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We study a class of free boundary problems of ecological models with nonlocal and 
local diffusions, which are natural extensions of free boundary problems of reaction 
diffusion systems in there local diffusions are used to describe the population 
dispersal, with the free boundary representing the spreading front of the species. We 
prove that such kind of nonlocal and local diffusion problems has a unique global 
solution, and then show that a spreading-vanishing dichotomy holds. Moreover, 
criteria of spreading and vanishing, and long time behavior of solution when 
spreading happens are established for the classical Lotka-Volterra competition and 
prey-predator models. Compared with free boundary problems of reaction diffusion 
systems with local diffusions ([10,24,25]), with nonlocal diffusions ([9]) as well as 
with nonlocal and local diffusions ([14]) (one equation is Cauchy problem and the 
other one is free boundary problem), the present paper involves some new difficulties, 
which should be overcome by use of new techniques. This is part I of a two part 
series, where we prove the existence, uniqueness, regularity and estimates of global 
solution. The spreading-vanishing dichotomy, criteria of spreading and vanishing, 
and long-time behavior of solution when spreading happens will be studied in the 
separate part II ([17]).

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The spreading and vanishing of multiple species is an important content in understanding ecological 
complexity. In order to study the spreading and vanishing phenomenon, many mathematical models have 
been established. The logistic equation, competition and prey-predator models with local diffusions and 
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free boundaries have been studied widely by many authors, please refer to, for example, [6] for the logistic 
equation, [10,24], [7,11,22,23,29] for the competition models, [18,21,26,27] for the prey-predator models, and 
the references therein.

It is well known that random dispersal or local diffusion describes the movements of organisms between 
adjacent spatial locations. It has been increasingly recognized that the movements and interactions of 
some organisms can occur between non-adjacent spatial locations. The evolution of nonlocal diffusion has 
attracted a lot of attentions for both theoretically and empirically; see [1,2,15] and references therein. An 
extensively used nonlocal diffusion operator to replace the local diffusion term dΔu (the Laplacian operator 
in RN ) is given by

d(J ∗ u− u)(t, x) := d

⎛
⎝ ∫

RN

J(x− y)u(t, y)dy − u(t, x)

⎞
⎠ .

To describe the spatial spreading of species in the nonlocal diffusion processes, recently, the authors of 
[4] studied the following free boundary problem of Fisher-KPP nonlocal diffusion model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d

h(t)∫
g(t)

J(x− y)u(t, y)dy − du(t, x) + f(t, x, u), t > 0, g(t) < x < h(t),

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

h′(t) = μ

h(t)∫
g(t)

∞∫
h(t)

J(x− y)u(t, x)dydx, t > 0,

g′(t) = −μ

h(t)∫
g(t)

g(t)∫
−∞

J(x− y)u(t, x)dydx, t > 0,

u(0, x) = u0(x), h(0) = −g(0) = h0, |x| ≤ h0,

(1.1)

where x = g(t) and x = h(t) are free boundaries to be determined together with u(t, x), which is always 
assumed to be identically 0 for x ∈ R \ [g(t), h(t)]; d, μ and h0 are positive constants. The kernel function 
J : R → R is continuous and satisfies

(J) J(0) > 0, J(x) ≥ 0, 
∫
R

J(x)dx = 1, J is symmetric, and sup
R

J < ∞.

The reaction function f(t, x, u) has logistic structure. It was shown in [4] that the problem (1.1) has a 
unique global solution. Furthermore, the spreading-vanishing dichotomy about free boundary problems of 
local diffusive logistic equation ([6]) holds true for the nonlocal diffusive problem (1.1) when f(t, x, u) =
f(u). However, from [4, Remark 1.4] we know that when d ≤ f ′(0), spreading happens no matter how 
small h0, μ and u0 are. This is very different from the spreading-vanishing criteria for the local diffusion 
models.

Recently, Du et al. [8] studied the semi-wave and spreading speed of the problem (1.1). They found a 
threshold condition on the kernel function J such that spreading grows linearly in time exactly when this 
condition holds, which is achieved by completely solving the associated semi-wave problem that determines 
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this linear speed; when the kernel function violates this condition, they showed that accelerating spreading 
happens.

Motivated by the papers [4] and [10,16,22,24,29] (two species local diffusion systems with common 
free boundary), the authors of [9] studied the following free boundary problem of nonlocal diffusive
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uit = di

h(t)∫
g(t)

Ji(x− y)ui(t, y)dy − diui + fi(t, x, u1, u2), t > 0, g(t) < x < h(t),

ui(t, g(t)) = ui(t, h(t)) = 0, t ≥ 0,

h′(t) =
2∑

i=1
μi

h(t)∫
g(t)

∞∫
h(t)

Ji(x− y)ui(t, x)dydx, t ≥ 0,

g′(t) = −
2∑

i=1
μi

h(t)∫
g(t)

g(t)∫
−∞

Ji(x− y)ui(t, x)dydx, t ≥ 0,

ui(0, x) = ui0(x), h(0) = −g(0) = h0, |x| ≤ h0,

i = 1, 2.

(1.2)

They proved the existence and uniqueness of global solution, a spreading-vanishing dichotomy and obtained 
the criteria for spreading and vanishing.

Kao et al. [12] studied the competition model in which one diffusion is local and the other one is non-
local:

⎧⎪⎪⎨
⎪⎪⎩
ut = d1Δu + u(a− u− v), t > 0, x ∈ Ω,

vt = d2

∫
Ω

J(x− y)v(t, y)dy − d2v + v(a− u− v), t > 0, x ∈ Ω.

Recently, Li et al. [14] investigated the following free boundary problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1

∞∫
−∞

J(x− y)u(t, y)dy − d1u + f1(t, x, u, v), t > 0, −∞ < x < ∞,

vt = d2vxx + f2(t, x, u, v), t > 0, g(t) < x < h(t),

v = 0, g′(t) = −μvx, t ≥ 0, x = g(t),

v = 0, h′(t) = −μvx, t ≥ 0, x = h(t),

u(0, x) = u0(x), x ∈ R,

v(0, x) = v0(x), x ∈ [−h0, h0],

− g(0) = h(0) = h0 > 0.

Motivated by the above mentioned works, it will be interesting to study the free boundary problems 
with nonlocal and local diffusions. Based on the deductions of free boundary conditions in [3] and [4], it is 
reasonable to study the following free boundary problems:



JID:YJMAA AID:123974 /FLA Doctopic: Partial Differential Equations [m3L; v1.283; Prn:26/02/2020; 16:28] P.4 (1-24)
4 J. Wang, M. Wang / J. Math. Anal. Appl. ••• (••••) ••••••
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1

h(t)∫
g(t)

J(x, y)u(t, y)dy − d1u + f1(t, x, u, v), t > 0, g(t) < x < h(t),

vt = d2vxx + f2(t, x, u, v), t > 0, g(t) < x < h(t),
u(t, g(t)) = u(t, h(t)) = v(t, g(t)) = v(t, h(t)) = 0, t ≥ 0,

h′(t) = −μvx(t, h(t)) + ρ

h(t)∫
g(t)

∞∫
h(t)

J(x, y)u(t, x)dydx, t ≥ 0,

g′(t) = −μvx(t, g(t)) − ρ

h(t)∫
g(t)

g(t)∫
−∞

J(x, y)u(t, x)dydx, t ≥ 0,

u(0, x) = u0(x), v(0, x) = v0(x), h(0) = −g(0) = h0 > 0, |x| ≤ h0,

(1.3)

where J(x, y) = J(x − y); [−h0, h0] represents the initial population range of the species u and v; x = g(t)
and x = h(t) are the free boundaries to be determined together with u(t, x) and v(t, x), which are always 
assumed to be identically 0 for x ∈ R \ [g(t), h(t)]; di and μ, ρ are positive constants.

Denote by C1−(Ω) the Lipschitz continuous function space in Ω. We assume that the initial functions 
u0, v0 satisfy

(u0, v0) ∈ C1−([−h0, h0]) ×W 2
p (−h0, h0), u0(±h0) = v0(±h0) = 0, u0, v0 > 0 in (−h0, h0) (1.4)

with p > 3. The kernel function J is supposed to satisfy

(J1) The condition (J) holds, and J ∈ C1−(R).

It follows from (J) that there exist constants ε̄ ∈ (0, h0/4) and δ0 > 0 such that

J(x, y) > δ0 if |x− y| < ε̄. (1.5)

The growth terms fi : R+ ×R ×R+ ×R+ → R are assumed to be continuous and satisfy

(f) f1(t, x, 0, v) = f2(t, x, u, 0) = 0, fi(t, x, u, v) is differentiable with respect to u, v ∈ R+, and for any 
c1, c2 > 0, there exists a constant L(c1, c2) > 0 such that

|fi(t, x, u1, v1) − fi(t, x, u2, v2)| ≤ L(c1, c2)(|u1 − u2| + |v1 − v2|), i = 1, 2

for all u1, u2 ∈ [0, c1], v1, v2 ∈ [0, c2] and all (t, x) ∈ R+ ×R;
(f1) There exist k0 > 0 and r > 0 such that for all v ≥ 0 and (t, x) ∈ R+ ×R, there hold: f1(t, x, u, v) < 0

when u > k0, f1(t, x, u, v) ≤ ru when 0 < u ≤ k0;
(f2) For the given k > 0, there exists Θ(k) > 0 such that f2(t, x, u, v) < 0 for 0 ≤ u ≤ k, v ≥ Θ(k) and 

(t, x) ∈ R+ ×R;
(f3) fix(t, x, u, v) is continuous and for any c1, c2 > 0, there exists a constant L∗(c1, c2) > 0 such that

|fi(t, x, u, v) − fi(t, y, u, v)| ≤ L∗(c1, c2)|x− y|, i = 1, 2

for all u ∈ [0, c1], v ∈ [0, c2] and all (t, x, y) ∈ R+ ×R ×R.
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The condition (f) implies

|f1(t, x, u, v)| ≤ L(c1, c2)u, |f2(t, x, u, v)| ≤ L(c1, c2)v

for all u ∈ [0, c1], v ∈ [0, c2] and all (t, x) ∈ R+ ×R.
Except where otherwise stated, we always assume that (f)-(f3) hold, the kernel function J satisfies (J1)

and u0, v0 satisfy the condition (1.4) throughout this paper. We write ‖φ, ϕ‖ ≤ M means that ‖φ‖ ≤ M , 
‖ϕ‖ ≤ M .

Since this paper is very long, and the techniques used in the first part are rather different from those in 
the second part, it is divided into two separate parts. Part I here is mainly concerned with the existence, 
uniqueness, regularity and estimates of global solution. Part II ([17]) focuses on the spreading-vanishing 
dichotomy, criteria of spreading and vanishing, and long time behavior of solution when spreading happens.

Before ending this section we should mention that when this article is finished, we find that Cao et al. 
([5]) studied a nonlocal diffusion Lotka-Volterra type competition model that consisting of a native species 
and an invasive species in a one-dimensional habitat with free boundaries, Zhao et al. ([28]) investigated an 
epidemic model with nonlocal diffusion and free boundaries.

2. Existence, uniqueness, regularity and estimates of global solution of (1.3)

For convenience, we first introduce some notations. Let L(u0) and L(J) be the Lipschitz constants of u0
and J , respectively. Let k0, Θ(·) be given in (f1), (f2). Denote

k1 = max {‖u0‖∞, k0} , k2 = max {‖v0‖∞, Θ(k1)} , L = L(k1, k2),

L∗ = L∗(k1, k2), k3 = max
{

1
h0

,

√
L

2d2
,
‖v′0‖C([−h0,h0])

k2

}
,

x(t, y) = (h(t) − g(t))y + h(t) + g(t)
2 , y(t, x) = 2x− g(t) − h(t)

h(t) − g(t) ,

ξ(t) = 4
(h(t) − g(t))2 , ζ(t, y) = h′(t) + g′(t)

h(t) − g(t) + (h′(t) − g′(t))y
h(t) − g(t) ,

Σ = [−1, 1], Πs = [0, s] × Σ, R(t) = μk3 + 2(h0ρk1 + μk3)eρk1t.

For the given T > 0, define

HT =
{
h ∈ C1([0, T ]) : h(0) = h0, 0 < h′(t) ≤ R(t)

}
,

GT =
{
g ∈ C1([0, T ]) : −g ∈ HT

}
.

And for g ∈ GT , h ∈ HT , define

DT
g,h =

{
(t, x) ∈ R2 : 0 < t ≤ T, g(t) < x < h(t)

}
,

XT
1 = XT

u0,g,h =
{
ϕ ∈ C(DT

g,h) : 0 ≤ ϕ ≤ k1, ϕ
∣∣
t=0 = u0, ϕ

∣∣
x=g(t),h(t) = 0

}
,

XT
2 = XT

v0,g,h =
{
ϕ ∈ C(DT

g,h) : 0 ≤ ϕ ≤ k2, ϕ
∣∣
t=0 = v0, ϕ

∣∣
x=g(t),h(t) = 0

}
,

as well as

XT
g,h := XT

1 ×XT
2 .
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The following theorem is our main result in this part.

Theorem 2.1. The problem (1.3) has a unique local solution (u, v, g, h) defined on [0, T ] for some 0 < T < ∞. 
Moreover, (g, h) ∈ GT ×HT , (u, v) ∈ XT

g,h and

u ∈ C1,1−(DT

g,h), v ∈ W 1,2
p (DT

g,h), (2.1)

0 < u ≤ k1, 0 < v ≤ k2 in DT
g,h, (2.2)

0 < −vx(t, h(t)), vx(t, g(t)) ≤ k3, 0 < t ≤ T, (2.3)

where u ∈ C1,1−(DT

g,h) means that u is differentiable continuously in t ∈ [0, T ] and is Lipschitz continuous 
in x ∈ [g(t), h(t)].

If we further assume that

(f4) For any given τ , l, c1, c2 > 0, there exists a constant L̄(τ, l, c1, c2) such that

‖f2(·, x, u, v)‖C α
2 ([0,τ ]) ≤ L̄(τ, l, c1, c2) (2.4)

for all x ∈ [−l, l], u ∈ [0, c1], v ∈ [0, c2].

Then the solution (u, v, g, h) exists globally. Moreover, for any given τ > 0, (2.2) and (2.3) hold with T
replaced by τ , and

g, h ∈ C1+α/2([0, τ ]), u ∈ C1,1−(Dτ

g,h), v ∈ C1+α/2, 2+α((0, τ ] × [g(t), h(t)]). (2.5)

For the classical competition and prey-predator models

Competition Model : f1 = u(a− u− bv), f2 = v(1 − v − cu), (2.6)

Prey-predator Model : f1 = u(a− u− bv), f2 = v(1 − v + cu), (2.7)

the conditions (f)–(f4) hold, where a, b, c are positive constants.
Due to the presence of the nonlocal diffusion and local diffusion, the methods that solve the local diffusion 

models are not applicable any more and the arguments for the nonlocal system developed in [4,9] are far 
from sufficient for the present stage, the proofs of Theorem 2.1 are highly non trivial. Our approach to prove 
Theorem 2.1 is based on the fixed point theorem. Some new ideas and delicate calculations are given in the 
proof of Theorem 2.1.

The proof of Theorem 2.1 will be divided into several lemmas because it is too long. Throughout this 
paper we use C, C ′, Ci and C ′

i to represent general constants, which may not be the same in different places.
We first state the following Maximum Principle which will be used frequently in our analysis.

Lemma 2.2 (Maximum Principle [4, Lemma 2.2]). Assume that J satisfies (J) and d is a positive constant, 
and (r, η) ∈ GT ×HT . Suppose that ψ, ψt ∈ C(DT

η,r) and fulfill, for some � ∈ L∞(DT
η,r),⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψt ≥ d

r(t)∫
η(t)

J(x, y)ψ(t, y)dy − dψ + �ψ, (t, x) ∈ DT
η,r,

ψ(t, η(t)) ≥ 0, ψ(t, r(t)) ≥ 0, 0 ≤ t ≤ T,

ψ(0, x) ≥ 0, |x| ≤ h .
0
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Then ψ ≥ 0 on D
T

η,r. Moreover, if ψ(0, x) 	≡ 0 in [−h0, h0], then ψ > 0 in DT
η,r.

Lemma 2.3. For any T > 0 and (g, h) ∈ GT ×HT , the problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1

h(t)∫
g(t)

J(x, y)u(t, y)dy − d1u + f1(t, x, u, v), (t, x) ∈ DT
g,h,

vt = d2vxx + f2(t, x, u, v), (t, x) ∈ DT
g,h,

u(t, g(t)) = u(t, h(t)) = v(t, g(t)) = v(t, h(t)) = 0, 0 ≤ t ≤ T,

u(0, x) = u0(x), v(0, x) = v0(x), |x| ≤ h0

(2.8)

admits a unique solution (ug,h, vg,h) ∈ XT
g,h, and (ug,h, vg,h) satisfies (2.2) and (2.3). Moreover, vg,h ∈

W 1,2
p (DT

g,h).

Proof. Step 1 : For ũ ∈ Xs
1 with 0 < s ≤ T , consider the following initial-boundary value problem

⎧⎪⎨
⎪⎩
vt = d2vxx + f2(t, x, ũ, v), (t, x) ∈ Ds

g,h,

v(t, g(t)) = v(t, h(t)) = 0, 0 ≤ t ≤ s,

v(0, x) = v0(x), |x| ≤ h0.

(2.9)

Let z(t, y) = v(t, x(t, y)), w̃(t, y) = ũ(t, x(t, y)). It follows from (2.9) that
⎧⎪⎨
⎪⎩
zt = d2ξ(t)zyy + ζ(t, y)zy + f∗

2 (t, y, w̃, z), 0 < t ≤ s, |y| < 1,
z(t,±1) = 0, 0 ≤ t ≤ s,

z(0, y) = v0(h0y) =: z0(y), |y| ≤ 1,
(2.10)

where f∗
2 (t, y, w̃, z) = f2(t, x(t, y), w̃, z). Note that (g, h) ∈ Gh0,s ×Hh0,s, we have ξ ∈ C([0, s]), ζ ∈ C(Πs)

and

‖ξ‖L∞((0,s)) ≤ 1/h2
0, ‖ζ‖L∞(Πs) ≤ 2R(s)/h0 ≤ 2R(T )/h0.

It is easy to see that w̃ ∈ C(Πs) and 0 ≤ w̃ ≤ k1. Notice that z0(y) ∈
◦
W 1

2(Σ). By the upper and lower 
solutions method and L2 theory ([13, Ch. III, Theorem 6.1]) we can show that the problem (2.10) has a 
unique solution z ∈ W 1,2

2 (Πs), and z ∈ Cα/2,α(Πs) by the embedding theorem. Moreover, 0 ≤ z ≤ k2 in Πs

by the weak maximum principle. Hence, the problem (2.9) admits a unique solution v ∈ Xs
2.

Step 2 : For 0 < s ≤ T , let v be the unique solution of (2.9) and consider

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
ut = d1

h(t)∫
g(t)

J(x, y)u(t, y)dy − d1u + f1(t, x, u, v), (t, x) ∈ Ds
g,h,

u(t, g(t)) = u(t, h(t)) = 0, 0 ≤ t ≤ s,

u(0, x) = u0(x), |x| ≤ h0.

(2.11)

Thanks to [4, Lemma 2.3], this problem admits a unique solution u which satisfies 0 < u ≤ k1 for (t, x) ∈
[0, s] × (g(t), h(t)). It is easily seen that u ∈ Xs

1. Define a mapping Fs : Xs
1 → Xs

1 by

Fsũ = u.

If Fsũ = ũ, then (ũ, v) solves (2.8) in Ds
g,h.
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Step 3 : We shall prove that Fs has a fixed point in Xs
1 provided s small enough. Evidently, Xs

1 is a closed 
bounded subset of C(Ds

g,h). Let ũ1, ̃u2 ∈ Xs
1 and ui = Fsũi with i = 1, 2. Let vi be the unique solution of 

(2.9) with ũi. Then (ui, vi) ∈ Xs. Notice that ui satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ui,t = d1

h(t)∫
g(t)

J(x, y)ui(t, y)dy − d1ui + f1(t, x, ui, vi), tx < t ≤ s, g(t) < x < h(t),

ui(tx, x) = ũ0(x), g(s) < x < h(s),

where

ũ0(x) =
{

0, |x| > h0,

u0(x), |x| ≤ h0,
tx =

⎧⎪⎪⎨
⎪⎪⎩
tx,g if x ∈ [g(s),−h0), x = g(tx,g),

0 if |x| ≤ h0,

tx,h if x ∈ (h0, h(s)], x = h(tx,h).

Let ũ = ũ1 − ũ2, u = u1 − u2 and v = v1 − v2, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + a(t, x)u = d1

h(t)∫
g(t)

J(x, y)u(t, y)dy + b(t, x)v, tx < t ≤ s, g(t) < x < h(t),

u(tx, x) = 0, g(s) < |x| < h(s),

(2.12)

where

a(t, x) = d1 −
1∫

0

f1,u(t, x, u2 + (u1 − u2)τ, v2)dτ,

b(t, x) =
1∫

0

f1,v(t, x, u1, v2 + (v1 − v2)τ)dτ.

Recall (f), there holds that ‖a, b‖∞ ≤ d1 + L =: L1. It follows from (2.12) that, for x ∈ (g(t), h(t)) and 
tx < t ≤ s,

u(t, x) = e−
∫ t
tx

a(τ,x)dτ
t∫

tx

e
∫ l
tx

a(τ,x)dτ

⎛
⎜⎝d1

h(l)∫
g(l)

J(x, y)u(l, y)dy + b(l, x)v(l, x)

⎞
⎟⎠dl.

Due to (g(t), h(t)) ⊂ (g(s), h(s)) for tx < t ≤ s, this implies that

|u(t, x)| ≤ e2L1s

⎛
⎝d1‖u‖C(Ds

g,h)s + L1

t∫
tx

|v(l, x)|dl

⎞
⎠ . (2.13)

Note that v satisfies ⎧⎪⎪⎨
⎪⎪⎩
vt = d2vxx + a0(t, x)v + b0(t, x)ũ, (t, x) ∈ Ds

g,h,

v(t, g(t)) = v(t, h(t)) = 0, 0 ≤ t ≤ s,

v(0, x) = 0, |x| ≤ h ,
0
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where

a0(t, x) =
1∫

0

f2,v(t, x, ũ1, v2 + (v1 − v2)τ)dτ,

b0(t, x) =
1∫

0

f2,u(t, x, ũ2 + (ũ1 − ũ2)τ, v2)dτ.

Clearly, ‖a0, b0‖∞ ≤ L. Let

w̃(t, y) = ũ(t, x(t, y)), z̃(t, y) = v(t, x(t, y)), ã0(t, y) = a0(t, x(t, y)), b̃0(t, y) = b0(t, x(t, y)).

It is easy to see that z̃ satisfies
⎧⎪⎨
⎪⎩
z̃t = d2ξ(t)z̃yy + ζ(t, y)z̃y + ã0z̃ + b̃0w̃, 0 < t ≤ s, |y| < 1,
z̃(t,±1) = 0, 0 ≤ t ≤ s,

z̃(0, y) = 0, |y| ≤ 1.

Thanks to the parabolic Lp theory, one can obtain that, with p > 3 and α = 1 − 3/p,

‖z̃‖W 1,2
p (Πs) ≤ C‖w̃‖C(Πs) = C‖ũ‖C(Ds

g,h).

Using the arguments in the proof of [19, Theorem 1.1] we have

[z̃, z̃y]Cα/2,α(Πs) ≤ C ′‖z̃‖W 1,2
p (Πs) ≤ C ′C‖ũ‖C(Ds

g,h), (2.14)

where C ′ is independent of s−1, and [ · ]
C

α
2 ,α(Πs)

is the Hölder semi-norm. It follows from z̃(0, y) = 0 that 
‖z̃‖L∞(Πs) ≤ [z̃]Cα/2,α(Πs)s

α/2. Thus we have, for tx ≤ t ≤ s ≤ 1,

t∫
tx

|v(l, x)|dl ≤
s∫

0

‖z̃‖L∞(Πs)dl ≤ s[z̃]Cα/2,α(Πs) ≤ sC ′C‖ũ‖C(Ds
g,h).

Inserting this into (2.13) gives

|u(t, x)| ≤ e2L1s
(
d1s‖u‖C(Ds

g,h) + L1C
′Cs‖ũ‖C(Ds

g,h)
)
.

Taking s small enough such that

d1se
2L1s ≤ 1/2, L1C

′Cse2L1s ≤ 1/4.

Then ‖u‖C(Ds
g,h) ≤ 1

2‖ũ‖C(Ds
g,h). The contraction mapping theorem shows that Fs has a unique fixed point 

u in Xs
1. Let z be the unique solution of (2.10) with w̃(t, y) replaced by w(t, y) = u(t, x(t, y)).

Step 4 : The local existence and uniqueness of solution (u, v) of (2.8). From the above analysis, the function 
v(t, x) = z(t, y(t, x)) solves (2.9) with ũ replaced by u and v ∈ Xs

2. Hence, (u, v) ∈ Xs
g,h solves (2.8) with 

T replaced by s. Moreover, from the above arguments we know that any solution (U, V ) of (2.8) in (0, s]
satisfies (U, V ) ∈ Xs

g,h. Hence, (u, v) is the unique solution of (2.8) in (0, s].



JID:YJMAA AID:123974 /FLA Doctopic: Partial Differential Equations [m3L; v1.283; Prn:26/02/2020; 16:28] P.10 (1-24)
10 J. Wang, M. Wang / J. Math. Anal. Appl. ••• (••••) ••••••
Step 5 : We finally show that the unique solution (u, v) of (2.8) can be extended to DT
g,h. It is clear that 

u(s, x) ∈ C([g(s), h(s)]), 0 ≤ u(s, x) ≤ k1, 0 ≤ v(s, x) ≤ k2 and

u(s, g(s)) = u(s, h(s)) = v(s, g(s)) = v(s, g(s)) = 0.

Same as the above, let z(t, y) = v(t, x(t, y)), w(t, y) = u(t, x(t, y)). Since z0(y) = v0(h0y) ∈ W 2
p (Σ) and 

p > 3, where Σ = [−1, 1], applying the Lp theory to (2.10) and the uniqueness of weak solution, we have 

z ∈ W 1,2
p (Πs) ↪→ C(1+α)/2,1+α(Πs). And so z(s, ·) ∈

◦
W 1

2(Σ). Note that in the above Steps 1, 2, 3 we only 

used u0 ∈ C([−h0, h0]), z0(y) ∈
◦
W 1

2(Σ) without using u0 ∈ C1−([−h0, h0]) and z0 ∈ W 2
p (Σ). We can apply 

the above Steps 1, 2, 3 to (2.8) but with initial time t = 0 replaced by t = s to get an s̄ > s and a unique 
(û, ̂z) which satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
ût = d1

h(t)∫
g(t)

J(x, y)û(t, y)dy − d1û + f1(t, x, û, v̂), s < t ≤ s̄, g(t) < x < h(t),

û(t, g(t)) = û(t, h(t)) = 0, s ≤ t ≤ s̄,

û(s, x) = u(s, x), g(s) ≤ x ≤ h(s),

and
⎧⎨
⎩
ẑt = d2ξ(t)ẑyy + ζ(t, y)ẑy + f∗

2 (t, y, ŵ, ẑ), s < t ≤ s̄, |y| < 1,
ẑ(t,±1) = 0, s ≤ t ≤ s̄,

ẑ(s, y) = v(s, x(s, y)), |y| ≤ 1

as well as û, ̂v ∈ C([s, ̄s] × [g(t), h(t)]), where v̂(t, x(t, y)) = ẑ(t, y), ŵ(t, y) = û(t, x(t, y)). Set u(t, x) =
û(t, x), z(t, y) = ẑ(t, y) for t ∈ [s, ̄s], g(t) ≤ x ≤ h(t), |y| ≤ 1. Clearly, u ∈ C(Ds̄

g,h) solves (2.11) with 
(s, v) replaced by (s̄, v), where v(t, x) = z(t, y(t, x)); z is a weak solution of (2.10) with (s, w̃) replaced by 
(s̄, w), where w(t, y) = u(t, x(t, y)). Therefore (u, v) ∈ Xs̄

g,h and solves (2.8) in (0, ̄s]. Applying the Lp theory 
to (2.10) with (s, w̃) replaced by (s̄, w) and the uniqueness of weak solution, we have z ∈ W 1,2

p (Πs̄) ↪→
C(1+α)/2,1+α(Πs̄). Hence, z(s̄, ·) ∈

◦
W 1

2(Σ). From the arguments in the above Steps 1, 2, 3 we see that s̄
depends only on di, ki, h0, i = 1, 2. By repeating this process finitely many times, the solution (u, v) will be 
uniquely extended to DT

g,h and (u, v) ∈ XT
g,h.

Thanks to Lemma 2.2, we have u > 0 in DT
g,h. And, it follows from the parabolic maximum principle for 

the strong solution that v > 0 in DT
g,h. Hence, we get (2.2). Since v > 0 in DT

g,h and v(t, h(t)) = v(t, g(t)) = 0, 
we have vx(t, h(t)) < 0 and vx(t, g(t)) > 0 (see the proof of [20, Theorem 1.1, pp. 2597]). Recall 0 ≤ v ≤ k2
and f2(t, x, u, v) ≤ Lv. By using the similar arguments in the proof of [25, Lemma 2.1] (cf. [19, Lemma 2.1]), 
one can easily show that

0 < −vx(t, h(t)), vx(t, g(t)) ≤ max
{

1
h0

,

√
L

2d2
,
‖v′0‖C([−h0,h0])

k2

}
= k3.

This implies (2.3). In view of (1.4) and the parabolic Lp theory we have v ∈ W 1,2
p (DT

g,h) for all p > 1. The 
proof is complete. �

According to Lemma 2.3, for any T > 0 and (g, h) ∈ GT ×HT , there exists a unique (u, v) = (ug,h, vg,h) ∈
XT

g,h that solves (2.8), and (2.2) holds. For 0 < t ≤ T , define the mapping

G(g, h) = (g̃, h̃)
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by

h̃(t) = h0 − μ

t∫
0

vx(τ, h(τ))dτ + ρ

t∫
0

h(τ)∫
g(τ)

∞∫
h(τ)

J(x, y)u(τ, x)dydxdτ,

g̃(t) = −h0 − μ

t∫
0

vx(τ, g(τ))dτ − ρ

t∫
0

h(τ)∫
g(τ)

g(τ)∫
−∞

J(x, y)u(τ, x)dydxdτ.

We shall show that G maps a suitable closed subset ΓT of GT ×HT into itself and is a contraction mapping 
provided T sufficiently small.

Lemma 2.4. There exists a closed subset ΓT ⊂ GT ×HT such that G(ΓT ) ⊂ ΓT .

Proof. Let (g, h) ∈ GT ×HT . Then g̃, ̃h ∈ C1([0, T ]) and for 0 < t ≤ T ,

h̃′(t) = −μvx(t, h(t)) + ρ

h(t)∫
g(t)

∞∫
h(t)

J(x, y)u(t, x)dydx,

g̃′(t) = −μvx(t, g(t)) − ρ

h(t)∫
g(t)

g(t)∫
−∞

J(x, y)u(t, x)dydx.

It follows that

[h̃(t) − g̃(t)]′ = −μ
[
vx(t, h(t)) − vx(t, g(t))

]
+ ρ

h(t)∫
g(t)

⎡
⎢⎣

∞∫
h(t)

+
g(t)∫

−∞

⎤
⎥⎦J(x, y)u(t, x)dydx. (2.15)

Taking

0 < ε0 < min
{
ε̄,

8μk3

ρk1

}
, M = 2h0 + ε0

4 , 0 < T0 ≤ ε0

4
(
2μk3 + ρk1M

)
such that h(T0) − g(T0) ≤ M . Let R̄ = μk3 + ρk1M . Then, due to (2.2), (2.3) and (2.15), we have

[h̃(t) − g̃(t)]′ ≤ 2μk3 + ρk1[h(T0) − g(T0)] ≤ 2μk3 + ρk1M.

This implies

h̃(t) − g̃(t) ≤ 2h0 + t
(
2μk3 + ρk1M

)
≤ M, t ∈ [0, T0]. (2.16)

Similarly, we can show that

h̃′(t) ≤ R̄, −g̃′(t) ≤ R̄, t ∈ [0, T0]. (2.17)

It is easily verified that

h(t) ∈ [h0, h0 + ε0/4], g(t) ∈ [−h0 − ε0/4,−h0], t ∈ [0, T0]. (2.18)
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Since (u, v) solves (2.8), due to (f)-(f2) and (2.2) we have

⎧⎪⎨
⎪⎩
ut ≥ −d1u− Lu, (t, x) ∈ DT0

g,h,

u(t, g(t)) = u(t, h(t)) = 0, 0 ≤ t ≤ T0,

u(0, x) = u0(x), |x| ≤ h0,

which implies that

u(t, x) ≥ e−(d1+L)tu0(x) ≥ e−(d1+L)T0u0(x), t ∈ (0, T0], |x| ≤ h0.

This combined with (1.5) and (2.18) allows us to derive

ρ

h(t)∫
g(t)

∞∫
h(t)

J(x, y)u(t, x)dydx ≥ ρ

h(t)∫
h(t)− ε0

2

h(t)+ ε0
2∫

h(t)

J(x, y)u(t, x)dydx

≥ ρe−(d1+L)T0

h0∫
h0− ε0

4

h0+ ε0
2∫

h0+ ε0
4

J(x, y)u0(x)dydx

≥ ε0

4 δ0ρe
−(d1+L)T0

h0∫
h0− ε0

4

u0(x)dx

=: ρc0, t ∈ (0, T0].

Similarly,

−ρ

h(t)∫
g(t)

g(t)∫
−∞

J(x, y)u(t, x)dydx ≤ −ε0

4 δ0ρe
−(d1+L)T0

−h0+ ε0
4∫

−h0

u0(x)dx =: −ρc∗0.

Thus, by (2.3),

h̃′(t) ≥ ρc0, g̃′(t) ≤ −ρc∗0, t ∈ [0, T0]. (2.19)

Moreover, by the definitions of R̄, R(t) and the choice of ε0, we know that

R̄ ≤ μk3 + 2(h0ρk1 + μk3) ≤ μk3 + 2(h0ρk1 + μk3)eρk1t = R(t)

for all t ∈ [0, T0]. Noticing that

ρc0 ≤ ρe−(d1+L)T0

h0∫
h0− ε0

4

h0+ ε0
2∫

h0+ ε0
4

J(x, y)u0(x)dydx ≤ ρh0k1,

one has

ρc0, ρc∗0 ≤ ρh0k1 < R̄ ≤ R(t), t ∈ [0, T0].

For 0 < T ≤ T0, we define
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ΓT = {(g, h) ∈ GT ×HT : ρc0 ≤ h′(t) ≤ R̄, −R̄ ≤ g′(t) ≤ −ρc∗0, h(T ) − g(T ) ≤ M}.

It follows from the above analysis that G(ΓT ) ⊂ ΓT . �
In the following we show that G is a contraction mapping on ΓT when T is small.

Lemma 2.5. The mapping G is contraction on ΓT when T is small.

Proof. For (gi, hi) ∈ ΓT with 0 < T ≤ min{T0, 1}, let

ΩT = DT
g1,h1

∪DT
g2,h2

, ui = ugi,hi
, vi = vgi,hi

, G(gi, hi) = (g̃i, h̃i), i = 1, 2,

u = u1 − u2, v = v1 − v2, g = g1 − g2, h = h1 − h2, g̃ = g̃1 − g̃2, h̃ = h̃1 − h̃2.

Note that (ui, vi) ∈ XT
gi,hi

. By Lemma 2.3, vi ∈ W 1,2
p (DT

gi,hi
) with p > 3. Make the zero extension of ui, vi

in ([0, T ] ×R) \DT
gi,hi

for i = 1, 2. It is easy to see that

|h̃′(t)| ≤ μ|v1,x(t, h1(t)) − v2,x(t, h2(t))|

+ρ

∣∣∣∣∣∣∣
h1(t)∫

g1(t)

∞∫
h1(t)

J(x, y)u1(t, x)dydx−
h2(t)∫

g2(t)

∞∫
h2(t)

J(x, y)u2(t, x)dydx

∣∣∣∣∣∣∣
=: μφ1(t) + ρφ2(t). (2.20)

Step 1: The estimation of φ1(t). It follows from (2.8) that, for i = 1, 2,

⎧⎪⎪⎨
⎪⎪⎩
vi,t = d2vi,xx + f2(t, x, ui, vi), (t, x) ∈ DT

gi,hi
,

vi(t, gi(t)) = vi(t, hi(t)) = 0, 0 ≤ t ≤ T,

vi(0, x) = 0, |x| ≤ h0.

(2.21)

For i = 1, 2, let

xi(t, y) = 1
2[(hi(t) − gi(t))y + hi(t) + gi(t)],

and define

wi(t, y) = ui(t, xi(t, y)), zi(t, y) = vi(t, xi(t, y)), f i
2(t, y, u, v) = f2(t, xi(t, y), u, v)

for t ∈ [0, T ], y ∈ Σ and u, v ∈ R+. Then (2.21) turns into

⎧⎪⎪⎨
⎪⎪⎩
zi,t = d2ξi(t)zi,yy + ζi(t, y)zi,y + f i

2(t, y, wi, zi), 0 < t ≤ T, |y| < 1,
zi(t,−1) = zi(t, 1) = 0, 0 ≤ t ≤ T,

zi(0, y) = v0(h0y) =: z0(y), |y| ≤ 1,
(2.22)

where ξi(t) and ζi(t, y) are the same as ξ(t) and ζ(t, y) in there g, h are replaced by gi, hi. Making use of 
(gi, hi) ∈ ΓT and (2.2), we have

‖ξi‖L∞((0,T )) ≤ 1/h2
0, ‖ζi‖L∞(ΠT ) ≤ 2R̄/h0, ‖f i

2‖L∞(ΠT ) ≤ C0 (2.23)
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for i = 1, 2, where C0 depends only on k1, k2. By the parabolic Lp theory, zi ∈ W 1,2
p (ΠT ) and

‖zi‖W 1,2
p (ΠT ) ≤ C. (2.24)

Same as (2.14) we have [zi, zi,y]Cα/2,α(ΠT ) ≤ C1, where C1 is independent of T−1. This implies

‖zi,y‖C(ΠT ) ≤ ‖z′0(y)‖C(Σ) + C1T
α/2 ≤ ‖z′0(y)‖C(Σ) + C1.

Extend zi(t, y) = 0 for |y| ≥ 1. Then zi,y ∈ L∞([0, T ] ×R) and

‖zi,y‖L∞([0,T ]×R) ≤ ‖z′0(y)‖C(Σ) + C1 := C2. (2.25)

Let z = z1 − z2, w = w1 − w2, ξ = ξ1 − ξ2 and ζ = ζ1 − ζ2. It follows from (2.22) that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
zt − d2ξ1(t)zyy − ζ1(t, y)zy − a(t, y)z

= d2ξ(t)z2,yy + ζ(t, y)z2,y + b(t, y) + c(t, y)w, 0 < t ≤ T, |y| < 1,
z(t,±1) = 0, 0 ≤ t ≤ T,

z(0, y) = 0, |y| ≤ 1,

(2.26)

where

a(t, y) =
1∫

0

f1
2,v(t, y, w1, z2 + (z1 − z2)τ)dτ,

b(t, y) = f1
2 (t, y, w1, z2) − f2

2 (t, y, w1, z2),

c(t, y) =
1∫

0

f2
2,u(t, y, w2 + (w1 − w2)τ, z2)dτ.

Note that (gi, hi) ∈ ΓT . It follows that

‖ξ‖L∞((0,T )) ≤
A

h4
0
‖g, h‖C([0,T ]), ‖ζ‖L∞(ΠT ) ≤

R̄ + A

h2
0

‖g, h‖C1([0,T ])

with A = h0 + ε0/4, and

‖a, c‖L∞(ΠT ) ≤ L, ‖b‖L∞(ΠT ) ≤ L∗‖g, h‖C([0,T ]).

Recall (2.23), (2.24), applying the parabolic Lp theory to (2.26), one can obtain

‖z‖W 1,2
p (ΠT ) ≤ C3

(
‖g, h‖C1([0,T ]) + ‖w‖C(ΠT )

)
,

where C3 depends on h0, R̄, k1, k2, k3, ε0. Same as (2.14), one has

[z]Cα/2,α(ΠT ) + [zy]Cα/2,α(ΠT ) ≤ C4
(
‖g, h‖C1([0,T ]) + ‖w‖C(ΠT )

)
, (2.27)

where C4 > 0 is independent of T−1. We claim that, for T small enough,

‖w‖C(ΠT ) ≤ C
(
‖u‖C(Ω ) + ‖g, h‖C([0,T ])

)
. (2.28)
T
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Because the proof of (2.28) is very long, it will be treated as a separate lemma (Lemma 2.6). It follows from 
(2.27) and (2.28) that

[z]Cα/2,α(ΠT ) + [zy]Cα/2,α(ΠT ) ≤ C5
(
‖g, h‖C1([0,T ]) + ‖u‖C(ΩT )

)
, (2.29)

noticing zy(0, 1) = 0. One has, by (2.29),

|zy(t, 1)|C([0,T ]) ≤ C5T
α/2(‖g, h‖C1([0,T ]) + ‖u‖C(ΩT )

)
. (2.30)

As h(0) = g(0) = 0, it is easy to see that

|h(t)| ≤ t‖h′‖C([0,T ]) ≤ t‖h‖C1([0,T ]), |g(t)| ≤ t‖g‖C1([0,T ]). (2.31)

As vi,x(t, hi(t)) = 2zi,y(t,1)
hi(t)−gi(t) , i = 1, 2, it follows from (2.3) that |z2,y(t, 1)| ≤ k3M/2 := B. Making use of 

(2.30) and (2.31) we have

φ1(t) = |v1,x(t, h1(t)) − v2,x(t, h2(t))|

=
∣∣∣∣2[z1,y(t, 1) − z2,y(t, 1)]

h1(t) − g1(t)
+ 2z2,y(t, 1) g(t) − h(t)

[h1(t) − g1(t)][h2(t) − g2(t)]

∣∣∣∣
≤ 1

h0
|zy(t, 1)| + 2|z2,y(t, 1)| |h(t)| + |g(t)|

4h2
0

≤ 1
h0

|zy(t, 1)| + 2|z2,y(t, 1)|
t‖h‖C1([0,T ]) + t‖g‖C1([0,T ])

4h2
0

≤ 1
h0

C5T
α/2(‖g, h‖C1([0,T ]) + ‖u‖C(ΩT )

)
+ B

2h2
0
T‖g, h‖C1([0,T ])

≤ C6T
α/2(‖g, h‖C1([0,T ]) + ‖u‖C(Ω̄T )

)
. (2.32)

Step 2: The estimation of φ2(t). Inspired by the arguments in [4,9], using (2.31) we have

φ2(t) =

∣∣∣∣∣∣∣
h1(t)∫

g1(t)

∞∫
h1(t)

J(x, y)u1(t, x)dydx−
h2(t)∫

g2(t)

∞∫
h2(t)

J(x, y)u2(t, x)dydx

∣∣∣∣∣∣∣
≤

h1(t)∫
g1(t)

∞∫
h1(t)

J(x, y)|u(t, x)|dydx

+

∣∣∣∣∣∣∣
⎛
⎜⎝

g2(t)∫
g1(t)

∞∫
h1(t)

+
h1(t)∫

h2(t)

∞∫
h1(t)

+
h2(t)∫

g2(t)

h2(t)∫
h1(t)

⎞
⎟⎠J(x, y)u2(t, x)dydx

∣∣∣∣∣∣∣
≤ 3h0‖u‖C(Ω̄T ) + k1‖g‖C([0,T ]) + 2k1‖h‖C([0,T ])

≤ C7
(
‖u‖C(Ω̄T ) + T‖g, h‖C1([0,T ])

)
. (2.33)

Step 3: The estimation of ‖u‖C(Ω̄T ). Fixed (s, x) ∈ ΩT .
Case 1: x ∈ (g1(s), h1(s)) \ (g2(s), h2(s)). In this case, either g1(s) < x ≤ g2(s) or h2(s) ≤ x < h1(s) and 

u2(s, x) = v2(s, x) = 0. For h0 < h2(s) ≤ x < h1(s), there is 0 < s1 < s such that x = h1(s1). Clearly, 
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h2(t) ≤ h2(s) ≤ x = h1(s1) < h1(s) and g1(t) < h1(s1) = x ≤ h1(t) for t ∈ [s1, s]. Hence, u2(t, x) = 0 for 
t ∈ [s1, s] and u1(s1, x) = 0. Integrating the equation of u1 from s1 to s gives

|u(s, x)| = u1(s, x) =
s∫

s1

⎛
⎜⎝d1

h1(t)∫
g1(t)

J(x, y)u1(t, y)dy − d1u1 + f1(t, x, u1, v1)

⎞
⎟⎠ dt

≤ (s− s1)(d1 + L)k1

≤ (ρc0)−1[h1(s) − h1(s1)](d1 + L)k1

≤ (ρc0)−1(d1 + L)k1[h1(s) − h2(s)]

≤ C8‖h1 − h2‖C([0,T ]).

When g1(s) < x ≤ g2(s), by using the similar arguments, it is easy to derive that |u(s, x)| = u1(s, x) ≤
C ′

8‖g‖C([0,s]). Therefore, |u(s, x)| ≤ C9‖g, h‖C([0,s]) with C9 = max{C8, C ′
8}. This combined with (2.31)

allows us to derive

|u(s, x)| ≤ C9T‖g, h‖C1([0,s]). (2.34)

Case 2: x ∈ (g2(s), h2(s)) \ (g1(s), h1(s)). Parallel to the case 1 we have (2.34).
Case 3: x ∈ (g1(s), h1(s)) ∩ (g2(s), h2(s)). If x ∈ (g1(t), h1(t)) ∩ (g2(t), h2(t)) for all 0 < t < s, then

ut(t, x) = u1t(t, x) − u2t(t, x)

= d1

h1(t)∫
g1(t)

J(x, y)u(t, y)dy + d1

⎛
⎜⎝

g2(t)∫
g1(t)

+
h1(t)∫

h2(t)

⎞
⎟⎠J(x, y)u2(t, y)dy

−d1u(t, x) + f1(t, x, u1, v1) − f1(t, x, u2, v2). (2.35)

Notice that

|f1(t, x, u1, v1) − f1(t, x, u2, v2)| ≤ L(|u| + |v|),

and u(0, x) = u1(0, x) − u2(0, x) = 0. Integrating (2.35) from 0 to s yields

|u(s, x)| ≤ T
(
(2d1 + L)‖u‖C(Ω̄T ) + d1k1‖J‖∞‖g, h‖C([0,s])

)
+ L

s∫
0

|v(t, x)|dt

≤ TC10
(
‖u‖C(Ω̄T ) + ‖g, h‖C1([0,T ])

)
+ L

s∫
0

|v(t, x)|dt. (2.36)

If there is 0 < t < s such that x /∈ (g1(t), h1(t)) ∩ (g2(t), h2(t)), then we can choose the largest t0 ∈ (0, t)
such that

x ∈ (g1(t), h1(t)) ∩ (g2(t), h2(t)), ∀ t0 < t ≤ s, (2.37)

and

x ∈ (g1(t0), h1(t0)) \ (g2(t0), h2(t0)), or x ∈ (g2(t0), h2(t0)) \ (g1(t0), h1(t0)).
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It follows from the conclusions of Case 1 and Case 2 that |u(t0, x)| ≤ C9‖g, h‖C([0,s]). Thus,

|u(t0, x)| ≤ C9s‖g, h‖C1([0,s]) ≤ C9T‖g, h‖C1([0,T ])

by (2.31). Note that (2.35) holds for any t0 < t ≤ s due to (2.37). Integrating (2.35) from t0 to s we have

|u(s, x)| ≤ |u(t0, x)| + T
(
(2d1 + L)‖u‖C(Ω̄T ) + d1k1‖J‖∞‖g, h‖C([0,s])

)
+ L

s∫
t0

|v(t, x)|dt

≤ C11T
(
‖u‖C(Ω̄T ) + ‖g, h‖C1([0,T ])

)
+ L

s∫
t0

|v(t, x)|dt. (2.38)

Now we estimate 

s∫
t0

|v(t, x)|dt and 

s∫
0

|v(t, x)|dt. Let

yi = yi(t, x) = 2x− hi(t) − gi(t)
hi(t) − gi(t)

, i = 1, 2.

Then

x = (hi(t) − gi(t))yi + hi(t) + gi(t)
2 ,

and due to (2.37) we have yi(t, x) ∈ Σ. Moreover,

‖y1(·, x) − y2(·, x)‖C([t0,s]) ≤
h0 + ε0/4

h2
0

‖g, h‖C([0,T ]) = A

h2
0
‖g, h‖C([0,T ]). (2.39)

Clearly, zi(t, yi) = vi(t, x) for t0 < t ≤ s. Note that z(0, y) = z1(0, y) − z2(0, y) = 0, we have that, for any 
(t, y) ∈ ΠT ,

|z(t, y)| = |z(t, y) − z(0, y)| ≤ tα/2[z]Cα/2,α(ΠT ).

And so ‖z‖C(ΠT ) ≤ Tα/2[z]Cα/2,α(ΠT ). Thanks to (2.25), (2.29) and (2.39), it educes that

s∫
t0

|v(t, x)|dt =
s∫

t0

|z1(t, y1) − z2(t, y2)|dt

≤
s∫

t0

|z1(t, y1) − z2(t, y1)|dt +
s∫

t0

|z2(t, y1) − z2(t, y2)|dt

≤ T‖z‖C(ΠT ) +
s∫

t0

|y1 − y2|‖z2,y‖L∞([0,T ]×R)dt

≤ T‖z‖C(ΠT ) + T‖y1 − y2‖C([t0,s])‖z2,y‖L∞([0,T ]×R)

≤ C5T
1+α/2(‖g, h‖C1([0,T ]) + ‖u‖C(ΩT )

)
+ AC2

h2
0

T‖g, h‖C([0,T ])

≤ C12T
(
‖g, h‖C1([0,T ]) + ‖u‖C(Ω )

)
. (2.40)
T
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Similarly, one can find C13 > 0 such that

s∫
0

|v(t, x)|dt ≤ C13T
(
‖g, h‖C1([0,T ]) + ‖u‖C(ΩT )

)
. (2.41)

Substituting the estimations (2.40) and (2.41) into (2.38) and (2.36), respectively, we have

|u(s, x)| ≤ C14T
(
‖g, h‖C1([0,T ]) + ‖u‖C(ΩT )

)
. (2.42)

The estimates (2.34) and (2.42) show that, for any case, the following holds:

|u(s, x)| ≤ C ′
14T

(
‖g, h‖C1([0,T ]) + ‖u‖C(ΩT )

)
.

The arbitrariness of (s, t) ∈ ΩT implies

‖u‖C(ΩT ) ≤ 2C ′
14T‖g, h‖C1([0,T ]) (2.43)

provided C ′
14T ≤ 1/2.

Step 4 : Inserting (2.43) into (2.32), (2.33) we get

μφ1(t) + ρφ2(t) ≤ C15T
α/2‖g, h‖C1([0,T ]), ∀ 0 < t ≤ T.

This combined with (2.20) implies

|h̃′(t)| ≤ C15T
α/2‖g, h‖C1([0,T ]), ∀ 0 < t ≤ T.

Similarly,

|g̃′(t)| ≤ C16T
α/2‖g, h‖C1([0,T ]), ∀ 0 < t ≤ T.

Moreover, as g̃(0) = h̃(0) = 0, it is easy to deduce that

‖g̃(t), h̃(t)‖C1([0,T ]) ≤ 2(C15 + C16)Tα/2‖g, h‖C1([0,T ]) ≤
1
2‖g, h‖C1([0,T ])

when T is small. Hence, G is a contraction mapping on ΓT when T is small. �
Lemma 2.6. The estimate (2.28) holds.

Proof. To save space, let’s assume d1 = 1 here. For the fixed (τ, y) ∈ ΠT , we set

xi = xi(τ, y) = 1
2[(hi(τ) − gi(τ))y + gi(τ) + hi(τ)], i = 1, 2.

Then, wi(τ, y) = ui(τ, xi), xi ∈ [gi(τ), hi(τ)]. The direct calculation yields

x1 − x2 = (h2(τ) − x2)(g1(τ) − g2(τ))
h2(τ) − g2(τ) + (x2 − g2(τ))(h1(τ) − h2(τ))

h2(τ) − g2(τ) , (2.44)

which combined with the definition of ΓT and (2.18) implies
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|x1 − x2| ≤
Mε0

4h0
≤ 3ε0

4
< h0.

Hence, one of the following four cases must happen:

x1, x2 ∈ [−h0, h1(τ)]; x1, x2 ∈ [−h0, h2(τ)]; x1, x2 ∈ [g1(τ), h0]; x1, x2 ∈ [g2(τ), h0].

Without loss of generality we may suppose that h1(τ) ≥ h2(τ) and x1, x2 ∈ [−h0, h1(τ)]. For other cases, 
one can handle by the same way. Similar to Step 3 in the proof of Lemma 2.3, for this fixed τ and any 
x ∈ [g1(τ), h1(τ)], we define

τx =

⎧⎪⎪⎨
⎪⎪⎩
τx,g1 if x ∈ [g1(τ),−h0), x = g1(τx,g1),

0 if |x| ≤ h0,

τx,h1 if x ∈ (h0, h1(τ)], x = h1(τx,h1).

As xi ∈ [−h0, h1(τ)], we have τxi
= τxi,h1 or τxi

= 0, and 0 ≤ τxi
≤ τ , i = 1, 2. It is easy to get

|w1(τ, y) − w2(τ, y)| ≤ |u1(τ, x1) − u1(τ, x2)| + |u1(τ, x2) − u2(τ, x2)|

≤ |u1(τ, x1) − u1(τ, x2)| + ‖u‖C(ΩT ). (2.45)

We estimate |u1(τ, x1) − u1(τ, x2)|. Integrating the differential equation of u1 from τx to τ gives

u1(τ, x) = u1(τx, x) +
τ∫

τx

⎛
⎜⎝

h1(s)∫
g1(s)

J(x, y)u1(s, y)dy − u1(s, x) + f1(s, x, u1, v1)

⎞
⎟⎠ ds.

Denote τi = τxi
, i = 1, 2. Then τi depends on xi. Without loss of generality we assume τ1 ≥ τ2. Thus, for 

τ1 ≤ t ≤ τ ,

|u1(t, x1) − u1(t, x2)| ≤ |u1(τ1, x1) − u1(τ2, x2)| +
t∫

τ1

h1(s)∫
g1(s)

|J(x1, y) − J(x2, y)|u1(s, y)dyds

+
τ1∫

τ2

h1(s)∫
g1(s)

J(x2, y)u1(s, y)dyds +
t∫

τ1

|u1(s, x1) − u1(s, x2)|ds

+
τ1∫

τ2

u1(s, x2)ds +
τ1∫

τ2

|f1(s, x2, u1(s, x2), v1(s, x2))|dyds

+
t∫

τ1

|f1(s, x1, u1(s, x1), v1(s, x1)) − f1(s, x2, u1(s, x2), v1(s, x2))|dyds.

It follows from the conditions (f) and (f3) that

|f1(s, x2, u1(s, x2), v1(s, x2))| ≤ L|u1(s, x2)| ≤ Lk1,

|f1(s, x1, u1(s, x1), v1(s, x1)) − f1(s, x2, u1(s, x2), v1(s, x2))|

≤ L∗|x1 − x2| + L
(
|u1(s, x1) − u1(s, x2)| + |v1(s, x1) − v1(s, x2)|

)
.
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As gi, hi satisfy (2.16), i.e., hi(τ) − gi(τ) ≤ M in [0, T ], using the condition (J1) we have

|u1(t, x1) − u1(t, x2)| ≤ |u1(τ1, x1) − u1(τ2, x2)| + Tk1ML(J)|x1 − x2| + k1|τ1 − τ2|

+T‖u1(·, x1) − u1(·, x2)‖C([τ1,t]) + k1|τ1 − τ2|

+Lk1|τ1 − τ2| + TL∗|x1 − x2| + TL‖u1(·, x1) − u1(·, x2)‖C([τ1,t])

+L

t∫
τ1

|v1(s, x1) − v1(s, x2)|ds

≤ |u1(τ1, x1) − u1(τ2, x2)| + L

t∫
τ1

|v1(s, x1) − v1(s, x2)|ds

+C
(
T |x1 − x2| + |τ1 − τ2| + T‖u1(·, x1) − u1(·, x2)‖C([τ1,t])

)
(2.46)

for all τ1 ≤ t ≤ τ . From (2.44), one has

|x1 − x2| ≤
M

2h0
‖g, h‖C([0,T ]). (2.47)

In the following we estimate |τ1 − τ2| and |u1(τ1, x1) − u1(τ2, x2)|.
Case 1: τi > 0 for i = 1, 2. In this case, it is clear that u1(τ1, x1) = u1(τ2, x2) = 0. On the other hand, 

since (g1, h1) ∈ ΓT , we have h′
1 ≥ ρc0 in [0, τ ], and so

|τ1 − τ2| ≤ (ρc0)−1|h1(τ1) − h1(τ2)| = (ρc0)−1|x1 − x2|.

Case 2: τ1 > 0 and τ2 = 0. Then x2 ∈ [−h0, h0], x1 > h0, u1(τ1, x1) = 0. Let L(u0) be the Lipschitz 
constant of u0. It follows that

|τ1 − τ2| = |τ1 − 0| ≤ (ρc0)−1|h1(τ1) − h1(0)| = (ρc0)−1|x1 − h0| ≤ (ρc0)−1|x1 − x2|,
|u1(τ1, x1) − u1(τ2, x2)| = |0 − u0(x2)| = |u0(h0) − u0(x2)| ≤ L(u0)|h0 − x2| ≤ L(u0)|x1 − x2|.

Case 3: τ1 = τ2 = 0, i.e., x1, x2 ∈ [−h0, h0]. Then |τ1 − τ2| = 0, and

|u1(τ1, x1) − u1(τ2, x2)| = |u0(x1) − u0(x2)| ≤ L(u0)|x2 − x1|.

In a word,

|τ1 − τ2| + |u1(τ1, x1) − u1(τ2, x2)| ≤ [(ρc0)−1 + L(u0)]|x1 − x2|. (2.48)

Now we estimate 

t∫
τ1

|v1(s, x1) − v1(s, x2)|ds. Let yi = 2xi − g1(τ) − h1(τ)
h1(τ) − g1(τ) . Then z1(τ, yi) = v1(τ, xi). 

Similar to the derivation of (2.40) we have

t∫
τ1

|v1(s, x1) − v1(s, x2)|ds =
t∫

τ1

|z1(s, y1) − z1(s, y2)|ds

≤ T |y1 − y2| · ‖z1,y‖L∞([0,T ]×R)

≤ TC17|x1 − x2|.
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Substituting this and (2.48) into (2.46) and using (2.47), it yields that, for τ1 ≤ t ≤ τ ,

|u1(t, x1) − u1(t, x2)| ≤ C18
(
‖g, h‖C([0,T ]) + T‖u1(·, x1) − u1(·, x2)‖C([τ1,t])

)
.

Thus we have

‖u1(·, x1) − u1(·, x2)‖C([τ1,τ ]) ≤ C18
(
‖g, h‖C([0,T ]) + T‖u1(·, x1) − u1(·, x2)‖C([τ1,τ ])

)
Taking T small such that C18T < 1/2, then

|u(τ, x1) − u(τ, x2)| ≤ ‖u1(·, x1) − u1(·, x2)‖C([τ1,τ ]) ≤ 2C18‖g, h‖C([0,T ]).

Substituting this into (2.45) and by the arbitrariness of (τ, y) ∈ ΠT , we get (2.28) immediately. �
Proof of Theorem 2.1. Step 1: Local existence and uniqueness. By Lemma 2.4 and Lemma 2.5 we see that 
G(ΓT ) ⊂ ΓT and G is a contraction mapping on ΓT when T is small. The Contraction Mapping Theorem
shows that problem (1.3) admits a unique solution (û, ̂v, ̂g, ̂h) with (ĝ, ̂h) ∈ ΓT . This solution is the unique 
solution of (1.3) if we can prove that (g, h) ∈ ΓT holds for any solution (u, v, g, h) of (1.3) defined for 
t ∈ (0, T ]. Moreover, from the above arguments we see that (û, ̂v, ̂g, ̂h) satisfies (2.2) and (2.3).

Let (u, v, g, h) be an arbitrary solution of (1.3) defined in (0, T ]. It follows that

h′(t) = −μvx(t, h(t)) + ρ

h(t)∫
g(t)

∞∫
h(t)

J(x, y)u(t, x)dydx,

g′(t) = −μvx(t, g(t)) − ρ

h(t)∫
g(t)

g(t)∫
−∞

J(x, y)u(t, x)dydx.

It is easy to see from the above discussions that (2.2) and (2.3) hold. And hence

[h(t) − g(t)]′ ≤ 2μk3 + ρk1(h(t) − g(t)); 0 < −g′(t), h′(t) ≤ μk3 + ρk1(h(t) − g(t)).

The first inequality in the above implies h(t) − g(t) ≤ 2[h0 + μk3/(ρk1)]eρk1t. So we have

[h(t) − g(t)]′ ≤ 2μk3 + 2(ρk1h0 + μk3)eρk1t,

0 < h′(t),−g′(t) ≤ μk3 + 2(ρk1h0 + μk3)eρk1t = R(t).

Therefore,

h(t) − g(t) ≤ 2h0 + t
(
2μk3 + 2(ρk1h0 + μk3)eρk1t

)
, ∀ 0 < t ≤ T.

Shrink T small enough such that T
[
2μk3 + 2(ρk1h0 + μk3)eρk1T

]
≤ ε0/4. Then h(t) − g(t) ≤ M for 

t ∈ [0, T ]. Furthermore, by using the proofs of (2.17) and (2.19), one can show that ρc0 ≤ h′(t) ≤ R̄ and 
−R̄ ≤ g′(t) ≤ −ρc∗0 in (0, T ]. Thus (g, h) ∈ ΓT .

Step 2: Global existence and uniqueness. Assume that (2.4) holds. From Step 1, we know that the system 
(1.3) admits a unique solution (u, v, g, h) in some interval (0, T ].
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Let z(t, y) = v(t, x(t, y)) and consider the problem

⎧⎪⎨
⎪⎩
zt = d2ξ(t)zyy + ζ(t, y)zy + f∗

2 (t, y, w, z), 0 < t ≤ T, |y| < 1,
z(t,±1) = 0, 0 ≤ t ≤ T,

z(0, y) = v0(h0y) =: z0(y), |y| ≤ 1,
(2.49)

where w(t, y) = u(t, x(t, y)), f∗
2 (t, y, w, z) = f2(t, x(t, y), w, z). As z0(y) ∈ W 2

p (Σ), same as the above, 
z ∈ W 1,2

p (ΠT ) ↪→ C(1+α)/2,1+α(ΠT ). Then vx ∈ Cα/2,α(DT

g,h). This combined with the assumptions (f) and
(f3) implies that the function F1(t, x, u) = f1(t, x, u, v(t, x)) is differentiable with respect to x. Note that u
satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = d1

h(t)∫
g(t)

J(x, y)u(t, y)dy − d1u + f1(t, x, u, v(t, x)), tx < t ≤ T, g(t) < x < h(t),

u(tx, x) = ũ0(x), g(T ) < x < h(T ),

where

ũ0(x) =
{

0, |x| > h0,

u0(x), |x| ≤ h0,
tx =

⎧⎪⎪⎨
⎪⎪⎩
tx,g if x ∈ [g(T ),−h0), x = g(tx,g),

0 if |x| ≤ h0,

tx,h if x ∈ (h0, h(T )], x = h(tx,h).

View G(t, x) =
∫ h(t)
g(t) J(x, y)u(t, y)dy as a known function. Then for t ∈ [0, T ], tx, u0(x) and G(t, x) are 

Lipschitz continuous in x ∈ [g(t), h(t)]. Using the continuous dependence of the solution with respect to 
the parameters we can show that for t ∈ [0, T ], u(t, x) is Lipschitz continuous in x ∈ [g(t), h(t)]. Clearly, 
ut ∈ C(DT

g,h). This implies u ∈ C1,1−(DT

g,h) and hence w ∈ C1,1−(ΠT ).
It is easy to see that the function

h(t)∫
g(t)

∞∫
h(t)

J(x, y)u(t, x)dydx

of t is differentiable. So h′(t) ∈ Cα/2([0, T ]) as vx(t, h(t)) ∈ Cα/2([0, T ]). Similarly, g′(t) ∈ Cα/2([0, T ]). Set 
F2(t, y, z) = f∗

2 (t, y, w(t, y), z). Then, by using (f4) (or (2.4)), there hold

ξ ∈ Cα/2([0, T ]), ζ(·, ·), F2(·, ·, z) ∈ Cα/2,α(ΠT ).

By the interior Schauder theory we have z ∈ C1+α/2,2+α([ε, T ] × Σ) with 0 < ε < T , which implies 
v(T, x) ∈ C2([g(T ), h(T )]).

Recall that u(T, x) is Lipschitz continuous in x ∈ [g(T ), h(T )]. We can take (u(T, x), v(T, x)) as an initial 
function and [g(T ), h(T )] as the initial habitat and then use Step 1 to extend the solution from t = T to 
some T ′ > T . Assume that (0, T0) is the maximal existence interval of (u, v, g, h) obtained by such extension 
process. We shall prove that T0 = ∞. Assume on the contrary that T0 < ∞.

Since h′, −g′ > 0 in (0, T0), we can define h(T0) = lim
t→T0

h(t) and g(T0) = lim
t→T0

g(t). By the above 

arguments,

h(T0) − g(T0) ≤ 2h0 + T0
(
2μk3 + 2(ρk1h0 + μk3)eρk1T0

)
.
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In view of 0 < −vx(t, h(t)), vx(t, g(t)) ≤ k3, 0 < u ≤ k1, 0 < v ≤ k2 for t ∈ (0, T0), h′, g′ ∈ L∞((0, T0)). 
Making use of Sobolev embedding theorem: W 1

∞((0, T0)) ↪→ C([0, T0]), we have g, h ∈ C([0, T0]) with 
g(T0), h(T0) defined as above. It follows from the parabolic Lp theory and Sobolev embedding theorem that 
v ∈ C(1+α)/2,1+α(DT0

g,h). These facts show that the first differential equation holds for 0 ≤ t ≤ T0. Similar 
to the above, u ∈ C1,1−(DT0

g,h), g′, h′ ∈ Cα/2([0, T0]). Consider the problem (2.49) with T replaced by T0. 
Same as above, we can show that (2.49) has a unique solution z ∈ W 1,2

p (ΠT0) ∩ C1+α/2,2+α([ε, T0] × Σ). 
Consequently, v(T0, x) ∈ C2([g(T0), h(T0)]).

Due to u(t, h(t)) = v(t, h(t)) = 0 in [0, T0), it is easy to see that u(T0, h(T0)) = v(T0, h(T0)) = 0. 
Moreover, by the parabolic maximum principle and Lemma 2.2 we have u(T0, x) > 0, v(T0, x) > 0 for 
x ∈ (g(T0), h(T0)).

Therefore, we may treat (u(T0, x), v(T0, x)) as an initial function and [g(T0), h(T0)] as the initial habitat 
and apply Step 1 to show that the solution of (1.3) can be extended to some (0, T̂ ) with T̂ > T0. This 
contradicts the definition of T0. Hence, T0 = ∞.

It follows from the above arguments that (g, h) ∈ GT ×HT , (u, v) ∈ XT
g,h, and (u, v, g, h) satisfies (2.2), 

(2.3) and (2.5). The proof is end. �
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