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0. Introduction

In a recent paper [16], inspired by the work of De Jeu and Pinto [5], and J. Sarkar [18], we studied the
structure of the k-tuples of doubly A-commuting row isometries and the C*-algebras they generate from
the point of view of noncommutative multivariable operator theory.

Given row isometries V; := [V; 1+ Vin, ], i € {1,...,k}, ie. Vi'Viy = 051, we say that V := Voo s Vi)
is a k-tuple of doubly A-commuting row isometries if

Vi Vi = Nij (s, 0) Vi Vi

for every 4,5 € {1,...,k} with ¢ # j and every s € {1,...,n;}, t € {1,...,n;}, where A;; := [X; ;(s,t)] is an
n; X nj-matrix with the entries in the torus T := {2 € C: |2| =1} and A;; = A} ;.

We obtained Wold decompositions and used them to classify the k-tuples of doubly A-commuting row
isometries up to a unitary equivalence. We proved that there is a one-to-one correspondence between the
unitary equivalence classes of k-tuples of doubly A-commuting row isometries and the enumerations of 2%
unitary equivalence classes of unital representations of the twisted A-tensor algebras ®§\E 4cOn,;, as A is any
subset of {1,...,k}, where O,, is the Cuntz algebra with n; generators (see [4]). The algebra @ 4Oy,
can be seen as a twisted tensor product of Cuntz algebras. We remark that, when ny = --- = ng = 1, the
corresponding algebras are higher-dimensional noncommutative tori which are studied in noncommutative
differential geometry (see [20], [3], [6], and the appropriate references there in). We should mention that
C*-algebras generated by isometries with twisted commutation relations have been studied in the literature
in various particular cases (see [7], [17], [8], and [22]).

We introduced in [16] the standard k-tuple S := (Sy,...,Si) of doubly A-commuting pure row isometries
S; := [Si1 -+ Sin,] acting on the Hilbert space £2(F,} x --- x Ff ), where F, is the unital free semigroup
with n generators, and proved that the universal C*-algebra generated by a k-tuple of doubly A-commuting
row isometries is *-isomorphic to the C*-algebra C*({S; s}). The regular A-polyball B, (#) was introduced
as the set of all k-tuples of row contractions T; = [T 1 ... T;n,], i-e. Tz‘,1T;fl +.--+T;,.TF <I,such that

T; 5T = Nij(s,0)T54T;
for every i,j € {1,...,k} with ¢ # j and every s € {1,...,n;}, t € {1,...,n;}, and such that
ATT(I) = (’Ld — q)er) 0---0 (’Ld — q)rTl)(I) >0, r e [0, 1),

where ®,7, : B(H) — B(H) is the completely positive linear map defined by ®,7, (X) := Y00, r?T; (XT;.
We proved that a k-tuple T' := (T7,...,Ty) of row operators T; := [T; 1 ...T; »,], acting on a Hilbert space
‘H, admits S as universal model, i.e. there is a Hilbert space D such that # is jointly co-invariant for S; s® Ip
and

T = (S;,®Ip)la, i€{l,....;k} and se{l,...,n;},
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if and only if T' is a pure element of By (H).

The goal of the present paper is to continue the work in [16] and develop a multivariable functional
calculus for k-tuples of A-commuting row contractions on noncommutative Hardy spaces associated with
regular A-polyballs. We also study the characteristic functions and the associated multi-analytic models
for the elements of B (H). Many of the techniques developed in [16] and [15] are refined and used in the
present paper.

In Section 1, we present some preliminaries on noncommutative Berezin transforms associated with A-
polyballs which are very useful in the next sections. In Section 2, we introduce the noncommutative Hardy
algebra F'*° (B, ) which can be seen as a noncommutative multivariable version of the Hardy algebra H>°(ID).
We prove that F*°(B,) is WOT- (resp. SOT-, w*-) closed and

Fe(By) = P((Sa0) =Pl =PASal) s

where P({S; s}) is the algebra of all polynomials in \S; ; and the identity. Moreover, we show that F'*°(B,)
is the sequential SOT-(resp. WOT-, w*-) closure of P({S;s}). Using noncommutative Berezin transforms
associated with A-polyballs, we prove that each element A € F*°(B,) has a unique formal Fourier repre-
sentation

p({Sis}) = > C(BrorrsBi) S1,51 - - - Sk B

(BiyeesBr) EFy - xF

such that, for all 7 € [0, 1), ¢({rS;s}) is in the A-polyball algebra A(B, ), the normed closed non-self-adjoint
algebra generated by the isometries S; s and the identity. Moreover, we prove that

A = SOT- lim ({rS; })
r—1
and

[All = sup [lo({rSis})Il = lim [|o({rSis})-
0<r<1 r—1

In Section 3, we prove the existence of an F°°(B,)-functional calculus for the completely non-coisometric
(c.n.c.) elements T in the A-polyball By which extends the Sz.-Nagy—Foias functional calculus for c.n.c.
contractions [19] and the functional calculus for c.n.c. row contractions [14]. In this case, we prove that if
©({S;,s}) is the Fourier representation of A € F*°(B,), then

W (A) := SOT- lim ({rT;,s})

exists and defines a unital completely contractive homomorphism Ur : F*°(By) — B(#H) which is WOT-
(resp. SOT-, w*-) continuous on bounded sets.

Section 4 is dedicated to the set Hol(BY) of free holomorphic functions on the open A-polyball B (),
which is the interior of B, (#). We introduce the algebra H*°(B9) of all ¢ € Hol(BY) such that

[@lloo := sup [lp({Xi s} < oo,

where the supremum is taken over all {X; ;} € B} (#) and any Hilbert space. H*°(B§) is a Banach algebra
under pointwise multiplication and the norm || - || and has an operator space structure in the sense of
Ruan (see [10], p. 181). Using noncommutative Berezin transforms, we show that the algebra of bounded free
holomorphic functions H*°(BY) is completely isometric isomorphic to the noncommutative Hardy algebra
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F>(B,) introduced in Section 2. We also introduce the algebra A(B}) of all functions f € Hol(BY) such
that the map B} (H) > X — f(X) € B(#H) has a continuous extension to Bx(#) for any Hilbert space
H. It turns out that A(BQ) is a Banach algebra with pointwise multiplication and the norm || - || and
has an operator space structure. We conclude this section by showing that A(B%) is completely isometric
isomorphic to the noncommutative A-polyball algebra A(By).

In Section 5, we show that a k-tuple T'= (T4,...,T}) in the noncommutative A-polyball Bx(H) admits
a characteristic function if and only if

Asgr(I — KrKrp) >0,
where K7 is the noncommutative Berezin kernel associated with T" and

AS@I = (Zd — @51@)[) O-+--0 (’Ld — (I)Sk@)[).

We provide a model theorem for the class of completely non-coisometric k-tuple of operators in B (H) which
admit characteristic functions, and show that the characteristic function is a complete unitary invariant
for this class of k-tuples. These are generalizations of the corresponding classical results [19] and of the
noncommutative versions obtained in [11].

We remark that in the particular case when ny = --- = np; = 1 and A;; = 1, we obtain a functional
calculus and operator model theory for k-tuples of contractions satisfying Brehmer condition [2] (see also

[19]).
1. Preliminaries on regular A-polyballs and noncommutative Berezin transforms

In this section, we introduce the standard k-tuple S := (Sy,...,Sg) of doubly A-commuting pure row
isometries S; := [S;1 - - Si.n,;] and present some preliminaries results on noncommutative Berezin transforms
associated with A-polyballs.

For each 4,7 € {1,...,k} with i # j, let A;; := [X\; ;(s,t)], where s € {1,...,n;} and t € {1,...,n;}
be an n; x nj-matrix with the entries in the torus T := {z € C : [z| = 1}, and assume that A;; = A7 ;.
Given row isometries V; := [V;1--- Vi, ], 4 € {1,...,k}, we say that V = (V3,...,V}) is a k-tuple of doubly
A-commuting row isometries if

VisVie = Nij (s, ) V5.6 Vi
for every i,j € {1,...,k} with i # j and every s € {1,...,n;}, t € {1,...,n;}. We remark that the relation
above implies that

V;,sV},t = /\ij (57 t)‘/j,t‘/i,&

For each i € {1,...,k}, let IF;‘L be the unital free semigroup with generators gi,. .. ,gfn and neutral
element gf. The length of v € F,f, is defined by |a| = 0if a = gf and |a| = mifa=g) ---g} €Fl, where
Pi,. s bm €41, ... n} T o= T4 - - - T, ], we use the notation T; o :=T; p, - -+ T} p,, and T gi = I.

Consider the Hilbert space éQ(IF;L*‘l x --- x F ') with the standard basis {x(a,..a.)}, Where a €
Ft,...,on € Ff. For each i € {1,...,k} and s € {1,...,n;}, we define the row operator S; :=

nyo e

[Si1 -+ Sim,], where S; ; is defined on ¢2(F;f x --- x F;} ) by setting

Sz‘,s (X(a1,..~7ak))

. X(gial,aznu,ak)’ ifi=1 (1.1)
Ai,l(saal)"'>‘i,i—1(57ai—1)X(a1 ..... Q1,95 0,Q41,...,08) ifie {277k}
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for all oy € F,f ..., ap € F;f | where, for each j € {1,...,k},
o Nii(s, g fB=q¢ - o +
Ai (s, B8) == {Hb—l Aij(8,7b), Tf f= gjf 95, €Fy.
17 lf 5 = go.

Let i € {1,...,k} and s € {1,...,n;} and note that relation (1.1) implies

S;lk,s (X(ah'n;ak))

o Ai,l(sval)".Ai,i—l(s7ai—l)X(al7...,Ctri—17/6i70(1;+1,-u,Oék)3 if Q; = g;ﬂz (12)
0, otherwise
for any oy € Ff ..., o € F, . Hence, we deduce that

Uz
Z SLSS;S (X(al,...,ak))

s=1

. |>\¢,1(S, 041)|2 T ‘Ai,ifl(svaifl)|2X(al,...,ai_l,(x,:,a,;+1,...,ak)a if |Oéi| >1
0, otherwise

_ X(ag,eeyag)s if ‘a’i| >1
0, otherwise,

which shows that [S;1---Sin,] is a row isometry for every ¢ € {1,...,k}. In [16], we showed that, if
i,j€{1,...,k} with i # jand any s € {1,...,n;},t € {1,...,n;}, then

Si*,sSj,t = /\i,j(sat)sj,tsis- (13)
Consequently, S := (S1,...,Sk) is a k-tuple of doubly A-commuting row isometries.
Given row contractions T; := [T;1---T;n,], ¢ € {1,...,k}, acting on a Hilbert space #, we say that
T =(Ty,...,Tx) is a k-tuple of A-commuting row contractions if
TisTje = Xij(s,0)T;.4Ti s (1.4)

for every i,j € {1,...,k} with i # j and every s € {1,...,n;}, t € {1,...,n;}. We say that T is in the
reqular A-polyball, which we denote by Ba(H), if T is a A-commuting tuple and

Apr(I) = (id— @, )0+ -+ 0 (id — @,y )(I) > 0, re[0,1),

where ®,7, : B(H) — B(H) is the completely positive linear map defined by ®,7,(X) := 0", r?T; XT},.
We remark that, due to the A-commutation relation (1.4), we have &7, o &7, (X) = &7, o &7, (X) for any
i,j€{l,...,k} and X € B(H).

Let T = (T1,...,Tx) be a k-tuple in the regular A-polyball B (H). We define the noncommutative Berezin
kernel

Kp:H— C(F x- xF)eD(T),

ni

by setting
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Krh = > X(Brrope) @ AT(D) P Tyt g - TY g b, h € D(T),
BLEF, ,....BLEFT,

where Arp(I) := (id — ®1,) o -0 (id — @p,)(I) and D(T) := Ap(I)H.
The first theorem is an extension of the corresponding result from [16] for pure k-tuples in By (H).

Theorem 1.1. Let T = (T1,...,Tx) be a k-tuple in the regqular A-polyball Bo(H). Then the following state-
ments hold.

(i) The noncommutative Berezin kernel Kt is a contraction and

KfKr = lim ... lim (id— ®)o--- o (id — ®2)(I),

pk*}OO p1‘>OO
where the limits are in the weak operator theory.
(ii) For everyi € {1,...,k} and s € {1,...,n;},
ErT}, = (S, ® In(r)) Kr.
Proof. For each i € {1,...,k}, we set
A(TivTi—la-u)Tl)(I) = (Zd - (I)Ti) 0---0 (Zd - (I)T1>(I>

and remark that, due to the fact that 7; is a row contraction, A; := limg, (D%H(I) exists in the weak
operator theory. Using the fact that ®7, o 7, (X) = @y, 0 &7, (X) for all 4,5 € {1,...,k} and X € B(H),
we deduce that

[ee] Pk

> O A (D] = lm > {5 A,z (D] = 95 Ay, (D]

qr=0 q1=0

= A(Tk—1>---7T1)(I) — lim (I)II)“I;+1[A(Tk717»--,T1)(I))}

Pk —>00

=A_y,.ryI) = Ay, ) (piigloo qﬂ}’;“(”)

= A(kal ..... Tl)(] — Ak)

Consequently, we deduce that

S e ( 3 0 mm,...,mun)

qr—1=0 qx=0

- Z (I)glckill (A(Tk—1,~..,T1)([ - Ak))

qr—1=0
Prk—1
. o 141
= tim > {R T Ag ) (= A0 = SE T A (- AV}
qrk—1=0
= Ay gy — Ap) = lim OB AG L (T - A)]

Pk—1—>00

= A(Tk,g,...,Tl)(I —Ag) — A(Tk727___,T1) ((I —A) lim (I)gj;_ll‘f‘l(f))

Prk—1—00

= Ay g, ) (= AR)(I = Ag—1)].
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Continuing this process, we obtain

> on (Z i < > @%‘;[Aqk,...,n)(I)]--)) = (I —Ag)- (I - Ay),

q1=0 g2=0 k=0

where the convergence of the series is in the weak operator topology. Since we can rearrange the series of
positive terms, we obtain

o0

Y R o0 ®P A, (D] = (- Ax)-- (I - Ay).

q1,---,qx=0

Using this relation, one can see that

(KpKrh,h) = < Z Tip, - TkﬁkAT(I)T]:,,Bk e Tl*ﬁl h, h>
B1EF, ,....BLEFT,

= (I =Ap)-- (I = A)h, )

for any h € H, which proves item (i).
Now, we prove item (ii). Note that, for every h,h' € H,

<KTTifsh’ X(ar,...,on) @ h/> = < Z X(B1,rBk) @ AT(I)l/zT/:ﬁk Tl ,31 h X(ai,...,an) @ h/>
BrEF ... BreF T,

(I)YV2Tp - T} T7 b h>

<h TisTior Tictar s Tias - 'Tk,akAT(I)1/2h/>
A

(s, 00) - Ajim1(s, 1) <h7T17a1 o Ticta 1 Tigio 'Tk,akAT(I)l/Qh/>

for all oy € Y, ..., ar € Ff where, for all j € {1,...,k},

[Ty Xij(s, ) ifB=g] ---g] €FL

1 if 8=g. (15)

Ai,j(sa 5) = {

Due to the definition of the noncommutative Berezin kernel Kr and using relation (1.2), we obtain
<(SZS ® I) Krh, X(ay,.ccoon) © h/>
= <SZS(X(al,“-7!11'71,géai,aﬁl,m,ak)) & AT(I)I/le:,ak ' Tz:—l 041+1TZ gt asz* la;—1 Tl*,al ha X(at,...,ar) & h/>

=Xi1(s,00) - Aii—1(s,04-1) <h, Ty Tict,00 1 Ligia, 'Tk,akAT([)1/2h/> .

Consequently, we obtain
<(SZ*’5 ® I) KTh’ X(a1,.ror) ® hl> = <h’ Tl»al U Ti—l,ai—lnagéai T Tk,akAT(I)l/Qh/>

and conclude that item (ii) holds. The proof is complete. O
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Note that due to the doubly A-commutativity relations (1.3) satisfied by the standard shift S =
(S1,...,S,) and the fact that S} S;; = dx[ for every i € {1,...,k} and s,t € {1,...,n;}, and every
polynomial in {S; s} and {S;} is a finite sum the form

p({Si,S}’ {Sz*,s}) = Z a(al,~~~,Oép,51,mﬁm)Sihal T Sipaap ;17,31 T S;m:B'm7

WherealeF,‘l“il,...7ap€F2‘ip and EFT‘L‘;I,...,BmGF;‘J,m.Wedeﬁne

p({Ti’S}’ {T:SD = Z Aay,..., D‘Pvﬁlv"'vﬂm)nlwal U TiP’QPT;‘lsBI T T;‘mwﬂm

and note that the definition is correct due to the following von Neumann inequality obtained in [16], i.e.

Ip({Tis 3 AT DI < PS5, 1 AST DI

for every k-tuple T = (T1,...,T}) in the regular A-polyball, which extends the classical result [21] and the
noncommutative version for row contractions [13].

The A-polyball algebra A(B,) is the normed closed non-self-adjoint algebra generated by the isometries
Sis, where 4 € {1,...,k} and j € {1,...,n;}, and the identity. We denote by C*({S;s}) the C*-algebra
generated by the isometries S; s We prove in [16] that if T € Ba (%), then the map

p(f) = lim Kiplf @ DKo, f € C°({Sia)),

where the limit is in the operator norm topology, is a is completely contractive linear map. Moreover, its
restriction to the A-polyball algebra A(B,) is a completely contractive homomorphism. If, in addition, T
is a pure k-tuple, i.e., for each i € {1,...,k}, ®. (I) = 0, as p — oo, then Ur(f) = K;[f @ I]Kp. We call
the map VU the noncommutative Berezin transform at T associated with the A-polyball.

2. Noncommutative Hardy spaces associated with regular A-polyballs

In this section, we introduce the noncommutative Hardy algebra F°°(B,), which can be seen as a
noncommutative multivariable version of the Hardy algebra H*°(ID), and prove some basic properties.
According to relations (1.1) and (1.5), for each i € {1,...,k} and & := (vq,...,ax) € Ff x - x F}

ni ng?
we have

Si,gj; (Xa) = Ni(gga a)X(al,...,ai,l,ggai,aHl,...,ak)v
where
Hi(gia ) = )\i,l(57a1) e Ai,i—l(sa Q1)

Consequently, if 7; := g/, ~--ng € F 1, then

ng>
Sini(Xa) = Nz‘(’Yi7a)X(a1 ey O 1Y Qg QT ey QR )3
where
wi (i, ) = ui(gil,a) T /Li(gfpa Q).

Given v := (v1,...,vk) € FI x --- x F | we deduce that

ni ng?
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Sl;"/l o 'Sk,’Yk (Xa) = ”(77 a)X(mal,m,'ykak)

where

r(y, @) = p (1, @) - (Ve Q).

Let {0(617---,510}(ﬁl,...,ﬁk)elk‘+ x-oo X be a sequence of complex numbers such ) |C(517---,Bk)|2 < 0o and

ny

consider the formal series

o({Sis}) = > C(B1,sBr)S1,B1 - - - 1,8y

(B, Br) EF, x - xF i,

Set go := (g8, .., gk) and note that u(B,go) € T and

90({31'78})(Xg0) = Z C(ﬁla~~-’ﬁk)817ﬂ1 "'SLﬁk(Xgo)
(B, Br) EFF, X xFf,
- Z C(ﬁlwu,ﬁk)“(ﬁagO)X(Bl,M,ﬁk)
(B, Br) EF, XX,
is an element in ¢*(F x --- x F ). Similarly, for each v := (y1,...,%) € F,f x --- x F, we have

u(B,v) € T and

@({Si,s}’)(X‘)‘) = Z C(By,..., 5k)l'l’(/877>X(51'yl ’’’’’ Bevr)
(B1,--Br)EFT, X xFif,

is an element in (2(F,} x --- x F;} ). Now, let P be the linear span of the vectors {x~ }~, assume that

sup [l({Sis })pll < oo
pEP;|Ipl<1
In this case, there is a unique operator A € B(¢*(F,} x --- x F; )) such that Ap = ¢({S;s})p for any
p € P. We say that ¢({S;s}) is the formal Fourier series associated A. We denote by F'*°(B,) the set of
all operators A obtained in this manner.

Theorem 2.1. Let P({S; s}) be the algebra of all polynomials in S; s and the identity, where i € {1,...,k},
and s € {1,...,n;}. Then the noncommutative Hardy space F*(By) is WOT- (resp. SOT-, w*-) closed
and

———SOT ———WOT ——————w*
F*Ba) =P{Sis})  =P{S.s})  =P{Sish) -
Moreover, F>(B,) is the sequential SOT-(resp. WOT-, w*-) closure of P({Si s}).

Proof. First, we prove that the noncommutative Hardy space F°(B,) is WOT- (resp. SOT-) closed.
Let {4,}, be a net in F>°(B,) and assume that WOT-lim, 4, = A € B(*(F,} x --- x Fl)) If

ni

2 (BrreensBr)EF, s xF (8,0 181 -+ - S1,, 18 the formal Fourier series of A,, then

<Axg07x(517m,5k)> = lifn <ALXg0’ X(Blf“-ﬁﬁk)> = hfn Cliﬂl,...,ﬁk)“(ﬂ’ g0)-

Define cg, ... 5,) = m <Axgo,x(51,m’5k)> and note that lim, czﬁl,...,ﬁk) = C(8,,....8,)- On the other hand,
we have
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(CAX (1) X Brneos B ) = B0 CAX (i) X811 i) )
= hfn Ctﬁl,...,ﬁk)u‘(/gv '7)
= C(p1,...50) BB, 7).

Note that

> (B, = > | {AXgos X (81,800} 2 = | Axgo|I? < 00
(B, Br) EFy X XS (B, Br) EFy X XS

and consider the formal series

o({Sis}) = > C(B1ensBi)O1,81 -+ - 1,6

(B1yesBr) EF - XF L

Using the results above, one can see that

CAX () X)) = B0 CAX (1,0 X))

li{n < Z CZﬁl ,,,,, 5k)51751 Tt Slvﬂkx(’h,-uﬁk)’ X(Oll,-<~,0(k)>
(B1,--

BR)EFT, X xFE,

= li{n< Z Cz/317.“75k)l11(,37'Y)X(Blyl,‘..ﬁk'yk)aX(al,...,ak)>

(BB ) EFF, X X T,

_ 1imLCE,317___75k)H(ﬂ»"/)» if (alﬂ"'ﬂak> = (51717"'76/6’7/6)
0, otherwise

_ {0(51,...,ﬁk)u(1377)7 if (alv ey O[k) = (ﬂlfyla v 7ﬂk7k)

0, otherwise
- <<P({Si,s})X('yl,.‘.,7k)a X(al,...,ak)>

for all (v1,.--,7), (@1,...,0) EF x - X ]F,‘fk Consequently, we have

ni

(AP, X(ar,..oan)) = (({Si,s )P X(ar,..0n) )

for all p € P. Hence, we deduce that

| Ap||* = > | (AP, X(ar,am) 2 = lo({Si,sDpll®

(oz17...,06k)€]F7J{1 ><"'><]F7f,c

which implies sup,ep <1 l¢({Si,s})pll = [|All. This shows that A € F'*°(By) and ¢({S;,s}) is its formal
Fourier representation.

Now, we prove that any operator in F'*°(B,) is the SOT-limit of a sequence of polynomials in S5; s and
the identity. For each m € Z, define the completely contractive linear map Q,, : B(¢{? (Ff x - xFl)) —
B(L*(F,f, x - x F ) by setting

Qm (T) = Z PnTPn+ma

n>max{0,—m}
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where P,, n > 0, is the orthogonal projection of ¢2 (]R;“1 X +-e X ]F;‘k) onto the span of all vectors x (g, ,... 3,)
such that [B1] + --- 4 [Bx| = n, where §; € F,/. Consider the Cesaro operators on B(¢*(F,f x --- x F, )
defined by

am= % (1= aum.  nx

Im|<n

One can easily see that these operators are completely contractive and SOT-lim,,_,o, Cy,(T) = T. Now, let
T € F*°(B,) have the formal Fourier representation

> C(Brren Br)O1,B1 - - 91, By
(B, Bk) EF ><---><IE‘;{'k

Using the definition of the isometries .S; ; we deduce that

Poym TPy = Z C(ﬁl,...,ﬁk)SLﬂl s SLBk P,

(Bl,mﬁk)E]F;fl ><»--><]F1‘i')C
|B1]+-+|Br|=n

for all n,m > 0. On the other hand, we have P,,TP,,4,, = 0 if n > 1 and m > 0. Consequently, we have

Co(T)= Y (1—5) >, C(BrovsBr) 151 - -+ 15

0<p<n-—1 (Bl,..‘,ﬂk)Glex-NXF;k

[B1]4---+|Bk|=p
and SOT-lim,,_, C,,(T) = T. This shows that T is the SOT-limit of a sequence of polynomials in S; ; and
the identity. Consequently, T is also the WOT-(resp. w*-) limit of a sequence of polynomials in S; ; and the
identity. Denoting by P({S; s}) the algebra of all polynomials in \S; s and the identity, we deduce that

SOT
)

F¥(By) c PS))  c P(S .

)WO

Since P({Si,s}) C F>*(By) and F*>°(By) is WOT-closed, we have P({S; s} T F>°(Bp). Therefore,

Fe(Ba) = P{Sin}) = P{Siah) .

Due to the results above, we also have F>°(B,) C P({Sivs})w . Moreover, since F*°(B,) is a convex subset
of B(A(F;} x --- x F;}})), we know that F>°(By) is w*-closed if and only if it is WOT sequential closed.

ngk

Due to the results above, we conclude that F*°(B,) is w*-closed. Since P({S;s}) C F*(B,), we have

P({Sis}) C F>(By) and conclude that F*°(Bp) = P({S;s}) . The proof is complete. O
Corollary 2.2. The noncommutative Hardy algebra F*°(By) is a Banach algebra.

Theorem 2.3. Let A € F*°(Bp) have a formal Fourier representation

@({Si,s}) = Z C(ﬁlv---yﬁk)slvﬁl - Sk,Br

(B1ye-sBr) EF, X X,
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Then ¢({rS;s}) € A(Bn), for allr € [0,1),

and

Proof. Since ®g, is a completely positive linear map with ||®g, (I)] < 1, we have

P1
@Sl o

for all pq, ..

ZTP Z Z (B, ..., k)Slﬁl to Sk’ﬁk
p=0 P15 Pk ENU{O} g, €FF . 'Bke]F:k
p1+-+pr=p |B11=P1;--+|Br |=pr
1/2
2
ey | Y e
p=0  p1,...p,€ENU{O} | BieF} ,.BkeF,
p1+-+pPr=p [1B1|=p1s-5|Br|=pPk
1/2
2
<Y 3 > le(1,....60)]
p=0  p1,..pk€NU{0} | BieF} ... BreF,,
pi+--+pr=p [B1l=p1,s|Br|=pk
1/2
— DR LR 2 2
€t ,...8:€FF, RS e
B1EFn, ,...0k€Fny, 1Pl+"lf+pk:p
1/
oo
- 5 erk,l
- > [N er ( =

1A= sup [lp({rSis Il = lim [p({rSis I
0<r<1 r—1

+o B (1) < || P

BrEFT, ... BreFT,

This shows that

p({rSis}) =

converges in the operator norm topology and, consequently,

o0

>

=0 (8,,..

The next step is to show that

For each n € N, set

le({rSis DIl < [IA]l,

A =SOT- lim p({rS; .})
r—1

P1
(DI 2]

.pr € N. Consequently, for every r € [0,1), we have

p=0

E : plBrlt Bk
+ +
5Br) €F T X X T

[B1|+-+|Br|=p

€1[0,1).

(DI < ||@s, (D] - -

125, ©

1

ey, ) S50 -

p({rSis}) € A(Ba).

s, (DI T < 1

o @ (D]

Sk,
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n

0 ({Sis}) =) > C(B1,Br) 1,1 - - - Sk,

=0 + +
P=0 (B1,....Bk)EF,] X X]F"k

[B1]++|Bk|=p

and note that

(P({Tsi,s})*X(al,A..ak) = QH({TSi,s})*X(al,...ak)y re [Oa ]-)7

and

A*X(O‘b»--ak) = qn({Si,S})*X(ah---&k)

forall (au,...,ax) € F,f x---xFf with |ag|+- - -4]ag| < n. According to Theorem 1.1, the noncommutative
Berezin transform K,g : 2(Ff x - x Ff) — C(F} x - xFf) @ CF} x - x Fl) satisfies the
relation K,s(rS;,) = (S;, ® I)K,s for every i € {1,...,k} and s € {1,...,n;}. Let v := (v1,..., ),
o = (01,...,0%), and w = (wi,...,wy) be in F,f x --- x Ff . Due to the definition of S;, we have
Sk ST g Xy = 0if [B1] + -+ + [Br| > |y1] + - -+ + [y[- Using the relations above and the definition of
K,s and taking n > |y1| + -+ + |7k|, we obtain

(Krsp({rSis 1) Xys Xo @ Xw)
= <Kr5qn({rsi,s})*x'yv Xo & Xw>
= <(qn({Si,S})* ® I)KTSX'W Xo ® Xw>

— <(qn({Si,s})*®I) Z X(B1....5x) ®T‘BH_”"'B'CIArS(I)lmsz,ﬁk "'Sfﬁle 7X0'®Xw>
BrLEFL, ,....BLEFL,
= > o0 g (181,51 X0 Xo) (S S5, Brs (D)X
B:=(B1,...,Bk)E Fify x---xF,
- 2 P (A o) (ST ST v s (D))

B:=(B1,-.,Bk)E Fify x--xFif,

= (A" @ ) Kr5Xv: Xo ® Xw)
for all 7 € [0,1). Since A and ¢({rS; s}) are bounded operators, we deduce that
Krso({rSis})" = (A" @ I)K,s, r € [0,1).

Since K,g is an isometry, we have p({rS; s}) = K} (A ® I)K,s and

le({rSisHIl < [IAll, — re[0,1), (2.2)
which proves relation (2.1). Consequently, taking into account that

AXa = }1_}1% o({rSi s Xas (o1,...,ap) EFF x - x IF;L:,
we conclude that A = SOT-lim,_1 p({rS; s}).
To prove the last part of the theorem, let 0 < r; < 7o < 1. Since p({r2S;s}) € A(B,), inequality (2.2)
applied to A = ¢({r25;}) implies |o({rr2S;s})| < [[¢({r2S:s})| for any r € [0,1). Taking r = 7L, we
deduce that ||o({r15:s})| < [l({r2S:,s})|- The rest of the proof is straightforward. O
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3. Functional calculus

In this section, we prove the existence of an F°°(Bj)-functional calculus for the completely non-
coisometric (c.n.c.) elements in the A-polyball. This extends the Sz.-Nagy—Foiag functional calculus for
c.n.c. contractions and the functional calculus for c.n.c. row contractions.

First, we consider the case of pure k-tuples in the regular A-polyball.

Theorem 3.1. Let T = (11, ...,T}) be a pure k-tuple in the reqular A-polyball By (H), where H is a separable
Hilbert space, and let Ur : F>°(By) — B(H) be defined by

Ur(A) =K (A I)Kp, A€ F>*(By),
where K is the noncommutative Berezin kernel associated with T. Then the following statements hold.

(i) Y is WOT-(resp. SOT-) continuous on bounded sets.
(ii) Uy is a unital completely contractive homomorphism which is w*-continuous.

(iii) If

e({Si,s}) = > C(B1,sBr)SL,B1 - - - S1,8s

(B, Br) EFA, X xFf,

is the formal Fourier representation of A € F>°(B,), then
Vr(A) = SOT- lim o ({rT; ;})
r—

and Y (p({Sis})) = p({Tis}) for any polynomial p({S; s}) € P({Sis})-

Proof. Let {A,}, be a bounded net in F*°(By). Then WOT-lim, A, = 0 if and only if w*lim, A, =
0. The latter relation implies WOT-lim, A, ® I3 = 0 and w*-lim, A, ® I; = 0. Now, it is clear that
WOT-lim, K}.(A, ® Iyy) K7 = 0, thus ¥ is WOT-continuous. Since the map A — A® Iy is SOT-continous
on bounded sets, so is Ur.

To prove (ii), note first that a net {A,}, in F*°(Bj) converges to 0 in the w*-topology if and only if
A, ® I3 — 0 in the w*-topology. This implies that U7 is continuous in the w*-topology.

On the other hand, since T is a pure k-tuple, the noncommutative Berezin kernel Kr is an isometry. Due
to Theorem 1.1, we have

(Y7 (Aij)]sm = diag,, (K7) [Ai; @ 1] diag,, (K)

mxXm

which implies

oAb < 4|

for every matrix [A;; ® I] with entries in F*°(B,). This proves that U is a unital completely contrac-

mxXm
tive linear map.

Due to Theorem 1.1, Uy is a homomorphism on the algebra of polynomial P({S;s}) which, due to
Theorem 2.1, is sequentially WOT-dense in F*°(B,). Since U is WOT- continuous on bounded sets and
using the principle of uniform boundedness, one can easily see that ¥r is a homomorphism on F*°(By,).

This completes the proof of item (ii).
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Now, we prove part (iii) of the theorem. According to Theorem 2.3, we have

A =S0T-lim ({rS;s}) and [A] = sup ||e{rSis}I-
r—1 0<r<1

Since the map X — X ® Iy is SOT-continuous on bounded sets, we have
K3(A® L) Kr = SOT- lin K3(o({rS,.}) ® In) K. (3.1)
On the other hand,

o({rSis}) = Z CBarpy T PTG, 51 g,
(B1,-sBr)EF, X xFt,

is in A(B,) and the convergence is in the operator norm. Setting

n({rSis}) = Z (o ﬂk)rwlw‘..wmgwl 81

(BryesBr)EFS X xF
|B1]4-+|Br|<n

we have p({rS;s}) = lim, o0 ¢ ({rS; s}). Using the von Neumann type inequality

lgn({rTis}) = am({rTis DI < llan({75:,53) — am({rSi ), (3.2)

we also deduce that p({rT; s}) = lim, o0 ¢n({rT;s}) in the norm topology. Consequently,
Kr(e({rSis}) @ In)Kr = lim K7(gn({rSi,s}) @ In)Kr = lim g, ({rT;s}) = o({rTis}).
n—roo n—oo
Hence, and using relation (3.1), we obtain
\I’T(A) = K;«(A ® I’H)KT = SOT- hHll (,D({TTZ’S})
r—

The fact that U7 (p({S;s})) = p({T}s}) for any polynomial p({S;s}) € P({S:s}) is due to Theorem 1.1.
The proof is complete. O

Lemma 3.2. Let T := (T4,...,T;) € BA(H) and let A € F>°(By) have the Fourier representation

oo

{Sl g} Z Z C(ﬂ17~~,3k)51w31 ~--Sk,ﬁk~

=0 + +
P=0 (B1,...,Br)EF T X xF T

[B1|+-+|BkI=p
Then the series defining p({rT; s}, r € [0,1), is convergent in the operator norm topology and
e({rTis)} = Kip(A® Iy ) Ky, 1 €(0,1),
where K is the noncommutative Berezin kernel of T

Proof. The fact that the series defining ¢({rT; )}, € [0,1), is convergent in the operator norm topology
follows from the proof of Theorem 3.1, where we showed that ¢({rT; s}) = lim,,— o ¢, ({rTi s}). Moreover,
if € > 0, there exists N € N such that
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lan({rSi.s}) — U{rtTis DIl < llgn({rSis}) — o({rTis P < %

for every ¢t € [0,1] and n > N. Let § € (0,1) be such that

lan ({rtSi.a)) = law ({rSis ) < 5.t € [61).

Now, we can see that

le({rSi,s}) = e({rtSis DI < llp({rSis}) = an({rSis DIl + llan ({rSis}) — an ({rSi, s}
= llan({rtSi.s}) — p({rtSi sl < e

for every t € [d,1). This shows that ¢({rS;s}) = lim;—1 p({rtS;s}) in the operator norm. On the other
hand, as we saw in the proof of Theorem 3.1,

p({rtSis}) = Kip(p({tSis}) @ ) Ker, 1 €[0,1).

Using the fact that X — X ® I is SOT-continuous on bounded sets and, due to Theorem 2.3, A =
SOT-lim; 1 ¢({tS; s}), we pass to the limit in the relation above as ¢ — 1 and obtain

QO({’I"TZ'7S)} = K:T(A ® I’H)KrTa re [0, 1)
The proof is complete. O

We say that T := (T1,...,T%) € BA(H) is a completely non-coisometric k-tuple if there is no h € H,
h # 0, such that

((id = @)oo (id— @) (I)h,h)y =0
for all (py,...,pr) € N¥. We saw in the proof of Theorem 1.1 that
p1—1 pr—1
(id — @) o - -0 (id — @ ) (1) = Z Op 000 (Z Oy, O(AT(I))> .
S1 sp=1

This shows that the sequence {(zd — <I>1}’Z Yo---o(id— @% } (p1 p)ENE is increasing and, consequently,

T is completely non-coisometric if and only if there isno h € H, h 7& , such that

lim < lim (id—cbg';)o...o(id—@%)(l)h,h> =0.

Pk —0Q p1—00

Note that each pure k-tuple is completely non-coisometric.
The main result of this section is the following

Theorem 3.3. Let T := (T1,...,T;) € BA(H) be a completely non-coisometric tuple. Then
\I/T(A) := SOT- hn’i K:T(A®IH)KTTa Ae FOO(BA),
r—

exists and defines a linear map W : F°(By) — B(H) with the following properties.
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(1) If p({Si,s}) is the Fourier representation of A € F>°(By), then
Vr(A) = SOT- lim o({rTis}).
r—

(ii) W is WOT-(resp. SOT-, w*-) continuous on bounded sets.
(iii) Ur is a unital completely contractive homomorphism.

Proof. Let A € F*°(Bj) have the Fourier representation

oo

p({Sis}) =) > By, Bi)SL,B1 -+ - Ok B

=0 + +
P=0 (B1,...,BK) R} X xF

[B1]4--+Br]=p
According to Theorem 1.1, we have
T s K1 = K7(Si,s ® Ipy)

for alli € {1,...,k} and s € {1,...,n;}, where Kr is the noncommutative Berezin kernel of T'. Since the
series p({rS;s}), r € [0, 1), is convergent in the operator norm, so is ¢({rT;s}). To see this, it is enough to
use relation (3.2), where

n({rS;}) = Z C(Bh”_ﬁk)rwl\+‘..+wk\51’51 ...S1g,.

(BiysBi)EFE, o XE
[B1]+-+|Bk[<n

Now, note that

an({rTis K = K1(gn({rSis}) ® In).
Taking n — oo, we deduce that

PrTy )G = Ki(p({rSis}) @ In). (3.3)
On the other hand, due to Theorem 2.3, we have

A® Iy = SOT- lim o({rS; s}) ® Ix.
r—1

Using the later relation in (3.3), we deduce that the map Q : range K — H defined by

QK7 f) = lim o((rT KR f, f € GRS x - x Bf) @ Dr,
r—

ni

is well-defined, linear, and

21| < limsup (T, D157
< timsup ({75} |7

< [l & f1-
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Since T' is a completely non-coisometric tuple, Theorem 1.1 shows that K7 K is a one-to-one operator,
which implies range K = H. Due to inequalities above, 2 has a unique extension Q to a bounded operator
on H with || < [|A].

In what follows, we show that

Qh = lim o({rTis P, heH. (3.4)
r—

Fix h € H and let {h}32, C range K7 such that hy — h as k — oo. Since ||p({rT; s} < le({rSis})| <
|A|| for every r € [0,1), we deduce that

190 = @({rSs, DRl < [0h — Qhi|) + [Qhs = o (T s Dhill + (T s }hx = o({rT 1))
< IR~ hill 4 1285 = o({rTas el + le({rTes Dl = bl
< 2| Af[h = hill + Qs = o({rT; s}l

Using the fact that Qhy — lim, ©({rT; s})hi, we deduce relation (3.4). According to Lemma 3.2, we have
o(Tn)} = Kip(A® L)K,r,  re0,1),
Consequently, taking r — 1 and using relation (3.4), we obtain

Q = SOT- lim K77 (A ® In) K, 1,

which shows that Wz (A) = €. Therefore, item (i) holds. To prove part (ii), let [Apglmxm be a matrix with
entries in F>°(B,) and let ¢, ({S; s} be the Fourier representation of A,,. Lemma 3.2 shows that

[@pq({TTi,S)}]mxm = diagm(K:T)[qu ® Int]mxmdiag,, (K,r), r€[0,1).

On the other hand, since K, is an isometry, we deduce that

1opa({rTis) Hmxmll < l[Apg @ Itlmxmll, 7 €[0,1),m € N.

Since Up(Apy) = SOT-1lim, 1 ppe ({7} s}), we deduce that ¥ is a completely contractive linear map. Now,
using that fact that U is a homomorphism on the algebra of polynomials P({S; s}) and that F>°(B,) is
the sequential WOT-closure of P({S;s}) (see Theorem 2.1), one can use the WOT-continuity of ¥ on
bounded sets to deduce that ¥p is a homomorphism on F'*°(By,).

Now, we prove part (iii). Due to the proof of part (i), we have | U7 (A)| < ||A] for all A € F*°(B,). On
the other hand, taking » — 1 in relation (3.3) we obtain

Ur(A)K; = Ki(A® L), A€ F®(By). (3.5)

Let {A,} be a bounded net in F>°(B,) such that A, - A € F>(B,) in the WOT (resp. SOT). Then
A, ® Iy - A® Iy in the WOT (resp. SOT). Due to relation (3.5), we have ¥r(A,) K} = Ki(A, @ Iy).
Since range K5 = H and {¥Ur(A,)}, is a bounded net, we can easily see that Wr(A,) — Ur(A) in the WOT
(resp. SOT). The proof is complete. O
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4. Free holomorphic functions on regular A-polyballs

In this section, we introduce the algebra H>° (B ) of bounded free holomorphic functions on the interior of
BA(#H), for any Hilbert space H, and prove that it is completely isometric isomorphic to the noncommutative
Hardy algebra F>°(B,) introduced in Section 2. We also introduce the algebra A(B%) and show that it is
completely isometric isomorphic to the noncommutative A-polyball algebra A(By).

If A € B(H) is an invertible positive operator, we write A > 0. Recall that if X € Bj(H), then

Ax(I):=(id — Px,) o0 (id — Px, )(I).
Proposition 4.1. The set
BR(H) :={X € BA(H): Ax(I) >0}

is relatively open in By (H) and

B (H) = BA(H).
Moreover, the interior of By(#H) coincides with B (H).

Proof. Let X = (X,...,Xs) € B3 (H) and assume that Ax(I) > ¢l for some ¢ > 0. If d € (0,c), then
there exists € > 0 such that for all Y = (Y7,...Y:) € BaA(H) with || X; = Y;|| < efori e {1,...,k}, we have

—dI < Ay(I) — Ax(I) < dI.
Hence,
Ay(I) = (Ay(I) = Ax(I)) + Ax(I) = (c=d)I >0

and, consequently, Y € BS (). Therefore, B} (H) is a relatively open set in By (#).

Now, we prove that BS(H) = Ba(#). To prove the inclusion B (H) C Bo(H), let Y = (Y3,...Y}) €
BA(H), and let Y = (Yl(n), . ..Yk(n)) € Bx(H) be a sequence such that Y™ — Y as n — oo, in the
norm topology of B(H)™ ™7 Since, for every i,5 € {1,...,k} with i # j and every s € {1,...,n;},
te{l,...,n;},

Y(")y(") — /\U(S’t)y;()?)y(")

i,8 ~j,t 7,8 )
taking n — oo, we obtain Y; ;Y;; = X;;(s,t)Y;+Y; 5. On the other hand, we have
(id — CI)7'Y;§")) o---o(id— <I>7_Y1(n))(1) >0, rel0,1),n €N,
which implies
(id — @y, ) o+ -0 (id — Dpy, ) (L) > 0, rel0,1).

Consequently, Y € Bx(H).

Now, we prove the inclusion By(H) C BY(H). Let Y € Bx(#H) and r € [0,1). According to Lemma
4.3 from [16], if 4,7 € {1,...,k} with i # j, then S; s commutes with S; S} , for any s € {1,...,n;} and
o€ IF,‘:‘J Moreover, for any 41, ...,14, distinct elements in {1,...,k} and oy € IFT‘L';1 ee,Qp € IF;‘L_F,
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* * - . DY . * DR *
(S'Ll;alslhoq) o (SzT”apS’LGap) - Sllval Slp’apsip)ap Sihal'

Consequently, we deduce that

k
(id — By5,) 0 -0 (id — B,5)(1) = [[(T ~ @rs (D) = [0 - 7)1
Applying Theorem 1.1 when X =tY, ¢ € [0,1), we obtain
(id = Brey;) 0+ 0 (id — Broy )(I) = Ky [(id — Bys,) 0+ - 0 (id — By, ) (I)] Koy
k
H (1-— 2
Here, we use the fact that tY is a pure k—tuple and K;y is an isometry. Taking ¢t — 1, we get

(id — ®py, ) 0 -+ -0 (id — Ppy, ) (I l—r

H':jw

which shows that Y € B} (#H) for all » € [0,1). Hence, it is clear that Y € B} (H).

Now, we prove the last part of the proposition. If X € Int(Ba(#)), the interior of By (%), then there
exists 79 € (0, 1) such that %X € BA(H). Hence, X € roBa(H). Thus X = roY for some Y € By (H). We
proved above that roY € B (H). Consequently, Int(Bx(#)) C B} (H). Since B (H) is relatively open in
B\ (H), we conclude that Int(Ba(H)) = B{ (#). The proof is complete. O

Corollary 4.2. B (%) = U<, <1 YBa(H).

For each ¢ € {1,...,k}, let Z; = (Z;1,...,Zin,) be an n;-tuple of noncommutative indeterminates
subject to the relations

Zi s Zjr = Nij(8,4) Zj 1 Zi s

for every i, € {1,...,k} with ¢ # jand every s € {1,...,n;}, t € {1,...,n;}. Weset Z, o :=Z; p, - - Zi p,,
if :g;)1 ~~~g;,m € F:,Wherepl,...,pm e{l,...,n;} and Zyg =118 = (Bi,.. o Br) €FE x-- - XY

we denote Zg 1= Z1 3, -+ Zk,p, and ag 1= a(g,...3,) € C. A formal power series

= Z (J,ﬁZg, apg € C,
BEFE, x--- xFif,

in indeterminates Z; 5, where ¢ € {1,...,k} and s € {1,...,n;}, is called free holomorphic function on B
if the series

oo

e({Xis}) =) > apXp

P=0 B=(By,.... B )€K, x---xF},
[B1]4++++|Bx|=p

is convergent in the operator norm topology for any X € B{(#) and any Hilbert space . We remark that
the coefficients of a free holomorphic functions on B} are uniquely determined by its representation on an
infinite dimensional separable Hilbert space. Indeed, assume that ¢({rS; s}) = 0 for any r € [0,1), where
S = (S, ...,Sk) is the universal model associated with the A-polyball B. Using relation (1.1), we obtain
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= (p({rSi,s})Xgo: 1,01 *** Sk,ax Xeo)

= plettriond < > a(By.....5) (B> 80)X(By,....500) » (X, gO)X(al,...,ak)>
(B1yesBr) EFLY 5o XF

a4t e 2 lag|+eta
= ploalttlonlg o olu(ongo)|? = rloltHerlg .

Hence, a(a,.,....a;) = 0, which proves our assertion. We denote by Hol(Bj) the set of all free holomorphic
functions on BY.

Proposition 4.3. Let S = (Sq,...,Sk) be the universal model associated with the A-polyball Bp. Then ¢ =
Zﬂanl x-xFi, agZga ts in Hol(BY) if and only if the series

oo

o({rS; s}) : Z Z ‘Bl"‘!‘"“’“ﬂk‘aﬁsﬂ

P=0 B=(B1,....81)€F;, x- XFf,rk
[B1l+-++|Bk|=p

is convergent in the operator norm topology for all v € [0,1).
Proof. The direct implication is obvious. Note that the converse of the proposition is due to Theorem 3.1. O

We remark that Hol(B9) is an algebra. Let H*°(BY) be the set of all ¢ € Hol(BY) such that

[@lloo := sup [lp({Xi s 1) < oo,

where the supremum is taken over all {X;} € B{(#H) and any Hilbert space #. It is easy to see that
H*>(BY) is a Banach algebra under pointwise multiplication and the norm || - ||o. There is an operator
space structure on H*°(BY), in the sense of Ruan (see [10], p. 181), if we define the norms || - |,, on
My xm (H*(BY)) by setting

[ lPuv]msxmllm = sup [|[puo ({ Xi s H]mxm|ls

where the supremum is taken over all {X; ;} € B () and any Hilbert space. We remark that if ¢ € Hol(B3)
and r € [0,1), then ¢ is continuous on rBy (H) and

le({Xis DIl < lle({rSis DI

for every {X; s} € rBa(H). Moreover, the series defining p({X; s}) converges uniformly on rBx(#) in the
operator norm topology.

Given A € F*°(B,) and a Hilbert space H, we define the noncommutative Berezin transform associated
with the regular A-polyball BS () to be the map B[A] : B (H) — B(H) defined by

B[4](X) := K%x[A ® Iy|Kx, X € B{(H).
Theorem 4.4. The map I' : H*(B}) — F>(B,) defined by
r Z aﬂZﬁ = Z agSB
BEF, x--xFif, BEFL, x---xFit,

is a completely isometric isomorphism of operator algebras. Moreover, if f € Hol(BY), then the following
statements are equivalent.
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(i) fe H*(BY);
(i) supy< < [[f({rSis DIl < oo;
(iii) there exists A € F>°(By) with f = B[A], where B is the noncommutative Berezin transform associated
with the A-polyball BY .

In this case, we have
I'(f) = SOT- lim1 f{rSis} and 1 71(f) = BJ[A].
r—

Moreover, [U(f)Il = supi<, <y | F{rSisPIl-

Proof. Let f =3 5.
the series

t s xFf, apZp be in H>(BY). Since rS € B} ((*(F,;, x --- x F,)) for all r € [0,1),

ny

o0

FrSiah) =>_ 3 plBal+ Bkl g o8 o

P=0 B=(81,...,84)€F,7 x---xF I
|B1l+-+|Bk|=p

is convergent in the operator norm topology for all r € [0,1) and M := sup;, . [[f({rSis})| < oo
Consequently, for every r € [0,1) and v € F,/ x --- x F,I | we have

ni ng?

FrSishHxy) = > Y L o PG N PO
(B, Br) EFF, X xFE,

and

> (s 228D — || £({8; 1) (g0 12 < M2,
(B, Br) EF, X xFE,

Hence, Z(ﬁl,...,ﬂk)elFIlx~~x1Fr,Tk ‘a(Bl,--<7ﬁk)|2 < M? and, for every noncommutative polynomial p € P in
C(FY x - x F ), we have f({rS; })p = f({Sis})p as r — 1. Since sup, <, 1 [|[f({rSis})]| < oo, we
deduce that sup,cp <1 I/ ({Si,s})pll < oo. Consequently, ZBG]Ff{l X xF agSg is the Fourier series of an
element A € F°°(B,) which, according to Theorem 2.3, satisfies the relation A = SOT-lim,_,1 f({rS;s}
and [|A|| = sup; <, || f({rSis})|. This proves that I' is a well-defined isometric linear map. The fact that T’
is surjective is due to Theorem 2.3 and the fact that le({Xis DIl < lle({rS;s})| for any {X; s} € rBa(H).
Passing to matrices, we can use similar techniques to show that I'" is a completely isometric isomorphism.

The rest of the proof follows from Theorem 2.3 and Theorem 3.1. The proof is complete. 0O

Denote by A(BJ) the set of all functions f € Hol(BJ) such that the map B{(H) 3> X — f(X) € B(H)
has a continuous extension to B (#) for every Hilbert space H. Using standards arguments, we can show
that A(BY) is a Banach algebra with pointwise multiplication and the norm || - ||o. It also has an operator
space structure with respect to the norms || - ||,,, m € N, defined after Proposition 4.3. One can prove the
following result.

Theorem 4.5. The map I' : A(B3) — A(By) defined by

r Z ang = Z aﬂSﬁ

BEF, x---xF i, BEF, x---xF,
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is a completely isometric isomorphism of operator algebras. Moreover, if f € Hol(BY), then the following
statements are equivalent.

(i) f € A(B});
(i) lim, 1 f({rSis}) exists in the operator norm topology;
(iii) there exists A € A(Ba) with f = B[A], where B is the noncommutative Berezin transform.

In this case, we have
I'(f) = SOT- lirr{ f({rSis} and T7Y(f)=BIA]
r—

Proof. Using Theorem 4.4, Theorem 4.9 from [16], and an approximation argument, one can complete the
proof. O

5. Characteristic functions and multi-analytic models

In this section, we characterize the elements in the noncommutative A-polyball which admit a character-
istic functions. We provide a model theorem for the class of completely non-coisometric k-tuple of operators
in By (H) which admit characteristic functions, and show that the characteristic function is a complete
unitary invariant for this class of k-tuples.

An operator A : 2(F,f x - xFf)@H — (3(F x--- xF, )®K is called multi-analytic with respect
to the universal model S = (S1,...,Sk), S; = (Si1,--.,5in;), associated with the A-polyball B, if

A(Si s ® Ipy) = (Sis ® Ic)A

for every i € {1,...,k} and s € {1,...,n;}. If, in addition, A is a partial isometry, we call it an inner multi-
analytic operator. The support of A is the smallest reducing subspace supp (A) C (2(F,f x--- xFf )@ H

ng

under all the operators S; s, containing the co-invariant subspace A*(¢2(F,, x - x F,f,) ® K). According
to Theorem 5.1 from [16], we have

supp (A) = Z(F,}, x - xFf)eL,

where £ := (Pc ®I) A*((2(Ff, x -+ x Fy,) ® K) and P is the orthogonal projection of /2(F,}, x---xF, )
onto C which is identified to the subspace Cx (g0, g0y of CEF x - xF ).
In [16], we proved the following Beurling type factorization result which extends the corresponding result,

when k = 1, from [12].

Theorem 5.1. Let S = (Sq,...,Sg) be the universal model associated with the A-polyball and let Y be a
selfadjoint operator on the Hilbert space > (Ffox--- ><]Fn+k)®lC, Then the following statements are equivalent.

(i) There is a multi-analytic operator A : C>(F,f x --- x F )@ L — C(F,} x - x F ) ® K such that

Y =AA".

(i) (id — Pg,g1c) 00 (id — Ps, g1, )(Y) > 0, where the completely positive maps Pg, g1 are defined in
Section 1.

We recall [16] the construction of the operator A in part (i) of Theorem 5.1. Consider the subspace
G:=Y12(2(Fd, x -+ xF,) ®K) and set
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Cis(Y'?g) = YV2(S;, @ Ix)g

for every g € 2(F,f x - xFf)®K,ie€{l,...,k} and s € {1,...,n;}. The operator C;  is well-defined
on the range of Y'*/2 and can be extended by continuity to the space G. Setting M; s == C}, we note

that M = (M, ..., M), where M; = (M, 1,...,M;,), is a pure element in the regular A-polyball Bx(G).

Consequently, the associated noncommutative Berezin kernel Ky : G — (F,f x -+« x F,f ) @ Ay (1)G is
an isometry and

Ky M, = (SZS ® ]g) Ky
for every i € {1,...,k} and s € {1,...,n;}. One can see that the map
A=Y'Y2R CF) < xFL) @ Ay ()G — A(F,L x - xFr ok

is a multi-analytic operator and ¥ = AA*.

Following the classical result of Beurling [1], we say that M C (2(F,}, x --- x F;} ) ® K is a Beurling type
jointly invariant subspace under the operators S; s ® I, where ¢ € {1,...,k} and s € {1,...,n;}, if there
is an inner multi-analytic operator W : (2(F,} x --- x Ff )@ L — (F,} x --- x F,} ) ® K such that

M=V (CF x--xFH)®L).
In what follows, we use the notation ((S1 ® Ix)|ms - -, (Sk @ Ix)|m), where

(Si @ Ic) | == ((Sin @ Ic) M - - (Sisns @ Iic) | m)s ie{l,... .k}

We proved in [16] the following characterization of the Beurling type jointly invariant subspaces under
the universal model of the regular A-polyball. For a related result, in the commutative case, we refer the
reader to [9].

Theorem 5.2. Let M C (F,f x --- x F1)® K be a jointly invariant subspace under S; s ® I, where
ie€{l,....k} and s € {1,...,n;}. Then the following statements are equivalent.

(i) M is a Beurling type jointly invariant subspace.
(ii) (id — g, 1) 0+ 0 (id — s, 1) (Pa1) > 0, where P g is the orthogonal projection onto M.
(iii) The k-tuple ((S1 @ I)|m, - -+, (Sk @ Ix)|m) is doubly A-commuting.
(iv) There is an isometric multi-analytic operator U : (*(Ff x - xF} )@ L — (Ff x--- xFf )@ K
such that
M=V (FF x-xFI)®L).

We say that two multi-analytic operators A : 2(F,f x -« x Ff)®@ Ky — CA(F; x - xF) @K,
and A : C(F} x - xFf )@ K — (F,; x - xF})®K} coincide if there are two unitary operators
u; € B(K;,K5), j = 1,2, such that

A'(—’e?(ml o xFi, ) @ u) = (g, s xFif, ) © uz) A.

Lemma 5.3. Let A, : (*(Ff x - xFt)®@H, - C(FF x - xFt)®K, s = 1,2, be multi-analytic

Nk Nk
operators with respect to S := (S1,...,Sy) such that A1 A} = A3 AS. Then there is a unique partial isometry

V :Hi1 — Ha such that
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Al = A2(Ig2(]17;1 XH'X]F;"/—I@) & V)7

where Ip(]Ff{l wooxF ) ® V' is an inner multi-analytic operator with initial space supp (A1) and final space
supp (Az). In particular, the multi-analytic operators Ai|supp (a,) and Az|supp (4,) coincide.

Proof. Using the definition of the universal model S := (S;,...,S), one can easily prove that (id —
®g,) 0+ o (id — Pg,)(I) = Pc, where P¢ is the orthogonal projection from ¢*(F,f x --- x F; ) onto
Cl C 2(F,f, x---xF}). Since Ay, Ay are multi-analytic operators with respect to S and A; A} = Ay A3,
we deduce that

[(Pc @ Ing, ) A5 17 = (A1 (id — ®s,01) 0 -+ 0 (id — Ps, 1) (1) AT S, f)
id — ®g,gr) 0 -+ 0 (id — Ps,or) (A1 A7) f, f)
id — ®g,@1) 0+ 0 (id — s, 0r)(A243) f, f)
= (Az(id — ®s,01) 0 -+ 0 (id — Ps,er) (1) A3 ], f)
I(Pc ® In,) A5 f|?

(
((
((
(

for all f € EQ(IF;"I x - x Ft)®K. Define L, := (Pc ® I )AX(2(Ff, x - xFh)®K), s = 1,2, and
consider the unitary operator U : £; — L defined by

UPc @ Iy, AL f = (Pc @ In,)ASf, felPF x- xFr)®K.

Now, we can extend U to a partial isometry V : H; — Ho with initial space £1 = supp (A;) and final
space Lo = supp (Az). Moreover, we have A;V* = As|cgn,. Since A;, As are multi-analytic operators with
respect to S, we deduce that A; (I, (Fit, x--xFf, ) ® V*) = Ay. The last part of the lemma is obvious. O

We say that T' = (T1,...,Tx) € Ba(#H) has characteristic function if there is a Hilbert space £ and a
multi-analytic operator ¥ : (2(F,f x -+ xFF)®& = (2(F, x - xF} ) ® Ap(I)(H) with respect to S; j,
ie{l,....k}, 7 €{1,...,n;}, such that

KrKp + 00 = 1,

where Ky : H — (2(F,f, x --- x F;{ ) ® D(T) is the noncommutative Berezin kernel associated with 7.
According to Lemma 5.3, if there is a characteristic function for 7' € By (#), then it is essentially unique.

Theorem 5.4. A k-tuple T = (T, ..., T}) in the noncommutative A-polyball Bo(H) admits a characteristic
function if and only if

Asgr(I — KrK7) > 0,
where K is the noncommutative Berezin kernel associated with T and
Aggr = (id — Pg,gr) 0 -+ 0 (id — Ps, 1)
If, in addition, T is a pure k-tuple in Bx(H), then the following statements are equivalent.

(i) T admits a characteristic function.
(ii) (KrH)t is a Beurling type invariant subspace under all the operators S; s ® I.
(iii) The k-tuple (S @ I)|(xpp)r is doubly A-commuting.
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(iv) There is a Beurling type invariant subspace M under S; s @ Ip for some Hilbert space D such that
T}y = (Sfs®Ip)|pme foranyie{l,....k},s € {1,...,n;} and

CEL x- xFi)yeD= \/ (Sa ® Ip) M.

o€F;d x- o xF

Proof. Assume that T has characteristic function. Then there is a multi-analytic operator ¥ such that
KrK} + 9U* = [. Since V¥ is a multi-analytic operator and, Aggr(I) = Pc ® I, we have

AS®](I — KTK;:) = AS®](\I/\I/*) = \I/AS®](I)\I/* = \I/(P(C ® I)\I/* > 0.

In order to prove the converse, we apply Theorem 5.1 to the operator Y =1 — KrK7.

To prove the second part of the theorem, note that if T is a pure k-tuple in Bp, then the Berezin kernel
K is an isometry and I — K7 K} = Paq, where Py is the orthogonal projection onto M := (KrH)*t.
Using the first part of the theorem and applying Theorem 5.2, one obtains the equivalences of the items (i),
(ii), and (iii).

Due to Theorem 5.6 from [16], if T = (71, ...,T) is a pure k-tuple in the regular A-polyball and

Kr:H— CF x - xF L)y Ar(I)(H),
is the corresponding noncommutative Berezin kernel, then the dilation provided by Theorem 1.1 is minimal,
i.e.

CFE x - x Ty o Ar(D)(H) = \V} (Sa ® Ip(ry) K.

(XG]F;{—l ><~~-><]F;1',']c

Moreover, this dilation is unique up to an isomorphism. Setting M := (K7H)*, D := D(T) := Ar(I)(H),
and identifying H with KrH, we conclude that (ii) = (iv). Now, we prove the implication (iv) = (ii).
Assume that T' € Bj(H) is a pure element and that there is a Beurling type invariant subspace M under
Sis ® Ip such that T = (S}, ® Ip)|pr and CEL - xFH)oD = VaelFilxMxJFTTk (Sa @ Ip) M.
Using the uniqueness of the dilation provided by the noncommutative Berezin kernel associate with T', we
deduce that there is a unitary operator Q : D(T") — D such that (152(11‘"31 xxFif,) ® Q) KrH = M*. Hence,
(IZ’A’(F:Q XX ) ® Q)KTK;ﬁ(I[z(]F;rl x-xF ) ® 02*) = P 1. Since M is a Beuling type invariant subspace,
there is an inner multi-analytic operator W : (2(Ff x -+ x Ff )@ L = 2(F;} x --- x F,f ) ® D such that

Py =00~
Now, one can easily see that
I - KrK; =99,
where ® := (IZQ(]FTTI x--xF}) ® Q*)W¥ is an inner multi-analytic operator. The proof is complete. O
If T' has characteristic function, the multi-analytic operator A provided by Theorem 5.1 when Y =
I — Kr K7, which we denote by ©r, is called the characteristic function of T'. More precisely, due to the

remarks following Theorem 5.1, one can see that O is the multi-analytic operator

Or : (Ff x - xFH) @ Apyp (1) (Mp) = C(F,F x - x FE ) @ Ap(1)(H)
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defined by ©7 = (I — KpK3;)"/?K}, , where
Kr:H — CES x - xFF) o Ar(D)(H)
is the noncommutative Berezin kernel associated with 7' € B (H) and
Kyt H— C(EF x - x B ) @ Ay (1) (Mr)

is the noncommutative Berezin kernel associated with Mr € Bj(Mr). Here, we have

My :=range (I — K7 K}.)

and My := (M, ..., M) is the k-tuple with M; := (M;1,..., M, ,,) and M, ; € B(Mr) given by M, s :=
At , where A; ; € B (M) is uniquely defined by

Aus (T = KpK7)'2f] 1= (1= KrK7) (S0 @ D)
for all f € (2(F,}, x--- x F;} ) ® Ap(I)(H). According to Theorem 5.1, we have K7 K} + 0704 = 1.

Theorem 5.5. Let T' = (T4,...,T)) be a k-tuple in Bo(H) which admits characteristic function. Then T is
pure if and only if the characteristic function O is an inner multi-analytic operator. Moreover, in this case
T =(T1,...,Ty) is unitarily equivalent to G = (G1,...,Gy), where G; := (Gi1,...,G;n,) is defined by

Gi,s = PHT (Si,s®-[)‘HT7 xS {1,...,]6}786 {1,...,ni}7

and Py, is the orthogonal projection of (*(F,f x --- x Ft )& Aqp(I)(H) onto
Hp = {EQ(IF,J[I X xFf)® AT(I)(H)} O range O7.

Proof. Assume that T is a pure k-tuple in B (H) which admits characteristic function. Theorem 1.1 shows
that

* — L 3 id — PPk . id_— PP
K} Ky = p;}gnoo . .plh_rfloo(zd 7)o -0 (id — oy ) (1), (5.1)
where the limits are in the weak operator theory. Consequently, since T is a pure k-tuple, the noncommu-
tative Berezin kernel associated with T, i.e.,

Kp:H — CEL x- xFH) o Ar(D)(H)

is an isometry. Moreover, the subspace KrH is coinvariant under the operators S; , ® Im, 1 €
{1,...,k}, s e {1,...,n;}, and T; s, = K}(5;s ® IW)KT. Since KpK} is the orthogonal projec-
tion of £2(F,} x --- xF,} )® Ap(I)(H) onto KpH and KK} 4+ ©70% = I, we deduce that O is a partial
isometry and KpH = Hyp. Taking into account that Kp is an isometry, we can identify H with KpH.
Therefore, T = (T4, ...,T) is unitarily equivalent to G = (Gy, ..., Gk).

Conversely, assume that O is an inner multi-analytic operator. Since K7 K. 4+ ©707% = I, and Or is
a partial isometry, the noncommutative Berezin kernel K is a partial isometry. On the other hand, since
T is completely non-coisometric, K1 is a one-to-one partial isometry and, consequently, an isometry. Due
to Theorem 1.1, relation (5.1) holds. Hence, we deduce that T is a pure k-tuple in Bp(#H). The proof is
complete. O
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Now, we are able to provide a model theorem for the class of completely non-coisometric k-tuple of
operators in By (H) which admit characteristic functions.

Theorem 5.6. Let T = (T1,...,Tk) be a completely non-coisometric k-tuple in the A-polyball By (H) which
admits characteristic function, and let S := (S1,...,Sy) be the universal model associated to By(H). Set

D = Ar(I)(H), D, = App. () (M),
and Do, := (I — @}@T)lm, where O is the characteristic function of T. Then T is unitarily equivalent to

G :=(Gu,...,Gy) € BA(Hr), where G; := (G 1,...,G;n,) and, foreachi € {1,...,k} ands € {1,...,n;},
G5 is a bounded operator acting on the Hilbert space

Hy = [(C(F, x -+ x F},) © D) ) Do, (P(F x -+ x ) @ D.)]

©{Orp ® De,p: ¢ € (Fy x---xFF)®D,}

and is uniquely defined by the relation

K * _ * K
(PZQ?FJI ><-'~><]F7Jfk)®D|HT) Gi,sf = (Si,s ® ID) (szj(ﬂ]F:rl ><~~~><F:fk)®'D‘HT) f

K

for every f € Hyp. Here, Pé?(Filx---x]Fik)@D

is the orthogonal projection of the Hilbert space

Kr = (*(F,f, x - xF}) @ D) @ Do, ((*(Fsf, x -+ x Ff,) ® D,)

K
onto the subspace (*(F,f x --- xF,f )®D and PW?JFII ——

)®D|HT 18 a one-to-one operator.

Proof. A straightforward computation reveals that the operator W : ¢*(F,f x --- xF,| )® D, — Ky defined
by

Vo :=0Orp® Doy, @€l x- xF)oD,,
is an isometry and
U*(g®0)=0Org, gelP(F x-- xF)aD. (5.2)

Consequently, we deduce that
K * K *
lgl1* = IPgL (g @ 0)|* + LT (g @ 0)||* = | Py (g ® 0)|* + [ ©F9]*

for every g € £? (]F,‘L“1 X oee X IF,‘L';) ® D, where P]ﬁ; the orthogonal projection of K7 onto the subspace Hr.
Since

IK7g)” + 10791 = llgl?, g€ PF,; x-- xFf)®D,
we have

1Kl = IPEZ (9@ 0)ll, g€ P x- xF})®D. (5.3)
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Due to the fact that the k-tuple T' = (71, ...,T) is completely non-coisometric in B (%), the noncommu-
tative Berezin kernel Kp is a one-to-one operator. Thus range K% = H. Let f € Hp be with the property

that <f, P]ﬁ? (9@ 0)> =0 for any g € (*(F,} x---xF,} )®@D. Due to the definition of Hy and the fact that
K7 coincides with the closed span of all vectors g &0, for g € (2(F,}, x -+ x Ff ) ® D, and O1¢ & Do, ¢,

ni

for p € 2(F,f x --- x F,} ) ® D, we must have f = 0. Consequently,
Hy = {Pﬁz(g@()) g e CFS x - x]F,jk)®D}.
Now, using relation (5.3), we deduce that there is a unitary operator I' : H — Hyp such that

[(K;g)=PR (g®0), gelP(F x- xFl)®D. (5.4)

ny
For each i € {1,...,k} and s € {1,...,n;}, we define the operator G; s : Hy — Hy by relation
G'L,s = FT%7SF*, iE{l,...,kJ},SE{1,...,7’7,1'}.

Since T' € BA(H), we also have G € B (#H). The next step is to show that

K
(Péz(]Ff{l X x

oplttn) Giaf = (S5, @ 1) (PRIc g oplitn ) f (5.5)

for every i € {1,...,k}, s € {1,...,n;}, and f € Hyp. Taking into account relations (5.4) and (5.2), the fact
that ¥ is an isometry and P]ﬁi (g®0) +9T*(g®0) = g D0, we obtain

K « _ pkK K
PEJFL x---xFﬁk)(gDFKTg - sz?ﬂr;l X...X]F;k)(gDP]HIq; (g S3) 0)
=g—P&r VU (g @ 0)

C(Ff - xFf oD

=g9— 07079 = KrKrg

for all g € *(F,f x --- x F,} ) ® D. Since range K. = 1, we obtain

ni

K _
Pl ot yopl = KT (5.6)

On the other hand, since T is a completely non-coisometric tuple, the noncommutative Berezin kernel K
is one-to-one. Now, relation (5.6) implies

pir

. *
2(F ><---><F7Tk)®D|HT = KT

Kz
and shows that PP(]F,TI ><---><IFf,Tk)®D‘HT

Hence, using relation (5.6) and Theorem 1.1, we deduce that

is a one-to-one operator acting from Hy to (2(F,f x -+ xF} )®D.

v

* K
22(F ><..-><]F;rk)®D|lHIT> Gi,srh = (P T

e(F ><~-><]F,Tk)®D|HT) LT h
= KTT':sh
= (S;, ®Ip) Krh

= (st.@ In) (P}

2F, ><~~‘><F,Tk)®D‘HT) Th
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for every i € {1,...,k}, s € {1,...,n;}, and h € H. Therefore, relation (5.5) holds. We remark that, since

Kr
the operator PZQ(JFL xmeik)@D‘HT

forallie {1,...,k} and s € {1,...,n;}. The proof is complete. O

is one-to-one, the relation (5.5) uniquely determines each operator G,

Now, we show that the characteristic function ©r is a complete unitary invariant for the completely
non-coisometric k-tuples in By (%) which admit characteristic functions.

Theorem 5.7. Let T := (T1,...,Tx) € Ba(H) and T" := (I7,...,T}) € BA(H') be two completely non-
coisometric k-tuples which admit characteristic functions. Then T and T’ are unitarily equivalent if and
only if their characteristic functions ©1 and Op: coincide.

Proof. To prove the direct implication of the theorem, assume that the k-tuples T and T are unitarily

equivalent. Let W : H — H' be a unitary operator such that T; ; = W*T] ;W for every i € {1,...,k} and
s€{l,...,n;}. Note that WA (I) = Ap (I)W and WD = D’ where the subspaces D and D’ are given by

D = AT<I)<H), D/ = AT’ (I)(H/)

On the other hand, using the definition of the noncommutative Berezin kernel associated with A-polyballs,
it is easy to see that (I@(Fﬁ x--xF) ® W)Kr = K7#W. Consequently,

Lezpst, xoxii, ) @ WIU = Ko K1) (L gt coxpi, ) ©W) = 1 — Ko Ko

and (Iez(]ﬁl X xFh ) ® W)Myp = My, where My := range (I — KpK3) and Mp := range (I — Ky K%,).
As mentioned in the remarks preceding Theorem 5.5, My := (M, ..., M) € Byo(M7) is the k-tuple with
M; = (M;a1,...,M;,,) and M, ; € B(Mr), where M, , := Afgand A; s € B(Mr) is uniquely defined by
relation

Ais (T = Ky i) 2a] o= (1 = KrEKq) V2 (Sie D

for all z € (2(F,} x -+ xF} )@ Ap(I)(H). In a similar manner, we define the k-tuple My € By (Myr) and

ni

the operators A} ; € B(Mr). It is easy to see that

Ais(I = KrE7)' 2 f = (L, ooty @ WAL = Ko Kp) Y2 (L g, oxwi) @ WS

= et i) @ WA s Tp s, xxrit ) @ W — KpKq)'2f
for all f € (*(F,f, x -+ x F;} ) ® Ap(I)(H). This implies
Ai,s - (Izz(]FII ><---><]Ff{k) (9 W*)Ag,s(‘[l?(]F;[l ><-~><]F7J{k) ® W)

It is clear now that (L, x-xFi ) ® W)D, = D, where D, := Ap,.(I)(Mr) and D, := Apy,, (1) (M7).
Define the unitary operators u and u’ by setting

u:=Wlp:D— D and u,:= (IZQ(F%X_”XF%) @W)|p, : Dy — D..
Straightforward calculations reveal that

(I£2(]F‘Il><~-><]F,fk) ®u)Or = O1 (Iemwl x-xFi) ® us),
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which proves the direct implication of the theorem. Conversely, assume that the characteristic functions of
T and T coincide. In this case, there exist unitary operators v : D — D’ and u, : D, — D’ such that

(ItzZ(lF,fl x-xFd) ®u)Or = O1 (142(Fi1 x xFi) ® Us).

Hence, we deduce that

De, = (IeZ(Mlx-..xmk) ® “*) De,, (Iez(mlxmxw,tk) ® U*)

and

(Iez(]F,Tlxmx]F,Tk) ® U*) Do, (2(Fi, x -+ x Ff,) ® Dy) = Do, ((2(Fsf, x -+ x Fi,) @ D),
where Deg,. := (I — ©%07)'/2. Define now the unitary operator U : K — K7/ by setting
U= (Tpm x..xFir) @ S Ut o xFi, ) © Us):
It is easy to see that the operator ¥ : ¢(F,f x --- x F,f ) ® D, — Kr, defined by
VY :=0Orp® Do,p, @€ 62(IF:1 X oo X F;rk) ® Dy,

and the corresponding operator U’ satisfy the relations

uw <Iz2(1F;q x-xFf,) @ “*) =V (5.7)
and
- . @u) PXr U* = pir (5.8)
2 (F ) x--xFa,y ) C(F, x--xF$,)@D C(FL - xFf @D )
where PE(T]F;[I <o xFif,)@D is the orthogonal projection of K¢ onto 82(157[1 X -+ x Ft)®D. On the other

hand relation (5.7) implies

UHy = UKy © UV ((F,f x - xFF ) ®D,)
=K1 © V' (Tp(py, xxbs,) © ) (C(F, X X B ) @ D)

=Kp 0 V(CF, x--- xF)eD),).
Consequently, Ulg,. : Hp — Hyv is a unitary operator. We remark that
(S::S ® ID/)(I@(IFTTI x-xFf) ®u) = (I€2(]F$[1 x-xFd) ® u)(SZs ® Ip) (5.9)
for every i € {1,...,k} and s € {1,...,n;}. Let G := (Gy,...,G,) and G’ := (G{,...,G]) be the model

operators provided by Theorem 5.6 for T and 7", respectively. Taking into account relations (5.8), (5.9),
and relation (5.5) for 7" and T, respectively, we deduce that
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KT’ ;] * _ * KT
P€2(F,T1><--~><F;*[k)®D'Givs Uf = (Si,s ® Ipr) éz(F;flx---x]F;f'k)@DUx

* K
= (Si,s ® ID’)(Izz(]F::l x-xF ) ® u>P€2’(F]F:{1 x-~-xlFffk)®Df

* K
- (152(]1:‘71—1 o xF) ® u)(Sivs ® I,D)PEZ(T]F;LFI X--‘XIFrJfk)®Df

_ Ko *
= (I£2(]Ff{1 XX ) ® U)Pzz(]F;{-l ><---><]F;{'k)®DGi !
Ky

*
T e(F ><--~xIE‘Ik)®D’UGi7Sf

. . K/
for every f € Hr, i = {1,...,k}, and s € {1,...,n;}. According to Theorem 5.6, PZQ(T]F,Tl><~--x]Ff{k)®D/|HT’

is a one-to-one operator. Consequently, the relations above imply (Ulm,)G;, = (G;,)* (Uln,) for every
i€{l,...,k} and s € {1,...,n;}. Using Theorem 5.6, we conclude that the k-tuples T' and T’ are unitarily
equivalent. This completes the proof. O

Corollary 5.8. If T := (T1,...,Tx) € BA(H) is completely non-coisometric and has characteristic function
O =0, then T is unitarily equivalent to (S1 ® Ip,...,Si ® Ip) for some Hilbert space D.
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