν by

ν(f) := Eν(f) =
ˆ

X

f(x)dν(x).

Moreover, given f ∈ L2(X, ν), we denote its variance with respect to ν by

Varν(f) :=
ˆ

X

(f(x) − ν(f))2dν(x) = 1
2

ˆ

X×X

(f(x) − f(y))2dν(y)dν(x).

Definition 3.1. The spectral gap of −Δm is defined as

gap(−Δm) := inf
{

Hm(f)
Varν(f) : f ∈ D(Hm), Varν(f) 
= 0

}

= inf

⎧⎨⎩Hm(f)
‖f‖2

2
: f ∈ D(Hm), ‖f‖2 
= 0,

ˆ

X

fdν = 0

⎫⎬⎭ . (3.1)

Observe that, since ν(X) < +∞, we have

D(Hm) = L2(X, ν).

Definition 3.2. We say that [X, d, m, ν] satisfies a Poincaré inequality if there exists λ > 0 such that

λVarν(f) ≤ Hm(f) for all f ∈ L2(X, ν),

or, equivalently,

λ‖f‖2
L2(X,ν) ≤ Hm(f) for all f ∈ L2(X, ν) with ν(f) = 0.

Note that, if gap(−Δm) > 0, then [X, d, m, ν] satisfies a Poincaré inequality with λ = gap(−Δm):

gap(−Δm)Varν(f) ≤ Hm(f) for all f ∈ L2(X, ν),

being the spectral gap the best constant in the Poincaré inequality.
With such an inequality at hand and with a similar proof to the one done in the continuous setting (see, 

for instance, [7]), we have that if gap(−Δm) > 0 then etΔmu0 converges to ν(u0) with exponential rate 
gap(−Δm).

Theorem 3.3. The following statements are equivalent:

(i) There exists λ > 0 such that

λVarν(f) ≤ Hm(f) for all f ∈ L2(X, ν).

(ii) For every f ∈ L2(X, ν)

‖etΔmf − ν(f)‖L2(X,ν) ≤ e−λt‖f − ν(f)‖L2(X,ν) for all t ≥ 0;
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or, equivalently, for every f ∈ L2(X, ν) with ν(f) = 0,

‖etΔmf‖L2(X,ν) ≤ e−λt‖f‖L2(X,ν) for all t ≥ 0.

Remark 3.4. Let ‖μ − ν‖TV be the total variation distance:

‖μ− ν‖TV := sup{|μ(A) − ν(A)| : A ⊂ X Borel}.

Then, for f ∈ L2(X, ν) and μt = etΔmf ν, we have

‖μt − ν‖TV ≤ ‖f − 1‖L2(X,ν) e
−gap(−Δm)t.

Indeed, by Theorem 3.3, for any Borel set A ⊂ X,

∣∣∣∣∣∣
ˆ

A

etΔmfdν − ν(A)

∣∣∣∣∣∣ ≤
ˆ

A

∣∣etΔmf − 1
∣∣ dν ≤

⎛⎝ ˆ

X

∣∣etΔmf − 1
∣∣2 dν

⎞⎠
1
2

≤ ‖f − 1‖L2(X,ν) e
−gap(−Δm)t .

Hence, it is of interest to elucidate when the spectral gap of −Δm is positive. In this section we will deal 
with such a question.

Let H(X, ν) be the subspace of L2(X, ν) consisting of the functions which are orthonormal to the con-
stants, i.e.,

H(X, ν) =
{
f ∈ L2(X, ν) : ν(f) = 0

}
.

Since the operator −Δm : H(X, ν) → H(X, ν) is self-adjoint and non-negative and ‖Δm‖ ≤ 2 (see Theo-
rem 2.1), by [15, Proposition 6.9] we have that the spectrum σ(−Δm) of −Δm in H(X, ν) satisfies

σ(−Δm) ⊂ [α, β] ⊂ [0, 2],

where

α := inf {〈−Δmu, u〉 : u ∈ H(X, ν), ‖u‖2 = 1} ∈ σ(−Δm),

and

β := sup {〈−Δmu, u〉 : u ∈ H(X, ν), ‖u‖2 = 1} ∈ σ(−Δm).

If f ∈ L2(X, ν) and Varν(f) 
= 0, then u := f − ν(f) 
= 0 belongs to H(X, ν), so

α ≤ Hm

(
u

‖u‖2

)
= Hm(u)

‖u‖2
2

= Hm(f)
Varν(f) ,

and, consequently,

gap(−Δm) = α = inf {〈−Δmu, u〉 : u ∈ H(X, ν), ‖u‖2 = 1} . (3.2)

Therefore,

gap(−Δm) > 0 ⇐⇒ 0 /∈ σ(−Δm).
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If we assume that −Δm is the sum of an invertible and a compact operator in H(X, ν) (this is true, 
for example, if the averaging operator Mm is compact in H(X, ν)), then, if 0 ∈ σ(−Δm), by Fredholm’s 
alternative Theorem, we have that there exists u ∈ H(X, ν), u 
= 0, such that −Δmu = (I − Mm)u = 0. 
Then, if [X, d, m] is m-connected, by Theorem 2.21, Δm is ergodic so u is constant, thus u = 0 in H(X, ν), 
and we get a contradiction. Consequently, we have the following result.

Proposition 3.5. Let [X, d, m] be an m-connected metric random walk space with invariant-reversible prob-
ability measure ν. If −Δm is the sum of an invertible operator and a compact operator in H(X, ν), then 
gap(−Δm) > 0.

Example 3.6.

(i) If G = (V (G), E(G)) is a finite weighted connected graph, then obviously MmG is compact and, con-
sequently, gap(−ΔG

m) > 0. In this situation, it is well known that, for �(V (G)) = N , the spectrum of 
−ΔmG is 0 < λ1 ≤ λ2 ≤ . . . ≤ λN−1 and 0 < λ1 = gap(−Δm).

(ii) Another example in which −Δm is the sum of an invertible and a compact operator is [Ω, d, mJ,Ω] with 
Ω a bounded domain and the kernel J satisfying: J ∈ C(RN , R) is nonnegative, radially symmetric 
with J(0) > 0 and 

´
RN J(x)dx = 1. Indeed,

−ΔmJ,Ωf(x) =
ˆ

Ω

J(x− y)dyf(x) −
ˆ

Ω

J(x− y)f(y)dy,

where 
ˆ

Ω

J(x −y)dyf(x) defines an invertible operator and 
ˆ

Ω

J(x −y)f(y)dy defines a compact operator. 

Hence, in this case we have (see also [4]):

gap(−ΔmJ,Ω) = inf

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2

ˆ

Ω×Ω

J(x− y)(u(y) − u(x))2dxdy

ˆ

Ω

u(x)2dx
: u ∈ L2(Ω), ‖u‖L2(X,ν) > 0,

ˆ

Ω

u = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
> 0.

Let us point out that the condition J(0) > 0 is necessary, see [4, Remark 6.20].

As a consequence of a result by Miclo [40], we have that gap(−Δm) > 0 if Δm is ergodic and Mm is 
hyperbounded, that is, if there exists p > 2 such that Mm is bounded from L2(X, ν) to Lp(X, ν). If we have 
that mx � ν, i.e., mx = fxν with fx ∈ L1(X, ν), and we assume that

ˆ

X

‖fx‖pL2(X,ν)dν(x) = K < ∞, (3.3)

then, for u ∈ L2(X, ν), by the Cauchy-Schwarz inequality, we have that

‖Mmu‖pp =
ˆ

X

|Mmu(x)|pdν(x) =
ˆ

X

∣∣∣∣∣∣
ˆ

X

u(y)dmx(y)

∣∣∣∣∣∣
p

dν(x) =
ˆ

X

∣∣∣∣∣∣
ˆ

X

u(y)fx(y)dν(y)

∣∣∣∣∣∣
p

dν(x)

≤ ‖u‖pL2(X,ν)

ˆ
‖fx‖pL2(X,ν)dν(x),
X
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hence

‖Mmu‖p ≤ K
1
p ‖u‖L2(X,ν).

Therefore, Mm is hyperbounded and, consequently, we have the following result about the spectral gap.

Proposition 3.7. If Δm is ergodic and (3.3) holds, then gap(−Δm) > 0.

In the next example we see that there exist metric random walk spaces for which the Poincaré inequality 
does not hold.

Example 3.8. Let V (G) = {x3, x4, x5 . . . , xn . . .} be a weighted linear graph with

wx3n,x3n+1 = 1
n3 , wx3n+1,x3n+2 = 1

n2 , wx3n+2,x3n+3 = 1
n3 ,

for n ≥ 1, and let

fn(x) =
{

n if x = x3n+1, x3n+2
0 else.

Note that ν(X) < +∞ (we avoid its normalization for simplicity). Now,

2Hm(fn) =
ˆ

X

ˆ

X

(fn(x) − fn(y))2dmx(y)dν(x)

= dx3n

ˆ

X

(fn(x3n) − fn(y))2dmx3n(y) + dx3n+1

ˆ

X

(fn(x3n+1) − fn(y))2dmx3n+1(y)

+dx3n+2

ˆ

X

(fn(x3n+2) − fn(y))2dmx3n+2(y) + dx3n+3

ˆ

X

(fn(x3n+3) − fn(y))2dmx3n+3(y)

= dx3nn
2

1
n3

dx3n

+ dx3n+1n
2

1
n3

dx3n+1

+ dx3n+2n
2

1
n3

dx3n+2

+ dx3n+3n
2

1
n3

dx3n+3

= 4
n
.

However, we have

ˆ

X

fn(x)dν(x) = n(dx3n+1 + dx3n+2) = 2n
(

1
n2 + 1

n3

)
= 2

n

(
1 + 1

n

)
,

thus

ν(fn) =
2
n

(
1 + 1

n

)
ν(X) = Õ

(
1
n

)
,

where we use the notation

ϕ(n) = Õ(ψ(n)) ⇐⇒ ∃ lim
n→∞

ϕ(n)
ψ(n) = C 
= 0.

Therefore,
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(fn(x) − ν(fn))2 =
{

Õ(n2) if x = x3n+1, x3n+2,

Õ
( 1
n2

)
otherwise.

Finally,

Varν(fn) =
ˆ

X

(fn(x) − ν(fn))2dν(x) = Õ

(
1
n2

) ∑
x�=x3n+1,x3n+2

dx + Õ(n2)(dx3n+1 + dx3n+2)

= Õ

(
1
n2

)
+ 2Õ(n2)

(
1
n2 + 1

n3

)
= Õ(1).

Consequently, [V (G), dG, (mx), ν] does not satisfy a Poincaré inequality for any λ > 0.

In general, since Hm(f) = − ́
X
f(x)Δmf(x)dν(x), if Δmf = 0 then Hm(f) = 0 and, therefore, if 

[X, d, m, ν] satisfies a Poincaré inequality, we have that f is constant:

f(x) =
ˆ

X

f(x)dν(x) ν − a.e.

Consequently, we get the following result.

Proposition 3.9. If [X, d, m, ν] satisfies a Poincaré inequality we have that Δm is ergodic.

Example 3.8 shows that the reverse implication does not hold in general.

3.2. Isoperimetric inequality

Recall that, for a ν-measurable set D ⊂ X,

Pm(D) =
ˆ

D

ˆ

X\D

dmx(y)dν(x) = TVm(χD).

The Poincaré inequality, if given only for characteristic functions, implies that there exists λ > 0 such that

λ ν(D)
(
1 − ν(D)

)
≤ Pm(D) for every ν−measurable set D, (3.4)

(observe that this also implies the ergodicity of Δm, as we have seen in Theorem 2.24). Hence, since

min{x, 1 − x} ≤ 2x(1 − x) ≤ 2min{x, 1 − x} for 0 ≤ x ≤ 1,

inequality (3.4) implies the following isoperimetric inequality (see [2, Theorem 3.46]):

min
{
ν(D), 1 − ν(D)

}
≤ 2

λ
Pm(D) for every ν−measurable set D; (3.5)

and, conversely, the isoperimetric inequality (3.5) implies

λ

2 ν(D)
(
1 − ν(D)

)
≤ Pm(D) for every ν−measurable set D.

Definition 3.10. If there exists λ > 0 satisfying (3.5), we say that [X, d, m, ν] satisfies an isoperimetric 
inequality.
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3.3. Cheeger inequality

In a weighted graph G = (V (G), E(G)) the Cheeger constant is defined as

hG := inf
D⊂V (G)

|∂D|
min{νG(D), νG(V (G) \D)} ,

where

|∂D| :=
∑

x∈D,y∈V \D
wxy.

In [18] (see also [9]), the following relation between the Cheeger constant and the first positive eigenvalue 
λ1(G) of the graph Laplacian ΔmG is proved:

h2
G

2 ≤ λ1(G) ≤ 2hG. (3.6)

The previous inequality appeared in [16], and can be traced back to the paper by Polya and Szego [46].
Let [X, d, m] be a metric random walk space with invariant and reversible probability measure ν. We 

define its Cheeger constant as

hm(X) := inf
{

Pm(D)
min{ν(D), ν(X \D)} : D ⊂ X, 0 < ν(D) < 1

}
,

or, equivalently,

hm(X) = inf
{
Pm(D)
ν(D) : D ⊂ X, 0 < ν(D) ≤ 1

2

}
.

Having in mind (1.4), we have that this definition is consistent with the definition on graphs. Note that, if 
hm(X) > 0, then hm(X) is the best constant in the isoperimetric inequality (3.5).

We will now give a variational characterization of the Cheeger constant which generalizes the one obtained 
in [51] for the particular case of finite graphs. Recall that, given a function u : X → R, μ ∈ R is a median
of u with respect to a measure ν if

ν({x ∈ X : u(x) < μ}) ≤ 1
2ν(X), ν({x ∈ X : u(x) > μ}) ≤ 1

2ν(X).

We denote by medν(u) the set of all medians of u. It is easy to see that

μ ∈ medν(u) ⇐⇒ −ν({u = μ}) ≤ ν({x ∈ X : u(x) > μ}) − ν({x ∈ X : u(x) < μ}) ≤ ν({u = μ}),

from where it follows that

0 ∈ medν(u) ⇐⇒ ∃ξ ∈ sign(u) such that
ˆ

X

ξ(x)dν(x) = 0,

where

sign(u)(x) :=

⎧⎪⎨⎪⎩
1 if u(x) > 0,
−1 if u(x) < 0,
[−1, 1] if u = 0.
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Let

λm
1 (X) := inf {TVm(u) : ‖u‖1 = 1, 0 ∈ medν(u)} . (3.7)

Theorem 3.11. If [X, d, m] is a metric random walk space with invariant and reversible probability measure ν, 
then

hm(X) = λm
1 (X).

Proof. If D ⊂ X, 0 < ν(D) ≤ 1
2 , then 0 ∈ medν(χD). Thus,

λm
1 (X) ≤ TVm

(
1

ν(D)
χD

)
= 1

ν(D)Pm(D)

and, therefore,

λm
1 (X) ≤ hm(X).

Now, for the other inequality, let u ∈ L1(X, ν) such that ‖u‖1 = 1 and 0 ∈ medν(u). Since 0 ∈ medν(u), by 
the Coarea formula (Theorem 1.4), and having in mind that the set {t ∈ R : ν({u = t}) > 0} is countable, 
we have

TVm(u) =
+∞ˆ

−∞

Pm(Et(u)) dt =
+∞ˆ

0

Pm(Et(u)) dt +
0ˆ

−∞

Pm(X \ Et(u)) dt

≥ hm(X)
+∞ˆ

0

ν(Et(u)) dt + hm(X)
0ˆ

−∞

ν(X \ Et(u)) dt

= hm(X)

⎛⎝ˆ

X

u+(x)dν(x) +
ˆ

X

u−(x)dν(x)

⎞⎠ = hm(X)‖u‖1 = hm(X).

Therefore, taking the infimum in u, we get λm
1 (X) ≥ hm(X). �

Following [18] and using Theorem 3.11, in the next result we see that the Cheeger inequality (3.6) also 
holds in our context.

Theorem 3.12. Let [X, d, m] be a metric random walk space with invariant and reversible probability mea-
sure ν. The following Cheeger inequality holds

h2
m

2 ≤ gap(−Δm) ≤ 2hm.

Proof. Let (fn) ⊂ D(Hm), with ν(fn) = 0, such that

lim
n→∞

Hm(fn)
‖fn‖2

2
= gap(−Δm).

If we take μn ∈ medν(fn), we have
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2Hm(fn) =
ˆ

X

ˆ

X

(fn(y) − μn − (fn(x) − μn))2dmx(y)dν(x)

=
ˆ

X

ˆ

X

[
(fn(y) − μn)+ − (fn(x) − μn)+ − ((fn(y) − μn)− − (fn(x) − μn)−)

]2
dmx(y)dν(x)

=
ˆ

X

ˆ

X

(
(fn(y) − μn)+ − (fn(x) − μn)+

)2
dmx(y)dν(x)

+
ˆ

X

ˆ

X

(
(fn(y) − μn)− − (fn(x) − μn)−

)2
dmx(y)dν(x)

−2
ˆ

X

ˆ

X

(
(fn(y) − μn)+ − (fn(x) − μn)+

) (
(fn(y) − μn)− − (fn(x) − μn)−

)
dmx(y)dν(x) .

Now, an easy calculation gives

−
ˆ

X

ˆ

X

(
(fn(y) − μn)+ − (fn(x) − μn)+

) (
(fn(y) − μn)− − (fn(x) − μn)−

)
dmx(y)dν(x) ≥ 0.

On the other hand, since ν(fn) = 0, we have
ˆ

X

f2
n(x)dν(x) ≤

ˆ

X

(fn(x) − μn)2dν(x).

Therefore,

2Hm(fn)
‖fn‖2

2
≥

ˆ

X

ˆ

X

(
(fn(y) − μn)+ − (fn(x) − μn)+

)2
dmx(y)dν(x)

ˆ

X

[(fn(x) − μn)+]2dν(x) +
ˆ

X

[(fn(x) − μn)−]2dν(x)
+

+

ˆ

X

ˆ

X

(
(fn(y) − μn)− − (fn(x) − μn)−

)2
dmx(y)dν(x)

ˆ

X

[(fn(x) − μn)+]2dν(x) +
ˆ

X

[(fn(x) − μn)−]2dν(x)
.

Having in mind that

a + b

c + d
≥ min

{
a

c
,
b

d

}
for every a, b, c, d ∈ R+,

and
ˆ

X

[(fn(x) − μn)+]2dν(x) +
ˆ

X

[(fn(x) − μn)−]2dν(x) > 0,

we can assume, without loss of generality, that
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ˆ

X

[(fn(x) − μn)+]2dν(x) > 0,

and that

2Hm(fn)
‖fn‖2

2
≥

ˆ

X

ˆ

X

(
(fn(y) − μn)+ − (fn(x) − μn)+

)2
dmx(y)dν(x)

ˆ

X

[(fn(x) − μn)+]2dν(x)
.

By the Cauchy-Schwartz inequality, we have

ˆ

X

ˆ

X

∣∣[(fn(y) − μn)+]2 − [(fn(x) − μn)+]2
∣∣ dmx(y)dν(x)

=
ˆ

X

ˆ

X

∣∣(fn(y) − μn)+ − (fn(x) − μn)+
∣∣ ∣∣(fn(y) − μn)+ + (fn(x) − μn)+

∣∣ dmx(y)dν(x)

≤

⎛⎝ ˆ

X

ˆ

X

(
(fn(y) − μn)+ − (fn(x) − μn)+

)2
dmx(y)dν(x)

⎞⎠
1
2

×

×

⎛⎝ˆ

X

ˆ

X

(
(fn(y) − μn)+ + (fn(x) − μn)+

)2
dmx(y)dν(x)

⎞⎠
1
2

.

Now, by the invariance of ν,

ˆ

X

ˆ

X

(
(fn(y) − μn)+ + (fn(x) − μn)+

)2
dmx(y)dν(x) ≤ 4

ˆ

X

[(fn(x) − μn)+]2dν(x).

Thus

2Hm(fn)
‖fn‖2

2
≥

⎛⎜⎜⎜⎜⎝
1
2

ˆ

X

ˆ

X

∣∣[(fn(y) − μn)+]2 − [(fn(x) − μn)+]2
∣∣ dmx(y)dν(x)

ˆ

X

[(fn(x) − μn)+]2dν(x)

⎞⎟⎟⎟⎟⎠
2

.

Then, since 0 ∈ medν([(fn − μn)+]2), by Theorem 3.11, we get

2Hm(fn)
‖fn‖2

2
≥ hm(X)2,

and, consequently, taking limits as n → ∞, we obtain

h2
m ≤ gap(−Δm).
2
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To prove the other inequality we can assume that gap(−Δm) > 0. Now, by (3.5), we have

min
{
ν(D), 1 − ν(D)

}
≤ 2

gap(−Δm)Pm(D) for all D ⊂ X, 0 < ν(D) < 1,

from where it follows that gap(−Δm) ≤ 2hm(X). �
Let A ⊂ X with ν(A) = 1

2 and u = χA − χ
X\A. It is easy to see that TVm(u) = 2Pm(A) and Hm(u) =

4Pm(A). Hence, since ‖u‖1 = ‖u‖2 = 1, ν(u) = 0 and 0 ∈ medν(u), we obtain the following result as a 
consequence of Theorem 3.11.

Corollary 3.13. Let [X, d, m] be a metric random walk space with invariant and reversible probability mea-
sure ν. Let A ⊂ X with ν(A) = 1

2 and u = χA − χ
X\A. Then,

1. hm(X) = Pm(A)
ν(A) ⇐⇒ u = χA − χ

X\A is a minimizer of (3.7).
2. u is a minimizer of (3.7) and gap(−Δm) = 2hm(X) ⇐⇒ u is a minimizer of (3.1).

Bringing together all the above results we have:

Theorem 3.14. Let [X, d, m] be a metric random walk space with invariant and reversible probability mea-
sure ν. The following statements are equivalent:

(1) [X, d, m, ν] satisfies a Poincaré inequality,
(2) gap(−Δm) > 0,
(3) [X, d, m, ν] satisfies an isoperimetric inequality,
(4) hm(X) > 0.

Example 3.15. It is well known, (see for instance [18]) that for finite graphs G, hm(G) > 0 if, and only if, G
is connected. This result is not true for infinite graphs. In fact, the graph of the Example 3.8 is connected 
and its Cheeger constant is zero since its spectral gap is zero.

3.4. Spectral gap and curvature

Since Em admits a Carré du champ Γ (see [7]) defined by

Γ(f, g)(x) := 1
2

(
Δm(fg)(x) − f(x)Δmg(x) − g(x)Δmf(x)

)
for all x ∈ X and f, g ∈ L2(X, ν),

we can study the Bakry-Émery curvature-dimension condition in this context. We will study its relation 
with the spectral gap.

According to Bakry and Émery [6], we define the Ricci curvature operator Γ2 by iterating Γ:

Γ2(f, g) := 1
2

(
ΔmΓ(f, g) − Γ(f,Δmg) − Γ(Δmf, g)

)
,

which is well defined for f, g ∈ L2(X, ν). We will write, for f ∈ L2(X, ν),

Γ(f) := Γ(f, f) = 1
2Δm(f2) − fΔmf

and



JID:YJMAA AID:123645 /FLA Doctopic: Partial Differential Equations [m3L; v1.279; Prn:13/11/2019; 12:17] P.41 (1-53)
J.M. Mazón et al. / J. Math. Anal. Appl. ••• (••••) •••••• 41
Γ2(f) := Γ2(f, f) = 1
2ΔmΓ(f) − Γ(f,Δmf).

It is easy to see that

Γ(f, g)(x) = 1
2

ˆ

X

∇f(x, y)∇g(x, y)dmx(y) and Γ(f)(x) = 1
2

ˆ

X

|∇f(x, y)|2dmx(y).

Consequently,
ˆ

X

Γ(f, g)(x)dν(x) = Em(f, g) and
ˆ

X

Γ(f)(x)dν(x) = Hm(f). (3.8)

Furthermore, by (2.1) and (3.8), we get

ˆ

X

Γ2(f) dν = 1
2

ˆ

X

(ΔmΓ(f) − 2Γ(f,Δmf)) dν = −
ˆ

X

Γ(f,Δmf) dν = −Em(f,Δmf),

thus
ˆ

X

Γ2(f) dν =
ˆ

X

(Δmf)2 dν. (3.9)

Definition 3.16. The operator Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, n) for 
n ∈ (1, +∞) and K ∈ R if

Γ2(f) ≥ 1
n

(Δmf)2 + KΓ(f) ∀ f ∈ L2(X, ν).

The constant n is the dimension of the operator Δm, and K is the lower bound of the Ricci curvature of 
the operator Δm. If there exists K ∈ R such that

Γ2(f) ≥ KΓ(f) ∀ f ∈ L2(X, ν),

then it is said that the operator Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, ∞).

Observe that if Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, n) then it also 
satisfies the Bakry-Émery curvature-dimension condition BE(K, m) for m > n.

This definition is motivated by the well known fact that on a complete n-dimensional Riemannian man-
ifold (M, g), the Laplace-Beltrami operator Δg satisfies BE(K, n) if, and only if, the Ricci curvature of the 
Riemannian manifold is bounded from below by K (see, for example, [7, Appendix C.6]).

The use of the Bakry-Émery curvature-dimension condition as a possible definition of a Ricci curvature 
bound in Markov chains was first considered in 1998 [49]. Now, this concept of Ricci curvature in the discrete 
setting has been frequently used since the work by Lin and Yau [32] (see [30] and the references therein).

Integrating the Bakry-Émery curvature-dimension condition BE(K, n) we have

ˆ

X

Γ2(f) dν ≥ 1
n

ˆ

X

(Δmf)2 dν + K

ˆ

X

Γ(f) dν.

Now, by (3.8) and (3.9), this inequality can be rewritten as
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ˆ

X

(Δmf)2 dν ≥ 1
n

ˆ

X

(Δmf)2 dν + KHm(f),

or, equivalently, as

K
n

n− 1Hm(f) ≤
ˆ

X

(Δmf)2 dν. (3.10)

Similarly, integrating the Bakry-Émery curvature-dimension condition BE(K, ∞) we have

KHm(f) ≤
ˆ

X

(Δmf)2 dν. (3.11)

We call the inequalities (3.10) and (3.11) the integrated Bakry-Émery curvature-dimension conditions, 
and denote them by IBE(K, n) and IBE(K, ∞), respectively.

Theorem 3.17. Let [X, d, m] be a metric random walk space with invariant-reversible probability measure ν. 
Assume that Δm is ergodic. Then

gap(−Δm) = sup
{
λ ≥ 0 : λHm(f) ≤

ˆ

X

(−Δmf)2dν ∀f ∈ L2(X, ν)
}
.

Proof. By (3.2) we know that gap(−Δm) = α. Set

A := sup
{
λ ≥ 0 : λHm(f) ≤

ˆ

X

(−Δmf)2dν ∀f ∈ L2(X, ν)
}
.

Let (Pλ)λ≥0 be the spectral projection of the self-adjoint and positive operator −Δm : H(X, ν) → H(X, ν). 
By the spectral Theorem [47, Theorem VIII. 6], we have

Hm(f) = 〈−Δmf, f〉 =
β̂

α

λd〈Pλf, f〉

ˆ

X

(−Δmf)2dν = 〈−Δmf,−Δmf〉 =
β̂

α

λ2d〈Pλf, f〉.

Hence, since λ2 ≥ αλ, we have that

ˆ

X

(−Δmf)2dν ≥ α

β̂

α

λd〈Pλf, f〉 = αHm(f),

and we get α ≤ A. Finally, let us see that α ≥ A. Since α ∈ σ(Δm), given ε > 0, there exists 0 
= f ∈
Range(Pα+ε) and, consequently, Pλf = f for λ ≥ α + ε. Then, having in mind the ergodicity of Δm, we 
have

0 <

ˆ
(−Δmf)2dν =

α+εˆ
λ2d〈Pλf, f〉 ≤ (α + ε)

α+εˆ
λd〈Pλf, f〉 = (α + ε)Hm(f) < (α + 2ε)Hm(f).
X α α
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This implies that α + 2ε does not belong to the set{
λ ≥ 0 : λHm(f) ≤

ˆ

X

(−Δmf)2dν ∀f ∈ L2(X, ν)
}
,

thus A < α + 2ε. Therefore, since ε > 0 was arbitrary, we have

A ≤ α. �
Consequently, on account of Theorem 3.17, we can rewrite the Poincaré inequality via the integrated 

Bakry-Émery curvature-dimension condition (see [7, Theorem 4.8.4], see also [8, Theorem 2.1]):

Theorem 3.18. Let [X, d, m] be a metric random walk space with invariant-reversible probability measure ν. 
Assume that Δm is ergodic. Then,

(1) Δm satisfies an integrated Bakry-Émery curvature-dimension condition IBE(K, n) with K > 0 if, and 
only if, a Poincaré inequality with constant K n

n−1 is satisfied.
(2) Δm satisfies an integrated Bakry-Émery curvature-dimension condition IBE(K, ∞) with K > 0 if, and 

only if, a Poincaré inequality with constant K is satisfied.

Therefore, if Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, n) with K > 0, we have

gap(−Δm) ≥ K
n

n− 1 . (3.12)

In the case that Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, ∞) with K > 0, we 
have

gap(−Δm) ≥ K. (3.13)

In the next example we will see that, in general, the integrated Bakry-Émery curvature-dimension con-
dition IBE(K, n) with K > 0 does not imply the Bakry-Émery curvature-dimension condition BE(K, n)
with K > 0.

Example 3.19. Consider the weighted linear graph G with vertex set V (G) = {a, b, c} and where the only 
non-zero weights are wa,b = wb,c = 1, and let Δ := ΔmG . A simple calculation gives

Γ(f)(a) = 1
2(f(b) − f(a))2 = 1

2(Δf(a))2,

Γ(f)(c) = 1
2(f(b) − f(c))2 = 1

2(Δf(c))2,

Γ(f)(b) = 1
4(f(b) − f(a))2 + 1

4(f(b) − f(c))2 = 1
4
(
(Δf(a))2 + (Δf(c))2

)
= 1

2 (Γ(f)(a) + Γ(f)(c)) .

Moreover,

Γ2(f)(a) = 1
8(Δf(c))2 + 5

8(Δf(a))2 + 1
4Δf(a)Δf(c) (3.14)

and

Γ2(f)(c) = 1(Δf(a))2 + 5(Δf(c))2 + 1Δf(a)Δf(c). (3.15)
8 8 4
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Having in mind (3.14) and (3.15), the BE(K, n) condition

Γ2(f) ≥ 1
n

(Δf)2 + KΓ(f) ∀ f ∈ L2(X, ν)

on a or c holds true if, and only if,

1
4y

2 + 5
4x

2 + 1
2xy ≥ 2

n
x2 + Kx2 ∀x, y ∈ R. (3.16)

Now, since (3.16) is true for x = 0, (3.16) holds if, and only if,

K ≤ inf
x�=0, y

1
4y

2 + 5
4x

2 + 1
2xy −

2
nx

2

x2 .

Moreover, taking y = λx, we obtain that the following inequality must be satisfied

K ≤ inf
λ

(1
4λ

2 + 5
4 + 1

2λ− 2
n

)
= 1 − 2

n
.

In fact, it is easy to see that (3.16) is true for any K ≤ 1 − 2
n .

On the other hand, we have that

Γ2(f)(b) = 1
2(Δf(b))2 + Γ(f)(b),

and it is easy to see that

Γ2(f)(b) ≥ 1
n

(Δf(b))2 + KΓ(f)(b) for all n > 1, K ≤ 1 − 2
n
.

Therefore, we have that this graph Laplacian satisfies the Bakry-Émery curvature-dimension condition

BE

(
1 − 2

n
, n

)
for any n > 1,

being K = 1 − 2
n the best constant for a fixed n > 1.

Now, it is easy to see that gap(−Δ) = 1 thus, by Theorem 3.18, we have that Δ satisfies the integrated 
Bakry-Émery curvature-dimension condition IBE(K, n) with K = 1 − 1

n > 1 − 2
n .

Note that Δ satisfies the Bakry-Émery curvature-dimension condition BE(1, ∞) and hence, in this ex-
ample, the bound in (3.13) is sharp but there is a gap in the bound (3.12).

Remark 3.20. For a metric random walk space [X, d, m] with invariant and reversible probability measure ν, 
Y. Ollivier in [42, Corollary 31], under the assumption that

ˆ ˆ ˆ
d(y, z)2dmx(y)dmx(z)dν(x) < +∞, (3.17)

proves that if the Ollivier-Ricci curvature κm is positive and the space is ergodic, then [X, d, m, ν] satisfies 
the Poincaré inequality

κmVarν(f) ≤ Hm(f) for all f ∈ L2(X, ν),

and, consequently,
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κm ≤ gap(−Δm).

Observe that, in fact, the ergodicity follows from the positivity of κm (Theorem 2.12).

3.5. Transport inequalities

Given a metric random walk space [X, d, m] we define, for x ∈ X,

Θ(x) := 1
2
(
W d

2 (δx,mx)
)2 = 1

2

ˆ

X

d(x, y)2dmx(y),

and

Θm := ess sup
x∈X

Θ(x).

Since Θ(x) ≤ 1
2 (diam(supp(mx))2, if diam(X) is finite then we have Θm ≤ 1

2(diam(X))2. Observe that

‖Γ(f)‖∞ = sup
x∈X

1
2

ˆ

X

(f(x) − f(y))2dmx(y) ≤ Θm‖f‖2
Lip. (3.18)

Given a metric measure space (X, d, μ) as in Example 1.2 (4), if mμ,ε is the ε-step random walk associated 
to μ, that is

mμ,ε
x := μ B(x, ε)

μ(B(x, ε)) for x ∈ X,

then

Θmμ,ε ≤ 1
2ε

2.

Let Jm(x) be the jump of the random walk at x:

Jm(x) := W d
1 (δx,mx) =

ˆ

X

d(x, y)dmx(y).

In the particular case of the metric random walk space associated to a locally finite discrete graph 
[V (G), dG, mG], we have

JmG(x) = 1
dx

∑
y∼x, y �=x

wxy ≤ 1,

thus

Θ(x) = 1
2JmG(x) = 1

2dx

∑
x∼y, x �=y

wxy ≤ 1
2 .

In the case of the metric random walk space [Ω, ‖.‖, mJ ] (see Example 2.3 (2)), with J(x) = 1
|Br(0)|

χ
Br(0), 

a simple computation gives
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Θ(x) ≤ N

2(N + 2)
r2.

It is well known that in the case of diffusion semigroups the Bakry-Émery curvature-dimension condition 
BE(K, ∞) of its generator is characterized by gradient estimates on the semigroup (see for instance [5] or 
[7]). The same characterization is also true for weighted discrete graphs (see for instance [30] and [25]). 
With a similar proof we have that in the general context of metric random walk spaces this characterization 
is also true.

Theorem 3.21. Let [X, d, m] be a metric random walk space with invariant-reversible probability measure ν

and let (Tt)t>0 = (etΔm)t>0 be the heat semigroup. Then, Δm satisfies the Bakry-Émery curvature-dimension 
condition BE(K, ∞) with K > 0 if, and only if,

Γ(Ttf) ≤ e−2KtTt(Γ(f)) ∀ t ≥ 0, ∀ f ∈ L2(X, ν). (3.19)

Proof. Fix t > 0. For s ∈ [0, t), we define the function

g(s, x) := e−2KsTs(Γ(Tt−sf))(x), x ∈ X.

The same computations as in [30] show that

∂g

∂s
(s, x) = 2e−2KsTs (Γ2(Tt−sf) −KΓ(Tt−sf)) (x).

Then, if Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, ∞) with K > 0, we have that 
∂g
∂s (s, x) ≥ 0 which is equivalent to (3.19). On the other hand, if (3.19) holds, we have ∂g∂s (0, x) ≥ 0, which 
is equivalent to

Γ2(Ttf) −KΓ(Ttf) ≥ 0.

Then, letting t → 0, we get Γ2(f) −KΓ(f) ≥ 0. �
The Fisher-Donsker-Varadhan information of a probability measure μ on X with respect to ν is defined 

by

Iν(μ) :=
{

2Hm(
√
f) if μ = fν, f ≥ 0,

+∞, otherwise.

Observe that

D(Iν) = {μ : μ = fν, f ∈ L1(X, ν)+}

since 
√
f ∈ L2(X, ν) = D(Hm) whenever f ∈ L1(X, ν)+. Here, we use the notation Lp(X, ν)+ := {f ∈

Lp(X, ν) : f ≥ 0 ν − a.e.}.
In the next result we show that the Bakry-Émery curvature-dimension condition BE(K, ∞) with K > 0

implies a transport-information inequality, result that was obtained for the particular case of Markov chains 
in discrete spaces in [23].

Theorem 3.22. Let [X, d, m] be a metric random walk space with invariant-reversible probability measure ν, 
and assume that Θm is finite. If Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, ∞)
with K > 0, then ν satisfies the transport-information inequality



JID:YJMAA AID:123645 /FLA Doctopic: Partial Differential Equations [m3L; v1.279; Prn:13/11/2019; 12:17] P.47 (1-53)
J.M. Mazón et al. / J. Math. Anal. Appl. ••• (••••) •••••• 47
W d
1 (μ, ν) ≤

√
Θm

K

√
Iν(μ), for all probability measures μ � ν. (3.20)

Proof. Let μ be a probability measure μ � ν, and set μ = fν. By the Kantorovich-Rubinstein Theorem we 
have that

W d
1 (μ, ν) = sup

⎧⎨⎩
ˆ

X

g(x)(f(x) − 1)dν(x) : ‖g‖Lip ≤ 1 and g bounded

⎫⎬⎭ .

Let Tt = etΔm be the heat semigroup. Given g ∈ L∞(X, ν) with ‖g‖Lip ≤ 1, having in mind Proposi-
tion 2.22, we have

ˆ

X

g(x)(f(x) − 1)dν(x) = −
∞̂

0

d

dt

ˆ

X

(Ttg)(x)f(x)dν(x)dt = −
∞̂

0

ˆ

X

Δm(Ttg)(x)f(x)dν(x)dt

=
∞̂

0

Em(Ttg, f)dt =
∞̂

0

ˆ

X

Γ(Ttg, f)(x)dν(x)dt.

Now, using the Cauchy-Schwartz inequality, the reversibility of the measure ν and that

(
√
f(y) +

√
f(x))2 ≤ 2((f(x) + f(y)),

we have

ˆ

X

Γ(Ttg, f)(x)dν(x) = 1
2

ˆ

X×X

((Ttg)(y) − (Ttg)(x))(f(y) − f(x))dmx(y)dν(x)

= 1
2

ˆ

X×X

((Ttg)(y) − (Ttg)(x))(
√
f(y) −

√
f(x))(

√
f(y) +

√
f(x))dmx(y)dν(x)

≤

⎛⎝ ˆ

X×X

1
4(

√
f(y) −

√
f(x))2dmx(y)dν(x)

⎞⎠
1
2

×

⎛⎝ ˆ

X×X

((Ttg)(y) − (Ttg)(x))2(
√

f(y) +
√
f(x))2dmx(y)dν(x)

⎞⎠
1
2

≤

⎛⎝1
2

ˆ

X

Γ(
√
f)(x)dν(x)

⎞⎠
1
2
⎛⎝4

ˆ

X

⎛⎝ ˆ

X

((Ttg)(y) − (Ttg)(x))2dmx(y)

⎞⎠ f(x)dν(x)

⎞⎠
1
2

.

Then, applying Theorem 3.21, we get
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ˆ

X

g(x)(f(x) − 1)dν(x) ≤
(

1
2Hm(

√
f)

) 1
2

∞̂

0

⎛⎝4
ˆ

X

Γ((Ttg)(x))f(x)dν(x)

⎞⎠
1
2

dt

≤
(
2Hm(

√
f)

) 1
2

∞̂

0

⎛⎝e−2Kt

ˆ

X

Tt

(
Γ(g)

)
(x)f(x)dν(x)

⎞⎠
1
2

dt.

Now, by (3.18) and (2.5), we have

|Tt

(
Γ(g)

)
(x)| ≤ ‖Tt

(
Γ(g)

)
‖∞ ≤ ‖Γ(g)‖∞ ≤ Θm.

Hence

ˆ

X

g(x)(f(x) − 1)dν(x) ≤
(
2Hm(

√
f)

) 1
2

∞̂

0

⎛⎝e−2KtΘm

ˆ

X

f(x)dν(x)

⎞⎠
1
2

dt ≤
√

Θm

K

(
2Hm(

√
f)

) 1
2

Finally, taking the supremum over all bounden functions g with ‖g‖Lip ≤ 1 we get (3.20). �
Remark 3.23. If ν satisfies a transport-information inequality

W d
1 (μ, ν) ≤ λ

√
2Hm(

√
f) for all μ = fν, (3.21)

then ν is ergodic. In fact, if ν is not ergodic, then by Theorem 2.24 there exists D ⊂ X with 0 < ν(D) < 1
such that ΔmχD = 0. Now, if μ := 1

ν(D)
χDν, then μ 
= ν and, therefore, by (3.21), we get Hm(χD) > 0, 

which is a contradiction with ΔmχD = 0.

As a consequence of the previous Remark and Theorem 3.22, we have that the positivity of the Bakry-
Émery curvature-dimension condition implies ergodicity of Δm, then, by Theorem 3.18, we have the following 
result.

Theorem 3.24. Let [X, d, m] be a metric random walk space with invariant-reversible probability measure ν, 
and assume that Θm is finite. Then:

If Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, n) with K > 0, we have

gap(−Δm) ≥ K
n

n− 1 .

In the case that Δm satisfies the Bakry-Émery curvature-dimension condition BE(K, ∞) with K > 0, 
we have

gap(−Δm) ≥ K.

The relative entropy of 0 ≤ μ ∈ M(X) with respect to ν is defined by

Entν(μ) :=

⎧⎪⎨⎪⎩
ˆ

X

f log fdν − ν(f) log
(
ν(f)

)
if μ = fν, f ≥ 0, f log f ∈ L1(X, ν),

+∞, otherwise,

with the usual convention that f(x) log f(x) = 0 if f(x) = 0.
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The next result shows that a transport-information inequality implies a transport-entropy inequality and, 
therefore, normal concentration (see for example [13,31]).

Theorem 3.25. Let [X, d, m] be a metric random walk space with invariant-reversible probability measure ν

and assume that Θm is finite and that there exists some x0 ∈ X such that 
´
d(x, x0)dν(x) < ∞. Then the 

transport-information inequality

W d
1 (μ, ν) ≤ 1

K

√
Iν(μ), for all probability measures μ � ν, (3.22)

implies the transport-entropy inequality

W d
1 (μ, ν) ≤

√√
2Θm

K
Entν (μ), for all probability measures μ � ν. (3.23)

Proof. By [13, Theorem 1.3], inequality (3.23) is equivalent to

ˆ

X

eλf(x)dν(x) ≤ eλ
2

√
Θm

2
√

2K , (3.24)

for every bounded function f on X with ‖f‖Lip ≤ 1 and ν(f) = 0, and all λ ∈ R.
Given f ∈ L∞(X, ν) with ‖f‖Lip ≤ 1 and ν(f) = 0, we define the function

Λ(λ) :=
ˆ

X

eλf(x)dν(x),

and the probabilities

μλ := 1
Λ(λ)e

λfdν.

By the Kantorovich-Rubinstein Theorem and the assumption (3.22), we have

d

dλ
log(Λ(λ)) = 1

Λ(λ)

ˆ

X

f(x)eλf(x)dν(x) =
ˆ

X

f(x)(dμλ(x) − dν(x)) ≤ W d
1 (μλ, ν) ≤

≤ 1
K

√√√√2Hm

(√
1

Λ(λ)e
λf

)
=

√
2

K

√√√√√ˆ

X

Γ
(√

1
Λ(λ)e

λf

)
(x)dν(x)

=
√

2
K

√√√√ˆ

X

1
Λ(λ)Γ

(
e

λf
2

)
(x)dν(x).

Now, since 1 − 1
a ≤ log a for a ≥ 1, having in mind the reversibility of ν, we have

ˆ

X

Γ(g)(x)dν(x) ≤
ˆ

X

g2(x)Γ(log g)(x)dν(x),

and, consequently, by (3.18), we get
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d

dt
log(Λ(λ)) ≤

√
2

K

√√√√ˆ

X

1
Λ(λ)e

λf(x)Γ
(
λf

2

)
(x)dν(x) = λ√

2K

√√√√ˆ

X

1
Λ(λ)e

λf(x)Γ (f) (x)dν(x)

= λ√
2K

√√√√ˆ

X

Γ (f) (x)dμλ(x) ≤
√

Θm√
2K

λ.

Then, integrating we get (3.24). �
In the next example we see that, in general, a transport-entropy inequality does not imply transport-

information inequality.

Example 3.26. Let Ω = [−1, 0] ∪ [2, 3] and consider the metric random walk space [Ω, d, mJ,Ω], with d
the Euclidean distance in R and J(x) = 1

2
χ[−1,1] (see Example (1.2) (5)). An invariant and reversible 

probability measure for mJ,Ω is ν := 1
2L1 Ω. By the Gaussian integrability criterion [19, Theorem 2.3]

ν satisfies a transport-entropy inequality. However, ν does not satisfy a transport-information inequality, 
since if ν satisfies a transport-information inequality, then ν must be ergodic (see Remark 3.23). Now it is 
easy to see that [Ω, d, mJ,Ω] is not m-connected and then by Theorem 2.19, ν is not ergodic.

By Theorems 2.12 and 2.19, we have that the metric random walk space [Ω, d, mJ,Ω] of the above example 
has non-positive Ollivier-Ricci curvature. In the next theorem we will see that, under positive Ollivier-Ricci 
curvature, a transport-information inequality holds. First we need the following result.

Lemma 3.27. Let [X, d, m] be a metric random walk space with invariant-reversible probability measure ν. 
Then, if f ∈ L2(X, ν) with ‖f‖Lip ≤ 1, we have ‖etΔmf‖Lip ≤ e−tκm .

Proof. By [42, Proposition 25], we have that

κm∗(n+l) ≥ κm∗n + κm∗l − κm∗nκm∗l ∀n, l ∈ N,

where κm∗1 = κm. Hence,

1 − κm∗n ≤ (1 − κm)n ∀n ∈ N. (3.25)

By Theorem 2.4 and (3.25), we have

|etΔmf(x) − etΔmf(y)| =

∣∣∣∣∣∣e−t
∞∑

n=0

ˆ

X

f(z)(dm∗n
x (z) − dm∗n

y (z)) t
n

n!

∣∣∣∣∣∣
≤ e−t

∞∑
n=0

W d
1 (m∗n

x ,m∗n
y ) t

n

n! = e−t
∞∑

n=0
(1 − κm∗n)d(x, y) t

n

n! ≤ e−t
∞∑

n=0
(1 − κm)n t

n

n!d(x, y)

= e−tet(1−κm)d(x, y) = e−tκmd(x, y),

from where it follows that ‖etΔmf‖Lip ≤ e−tκm . �
Theorem 3.28. Let [X, d, m] be a metric random walk space with invariant-reversible probability measure ν, 
and assume that Θm is finite. If κm > 0 then the following transport-information inequality holds:

W d
1 (μ, ν) ≤

√
2Θm

√
Iν(μ), for all probability measures μ � ν.
κm
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Proof. Let Tt = etΔm be the heat semigroup and μ = fν be a probability measure in X. We use, as in the 
proof of Theorem 3.22, the Kantorovich-Rubinstein Theorem. Let g ∈ L∞(X, ν) with ‖g‖Lip ≤ 1. Having 
in mind Lemma 3.27, we have

ˆ

X

g(x)(f(x) − 1)dν(x) = −
∞̂

0

d

dt

ˆ

X

(Ttg)(x)f(x)dν(x)dt = −
∞̂

0

ˆ

X

Δm(Ttg)(x)f(x)dν(x)dt

=
∞̂

0

1
2

ˆ

X×X

((Ttg)(y) − (Ttg)(x))(f(y) − f(x))dmx(y)dν(x)dt

≤
∞̂

0

‖Ttg‖Lip
1
2

ˆ

X×X

d(x, y)|f(y) − f(x)|dmx(y)dν(x)dt

≤
∞̂

0

e−tκm
1
2

ˆ

X×X

d(x, y)|f(y) − f(x)|dmx(y)dν(x)dt

= 1
2κm

ˆ

X×X

d(x, y)|f(y) − f(x)|dmx(y)dν(x)

= 1
2κm

ˆ

X×X

d(x, y)|
√

f(y) −
√

f(x)|
(√

f(y) +
√
f(x)

)
dmx(y)dν(x)

≤
√

2
2κm

√
Hm(

√
f)

√√√√ ˆ

X×X

d2(x, y)
(√

f(y) +
√

f(x)
)2

dmx(y)dν(x).

Now, using reversibility of ν,
ˆ

X×X

d2(x, y)
(√

f(y) +
√
f(x)

)2
dmx(y)dν(x)

=
ˆ

X×X

d2(x, y)
(

2f(x) + 2f(y) −
(√

f(y) −
√
f(x)

)2
)
dmx(y)dν(x)

≤ 2
ˆ

X×X

d2(x, y) (f(x) + f(y)) dmx(y)dν(x) ≤ 8Θm.

Therefore, we get
ˆ

X

g(x)(f(x) − 1)dν(x) ≤ 2
√

Θm

κm

√
Hm(

√
f),

so, taking the supremum over the functions g,

W d
1 (μ, ν) ≤

√
2Θm

κm

√
2Hm(

√
f) =

√
2Θm

κm

√
Iν(μ). �
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