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Euclidean unit sphere. This is based on analogues of mixed projection bodies for such 
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integral representation is used to single out Lutwak’s inequalities as the strongest 
among these families of inequalities, which in turn are related to a conjecture on 
affine quermassintegrals. In the dual setting, a generalization of volume inequalities 
for intersection bodies of all orders by Leng and Lu is proved. These results are 
related to Grinberg’s inequalities for dual affine quermassintegrals.
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1. Introduction

The Petty projection inequality is a central result of the Brunn–Minkowski theory. It is an affine isoperi-
metric inequality established by Petty [46] in 1972 that relates the volume of a convex body to that of its 
polar projection body (see below for definitions). This now classical result is considerably stronger than the 
Euclidean isoperimetric inequality and still has significant impact on current research. Recently, for exam-
ple, various generalizations of the projection body operator (see, e.g., [1,38,39]) and the Petty projection 
inequality have been investigated extensively (see, e.g., [4,19,38,39] for extensions to the Lp and Orlicz–
Brunn–Minkowski theories and [58,60] for extensions to non-convex sets). In [29], Lutwak established a 
version of Petty’s inequality for projection bodies of all orders, the Lutwak–Petty projection inequalities. 
Most recently, the Petty projection inequality has been generalized to Minkowski valuations generated by 
even, zonal measures on the unit sphere by Haberl and the second author [20].

A theory for star bodies, dual to the Brunn–Minkowski theory for convex bodies, has its origin in the work 
of Lutwak [32]. One of its central inequalities is the Busemann intersection inequality [5], which relates the 
volume of a star body to that of its intersection body. Intersection bodies were first introduced by Lutwak 
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in [33] and ever since a number of authors has contributed to the research on the duality between projection 
and intersection bodies (confer [12,15,50] for more details). Recently it was shown by Lu and Leng [24] that 
inequalities analogous to the Busemann intersection inequality also hold for intersection bodies of all orders.

In this article we establish generalizations of the Lutwak–Petty projection inequalities and the Leng–
Lu intersection inequalities to certain classes of Minkowski valuations and radial Minkowski valuations, 
respectively. To this end, we generalize notions and techniques of Lutwak [29] and from the recent article 
[20].

Let Kn denote the space of convex bodies (that is, compact, convex sets) in Rn endowed with the Hausdorff 
metric and let Kn

n denote its subspace of bodies with non-empty interior. Throughout we shall assume that 
n ≥ 3. The Euclidean unit ball in Rn will be denoted by Bn and the unit sphere by Sn−1. The support 
function of K ∈ Kn is defined by h(K, u) = max{u · x : x ∈ K}, u ∈ Sn−1, and determines K uniquely. We 
denote the i-th intrinsic volume of K by Vi(K) and the i-th quermassintegral by Wi(K) for i = 0, . . . , n. For 
K ∈ Kn

n containing the origin in its interior, its radial function is defined by ρ(K, u) = max{λ > 0: λu ∈ K}, 
u ∈ Sn−1, and its polar body is the convex body K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

A map Φ: Kn → Kn is called a Minkowski valuation if

ΦK + ΦL = Φ(K ∪ L) + Φ(K ∩ L),

whenever K ∪ L ∈ Kn and addition on Kn is Minkowski addition. First studied by Schneider [48,49], it 
was Ludwig in 2002, who coined their name and started a systematic investigation of Minkowski valuations 
which intertwine linear transformations [25,26]. The most important examples of Minkowski valuations for 
this article are the projection body maps of order i ∈ {1, . . . , n − 1}, defined by

h(ΠiK,u) = Vi(K|u⊥), u ∈ Sn−1.

The maps Πi : Kn → Kn are translation invariant, i-homogeneous, and SO(n) equivariant (that is, they 
commute with rotations). Recently, continuous Minkowski valuations with these properties have been inves-
tigated by a number of authors (see, e.g., [11,22,51,53–56]), which has led to a series of discoveries, extending 
known results for projection bodies. As main example, we mention the possibility to prove geometric in-
equalities for this class of Minkowski valuations [2,3,43,52,54].

The Petty projection inequality states that for the operator Π := Πn−1, a convex body K ∈ Kn
n is a 

maximizer of the volume product Vn(Π∗K)Vn(K)n−1 if and only if K is an ellipsoid. (Here and henceforth, 
we write Π∗K instead of (ΠK)∗.) It was recently generalized to a large class of Minkowski valuations in 
[20]. More precisely, let μ be an even measure on Sn−1 (all measures will be assumed non-trivial) which 
is zonal, that is, SO(n − 1) invariant, and recall that μ uniquely generates a zonoid of revolution Zμ(ē)
(see Section 3), where ē ∈ Sn−1 is the direction of its axis of symmetry. Define the continuous Minkowski 
valuation Φμ : Kn → Kn by

h(ΦμK,u) =
∫
∂K

h(Zμ(u), νK(x)) dHn−1(x), u ∈ Sn−1, (1.1)

where νK(x) denotes the outer unit normal to K at its boundary point x and integration is with respect 
to (n − 1)-dimensional Hausdorff measure. It is not difficult to see that Φμ intertwines rigid motions and is 
(n − 1)-homogeneous (see Section 3 for details). More importantly, it was proved in [20] that each Φμ gives 
rise to the following sharp isoperimetric inequality which refines the Euclidean isoperimetric inequality; 
the classical projection body operator (up to a factor) and Petty’s projection inequality, respectively, are 
obtained by taking μ to be discrete:
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Theorem 1.1 ([20]). Suppose that μ is an even, zonal measure on Sn−1. Among convex bodies K ∈ Kn
n the 

volume product Vn(Φμ,∗K)Vn(K)n−1 is maximized by Euclidean balls. If μ is not discrete, then Euclidean 
balls are the only maximizers. If μ is discrete, then K is a maximizer if and only if it is an ellipsoid.

In 1985 Lutwak [29] showed that the Petty projection inequality can be used to obtain similar volume 
inequalities for polar projection bodies of all orders which strengthen the classical isoperimetric inequalities 
between the volume and the intrinsic volumes of a convex body. Even more general, he proved that an analog 
of the Petty projection inequality holds for polars of mixed projection bodies. These operators originate 
from a polarization of Π under Minkowski linear combinations and were first discovered by Süss [57] and 
later studied systematically by Lutwak [29,30,34,35]. Although such polarizations do not exist for general 
Minkowski valuations (as was shown in [44]), their existence was proved in [52] for translation in- and 
SO(n)-equivariant Minkowski valuations of degree n −1. In particular, for each Φμ there exists a continuous 
operator

Φμ :
n−1︷ ︸︸ ︷

Kn × · · · × Kn → Kn,

symmetric in its arguments such that for K1, . . . , Km ∈ Kn and λ1, . . . λm ≥ 0,

Φμ(λ1K1 + · · · + λmKm) =
m∑

i1,...,in−1=1
λi1 · · ·λin−1Φμ(Ki1 , . . . ,Kin−1). (1.2)

When μ is discrete, this reduces to the classical mixed projection bodies (up to a factor). As is common, 
we write Φμ

i K instead of Φμ(K[i], Bn[n − i − 1]).
Our first result is a volume inequality for polars of the mixed operators Φμ generalizing Lutwak’s mixed 

projection inequalities (obtained, when μ is discrete).

Theorem 1.2. Suppose that μ is an even, zonal measure on Sn−1. Among convex bodies K1, . . . , Kn−1 ∈ Kn
n

the volume product

Vn(Φμ,∗(K1, . . . ,Kn−1))Vn(K1) · · ·Vn(Kn−1) (1.3)

is maximized by Euclidean balls. If μ is not discrete, then Euclidean balls are the only maximizers. If μ is 
discrete, then K1, . . . , Kn−1 are maximizers if and only if they are homothetic ellipsoids.

The proof of Theorem 1.2 relies on the equivalence of Theorem 1.1 to a generalization of the Busemann–
Petty centroid inequality (discovered for Π by Lutwak [31]). The centroid body of a convex body K ∈ Kn

o

can be defined by

h(ΓK,u) = 1
Vn(K)

∫
K

h([−u, u], x) dx, u ∈ Sn−1. (1.4)

Here, Kn
o denotes the set of convex bodies containing the origin in their interiors.

The Busemann–Petty centroid inequality states that K ∈ Kn
o is a minimizer of the volume ratio 

Vn(ΓK)/Vn(K) if and only if K is an ellipsoid centered at the origin. This was already conjectured by 
Blaschke and first proven by Petty [47], who deduced it by reformulating Busemann’s random simplex 
inequality [5]

Lutwak [29] showed that the Busemann–Petty centroid inequality can be used to extend Petty’s projection 
inequality to mixed projection bodies. The approach for proving our results makes use of Lutwak’s techniques 
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for generalized centroid bodies Γμ from [52], defined by replacing the segment [−u, u] in definition (1.4) by 
zonoids Zμ(u) generated by an even, zonal measure μ on Sn−1. In particular, we establish an analogue of 
the Busemann–Petty centroid inequality for these operators:

Theorem 1.3. Suppose that μ is an even, zonal measure on Sn−1. Among convex bodies K ∈ Kn
o the volume 

ratio Vn(ΓμK)/Vn(K) is minimized by Euclidean balls centered at the origin. If μ is not discrete, then 
centered Euclidean balls are the only minimizers. If μ is discrete, then K is a minimizer if and only if it is 
an ellipsoid centered at the origin.

In [20], also an Lp analogue of Theorem 1.1 was obtained, generalizing the Lp Petty projection inequality 
of Lutwak, Yang, and Zhang [38]. In Section 4, we generalize the Lp Busemann–Petty centroid inequality 
of Lutwak, Yang, and Zhang [38] to a large class of Lp Minkowski valuations by proving an Lp analogue of 
Theorem 1.3.

As an important special case of Theorem 1.2 we note that the volume product Vn(Φμ,∗
i K)Vn(K)i, i =

1, . . . , n −2, is maximized precisely by Euclidean balls. This is a generalization of the Lutwak–Petty projection 
inequalities from [29] (obtained when Φμ

i = Πi) and, like these inequalities, their generalizations strengthen 
the classical isoperimetric inequalities between the volume and quermassintegrals. More precisely, when μ
is normalized such that ΦμBn = ΠBn, we have

κn−i
n Vn(K)i ≤ κn+1

n

κn
n−1

Vn(Φμ,∗
i K)−1 ≤ Wn

n−i(K),

where κm = Vm(Bm). These inequalities interpolate between the isoperimetric inequalities for the volume 
and the quermassintegrals Wn−i and the Lutwak–Petty projection inequalities, which are the special cases 
when μ is a multiple of spherical Lebesgue measure and the case when μ is discrete, respectively.

As observed by Lutwak [30], the Lutwak–Petty projection inequalities also follow from the Petty projec-
tion inequality and volume inequalities for mixed bodies (see Section 5 for details). However, there is more 
to be gained by reviewing them in yet another light. In [20] it was shown that the Petty projection inequality 
is the strongest among the family of inequalities from Theorem 1.1. More precisely, if μ is normalized such 
that ΦμBn = ΠBn, then

Vn(Φμ,∗K) ≤ Vn(Π∗K). (1.5)

The significance of this observation lies in the fact that the large family of Euclidean inequalities from 
Theorem 1.1 is dominated by the only affine invariant one. Indeed, Ludwig [26] showed that the projection 
body map is (up to normalization) the only translation in- and SL(n) contravariant Minkowski valuation.

We give an alternative proof for the sharp upper bound of Vn(Φμ,∗
i K)Vn(K)i by using the techniques 

from [20] to identify the Lutwak–Petty projection inequalities as the strongest members of this family. We 
also show that the volume of the polar projection body of order i is dominated by a corresponding affine 
quermassintegral which, in turn, is an affine invariant. For 1 ≤ i ≤ n − 1 and K ∈ Kn

n, Lutwak [32] defined 
the affine quermassintegrals by

An−i(K) := κn

κi

⎛
⎜⎝

∫
Grn,i

Vi(K|E)−n dνi(E)

⎞
⎟⎠

−1/n

, (1.6)

where we denote by Grn,i the Grassmannian of i-dimensional linear subspaces of Rn and by νi the Haar 
probability measure on Grn,i.
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Theorem 1.4. If μ is an even, zonal measure on Sn−1 such that μ(Sn−1) = 1
2 and K ∈ Kn

n, then for 
1 ≤ i ≤ n − 2,

Vn(Φμ,∗
i K) ≤ Vn(Π∗

iK) ≤ κn+1
n

κn
n−1

An−i(K)−n. (1.7)

Note that Theorem 1.4 combined with the Lutwak–Petty projection inequalities directly implies our 
generalization of the latter and, moreover, relates our results to an important conjecture by Lutwak [32] on 
the relation between the volume and the affine quermassintegrals of a convex body (see Section 2).

A star body is a compact starshaped set (with respect to the origin) with positive continuous radial 
function. The set of all star bodies in Rn is denoted by Sn

o and endowed with the radial metric. For 
i = 1, . . . , n − 1, the i-radial combination of two star bodies K, L ∈ Sn

o is the star body whose radial 
function satisfies

ρ(K +̃i L, · )i = ρ(K, · )i + ρ(L, · )i.

The addition +̃1 is usually called radial addition and +̃n−1 is called radial Blaschke addition. A radial 
Minkowski valuation is a map Ψ: Sn

o → Sn
o satisfying

ΨK +̃1 ΨL = Ψ(K ∪ L) +̃1 Ψ(K ∩ L).

A systematic investigation of such valuations has been started in [21,27,52], with the most important example 
given by the intersection body map. For L ∈ Sn

o , the intersection body is the unique star body IL defined 
by

ρ(IL, u) = Vn−1(L ∩ u⊥), u ∈ Sn−1.

The fundamental Busemann intersection inequality states that a star body L ∈ Sn
o is a maximizer of the 

volume ratio Vn(IL)/Vn(L)n−1 if and only if L is an ellipsoid centered at the origin. It was first proved by 
Busemann for convex bodies [5] and later extended by Petty [47] to all star bodies.

A more recent result on intersection bodies is a generalization of the Busemann intersection inequality 
by Leng and Lu [24] to i-intersection bodies. For L ∈ Sn

o , r ≥ 0, and 1 ≤ i ≤ n − 2, the ith intersection 
body IiL can be defined via a Steiner type formula for the intersection body,

I(L +̃1 rB
n) =

n−1∑
i=0

(
n− 1
i

)
rn−1−iIiL.

Leng and Lu proved that for 1 ≤ i ≤ n − 2, a star body L ∈ Sn
o is a maximizer of the volume ratio 

Vn(IiL)/Vn(L)i if and only if L is a Euclidean ball centered at the origin.
The final aim of this paper is to show that the Busemann and Leng–Lu intersection inequalities can be 

generalized similar to Theorem 1.1 and our generalized Lutwak–Petty projection inequalities, respectively. 
To this end, we introduce radial Minkowski valuations Ψτ associated to an even, zonal measure τ on 
Sn−1 which lies in the image of the Radon transform (see Section 5 for details). These maps are (n − 1)-
homogeneous, SO(n) equivariant and dual to the Minkowski valuations Φμ. They generalize the intersection 
body map and also satisfy the Steiner type formula (see Sections 2 and 5 for details),

Ψτ (L +̃ rBn) =
n−1∑
i=0

(
n− 1
i

)
rn−1−iΨτ

i L.

Our analogue of Theorem 1.4 for the valuations Ψτ can be stated as follows.



6 A. Berg, F.E. Schuster / J. Math. Anal. Appl. 490 (2020) 124190
Theorem 1.5. If τ is an even, zonal measure on Sn−1 such that τ(Sn−1) = κn−1 and L ∈ Sn
o , then for 

1 ≤ i ≤ n − 1,

Vn(Ψτ
i L) ≤ Vn(IiL) ≤ κn

n−1

κn−1
n

Ãn−i(L)n. (1.8)

Here, Ãn−i denotes the dual affine quermassintegrals defined by

Ãn−i(L) := κn

κi

⎛
⎜⎝

∫
Grn,i

Vi(L ∩E)n dνi(E)

⎞
⎟⎠

1
n

. (1.9)

Introduced by Lutwak, they were later investigated by Gardner [16], Grinberg [18], and, more recently, by 
Paouris et al. [8–10].

Apart from generalizing the Busemann and Leng–Lu intersection inequalities, Theorem 1.5 shows that 
all these inequalities follow from Grinberg’s [18] affine isoperimetric inequalities for the dual affine quer-
massintegrals (cf. Section 3).

2. Background material

In this section we first recall for quick later reference basic notions and inequalities for convex bodies and 
their dual counterparts for star bodies. In the second part, we collect a few facts about Radon transforms 
on Grassmannians and convolutions of spherical functions. As general references, we recommend the book 
by Schneider [50] for the first and the article [53] for the second part of the section.

A classical result of Minkowski states that the volume of a Minkowski linear combination λ1K1 + · · · +
λmKm of convex bodies K1, . . . , Km ∈ Kn with coefficients λ1, . . . , λm ≥ 0 can be expressed as a homoge-
neous polynomial of degree n,

Vn(λ1K1 + · · · + λmKm) =
m∑

j1,...,jn=1
V (Kj1 , . . . ,Kjn)λj1 · · ·λjn , (2.1)

where the coefficients V (Kj1 , . . . , Kjn), called mixed volumes of Kj1 , . . . , Kjn , are symmetric in their indices 
and depend only on Kj1 , . . . , Kjn . For 0 ≤ i ≤ n, the mixed volume with n −i copies of K and i copies of the 
Euclidean unit ball Bn, is abbreviated by Wi(K) = V (K[n − i], Bn[i]) and called the ith quermassintegral
of K. The ith intrinsic volume Vi(K) of K is defined by

κn−iVi(K) =
(
n

i

)
Wn−i(K).

For K1, . . . , Kn−1 ∈ Kn, there is a uniquely determined finite Borel measure on Sn−1, the mixed area 
measure S(K1, . . . , Kn−1, · ), such that for every K ∈ Kn,

V (K1, . . . ,Kn−1,K) = 1
n

∫
Sn−1

h(K,u) dS(K1, . . . ,Kn−1, u). (2.2)

We again abbreviate Si(K, · ) = S(K[i], Bn[n −i −1], · ) and also note that Si(Bn, · ) coincides with spherical 
Lebesgue measure for every 0 ≤ i ≤ n − 1. The measure Sn−1(K, · ) is called the surface area measure of 
K ∈ Kn and satisfies
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∫
Sn−1

f(u) dSn−1(K,u) =
∫
∂K

f(νK(x)) dHn−1(x) (2.3)

for each f ∈ C(Sn−1). Note that the Gauss map νK : ∂′K → Sn−1 is defined on the subset ∂′K of those 
points of ∂K that have a unique outer unit normal and, thus, is defined Hn−1 a.e. on ∂K. By Minkowski’s 
existence theorem, a non-negative Borel measure μ on Sn−1 is the surface area measure of some convex 
body K ∈ Kn

n if and only if μ is not concentrated on any great subsphere of Sn−1 and has its centroid at 
the origin (see, e.g., [50, Theorem 8.2.2]).

Since, for K1, . . . , Kn−1 ∈ Kn
n, the mixed area measure S(K1, . . . , Kn−1, · ) satisfies the assumptions of 

Minkowski’s existence theorem, one can define the associated mixed body [K1, . . . ,Kn−1] ∈ Kn
n by

Sn−1([K1, . . . ,Kn−1] , · ) := S(K1, . . . ,Kn−1, · ). (2.4)

Mixed bodies are merely determined up to translations and were first defined by Firey [14] and later 
systematically investigated by Lutwak [30], who also showed that, for K ∈ Kn

n and every 0 ≤ i ≤ n − 1, the 
mixed body [K]i := [K[i],Bn[n−1−i]] satisfies the volume inequality

Vn([K]i)
n−1 ≥ κn−i−1

n Vn(K)i (2.5)

with equality if and only if K is a ball.
In subsequent sections we frequently compute the volume of a convex body K ∈ Kn

n, either by using a 
special case of (2.2) or by integration in polar coordinates with respect to spherical Lebesgue measure,

Vn(K) = 1
n

∫
Sn−1

h(K,u) dSn−1(K,u) = 1
n

∫
Sn−1

ρ(K,u)n du. (2.6)

The most powerful inequality for mixed volumes is the Aleksandrov–Fenchel inequality (see, e.g., [50, 
Section 7.3]). However, we merely require the following two of its many consequences: For K1, . . . , Kn ∈ Kn

n, 
we have

V (K1, . . . ,Kn)n ≥ Vn(K1) · · ·Vn(Kn) (2.7)

with equality if and only if K1, . . . , Kn are pairwise homothetic. For K ∈ Kn
n and 0 ≤ i < j ≤ n − 1, we 

have

Wj(K)n−i ≥ κj−i
n Wi(K)n−j (2.8)

with equality if and only if K is a ball.
Next, recall that for 0 < i < n and K ∈ Kn

n, the affine quermassintegral is defined by

An−i(K) := κn

κi

⎛
⎜⎝

∫
Grn,i

Vi(K|E)−n dνi(E)

⎞
⎟⎠

−1/n

.

We supplement this definition by setting A0(K) := Vn(K) and An(K) = κn. While introduced by Lutwak 
[32], the fact that the Ai are indeed affine invariant was first proved by Grinberg [18]. However, it was again 
Lutwak who formulated the following major open problem.
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Conjecture 2.1 ([32]). For 0 ≤ i < j < n and K ∈ Kn
n,

Ai(K)n ≥ κi
nVn(K)n−i.

An asymptotic form of Conjecture 2.1 and an associated reversal were raised and studied by Dafnis 
and Paouris in [8]. The asymptotic lower bound was verified by Paouris and Pivovarov in [45]. Moreover, 
Conjecture 2.1 is known to be true in the case i = n − 1, where it is equivalent to the Petty projection 
inequality, and in the case i = 1, where it follows from the celebrated Blaschke–Santaló inequality. The 
latter states that for an origin-symmetric body K ∈ Kn

n,

Vn(K)Vn(K∗) ≤ κ2
n (2.9)

with equality if and only if K is an ellipsoid.
For λ1, . . . , λn ≥ 0, the radial linear combination λ1K1 +̃ · · · +̃λmKm of the star bodies K1, . . . , Km ∈ Sn

o

is defined by

ρ(λ1K1 +̃ · · · +̃λmKm, · ) = λ1ρ(K1, · ) + · · · + λmρ(Km, · ). (2.10)

From the polar coordinate formula for volume, it follows easily that

Vn(λ1K1 +̃ · · · +̃λmKm) =
m∑

j1,...,jn=1
λj1 · · ·λjn Ṽ (Kj1 , . . . ,Kjn),

where the coefficients Ṽ (Kj1 , . . . , Kjn) are called dual mixed volumes and given by

Ṽ (K1, . . . ,Kn) = 1
n

∫
Sn−1

ρ(K1, u) · · · ρ(Kn, u) du.

As for mixed volumes, we use the abbreviation W̃i(L) = Ṽ (L[n − i], Bn[i]) for the ith dual quermassintegral
which was shown by Lutwak [28] to satisfy

W̃n−i(L) = κn

κi

∫
Grn,i

Vi(L ∩ E) dνi(E).

Recall that for L ∈ Sn
o and 0 < i < n, the dual affine quermassintegrals are given by

Ãn−i(L) := κn

κi

⎛
⎜⎝

∫
Grn,k

Vi(L ∩ E)n dνi(E)

⎞
⎟⎠

1
n

.

We also supplement this definition by Ã0(L) = Vn(L) and Ãn(L) = κn. Since by Jensen’s inequality 
W̃i(L) ≤ Ãi(L), the following affine isoperimetric inequality is significantly stronger than the Euclidean 
inequalities between volume and the dual quermassintegrals: for L ∈ Sn

o and 0 < i < n, we have

Ãn−i(L)n ≤ κn−i
n Vn(L)i (2.11)

with equality if and only if L is a centered ellipsoid. This was first proved by Busemann and Straus [6] and, 
independently, by Grinberg [18] and was later extended to bounded Borel sets by Gardner [16]. Grinberg 
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also proved that the Ãn−i are indeed invariant under volume-preserving linear transformations. The case of 
(2.11) when i = n − 1 is precisely the Busemann intersection inequality.

Next we recall a few basic definitions and facts from the Lp Brunn–Minkowski theory and its dual which 
originated from the seminal work of Lutwak [36,37]. To this end suppose that p ≥ 1 and that K, L ∈ Kn

o . 
For t > 0, the Lp Minkowski combination K +p t · L ∈ Kn, first defined by Firey [13], is given by

h(K +p t · L, · )p = h(K, · )p + t h(L, · )p.

In [36], Lutwak introduced the Lp mixed volume Vp(K, L) and proved that for each K ∈ Kn
o there exists a 

unique Borel measure on Sn−1, the Lp surface area measure Sp(K, · ) of K, such that for each L ∈ Kn
o ,

n

p
Vp(K,L) := lim

t→0+

Vn(K +p t · L) − Vn(K)
t

= 1
p

∫
Sn−1

h(L, u)p dSp(K,u). (2.12)

Note that the L1 surface area measure S1(K, · ) coincides with the surface area measure Sn−1(K, · ) (and 
differs from the first order area measure S1(K, ·)).

The Lp dual mixed volume Ṽ−p(K, L) of K, L ∈ Sn
o can be defined by

Ṽ−p(K,L) = 1
n

∫
Sn−1

ρ(K,u)n+pρ(L, u)−p du. (2.13)

It satisfies the Lp dual Minkowski inequality

Ṽ−p(K,L) ≥ Vn(K)(n+p)/nVn(L)−p/n, (2.14)

with equality if and only if K and L are dilates (see [50] for more information).
We turn now to the convolution of measures on Sn−1. In particular, we are interested in convolutions 

with zonal measures, that is, SO(n − 1) invariant measures on Sn−1, where SO(n − 1) is the subgroup of 
SO(n) stabilizing a fixed pole ē ∈ Sn−1. First, recall that the convolution σ ∗ μ of signed measures σ, μ on 
SO(n) is given by

∫
SO(n)

f(ϑ) d(σ ∗ μ)(ϑ) =
∫

SO(n)

∫
SO(n)

f(ηθ) dσ(η) dμ(θ), f ∈ C(SO(n)).

In other words, σ∗μ = m∗(σ⊗μ) is the pushforward of the product measure σ⊗μ by the group multiplication 
m : SO(n) × SO(n) → SO(n).

Since Sn−1 is diffeomorphic to the homogeneous space SO(n)/SO(n − 1), there is a natural identification 
between functions and measures on Sn−1 and right SO(n − 1) invariant functions and measures on SO(n). 
Using this correspondence, the convolution of measures on SO(n) induces a convolution product of spherical 
measures as follows: If π : SO(n) → Sn−1, π(η) = ηē, denotes the canonical projection, then the convolution 
of measures τ, ν on Sn−1 is defined by

τ ∗ ν = π∗m∗(π∗τ ⊗ π∗ν),

where π∗ and π∗ denote the pushforward and pullback by π, respectively.
Note that for signed measures τ, ν on Sn−1 and every ϑ ∈ SO(n), we have (ϑτ) ∗ ν = ϑ(τ ∗ ν) and that 

spherical convolution is associative.
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For the convolution of a function h ∈ C(Sn−1) with a zonal measure μ on Sn−1 and the convolution 
of a measure σ on Sn−1 with a zonal function f ∈ C(Sn−1), respectively, we have the following simpler 
expressions:

(h ∗ μ)(η̄) =
∫

Sn−1

h(ηu) dμ(u) and (σ ∗ f)(η̄) =
∫

Sn−1

f(η−1u) dσ(u), (2.15)

where for η ∈ SO(n), we write π(η) = η̄ ∈ Sn−1. An important consequence of (2.15) is the fact that the 
convolution of zonal measures on Sn−1 is Abelian.

We conclude this section by recalling a few basic facts about Radon transforms on Grassmannians. For 
1 ≤ i 
= j ≤ n − 1 and F ∈ Grn,j , we denote by GrFn,i the submanifold of Grn,i consisting of all E ∈ Grn,i
that contain (respectively are contained in) F . The Radon transform Ri,j : L2(Grn,i) → L2(Grn,j) is defined 
by

(Ri,jf)(F ) =
∫

GrFn,i

f(E) dνFi (E), F ∈ Grn,j , (2.16)

where νFi is the unique invariant probability measure on GrFn,i. The Radon transform Ri,j is a continuous 
linear operator with adjoint given by Rj,i, that is,

∫
Grn,j

(Ri,jf)(F )g(F ) dνj(F ) =
∫

Grn,i

f(E)(Rj,ig)(E) dνi(E) (2.17)

for f ∈ L2(Grn,i) and g ∈ L2(Grn,j).
For f ∈ L2(Grn,i), we denote by f⊥ ∈ L2(Grn,n−i) the function defined by f⊥(E) = f(E⊥). With this 

notation we have

(Ri,jf)⊥ = Rn−i,n−jf
⊥. (2.18)

For 1 ≤ i < j < k ≤ n − 1, we also have Ri,k = Rj,k ◦Ri,j and Rk,i = Rj,i ◦Rk,j .
For (even) f ∈ L2(Sn−1), the spherical Radon transform R := R1,n−1 = Rn−1,1 can be written in the 

following simpler form which also relates it to the spherical convolution discussed above,

(Rf)(u) =
∫

Sn−1

f(v) dλSn−1∩u⊥(v) = (f ∗ λSn−1∩ē⊥)(u), u ∈ Sn−1, (2.19)

where λSn−1∩ē⊥ denotes the uniform probability measure concentrated on Sn−1 ∩ ē⊥.

3. Minkowski valuations

In the following we collect several well known facts and prove new auxiliary results concerning Minkowski 
valuations and their Lp generalizations. More specifically, we mainly consider Minkowski valuations gener-
ated (in different ways) by even, zonal measures on Sn−1.

We first recall two integral representations for the support function of projection bodies of order 1 ≤ i ≤
n − 1 given, for K ∈ Kn and u ∈ Sn−1, by (cf. [17])

h(ΠiK,u) = 1
2

∫
|u · v| dSi(K, v) = κn−1

κi
Rn−i,1Vi(K| ·⊥)(u). (3.1)
Sn−1
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Combining the first integral in (3.1) for the case i = n − 1 with the definition of mixed bodies (2.4), we 
arrive at the following relation

ΠiK = Π [K]i .

In order to discuss more general Minkowski valuations (generated by even, zonal measures), recall that for 
p ≥ 1, each even measure μ on Sn−1 determines (uniquely when p is not an even integer) an origin-symmetric 
convex body Zμ

p ∈ Kn by

h(Zμ
p , u)p =

∫
Sn−1

|u · v|p dμ(v), u ∈ Sn−1.

The class of bodies obtained in this way consists precisely of the origin-symmetric Lp zonoids (see, e.g., 
[50, Chapter 3.5]). When p = 1, Lp zonoids are simply called zonoids and we use Zμ instead of Zμ

1 . If μ is 
zonal, then we indicate the bodies axis of symmetry by writing Zμ

p(ē) rather than Zμ
p and we have

h(Zμ
p(ē), u)p =

∫
Sn−1

|u · v|p dμ(v) =
∫

SO(n)

|u · φē|p dμ̆(φ), (3.2)

where μ̆ := π∗μ is the pullback of μ under the projection π : SO(n) → Sn−1.
We denote the rotated copy of Zμ

p(ē) whose axis of symmetry is v ∈ Sn−1 by Zμ
p(v). If θv ∈ SO(n) is any 

rotation such that v = θv ē, then, by (3.2), the support function of Zμ
p(v) is given by

h(Zμ
p(v), u)p = h(Zμ

p(ē), ϑ−1
v u)p =

∫
SO(n)

|u · ϑvφϑ
−1
v v|p dμ̆(φ).

Letting μ̆v := cv#μ̆ denote the pushforward of μ̆ under the conjugation map cv(φ) = ϑvφϑ
−1
v this can be 

written simply as

h(Zμ
p(v), u)p =

∫
SO(n)

|u · φv|p dμ̆v(φ). (3.3)

Note here that the SO(n − 1) invariance of μ implies that μ̆ is SO(n − 1) bi-invariant and, consequently, 
μ̆v is well-defined (that is, it is independent of the choice of θv). We also note that, since Zμ

p(v) is a convex 
body of revolution, h(Zμ

p(v), u) is a function of u · v, and thus, for any u, v ∈ Sn−1,

h(Zμ
p(v), u) = h(Zμ

p(u), v). (3.4)

We return now to the Minkowski valuations Φμ : Kn → Kn defined by (1.1) in the introduction, where 
μ is again an even, zonal measure on Sn−1. Using the notions from Section 2, we can rewrite (1.1) as

h(ΦμK, · ) =
∫

Sn−1

h(Zμ(v), · ) dSn−1(K, v) = Sn−1(K, ·) ∗ h(Zμ(ē), · ). (3.5)

Note that if μ is discrete, then, since μ is even and zonal, it must be a multiple of the sum of two Dirac 
measures δē + δ−ē. Hence, Zμ(ē) is a dilate of the segment [−ē, ̄e] and Φμ a multiple of the projection body 
map Π. The following lemma (which was critical for the proof of Theorem 1.1) shows that also for general 
μ, there is a connection between Φμ and Π.
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Lemma 3.1 ([20]). If μ is an even, zonal measure on Sn−1, then

h(ΦμK,u) = 2
∫

SO(n)

h(ΠK,φu) dμ̆u(φ), u ∈ Sn−1,

for every K ∈ Kn.

Using (3.5) and the notion of mixed area measures, we arrive at the following integral representation for 
the mixed Minkowski valuations Φμ defined by the polarization formula (1.2),

h(Φμ(K1, . . . ,Kn−1), u) =
∫

Sn−1

h(Zμ(v), u) dS(K1, . . . ,Kn−1, v) (3.6)

for u ∈ Sn−1. In particular, for the bodies Φμ
i K := Φμ(K[i], Bn[n − i − 1]) we have

h(Φμ
i K,u) =

∫
Sn−1

h(Zμ(v), u) dSi(K, v), u ∈ Sn−1. (3.7)

Note again that if μ is discrete, then Φμ
i
∼= Πi. Moreover, as the following generalization of Lemma 3.1

shows, the bodies Φμ
i K are related to ΠiK in the same way Φμ is related to Π. Its short proof is similar to 

that of Lemma 3.1, but because of its importance for us, we include it for the reader’s convenience.

Lemma 3.2. If μ is an even, zonal measure on Sn−1 and 1 ≤ i ≤ n − 1, then

h(Φμ
i K,u) = 2

∫
SO(n)

h(ΠiK,φu) dμ̆u(φ), u ∈ Sn−1, (3.8)

for every K ∈ Kn.

Proof. By (3.7), (3.4), and (3.3), we have

h(Φμ
i K,u) =

∫
Sn−1

h(Zμ(u), v) dSi(K, v) =
∫

Sn−1

∫
SO(n)

|v · φu| dμ̆u(φ) dSi(K, v).

Thus, by Fubini’s theorem and (3.1), we arrive at the desired relation (3.8). �
Next, we turn to centroid bodies. Extending the definition given in the introduction to star bodies, recall 

that, for L ∈ Sn
o ,

h(ΓL, u) = 1
Vn(L)

∫
L

|u · x| dx = 1
(n + 1)Vn(L)

∫
Sn−1

|u · v|ρ(L, v)n+1dv (3.9)

for u ∈ Sn−1. The Minkowski valuation Γ : Kn
o → Kn

o was generalized in [52] to include the large class of 
SO(n) equivariant Minkowski valuations Γμ:

Definition. Suppose that μ is an even, zonal measure on Sn−1. For L ∈ Sn
o , we define the convex body 

ΓμL ∈ Kn
o by

h(ΓμL, u) = 1
Vn(L)

∫
h(Zμ(u), x) dx, u ∈ Sn−1. (3.10)
L
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Using integration in polar coordinates to rewrite (3.10), we obtain

h(ΓμL, u) = 1
(n + 1)Vn(L)

∫
Sn−1

h(Zμ(u), v)ρ(L, v)n+1 dv. (3.11)

The final part of this section is devoted to Lp Minkowski valuations. For p ≥ 1, an operator Φ: Kn
o → Kn

o

is called an Lp-Minkowski valuation if

Φ(K ∪ L) +p Φ(K ∩ L) = Φ(K) +p Φ(L),

whenever K ∪ L ∈ Kn
o . While prominent examples of Lp Minkowski valuations were known for quite some 

time, their systematic investigation began with the work of Ludwig [26] and was continued, e.g., in [23,41,42].
The most important examples of Lp Minkowski valuations are the Lp projection and the Lp centroid 

body maps. For K ∈ Kn
o and p ≥ 1, the Lp projection body of K was first defined in [38] by

h(ΠpK,u)p = an,p

∫
Sn−1

|u · v|p dSp(K, v), u ∈ Sn−1,

where the constant an,p is chosen such that ΠpBn = Bn (cf. [38]). When p = 1, we have Π1K = κ−1
n−1ΠK. 

The fundamental affine isoperimetric inequality for Lp projection bodies is the following Lp analogue of 
Petty’s projection inequality established by Lutwak, Yang, and Zhang.

Theorem 3.3 ([38]). For 1 < p < ∞, a convex body K ∈ Kn
o is a maximizer of the volume product 

Vn(Π∗
pK)pVn(K)n−p if and only if K is an ellipsoid centered at the origin.

An Lp extension of the Minkowski valuations Φμ was introduced in [20] as follows: For an even, zonal 
measure μ on Sn−1 and p ≥ 1, the Lp Minkowski valuation Φμ

p : Kn
o → Kn

o is defined by

h(Φμ
pK,u)p =

∫
Sn−1

h(Zμ
p(u), v)p dSp(K, v), u ∈ Sn−1. (3.12)

As in the case p = 1, if μ is discrete, then Φμ
p ∼= Πp. Consequently, the following theorem generalizes 

Theorem 3.3.

Theorem 3.4 ([20]). Suppose that 1 < p < ∞ and that μ is an even, zonal measure on Sn−1. Among convex 
bodies K ∈ Kn

o the volume product Vn(Φμ,∗
p K)pVn(K)n−p is maximized by origin-symmetric Euclidean balls. 

If μ is not discrete, then such balls are the only maximizers. If μ is discrete, then K is a maximizer if and 
only if it is an ellipsoid centered at the origin.

For a star body L ∈ Sn
o and p ≥ 1, the Lp centroid body of L, introduced in [40], is the convex body 

defined, for u ∈ Sn−1, by

h(ΓpL, u)p = 1
Vn(L)

∫
L

|u · x|p dx = 1
(n + p)Vn(L)

∫
Sn−1

|u · v|pρ(L, v)n+p dv. (3.13)

Note that as a map from Kn
o to Kn

o the operator Γp is an Lp Minkowski valuation. The Lp Busemann–Petty 
centroid inequality states the following (see also [7,19]).
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Theorem 3.5 ([38]). For 1 ≤ p < ∞, a star body L ∈ Sn
o is a minimizer of the volume ratio Vn(ΓpL)/Vn(L)

if and only if L is an ellipsoid centered at the origin.

Similarly to the Lp generalization of the maps Φμ, we now define an Lp extension of the operators Γμ:

Definition. Suppose that μ is an even, zonal measure on Sn−1. For L ∈ Sn
o and p ≥ 1, we define the convex 

body Γμ
pL ∈ Kn

o by

h(Γμ
pL, u)p = 1

Vn(L)

∫
L

h(Zμ
p(u), x)p dx, u ∈ Sn−1. (3.14)

Note that for p = 1, we have Γμ
1 = Γμ, and that if μ is discrete, then Γμ

p ∼= Γp. By integrating in polar 
coordinates, we can rewrite (3.14) to

h(Γμ
pL, u)p = 1

(n + p)Vn(L)

∫
Sn−1

h(Zμ
p(u), v)pρ(L, v)n+p dv, u ∈ Sn−1, (3.15)

which enables us to prove the following analogue of Lemma 3.1 for the maps Γμ
p.

Lemma 3.6. If p ≥ 1 and μ is an even, zonal measure on Sn−1, then

h(Γμ
pL, u)p =

∫
SO(n)

h(ΓpL, φu)p dμ̆u(φ), u ∈ Sn−1, (3.16)

for every L ∈ Sn
o .

Proof. By (3.15), (3.4), and (3.3), we have

h(Γμ
pL, u)p = 1

(n + p)Vn(L)

∫
Sn−1

∫
SO(n)

|v · φu|pρ(L, v)n+p dμ̆u(φ) dv.

Thus, by Fubini’s theorem and (3.13), we arrive at the desired relation (3.16). �
As was shown in [38], Theorems 3.3 and 3.5 are equivalent, in the sense that one can be deduced from 

the other in a few lines. In Section 5, we show that Theorem 3.4 is equivalent to the following generalization 
of the Lp Busemann–Petty inequality.

Theorem 3.7. Suppose that 1 < p < ∞ and that μ is an even, zonal measure on Sn−1. Among star bodies 
L ∈ Sn

o the volume ratio Vn(Γμ
pL)/Vn(L) is minimized by origin-symmetric Euclidean balls. If μ is not 

discrete, then such balls are the only minimizers. If μ is discrete, then L is a minimizer if and only if it is 
an ellipsoid centered at the origin.

4. Radial Minkowski valuations

This final preparatory section is devoted to radial Minkowski valuations. We first recall some basic facts 
about intersection bodies before we define a new class of radial Minkowski valuations which are related to 
Lutwak’s intersection bodies in the same way that the Minkowski valuations Φμ are related to projection 
bodies.
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First defined by Zhang [59], the radial function of intersection bodies of order 1 ≤ i ≤ n − 1 is given, for 
L ∈ Sn

o and u ∈ Sn−1, by

ρ(IiL, u) = κn−1

κi
Rn−i,1Vi(L ∩ ·⊥)(u) = κn−1

∫
Sn−1

ρ(L, v)i dλSn−1∩u⊥(v). (4.1)

While, by (4.1), the maps Ii : Sn
o → Sn

o are all SO(n) equivariant radial Minkowski valuations, Ludwig [27]
characterized Lutwak’s intersection body map I := In−1 as the only SL(n) contravariant such valuation.

Recall that a star body L ∈ Sn
o is said to belong to the class of intersection bodies if there exists a 

(non-negative) Borel measure τ on Sn−1 such that ρ(L, · ) = Rτ , that is, for every f ∈ C(Sn−1),
∫

Sn−1

ρ(L, u)f(u) du =
∫

Sn−1

Rf(u) dτ(u).

By (2.19) and (4.1), the range of the intersection body maps Ii belongs to the class of intersection bodies. In 
fact, it is not hard to show that the closure (in the radial metric) of the range of I coincides with the class 
of intersection bodies. This is completely analogous to the class of zonoids which coincides with the closure 
(in the Hausdorff metric) of the range of Π. Motivated by this fact and definition (3.5) of the Minkowski 
valuations Φμ, we now introduce the following class of SO(n) equivariant radial Minkowski valuations:

Definition. Suppose that τ is an even, zonal measure on Sn−1. For L ∈ Sn
o , we define the star body ΨτL ∈ Sn

o

by

ρ(ΨτL, · ) = ρ(L, · )n−1 ∗Rτ = ρ(L, · )n−1 ∗ τ ∗ λSn−1∩ē⊥ . (4.2)

Note that we do not require in (4.2) that Rτ ∈ C(Sn−1). However, if Mτ (ē) ∈ Sn
o belongs to the class of 

intersection bodies and ρ(Mτ (ē), · ) = Rτ , then (4.2) becomes

ρ(ΨτL, · ) =
∫

Sn−1

ρ(Mτ (v̄), · )ρ(L, v)n−1 dv,

which is completely analogous to (3.5). Also note that if τ is discrete, then Ψτ ∼= I.
It follows from (2.10) that the radial Minkowski valuations Ψτ : Sn

o → Sn
o satisfy the following Steiner 

type formula:
For L ∈ Sn

o and r ≥ 0, we have

Ψτ (L +̃ rBn) =
n−1∑
i=0

(
n− 1
i

)
rn−1−iΨτ

i L,

where the radial functions of the star bodies Ψτ
i L ∈ Sn

o are given by

ρ(Ψτ
i L, · ) = ρ(L, · )i ∗Rτ. (4.3)

Clearly, the maps Ψτ
i : Sn

o → Sn
o are continuous and SO(n) equivariant radial Minkowski valuations for each 

1 ≤ i ≤ n − 1. Moreover, they satisfy the following dual analogue of Lemma 3.2.

Lemma 4.1. If τ is an even, zonal measure on Sn−1 and 1 ≤ i ≤ n − 1, then

ρ(Ψτ
i L, u) = 1

κn−1

∫
SO(n)

ρ(IiL, φu) dτ̆u(φ), u ∈ Sn−1,
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for every L ∈ Sn
o .

Proof. Since the convolution of zonal measures is Abelian, we obtain from (4.2), (2.19), (4.1), and (2.15),

ρ(Ψτ
i L, ηē) = 1

κn−1

∫
Sn−1

ρ(IiL, ηv) dτ(v) = 1
κn−1

∫
SO(n)

ρ(IiL, ηϑē) dτ̆(ϑ),

where ηē = u. Using τ̆u = cu#τ̆ , the desired relation follows. �
5. Proof of the main results

In this section we collect the proofs for all our main results from the introduction as well as Theorem 3.7
and two additional inequalities not stated before.

Theorems 1.2 and 1.3 will turn out to be simple consequences of the following inequality of independent 
interest (the case for discrete μ is due to Lutwak [29]).

Theorem 5.1. Let μ be an even, zonal measure on Sn−1. If K1, . . . , Kn−1 ∈ Kn
n and L ∈ Sn

o , then

Vn(L) ≤ (n + 1)n V (K1, . . . ,Kn−1,ΓμL)n Vn(Φμ,∗(K1, . . . ,Kn−1)) (5.1)

with equality if and only if L is a dilate of Φμ,∗(K1, . . . , Kn−1).

Proof. By (2.2), (3.11), Fubini’s theorem, and (3.6) we have on one hand

n(n + 1)Vn(L)V (K1, . . . ,Kn−1,ΓμL)

=
∫

Sn−1

∫
Sn−1

h(Zμ(v), u) dS(K1, . . . ,Kn−1, v) ρ(L, u)n+1 du

=
∫

Sn−1

h(Φμ(K1, . . . ,Kn−1), u) ρ(L, u)n+1 du.

On the other hand, applying Hölder’s inequality with p = (n + 1)/n and q = n + 1 to the functions

f(u) = h(Φμ(K1, . . . ,Kn−1), u)
n

n+1 ρ(L, u)n,

g(u) = h(Φμ(K1, . . . ,Kn−1), u)−
n

n+1

yields

⎛
⎝ ∫
Sn−1

ρ(L, u)n du

⎞
⎠

n+1

≤

⎛
⎝ ∫
Sn−1

h(Φμ(K1, . . . ,Kn−1), u) ρ(L, u)n+1 du

⎞
⎠

n

×

∫
Sn−1

h(Φμ(K1, . . . ,Kn−1), u)−n du.

Hence, by (2.6) and the fact that ρ(K∗, · ) = 1/h(K, · ) for K ∈ Kn
o , we obtain the desired inequality (5.1).

In order to prove the equality conditions for (5.1), note that equality in the Hölder inequality (for positive 
continuous functions) holds if and only if fp is a constant multiple of gq. For the functions f and g defined 
above this means
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ρ(L, · ) = c ρ(Φμ,∗(K1, . . . ,Kn−1), · )

for some c > 0, that is, L is a dilate of Φμ,∗(K1, . . . , Kn−1). �
After these preparations we are now able to give the proof of Theorem 1.3. In fact, we establish a more 

general form that holds for all star bodies (and not merely convex bodies as stated in the introduction).

Theorem 5.2. Suppose that μ is an even, zonal measure on Sn−1. Among star bodies L ∈ Sn
o the volume ratio 

Vn(ΓμL)/Vn(L) is minimized by Euclidean balls centered at the origin. If μ is not discrete, then centered 
Euclidean balls are the only minimizers. If μ is discrete, then L is a minimizer if and only if it is an ellipsoid 
centered at the origin.

Proof. For discrete μ, the statement is just the Busemann–Petty centroid inequality. Thus, we may assume 
that μ is not discrete. Taking K1 = · · · = Kn−1 = ΓμL in Theorem 5.1, we obtain

Vn(L) ≤ (n + 1)n Vn(ΓμL)n Vn(Φμ,∗ΓμL) (5.2)

with equality if and only if L is a dilate of Φμ,∗ΓμL. Applying now Theorem 1.1, yields

Vn(L) ≤ (n + 1)n κn−1
n Vn(ΓμL)Vn(Φμ,∗Bn) (5.3)

with equality if and only if ΓμL is a Euclidean ball (and since ΓμL is origin-symmetric for every L ∈ Sn
o ) 

which is centered at the origin and L is a dilate of Φμ,∗ΓμL. Consequently, equality holds in (5.3) if and 
only if L is a centered Euclidean ball. To complete the proof, note that from a simple computation using 
(3.2), (3.5), and (3.11), it follows that

ΦμBn = 2κn−1μ(Sn−1)Bn = (n + 1)κnΓμBn, (5.4)

which in turn implies that (5.3) can be rewritten to

Vn(ΓμL)
Vn(L) ≥ Vn(ΓμBn)

Vn(Bn) . �
Next, we apply Theorem 5.1 to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Taking L = Φμ,∗(K1, . . . , Kn−1) in Theorem (5.1), yields

V (K1, . . . ,Kn−1,ΓμΦμ,∗(K1, . . . ,Kn−1)) = 1
(n + 1) . (5.5)

Combining now (5.5) with (2.7) and Theorem 5.2, we obtain

1
(n + 1) ≥ Vn(ΓμBn)

Vn(Bn) Vn(K1) · · ·Vn(Kn−1)Vn(Φμ,∗(K1, . . . ,Kn−1))

with equality if and only if K1, . . . , Kn−1 are homothetic ellipsoids if μ is discrete and Euclidean balls 
otherwise. In view of (5.4) this is precisely the desired inequality. �

Note that for K1 = · · · = Kn−1 = K ∈ Kn
n, Theorem 1.2 simply reduces to Theorem 1.1. The special 

case of Theorem 1.2, where K1 = · · · = Ki = K ∈ Kn
n and Ki+1 = · · · = Kn−1 = Bn, yields the following 

extension of the Lutwak–Petty projection inequalities to the Minkowski valuations Φμ
i . (It can also be 
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obtained by combining Theorem 1.1 with inequality (2.5), since Φμ
i K = Φμ [K]i by (3.7) and the definition 

of mixed bodies).

Corollary 5.3. Let 1 ≤ i ≤ n − 2 and suppose that μ is an even, zonal measure on Sn−1. Among convex 
bodies K ∈ Kn

n the volume product Vn(Φμ,∗
i K)Vn(K)i is maximized precisely by Euclidean balls.

When μ is discrete in Corollary 5.3, we have Φμ
i

∼= Πi, and the result reduces to the Lutwak–Petty 
projection inequalities. If μ is a multiple of spherical Lebesgue measure, then Corollary 5.3 becomes the 
classical inequality between volume and the quermassintegral Wn−i (that is, the special case i = 0 and 
j = n − i of (2.8)).

Also note that if we normalize μ such that μ(Sn−1) = 1
2 (so that Φμ

i B
n = ΠiBn), then, by (2.6) and 

Jensen’s inequality,

(
Vn(Φμ,∗

i K)
κn

)−1/n

=

⎛
⎝ 1
nκn

∫
Sn−1

h(Φμ
i K,u)−n du

⎞
⎠

−1/n

≤ 1
nκn

∫
Sn−1

h(Φμ
i K,u) du.

But, by (3.7), Fubini’s theorem, and (2.2),
∫

Sn−1

h(Φμ
i K,u) du =

∫
Sn−1

∫
Sn−1

h(Zμ(v), u) du dSi(K, v) = nκn−1Wn−i(K).

Combining this with Corollary 5.3, we obtain the chain of inequalities

Wn
n−i(K) ≥ κn+1

n

κn
n−1

Vn(Φμ,∗
i K)−1 ≥ κn−i

n Vn(K)i.

This not only shows that Corollary 5.3 interpolates between the inequality between Vn and Wn−i but also 
that for each Minkowski valuation Φμ

i , Corollary 5.3 strengthens this classical isoperimetric inequality.
While the above argument identifies the classical inequality between Vn and Wn−i as is the weakest 

instance of Corollary 5.3, we are now going to prove Theorem 1.4 which shows that the Lutwak–Petty 
projection inequalities is the strongest one and that Conjecture 2.1 is in turn stronger than those.

Proof of Theorem 1.4. First recall that the normalization μ(Sn−1) = 1
2 ensures that for discrete μ, there is 

equality in the left hand inequality of (1.7). In order to prove this inequality for general μ, we use (2.6) and 
Lemma 3.2 to see that

Vn(Φμ,∗
i K) = 1

n

∫
Sn−1

h(Φμ,∗
i K,u)−ndu = 1

n

∫
Sn−1

⎛
⎜⎝2

∫
SO(n)

h(ΠiK,φu) dμ̆u(φ)

⎞
⎟⎠

−n

du.

Noting that μ(Sn−1) = μ̆u(SO(n)) = 1
2 , we can use Jensen’s inequality to obtain

Vn(Φμ,∗
i K) ≤ 2

n

∫
Sn−1

∫
SO(n)

h(ΠiK,φu)−n dμ̆u(φ) du. (5.6)

Since Φμ
i and Πi as well as the polar map are all SO(n) equivariant, replacing K by ϑK in (5.6), yields

Vn(Φμ,∗
i K) ≤ 2

n

∫
n−1

∫
h(ΠiK,ϑ−1φu)−n dμ̆u(φ) du.
S SO(n)



A. Berg, F.E. Schuster / J. Math. Anal. Appl. 490 (2020) 124190 19
By integrating both sides now with respect to the Haar probability measure on SO(n) followed by an 
application of Fubini’s theorem, we arrive at

Vn(Φμ,∗
i K) ≤ 2

n

∫
Sn−1

∫
SO(n)

∫
SO(n)

h(ΠiK,ϑ−1φu)−n dϑ dμ̆u(φ) du

= 1
n

∫
Sn−1

∫
SO(n)

h(ΠiK,ϑu)−n dϑ du,

where the last equality follows from the invariance of the Haar measure and the fact that μ̆u(SO(n)) = 1
2 . 

Finally, another application of Fubini’s theorem together with (2.6), yields the desired inequality,

Vn(Φμ,∗
i K) ≤ 1

n

∫
SO(n)

∫
Sn−1

h(ΠiK,ϑu)−n du dϑ =
∫

SO(n)

Vn(ϑ−1Π∗
iK) dϑ = Vn(Π∗

iK).

We turn to the proof of the right hand inequality of (1.7). First we use again (2.6), followed this time by 
(3.1) and identity (2.18), to obtain

Vn(Π∗
iK) = 1

n

∫
Sn−1

h(ΠiK,u)−n du = κn
i

nκn
n−1

∫
Sn−1

[
(Ri,n−1Vi(K| · ))−n

]⊥
(u) du.

By definition (2.16) of Ri,n−1 and the fact that νFi is a probability measure, it follows from Jensen’s 
inequality that (Ri,n−1Vi(K| · ))−n ≤ Ri,n−1Vi(K| · )−n. Consequently, by also rewriting the integral over 
Sn−1 into an integral over Grn,1, we obtain

Vn(Π∗
iK) ≤ κn

i κn

κn
n−1

∫
Grn,1

(
Ri,n−1Vi(K| · )−n

)⊥(F ) dν1(F ).

Finally, using the fact that ⊥ is self-adjoint, (2.17), and the fact that Rn−1,i(1) = 1 as well as definition 
(1.6), we arrive at the desired inequality,

Vn(Π∗
iK) ≤ κn

i κn

κn
n−1

∫
Grn,i

Vi(K|E)−n dνi(E) = κn+1
n

κn
n−1

An−i(K)−n. �

We next show how to derive Theorem 3.7 from Theorem 3.4, following the approach of [38].

Proof of Theorem 3.7. For discrete μ, the statement is just the Lp Busemann–Petty centroid inequality, 
Theorem 3.5. Thus, we may assume that μ is not discrete. By (2.12) and (3.15), we have for K ∈ Kn

o and 
L ∈ Sn

o ,

Vp(K,Γμ
pL) = 1

n

∫
Sn−1

h(Γμ
pL, u)p dSp(K,u)

= 1
n(n + p)Vn(L)

∫
Sn−1

∫
Sn−1

h(Zμ
p(u), v)pρ(L, v)n+p dv dSp(K,u).

Using Fubini’s theorem, definition (3.12) of Φμ
p, and (2.13) yields
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(n + p)Vn(L)
2 Vp(K,Γμ

pL) = 1
n

∫
Sn−1

h(Φμ
pK, v)pρ(L, v)n+p dv = Ṽ−p(L,Φμ,∗

p K). (5.7)

Taking now K = Γμ
pL, we obtain

Vn(Γμ
pL) = 2

(n + p)Vn(L) Ṽ−p(L,Φμ,∗
p Γμ

pL). (5.8)

Noting that

Φμ
pB

n =
(
μ(Sn−1)
an,p

)1/p

Bn = [(n + p)κn]1/p Γμ
pB

n,

an application of (2.14) followed by Theorem 3.4 to identity (5.8), yields the desired inequality (as in the 
proof of Theorem 5.2),

Vn(Γμ
pL)

Vn(L) ≥ Vn(Γμ
pBn)

Vn(Bn)

along with its equality conditions. �
We remark that it is also not difficult to derive Theorem 3.4 from Theorem 3.7, by taking L = Φμ,∗

p K in 
(5.7), to obtain

Vp(K,Γμ
pΦμ,∗

p K) = 2
(n + p) (5.9)

and combining this with the Lp Minkowski inequality and Theorem 3.7 (see [38]).
For p ≥ 1 and L ∈ Sn

o the pth moment of L is defined by

Ip(L) =

⎛
⎝∫

L

||x||p dx

⎞
⎠

1/p

.

Taking μ to be spherical Lebesgue measure (or any multiple of it) in Theorems 5.2 and 3.7, we obtain the 
following well known Lp moment inequality.

Corollary 5.4. Suppose that 1 ≤ p < ∞. Among star bodies L ∈ Sn
o the ratio Ip(L)np/Vn(L)n+p is minimized 

precisely by origin-symmetric Euclidean balls.

Noting that Γμ
pL is an origin-symmetric convex body for every L ∈ Sn

o , the following generalization 
of the polar Lp Busemann–Petty inequality from [40] is an immediate consequence of a combination of 
Theorems 5.2 and 3.7 with the Blaschke–Santaló inequality (2.9).

Corollary 5.5. Suppose that 1 ≤ p < ∞ and let μ be an even, zonal measure on Sn−1. Among star bodies 
L ∈ Sn

o the volume product Vn(Γμ,∗
p L)Vn(L) is maximized by origin-symmetric Euclidean balls. If μ is not 

discrete, then such balls are the only maximizers. If μ is discrete, then L is a maximizer if and only if it is 
an ellipsoid centered at the origin.

Using the approach from our proof of Theorem 1.4, we can also show that in the large family of isoperi-
metric inequalities provided by Corollary 5.5, the strongest one is the only affine invariant among them, the 
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polar Lp Busemann–Petty inequality. This is a consequence of the following analogue of relation (1.5) for 
the maps Γμ,∗

p .

Theorem 5.6. If μ is an even, zonal measure on Sn−1 such that μ(Sn−1) = 1 and L ∈ Sn
o , then for p ≥ 1,

Vn(Γμ,∗
p L) ≤ Vn(Γ∗

pL). (5.10)

Proof. First note that the normalization μ(Sn−1) = 1 was chosen such that there is equality in (5.10) for 
discrete μ. In order to prove (5.10) for general μ, we use (2.6) and Lemma 3.6 to obtain,

Vn(Γμ,∗
p L) = 1

n

∫
Sn−1

h(Γμ
pL, u)−ndu = 1

n

∫
Sn−1

⎛
⎜⎝

∫
SO(n)

h(ΓpL, φu)p dμ̆u(φ)

⎞
⎟⎠

−n/p

du.

Since μ(Sn−1) = μ̆u(SO(n)) = 1, Jensen’s inequality implies that

Vn(Γμ,∗
p L) ≤ 1

n

∫
Sn−1

∫
SO(n)

h(ΓpL, φu)−n dμ̆u(φ) du.

Using that Γμ,∗
p and Γp are SO(n) equivariant, replacing K by ϑK and integrating both sides with respect 

to the Haar probability measure on SO(n) followed by Fubini’s theorem, we obtain

Vn(Γμ,∗
p L) ≤ 1

n

∫
Sn−1

∫
SO(n)

∫
SO(n)

h(ΓpL, ϑ
−1φu)−n dϑ dμ̆u(φ) du

= 1
n

∫
Sn−1

∫
SO(n)

h(ΓpL, ϑ
−1u)−n dϑ du,

where in the last equality we used the invariance of the Haar measure and the fact that μ̆u(SO(n)) = 1. 
Applying again Fubini’s theorem and (2.6), we arrive at the desired inequality,

Vn(Γμ,∗
p L) ≤ 1

n

∫
SO(n)

∫
Sn−1

h(ϑΓpL, u)−ndu dϑ =
∫

SO(n)

Vn(ϑΓ∗
pL) dϑ = Vn(Γ∗

pL). �

Before we turn to our final proof, let us emphasize that it is an open problem whether Vn(Γμ
pL) ≥ Vn(ΓpL)

holds for every L ∈ Sn
o , which would identify the Lp Busemann–Petty inequality as the strongest inequality 

among the inequalities of Theorems 5.2 and 3.7.
Finally, we come to the proof of the dual analogue of Theorem 1.4.

Proof of Theorem 1.5. The normalization τ(Sn−1) = κn−1 ensures again that for discrete τ , there is equality 
in the left hand inequality of (1.8). In order to prove this inequality for general τ , we use (2.6) and Lemma 4.1
to see that

Vn(Ψτ
i L) = 1

n

∫
Sn−1

ρ(Ψτ
i L, u)n du = 1

n

∫
Sn−1

⎛
⎜⎝ 1
κn−1

∫
SO(n)

ρ(IiL, φu) dτ̆u(φ)

⎞
⎟⎠

n

du.

Since τ(Sn−1) = τ̆u(SO(n)) = κn−1, Jensen’s inequality implies that
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Vn(Ψτ
i L) ≤ 1

nκn−1

∫
Sn−1

∫
SO(n)

ρ(IiL, φu)n dτ̆u(φ) du. (5.11)

Exploiting the SO(n) equivariance of Ψτ
i by replacing L by ϑL in (5.11), followed by integration with respect 

to the Haar probability measure on SO(n) and Fubini’s theorem, yields

Vn(Ψτ
i L) ≤ 1

nκn−1

∫
Sn−1

∫
SO(n)

∫
SO(n)

ρ(IiL, ϑ−1φu)n dϑ dτ̆u(φ) du

= 1
n

∫
Sn−1

∫
SO(n)

ρ(IiL, ϑ−1u)n dϑ du,

where the last equality follows from τ̆u(SO(n)) = κn−1 and the invariance of the Haar measure. Using 
Fubini’s theorem one more time together with (2.6), we arrive at the desired inequality,

Vn(Ψτ
i L) ≤ 1

n

∫
SO(n)

∫
Sn−1

ρ(IiL, ϑ−1u)n dϑ du =
∫

SO(n)

Vn(ϑIiL) dϑ = Vn(IiL).

In order to prove the right hand inequality of (1.8), we use (2.6) followed by (4.1) and identity (2.18), to 
obtain

Vn(IiL) = 1
n

∫
Sn−1

ρ(IiL, u)n du =
κn
n−1
nκn

i

∫
Sn−1

[(Ri,n−1Vi(L ∩ · ))n]⊥(u) du.

Applying Jensen’s inequality to definition (2.16) of Ri,n−1, noting that νFi is a probability measure, yields 
(Ri,n−1Vi(L ∩ · ))n ≤ Ri,n−1Vi(L ∩ · )n. Thus, by also rewriting the integral over Sn−1 into an integral over 
Grn,1, we arrive at

Vn(IiL) ≤ κn
n−1κn

κn
i

∫
Grn,1

(Ri,n−1Vi(L ∩ · )n)⊥(F ) dν1(F ).

Using now the fact that ⊥ is self-adjoint, (2.17), as well as Rn−1,i(1) = 1 and definition (1.9), we obtain the 
desired inequality,

Vn(IiL) ≤ κn
n−1κn

κn
i

∫
Grn,i

Vi(L ∩ E)n dνi(E) =
κn
n−1

κn−1
i

Ãn−i(L)n. �

we obtain the following consequence.

Corollary 5.7. Let 1 ≤ i ≤ n − 1 and suppose that τ is an even, zonal measure on Sn−1. Among star bodies 
L ∈ Sn

o the volume ratio Vn(Ψτ
i L)/Vn(L)i is maximized by Euclidean balls centered at the origin. If i ≤ n −2, 

then such balls are the only maximizers. If i = n − 1 and τ is discrete, then L is a maximizer if and only if 
it is an ellipsoid centered at the origin.

Finally, note that by Theorem 1.5 all the inequalities of Corollary 5.7 are direct consequences of the 
Busemann–Straus and Grinberg inequalities for the dual affine quermassintegrals (2.11).
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