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In a recent paper, we introduced the standard k-tuple S := (S1, . . . , Sk) of pure 
row isometries Si := [Si,1 · · ·Si,ni ] acting on the Hilbert space �2(F+

n1
× · · · × F+

nk
), 

where F+
n is the unital free semigroup with n generators, and showed that S is the 

universal k-tuple of doubly Λ-commuting row isometries, i.e.

S∗
i,sSj,t = λij(s, t)Sj,tS

∗
i,s

for every i, j ∈ {1, . . . , k} with i �= j and every s ∈ {1, . . . , ni}, t ∈ {1, . . . , nj}, where 
Λij := [λi,j(s, t)] is an ni × nj-matrix with the entries in T := {z ∈ C : |z| = 1}
and Λj,i = Λ∗

i,j . It was also proved that the set of all k-tuples T := (T1, . . . , Tk) of 
row operators Ti := [Ti,1 · · ·Ti,ni ] acting on a Hilbert space H which admit S as 
universal model, i.e. there is a Hilbert space D such that H is jointly co-invariant 
for all operators Si,s ⊗ ID and

T ∗
i,s = (S∗

i,s ⊗ ID)|H, i ∈ {1, . . . , k} and s ∈ {1, . . . , ni},

consists of the pure elements of a set BΛ(H) which was called the regular Λ-polyball. 
The goal of the present paper is to introduce and study noncommutative Hardy 
spaces associated with the regular Λ-polyball, to develop a functional calculus 
on noncommutative Hardy spaces for the completely non-coisometric (c.n.c.) k-
tuples in BΛ(H), and to study the characteristic functions and the associated 
multi-analytic models for the c.n.c. elements in the regular Λ-polyball. In addition, 
we show that the characteristic function is a complete unitary invariant for the 
class of c.n.c. k-tuples in BΛ(H). These results extend the corresponding classical 
results of Sz.-Nagy–Foiaş for contractions and the noncommutative versions for row 
contractions. In the particular case when n1 = · · · = nk = 1 and Λij = 1, we obtain 
a functional calculus and operator model theory in terms of characteristic functions 
for k-tuples of contractions satisfying Brehmer condition.
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0. Introduction

In a recent paper [16], inspired by the work of De Jeu and Pinto [5], and J. Sarkar [18], we studied the 
structure of the k-tuples of doubly Λ-commuting row isometries and the C∗-algebras they generate from 
the point of view of noncommutative multivariable operator theory.

Given row isometries Vi := [Vi,1 · · ·Vi,ni
], i ∈ {1, . . . , k}, i.e. V ∗

i,sVi,t = δstI, we say that V := (V1, . . . , Vk)
is a k-tuple of doubly Λ-commuting row isometries if

V ∗
i,sVj,t = λij(s, t)Vj,tV

∗
i,s

for every i, j ∈ {1, . . . , k} with i �= j and every s ∈ {1, . . . , ni}, t ∈ {1, . . . , nj}, where Λij := [λi,j(s, t)] is an 
ni × nj-matrix with the entries in the torus T := {z ∈ C : |z| = 1} and Λj,i = Λ∗

i,j .
We obtained Wold decompositions and used them to classify the k-tuples of doubly Λ-commuting row 

isometries up to a unitary equivalence. We proved that there is a one-to-one correspondence between the 
unitary equivalence classes of k-tuples of doubly Λ-commuting row isometries and the enumerations of 2k
unitary equivalence classes of unital representations of the twisted Λ-tensor algebras ⊗Λ

i∈AcOni
, as A is any 

subset of {1, . . . , k}, where Oni
is the Cuntz algebra with ni generators (see [4]). The algebra ⊗Λ

i∈AcOni

can be seen as a twisted tensor product of Cuntz algebras. We remark that, when n1 = · · · = nk = 1, the 
corresponding algebras are higher-dimensional noncommutative tori which are studied in noncommutative 
differential geometry (see [20], [3], [6], and the appropriate references there in). We should mention that 
C∗-algebras generated by isometries with twisted commutation relations have been studied in the literature 
in various particular cases (see [7], [17], [8], and [22]).

We introduced in [16] the standard k-tuple S := (S1, . . . , Sk) of doubly Λ-commuting pure row isometries 
Si := [Si,1 · · ·Si,ni

] acting on the Hilbert space �2(F+
n1

× · · · × F+
nk

), where F+
n is the unital free semigroup 

with n generators, and proved that the universal C∗-algebra generated by a k-tuple of doubly Λ-commuting 
row isometries is ∗-isomorphic to the C∗-algebra C∗({Si,s}). The regular Λ-polyball BΛ(H) was introduced 
as the set of all k-tuples of row contractions Ti = [Ti,1 . . . Ti,ni

], i.e. Ti,1T
∗
i,1 + · · ·+ Ti,ni

T ∗
i,ni

≤ I, such that

Ti,sTj,t = λij(s, t)Tj,tTi,s

for every i, j ∈ {1, . . . , k} with i �= j and every s ∈ {1, . . . , ni}, t ∈ {1, . . . , nj}, and such that

ΔrT (I) := (id− ΦrTk
) ◦ · · · ◦ (id− ΦrT1)(I) ≥ 0, r ∈ [0, 1),

where ΦrTi
: B(H) → B(H) is the completely positive linear map defined by ΦrTi

(X) :=
∑ni

s=1 r
2Ti,sXT ∗

i,s. 
We proved that a k-tuple T := (T1, . . . , Tk) of row operators Ti := [Ti,1 . . . Ti,ni

], acting on a Hilbert space 
H, admits S as universal model, i.e. there is a Hilbert space D such that H is jointly co-invariant for Si,s⊗ID
and

T ∗
i,s = (S∗

i,s ⊗ ID)|H, i ∈ {1, . . . , k} and s ∈ {1, . . . , ni},
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if and only if T is a pure element of BΛ(H).
The goal of the present paper is to continue the work in [16] and develop a multivariable functional 

calculus for k-tuples of Λ-commuting row contractions on noncommutative Hardy spaces associated with 
regular Λ-polyballs. We also study the characteristic functions and the associated multi-analytic models 
for the elements of BΛ(H). Many of the techniques developed in [16] and [15] are refined and used in the 
present paper.

In Section 1, we present some preliminaries on noncommutative Berezin transforms associated with Λ-
polyballs which are very useful in the next sections. In Section 2, we introduce the noncommutative Hardy 
algebra F∞(BΛ) which can be seen as a noncommutative multivariable version of the Hardy algebra H∞(D). 
We prove that F∞(BΛ) is WOT- (resp. SOT-, w*-) closed and

F∞(BΛ) = P({Si,s})
SOT

= P({Si,s})
WOT

= P({Si,s})
w*

,

where P({Si,s}) is the algebra of all polynomials in Si,s and the identity. Moreover, we show that F∞(BΛ)
is the sequential SOT-(resp. WOT-, w*-) closure of P({Si,s}). Using noncommutative Berezin transforms 
associated with Λ-polyballs, we prove that each element A ∈ F∞(BΛ) has a unique formal Fourier repre-
sentation

ϕ({Si,s}) =
∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)S1,β1 . . . Sk,βk

such that, for all r ∈ [0, 1), ϕ({rSi,s}) is in the Λ-polyball algebra A(BΛ), the normed closed non-self-adjoint 
algebra generated by the isometries Si,s and the identity. Moreover, we prove that

A = SOT- lim
r→1

ϕ({rSi,s})

and

‖A‖ = sup
0≤r<1

‖ϕ({rSi,s})‖ = lim
r→1

‖ϕ({rSi,s})‖.

In Section 3, we prove the existence of an F∞(BΛ)-functional calculus for the completely non-coisometric 
(c.n.c.) elements T in the Λ-polyball BΛ which extends the Sz.-Nagy–Foias functional calculus for c.n.c. 
contractions [19] and the functional calculus for c.n.c. row contractions [14]. In this case, we prove that if 
ϕ({Si,s}) is the Fourier representation of A ∈ F∞(BΛ), then

ΨT (A) := SOT- lim
r→1

ϕ({rTi,s})

exists and defines a unital completely contractive homomorphism ΨT : F∞(BΛ) → B(H) which is WOT-
(resp. SOT-, w*-) continuous on bounded sets.

Section 4 is dedicated to the set Hol(B◦
Λ) of free holomorphic functions on the open Λ-polyball B◦

Λ(H), 
which is the interior of BΛ(H). We introduce the algebra H∞(B◦

Λ) of all ϕ ∈ Hol(B◦
Λ) such that

‖ϕ‖∞ := sup ‖ϕ({Xi,s})‖ < ∞,

where the supremum is taken over all {Xi,s} ∈ B◦
Λ(H) and any Hilbert space. H∞(B◦

Λ) is a Banach algebra 
under pointwise multiplication and the norm ‖ · ‖∞ and has an operator space structure in the sense of 
Ruan (see [10], p. 181). Using noncommutative Berezin transforms, we show that the algebra of bounded free 
holomorphic functions H∞(B◦

Λ) is completely isometric isomorphic to the noncommutative Hardy algebra 
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F∞(BΛ) introduced in Section 2. We also introduce the algebra A(B◦
Λ) of all functions f ∈ Hol(B◦

Λ) such 
that the map B◦

Λ(H) � X 
→ f(X) ∈ B(H) has a continuous extension to BΛ(H) for any Hilbert space 
H. It turns out that A(B◦

Λ) is a Banach algebra with pointwise multiplication and the norm ‖ · ‖∞ and 
has an operator space structure. We conclude this section by showing that A(B◦

Λ) is completely isometric 
isomorphic to the noncommutative Λ-polyball algebra A(BΛ).

In Section 5, we show that a k-tuple T = (T1, . . . , Tk) in the noncommutative Λ-polyball BΛ(H) admits 
a characteristic function if and only if

ΔS⊗I(I −KTK
∗
T ) ≥ 0,

where KT is the noncommutative Berezin kernel associated with T and

ΔS⊗I := (id− ΦS1⊗I) ◦ · · · ◦ (id− ΦSk⊗I).

We provide a model theorem for the class of completely non-coisometric k-tuple of operators in BΛ(H) which 
admit characteristic functions, and show that the characteristic function is a complete unitary invariant 
for this class of k-tuples. These are generalizations of the corresponding classical results [19] and of the 
noncommutative versions obtained in [11].

We remark that in the particular case when n1 = · · · = nk = 1 and Λij = 1, we obtain a functional 
calculus and operator model theory for k-tuples of contractions satisfying Brehmer condition [2] (see also 
[19]).

1. Preliminaries on regular Λ-polyballs and noncommutative Berezin transforms

In this section, we introduce the standard k-tuple S := (S1, . . . , Sk) of doubly Λ-commuting pure row 
isometries Si := [Si,1 · · ·Si,ni

] and present some preliminaries results on noncommutative Berezin transforms 
associated with Λ-polyballs.

For each i, j ∈ {1, . . . , k} with i �= j, let Λij := [λi,j(s, t)], where s ∈ {1, . . . , ni} and t ∈ {1, . . . , nj}
be an ni × nj-matrix with the entries in the torus T := {z ∈ C : |z| = 1}, and assume that Λj,i = Λ∗

i,j . 
Given row isometries Vi := [Vi,1 · · ·Vi,ni

], i ∈ {1, . . . , k}, we say that V = (V1, . . . , Vk) is a k-tuple of doubly 
Λ-commuting row isometries if

V ∗
i,sVj,t = λij(s, t)Vj,tV

∗
i,s

for every i, j ∈ {1, . . . , k} with i �= j and every s ∈ {1, . . . , ni}, t ∈ {1, . . . , nj}. We remark that the relation 
above implies that

Vi,sVj,t = λij(s, t)Vj,tVi,s.

For each i ∈ {1, . . . , k}, let F+
ni

be the unital free semigroup with generators gi1, . . . , gini
and neutral 

element gi0. The length of α ∈ F+
ni

is defined by |α| = 0 if α = gi0 and |α| = m if α = gip1
· · · gipm

∈ F+
ni

, where 
p1, . . . , pm ∈ {1, . . . , ni}. If Ti := [Ti,1 · · ·Ti,ni

], we use the notation Ti,α := Ti,p1 · · ·Ti,pm
and Ti,gi

0
:= I.

Consider the Hilbert space �2(F+
n1

× · · · × F+
nk

) with the standard basis {χ(α1,...,αk)}, where α ∈
F+
n1
, . . . , αk ∈ F+

nk
. For each i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}, we define the row operator Si :=

[Si,1 · · ·Si,ni
], where Si,s is defined on �2(F+

n1
× · · · × F+

nk
) by setting

Si,s

(
χ(α1,...,αk)

)
:=
{
χ(gi

sα1,α2,...,αk), if i = 1
λ (s, α ) · · ·λ (s, α )χ i , if i ∈ {2, . . . , k}

(1.1)
i,1 1 i,i−1 i−1 (α1,...,αi−1,gsαi,αi+1,...,αk)
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for all α1 ∈ F+
n1
, . . . , αk ∈ F+

nk
, where, for each j ∈ {1, . . . , k},

λi,j(s, β) :=
{∏q

b=1 λi,j(s, jb), if β = gjj1 · · · g
j
jq

∈ F+
nj

1, if β = gj0.

Let i ∈ {1, . . . , k} and s ∈ {1, . . . , ni} and note that relation (1.1) implies

S∗
i,s

(
χ(α1,...,αk)

)
=
{
λi,1(s, α1) · · ·λi,i−1(s, αi−1)χ(α1,...,αi−1,βi,αi+1,...,αk), if αi = gisβi

0, otherwise

(1.2)

for any α1 ∈ F+
n1
, . . . , αk ∈ F+

nk
. Hence, we deduce that

ni∑
s=1

Si,sS
∗
i,s

(
χ(α1,...,αk)

)
=
{
|λi,1(s, α1)|2 · · · |λi,i−1(s, αi−1)|2χ(α1,...,αi−1,αi,αi+1,...,αk), if |αi| ≥ 1
0, otherwise

=
{
χ(α1,...,αk), if |αi| ≥ 1
0, otherwise,

which shows that [Si,1 · · ·Si,ni
] is a row isometry for every i ∈ {1, . . . , k}. In [16], we showed that, if 

i, j ∈ {1, . . . , k} with i �= j and any s ∈ {1, . . . , ni}, t ∈ {1, . . . , nj}, then

S∗
i,sSj,t = λi,j(s, t)Sj,tS

∗
i,s. (1.3)

Consequently, S := (S1, . . . , Sk) is a k-tuple of doubly Λ-commuting row isometries.
Given row contractions Ti := [Ti,1 · · ·Ti,ni

], i ∈ {1, . . . , k}, acting on a Hilbert space H, we say that 
T = (T1, . . . , Tk) is a k-tuple of Λ-commuting row contractions if

Ti,sTj,t = λij(s, t)Tj,tTi,s (1.4)

for every i, j ∈ {1, . . . , k} with i �= j and every s ∈ {1, . . . , ni}, t ∈ {1, . . . , nj}. We say that T is in the 
regular Λ-polyball, which we denote by BΛ(H), if T is a Λ-commuting tuple and

ΔrT (I) := (id− ΦrTk
) ◦ · · · ◦ (id− ΦrT1)(I) ≥ 0, r ∈ [0, 1),

where ΦrTi
: B(H) → B(H) is the completely positive linear map defined by ΦrTi

(X) :=
∑ni

s=1 r
2Ti,sXT ∗

i,s. 
We remark that, due to the Λ-commutation relation (1.4), we have ΦTi

◦ ΦTj
(X) = ΦTj

◦ ΦTi
(X) for any 

i, j ∈ {1, . . . , k} and X ∈ B(H).
Let T = (T1, . . . , Tk) be a k-tuple in the regular Λ-polyball BΛ(H). We define the noncommutative Berezin 

kernel

KT : H → �2(F+
n1

× · · · × F+
nk

) ⊗D(T ),

by setting
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KTh :=
∑

β1∈F+
n1 ,...,βk∈F+

nk

χ(β1,...,βk) ⊗ ΔT (I)1/2T ∗
k,βk

· · ·T ∗
1,β1

h, h ∈ D(T ),

where ΔT (I) := (id − ΦTk
) ◦ · · · ◦ (id − ΦT1)(I) and D(T ) := ΔT (I)H.

The first theorem is an extension of the corresponding result from [16] for pure k-tuples in BΛ(H).

Theorem 1.1. Let T = (T1, . . . , Tk) be a k-tuple in the regular Λ-polyball BΛ(H). Then the following state-
ments hold.

(i) The noncommutative Berezin kernel KT is a contraction and

K∗
TKT = lim

pk→∞
. . . lim

p1→∞
(id− Φpk

Tk
) ◦ · · · ◦ (id− Φp1

T1
)(I),

where the limits are in the weak operator theory.
(ii) For every i ∈ {1, . . . , k} and s ∈ {1, . . . , ni},

KTT
∗
i,s =

(
S∗
i,s ⊗ ID(T )

)
KT .

Proof. For each i ∈ {1, . . . , k}, we set

Δ(Ti,Ti−1,...,T1)(I) := (id− ΦTi
) ◦ · · · ◦ (id− ΦT1)(I)

and remark that, due to the fact that Ti is a row contraction, Ai := limqi→∞ Φqi+1
Ti

(I) exists in the weak 
operator theory. Using the fact that ΦTi

◦ ΦTj
(X) = ΦTj

◦ ΦTi
(X) for all i, j ∈ {1, . . . , k} and X ∈ B(H), 

we deduce that
∞∑

qk=0
Φqk

Tk
[Δ(Tk,...,T1)(I)] = lim

pk→∞

pk∑
qk=0

{
Φqk

Tk
[Δ(Tk−1,...,T1)(I)] − Φqk+1

Tk
[Δ(Tk−1,...,T1)(I)]

}
= Δ(Tk−1,...,T1)(I) − lim

pk→∞
Φpk+1

Tk
[Δ(Tk−1,...,T1)(I))]

= Δ(Tk−1,...,T1)(I) − Δ(Tk−1,...,T1)

(
lim

pk→∞
Φpk+1

Tk
(I)
)

= Δ(Tk−1,...,T1)(I −Ak).

Consequently, we deduce that

∞∑
qk−1=0

Φqk−1
Tk−1

( ∞∑
qk=0

Φqk
Tk

[Δ(Tk,...,T1)(I)]
)

=
∞∑

qk−1=0
Φqk−1

Tk−1

(
Δ(Tk−1,...,T1)(I −Ak)

)

= lim
pk−1→∞

pk−1∑
qk−1=0

{
Φqk−1

Tk−1
[Δ(Tk−2,...,T1)(I −Ak)] − Φqk−1+1

Tk−1
[Δ(Tk−2,...,T1)(I −Ak)]

}
= Δ(Tk−2,...,T1)(I −Ak) − lim

pk−1→∞
Φpk−1+1

Tk−1
[Δ(Tk−2,...,T1)(I −Ak)]

= Δ(Tk−2,...,T1)(I −Ak) − Δ(Tk−2,...,T1)

(
(I −Ak) lim

pk−1→∞
Φpk−1+1

Tk−1
(I)
)

= Δ [(I −A )(I −A )].
(Tk−2,...,T1) k k−1
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Continuing this process, we obtain

∞∑
q1=0

Φq1
T1

( ∞∑
q2=0

Φq2
T2

(
· · ·

∞∑
qk=0

Φqk
Tk

[Δ(Tk,...,T1)(I)] · · ·
))

= (I −Ak) · · · (I −A1),

where the convergence of the series is in the weak operator topology. Since we can rearrange the series of 
positive terms, we obtain

∞∑
q1,...,qk=0

Φq1
T1

◦ · · · ◦ Φqk
Tk

[Δ(Tk,...,T1)(I)] = (I −Ak) · · · (I −A1).

Using this relation, one can see that

〈K∗
TKTh, h〉 =

〈 ∑
β1∈F+

n1 ,...,βk∈F+
nk

T1,β1 · · ·Tk,βk
ΔT (I)T ∗

k,βk
· · ·T ∗

1,β1
h, h

〉

= 〈(I −Ak) · · · (I −A1)h, h〉

for any h ∈ H, which proves item (i).
Now, we prove item (ii). Note that, for every h, h′ ∈ H,

〈
KTT

∗
i,sh, χ(α1,...,αk) ⊗ h′〉 =

〈 ∑
β1∈F+

n1 ,...,βk∈F+
nk

χ(β1,...,βk) ⊗ ΔT (I)1/2T ∗
k,βk

· · ·T ∗
1,β1

T ∗
i,sh, χ(α1,...,αk) ⊗ h′

〉

=
〈
ΔT (I)1/2T ∗

k,αk
· · ·T ∗

1,α1
T ∗
i,sh, h

′
〉

=
〈
h, Ti,sT1,α1 · · ·Ti−1,αi−1Ti,αi

· · ·Tk,αk
ΔT (I)1/2h′

〉
= λi,1(s, α1) · · ·λi,i−1(s, αi−1)

〈
h, T1,α1 · · ·Ti−1,αi−1Ti,gi

sαi
· · ·Tk,αk

ΔT (I)1/2h′
〉

for all α1 ∈ F+
n1
, . . . , αk ∈ F+

nk
where, for all j ∈ {1, . . . , k},

λi,j(s, β) :=
{∏q

b=1 λi,j(s, jb) if β = gjj1 · · · g
j
jq

∈ F+
nj

1 if β = gj0.
(1.5)

Due to the definition of the noncommutative Berezin kernel KT and using relation (1.2), we obtain

〈(
S∗
i,s ⊗ I

)
KTh, χ(α1,...,αk) ⊗ h′〉

=
〈
S∗
i,s(χ(α1,...,αi−1,gi

sαi,αi+1,...,αk)) ⊗ ΔT (I)1/2T ∗
k,αk

· · ·T ∗
i+1,αi+1

T ∗
i,gi

sαi
T ∗
i−1,αi−1

· · ·T ∗
1,α1

h, χ(α1,...,αk) ⊗ h′
〉

= λi,1(s, α1) · · ·λi,i−1(s, αi−1)
〈
h, T1,α1 · · ·Ti−1,αi−1Ti,gi

sαi
· · ·Tk,αk

ΔT (I)1/2h′
〉
.

Consequently, we obtain

〈(
S∗
i,s ⊗ I

)
KTh, χ(α1,...,αk) ⊗ h′〉 =

〈
h, T1,α1 · · ·Ti−1,αi−1Ti,gi

sαi
· · ·Tk,αk

ΔT (I)1/2h′
〉

and conclude that item (ii) holds. The proof is complete. �
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Note that due to the doubly Λ-commutativity relations (1.3) satisfied by the standard shift S =
(S1, . . . , Sn) and the fact that S∗

i,sSi,t = δstI for every i ∈ {1, . . . , k} and s, t ∈ {1, . . . , ni}, and every 
polynomial in {Si,s} and {S∗

i,s} is a finite sum the form

p({Si,s}, {S∗
i,s}) =

∑
a(α1,...,αp,β1,...,βm)Si1,α1 · · ·Sip,αp

S∗
j1,β1

· · ·S∗
jm,βm

,

where α1 ∈ F+
ni1

, . . . , αp ∈ F+
nip

and β1 ∈ F+
nj1

, . . . , βm ∈ F+
njm

. We define

p({Ti,s}, {T ∗
i,s}) :=

∑
a(α1,...,αp,β1,...,βm)Ti1,α1 · · ·Tip,αp

T ∗
j1,β1

· · ·T ∗
jm,βm

and note that the definition is correct due to the following von Neumann inequality obtained in [16], i.e.

‖p({Ti,s}, {T ∗
i,s})‖ ≤ ‖p({Si,s}, {S∗

i,s})‖

for every k-tuple T = (T1, . . . , Tk) in the regular Λ-polyball, which extends the classical result [21] and the 
noncommutative version for row contractions [13].

The Λ-polyball algebra A(BΛ) is the normed closed non-self-adjoint algebra generated by the isometries 
Si,s, where i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}, and the identity. We denote by C∗({Si,s}) the C∗-algebra 
generated by the isometries Si,s We prove in [16] that if T ∈ BΛ(H), then the map

ΨT (f) := lim
r→1

K∗
rT [f ⊗ I]KrT , f ∈ C∗({Si,s}),

where the limit is in the operator norm topology, is a is completely contractive linear map. Moreover, its 
restriction to the Λ-polyball algebra A(BΛ) is a completely contractive homomorphism. If, in addition, T
is a pure k-tuple, i.e., for each i ∈ {1, . . . , k}, Φp

Ti
(I) → 0, as p → ∞, then ΨT (f) = K∗

T [f ⊗ I]KT . We call 
the map ΨT the noncommutative Berezin transform at T associated with the Λ-polyball.

2. Noncommutative Hardy spaces associated with regular Λ-polyballs

In this section, we introduce the noncommutative Hardy algebra F∞(BΛ), which can be seen as a 
noncommutative multivariable version of the Hardy algebra H∞(D), and prove some basic properties.

According to relations (1.1) and (1.5), for each i ∈ {1, . . . , k} and α := (α1, . . . , αk) ∈ F+
n1

× · · · × F+
nk

, 
we have

Si,gi
s
(χα) = μi(gis,α)χ(α1,...,αi−1,gi

sαi,αi+1,...,αk),

where

μi(gis,α) := λi,1(s, α1) · · ·λi,i−1(s, αi−1).

Consequently, if γi := gii1 · · · giip ∈ F+
ni

, then

Si,γi(χα) = μi(γi,α)χ(α1,...,αi−1,γiαi,αi+1,...,αk),

where

μi(γi,α) := μi(gii1 ,α) · · ·μi(giip ,α).

Given γ := (γ1, . . . , γk) ∈ F+
n × · · · × F+

n , we deduce that

1 k
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S1,γ1 · · ·Sk,γk
(χα) = μ(γ,α)χ(γ1α1,...,γkαk)

where

μ(γ,α) := μ1(γ1,α) · · ·μk(γk,α).

Let {c(β1,...,βk)}(β1,...,βk)∈F+
n1×···×F+

nk
be a sequence of complex numbers such 

∑
|c(β1,...,βk)|2 < ∞ and 

consider the formal series

ϕ({Si,s}) :=
∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)S1,β1 . . . S1,βk
.

Set g0 := (g1
0 , . . . , g

k
0 ) and note that μ(β, g0) ∈ T and

ϕ({Si,s})(χg0) :=
∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)S1,β1 . . . S1,βk
(χg0)

=
∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)μ(β,g0)χ(β1,...,βk)

is an element in �2(F+
n1

× · · · × F+
nk

). Similarly, for each γ := (γ1, . . . , γk) ∈ F+
n1

× · · · × F+
nk

, we have 
μ(β, γ) ∈ T and

ϕ({Si,s})(χγ) =
∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)μ(β,γ)χ(β1γ1,...,βkγk)

is an element in �2(F+
n1

× · · · × F+
nk

). Now, let P be the linear span of the vectors {χγ}γ , assume that

sup
p∈P,‖p‖≤1

‖ϕ({Si,s})p‖ < ∞.

In this case, there is a unique operator A ∈ B(�2(F+
n1

× · · · × F+
nk

)) such that Ap = ϕ({Si,s})p for any 
p ∈ P. We say that ϕ({Si,s}) is the formal Fourier series associated A. We denote by F∞(BΛ) the set of 
all operators A obtained in this manner.

Theorem 2.1. Let P({Si,s}) be the algebra of all polynomials in Si,s and the identity, where i ∈ {1, . . . , k}, 
and s ∈ {1, . . . , ni}. Then the noncommutative Hardy space F∞(BΛ) is WOT- (resp. SOT-, w*-) closed 
and

F∞(BΛ) = P({Si,s})
SOT

= P({Si,s})
WOT

= P({Si,s})
w*

.

Moreover, F∞(BΛ) is the sequential SOT-(resp. WOT-, w*-) closure of P({Si,s}).

Proof. First, we prove that the noncommutative Hardy space F∞(BΛ) is WOT- (resp. SOT-) closed. 
Let {Aι}ι be a net in F∞(BΛ) and assume that WOT-limι Aι = A ∈ B(�2(F+

n1
× · · · × F+

nk
)) If ∑

(β1,...,βk)∈F+
n1×···×F+

nk
cι(β1,...,βk)S1,β1 . . . S1,βk

is the formal Fourier series of Aι, then

〈
Aχg0 , χ(β1,...,βk)

〉
= lim

ι

〈
Aιχg0 , χ(β1,...,βk)

〉
= lim

ι
cι(β1,...,βk)μ(β,g0).

Define c(β1,...,βk) := 1
μ(β,g0)

〈
Aχg0 , χ(β1,...,βk)

〉
and note that limι c

ι
(β1,...,βk) = c(β1,...,βk). On the other hand, 

we have
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〈
Aχ(γ1,...,γk), χ(β1γ1,...,βkγk)

〉
= lim

ι

〈
Aιχ(γ1,...,γk), χ(β1γ1,...,βkγk)

〉
= lim

ι
cι(β1,...,βk)μ(β,γ)

= c(β1,...,βk)μ(β,γ).

Note that ∑
(β1,...,βk)∈F+

n1×···×F+
nk

|c(β1,...,βk)|2 =
∑

(β1,...,βk)∈F+
n1×···×F+

nk

|
〈
Aχg0 , χ(β1,...,βk)

〉
|2 = ‖Aχg0‖2 < ∞

and consider the formal series

ϕ({Si,s}) :=
∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)S1,β1 . . . S1,βk
.

Using the results above, one can see that〈
Aχ(γ1,...,γk), χ(α1,...,αk)

〉
= lim

ι

〈
Aιχ(γ1,...,γk), χ(α1,...,αk)

〉
= lim

ι

〈 ∑
(β1,...,βk)∈F+

n1×···×F+
nk

cι(β1,...,βk)S1,β1 . . . S1,βk
χ(γ1,...,γk), χ(α1,...,αk)

〉

= lim
ι

〈 ∑
(β1,...,βk)∈F+

n1×···×F+
nk

cι(β1,...,βk)μ(β,γ)χ(β1γ1,...,βkγk), χ(α1,...,αk)

〉

=
{

limι c
ι
(β1,...,βk)μ(β,γ), if (α1, . . . , αk) = (β1γ1, . . . , βkγk)

0, otherwise

=
{
c(β1,...,βk)μ(β,γ), if (α1, . . . , αk) = (β1γ1, . . . , βkγk)
0, otherwise

=
〈
ϕ({Si,s})χ(γ1,...,γk), χ(α1,...,αk)

〉
for all (γ1, . . . , γk), (α1, . . . , αk) ∈ F+

n1
× · · · × F+

nk
. Consequently, we have

〈
Ap, χ(α1,...,αk)

〉
=
〈
ϕ({Si,s})p, χ(α1,...,αk)

〉
for all p ∈ P. Hence, we deduce that

‖Ap‖2 =
∑

(α1,...,αk)∈F+
n1×···×F+

nk

|
〈
Ap, χ(α1,...,αk)

〉
|2 = ‖ϕ({Si,s})p‖2

which implies supp∈P,‖p‖≤1 ‖ϕ({Si,s})p‖ = ‖A‖. This shows that A ∈ F∞(BΛ) and ϕ({Si,s}) is its formal 
Fourier representation.

Now, we prove that any operator in F∞(BΛ) is the SOT-limit of a sequence of polynomials in Si,s and 
the identity. For each m ∈ Z, define the completely contractive linear map Qm : B(�2(F+

n1
× · · · × F+

nk
)) →

B(�2(F+
n1

× · · · × F+
nk

)) by setting

Qm(T ) :=
∑

PnTPn+m,

n≥max{0,−m}
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where Pn, n ≥ 0, is the orthogonal projection of �2(F+
n1

× · · · × F+
nk

) onto the span of all vectors χ(β1,...,βk)
such that |β1| + · · · + |βk| = n, where βi ∈ F+

ni
. Consider the Cesaro operators on B(�2(F+

n1
× · · · × F+

nk
))

defined by

Cn(T ) :=
∑

|m|<n

(
1 − |m|

n

)
Qm(T ), n ≥ 1.

One can easily see that these operators are completely contractive and SOT-limn→∞ Cn(T ) = T . Now, let 
T ∈ F∞(BΛ) have the formal Fourier representation∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)S1,β1 . . . S1,βk
.

Using the definition of the isometries Si,s we deduce that

Pn+mTPm =

⎛⎜⎜⎜⎝ ∑
(β1,...,βk)∈F+

n1×···×F+
nk

|β1|+···+|βk|=n

c(β1,...,βk)S1,β1 . . . S1,βk

⎞⎟⎟⎟⎠Pm

for all n, m ≥ 0. On the other hand, we have PmTPn+m = 0 if n ≥ 1 and m ≥ 0. Consequently, we have

Cn(T ) =
∑

0≤p≤n−1

(
1 − p

n

)⎛⎜⎜⎜⎝ ∑
(β1,...,βk)∈F+

n1×···×F+
nk

|β1|+···+|βk|=p

c(β1,...,βk)S1,β1 . . . S1,βk

⎞⎟⎟⎟⎠
and SOT-limn→∞ Cn(T ) = T . This shows that T is the SOT-limit of a sequence of polynomials in Si,s and 
the identity. Consequently, T is also the WOT-(resp. w*-) limit of a sequence of polynomials in Si,s and the 
identity. Denoting by P({Si,s}) the algebra of all polynomials in Si,s and the identity, we deduce that

F∞(BΛ) ⊂ P({Si,s})
SOT ⊂ P({Si,s})

WOT
.

Since P({Si,s}) ⊂ F∞(BΛ) and F∞(BΛ) is WOT-closed, we have P({Si,s})
WOT ⊂ F∞(BΛ). Therefore,

F∞(BΛ) = P({Si,s})
SOT

= P({Si,s})
WOT

.

Due to the results above, we also have F∞(BΛ) ⊂ P({Si,s})
w*

. Moreover, since F∞(BΛ) is a convex subset 
of B(�2(F+

n1
× · · · × F+

nk
)), we know that F∞(BΛ) is w*-closed if and only if it is WOT sequential closed. 

Due to the results above, we conclude that F∞(BΛ) is w*-closed. Since P({Si,s}) ⊂ F∞(BΛ), we have 

P({Si,s})
w* ⊂ F∞(BΛ) and conclude that F∞(BΛ) = P({Si,s})

w*
. The proof is complete. �

Corollary 2.2. The noncommutative Hardy algebra F∞(BΛ) is a Banach algebra.

Theorem 2.3. Let A ∈ F∞(BΛ) have a formal Fourier representation

ϕ({Si,s}) =
∑

+ +

c(β1,...,βk)S1,β1 . . . Sk,βk
.

(β1,...,βk)∈Fn1×···×Fnk
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Then ϕ({rSi,s}) ∈ A(BΛ), for all r ∈ [0, 1),

A = SOT- lim
r→1

ϕ({rSi,s})

and

‖A‖ = sup
0≤r<1

‖ϕ({rSi,s})‖ = lim
r→1

‖ϕ({rSi,s})‖.

Proof. Since ΦSi
is a completely positive linear map with ‖ΦSi

(I)‖ ≤ 1, we have

Φp1
S1

◦ · · · ◦ Φpk

Sk
(I) ≤ ‖Φpk

Sk
(I)‖ · · · ‖Φp1

S1
(I)‖I ≤ ‖ΦSk

(I)‖pk · · · ‖ΦS1(I)‖p1I ≤ I

for all p1, . . . pk ∈ N. Consequently, for every r ∈ [0, 1), we have

∑
p=0

rp

∥∥∥∥∥∥∥∥∥
∑

p1,...,pk∈N∪{0}
p1+···+pk=p

∑
β1∈F+

n1 ,...βk∈F+
nk

|β1|=p1,...,|βk|=pk

c(β1,...,βk)S1,β1 . . . Sk,βk

∥∥∥∥∥∥∥∥∥
≤
∑
p=0

rp
∑

p1,...,pk∈N∪{0}
p1+···+pk=p

⎛⎜⎜⎜⎝ ∑
β1∈F+

n1 ,...βk∈F+
nk

|β1|=p1,...,|βk|=pk

|c(β1,...,βk)|2

⎞⎟⎟⎟⎠
1/2

‖Φp1
S1

◦ · · · ◦ Φpk

Sk
(I)‖1/2‖

≤
∑
p=0

rp
∑

p1,...,pk∈N∪{0}
p1+···+pk=p

⎛⎜⎜⎜⎝ ∑
β1∈F+

n1 ,...βk∈F+
nk

|β1|=p1,...,|βk|=pk

|c(β1,...,βk)|2

⎞⎟⎟⎟⎠
1/2

=

⎛⎝ ∑
β1∈F+

n1 ,...βk∈F+
nk

|c(β1,...,βk)|2
⎞⎠1/2

⎛⎜⎜⎝∑
p=0

rp
∑

p1,...,pk∈N∪{0}
p1+···+pk=p

1

⎞⎟⎟⎠

=

⎛⎝ ∑
β1∈F+

n1 ,...βk∈F+
nk

|c(β1,...,βk)|2
⎞⎠1/2

∞∑
p=0

rp
(
p + k − 1
k − 1

)
< ∞.

This shows that

ϕ({rSi,s}) :=
∞∑
p=0

∑
(β1,...,βk)∈F+

n1×···×F+
nk

|β1|+···+|βk|=p

r|β1|+···+|βk|c(β1,...,βk)S1,β1 . . . Sk,βk

converges in the operator norm topology and, consequently, ϕ({rSi,s}) ∈ A(BΛ).
The next step is to show that

‖ϕ({rSi,s})‖ ≤ ‖A‖, r ∈ [0, 1). (2.1)

For each n ∈ N, set
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qn({Si,s}) :=
n∑

p=0

∑
(β1,...,βk)∈F+

n1×···×F+
nk

|β1|+···+|βk|=p

c(β1,...,βk)S1,β1 . . . Sk,βk

and note that

ϕ({rSi,s})∗χ(α1,...αk) = qn({rSi,s})∗χ(α1,...αk), r ∈ [0, 1),

and

A∗χ(α1,...αk) = qn({Si,s})∗χ(α1,...αk)

for all (α1, . . . , αk) ∈ F+
n1
×· · ·×F+

nk
with |α1| +· · ·+|αk| ≤ n. According to Theorem 1.1, the noncommutative 

Berezin transform KrS : �2(F+
n1

× · · · × F+
nk

) → �2(F+
n1

× · · · × F+
nk

) ⊗ �2(F+
n1

× · · · × F+
nk

) satisfies the 
relation KrS(rS∗

i,s) = (S∗
i,s ⊗ I)KrS for every i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}. Let γ := (γ1, . . . , γk), 

σ := (σ1, . . . , σk), and ω := (ω1, . . . , ωk) be in F+
n1

× · · · × F+
nk

. Due to the definition of Si,s we have 
S∗
k,βk

· · ·S∗
1,β1

χγ = 0 if |β1| + · · · + |βk| > |γ1| + · · · + |γk|. Using the relations above and the definition of 
KrS and taking n ≥ |γ1| + · · · + |γk|, we obtain

〈KrSϕ({rSi,s})∗χγ , χσ ⊗ χω〉
= 〈KrSqn({rSi,s})∗χγ , χσ ⊗ χω〉
= 〈(qn({Si,s})∗ ⊗ I)KrSχγ , χσ ⊗ χω〉

=
〈

(qn({Si,s})∗ ⊗ I)

⎛⎝ ∑
β1∈F+

n1 ,...,βk∈F+
nk

χ(β1,...,βk) ⊗ r|β1+···|βk|ΔrS(I)1/2S∗
k,βk

· · ·S∗
1,β1

χγ

⎞⎠ , χσ ⊗ χω

〉

=
∑

β:=(β1,...,βk)∈ F+
n1×···×F+

nk

r|β1+···+|βk| 〈qn({Si,s})∗χβ, χσ〉
〈
S∗
k,βk

· · ·S∗
1,β1

χγ ,ΔrS(I)1/2χω

〉
=

∑
β:=(β1,...,βk)∈ F+

n1×···×F+
nk

r|β1+···+|βk| 〈A∗χβ, χσ〉
〈
S∗
k,βk

· · ·S∗
1,β1

χγ ,ΔrS(I)1/2χω

〉
= 〈(A∗ ⊗ I)KrSχγ , χσ ⊗ χω〉

for all r ∈ [0, 1). Since A and ϕ({rSi,s}) are bounded operators, we deduce that

KrSϕ({rSi,s})∗ = (A∗ ⊗ I)KrS , r ∈ [0, 1).

Since KrS is an isometry, we have ϕ({rSi,s}) = K∗
rS(A ⊗ I)KrS and

‖ϕ({rSi,s})‖ ≤ ‖A‖, r ∈ [0, 1), (2.2)

which proves relation (2.1). Consequently, taking into account that

Aχα = lim
r→1

ϕ({rSi,s}χα, (α1, . . . , αk) ∈ F+
n1

× · · · × F+
nk
,

we conclude that A = SOT- limr→1 ϕ({rSi,s}).
To prove the last part of the theorem, let 0 < r1 < r2 < 1. Since ϕ({r2Si,s}) ∈ A(BΛ), inequality (2.2)

applied to A = ϕ({r2Si,s}) implies ‖ϕ({rr2Si,s})‖ ≤ ‖ϕ({r2Si,s})| for any r ∈ [0, 1). Taking r = r1
r2

, we 
deduce that ‖ϕ({r1Si,s})‖ ≤ ‖ϕ({r2Si,s})|. The rest of the proof is straightforward. �
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3. Functional calculus

In this section, we prove the existence of an F∞(BΛ)-functional calculus for the completely non-
coisometric (c.n.c.) elements in the Λ-polyball. This extends the Sz.-Nagy–Foiaş functional calculus for 
c.n.c. contractions and the functional calculus for c.n.c. row contractions.

First, we consider the case of pure k-tuples in the regular Λ-polyball.

Theorem 3.1. Let T = (T1, . . . , Tk) be a pure k-tuple in the regular Λ-polyball BΛ(H), where H is a separable 
Hilbert space, and let ΨT : F∞(BΛ) → B(H) be defined by

ΨT (A) := K∗
T (A⊗ I)KT , A ∈ F∞(BΛ),

where KT is the noncommutative Berezin kernel associated with T . Then the following statements hold.

(i) ΨT is WOT-(resp. SOT-) continuous on bounded sets.
(ii) ΨT is a unital completely contractive homomorphism which is w*-continuous.
(iii) If

ϕ({Si,s}) =
∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)S1,β1 . . . S1,βk

is the formal Fourier representation of A ∈ F∞(BΛ), then

ΨT (A) = SOT- lim
r→1

ϕ({rTi,s})

and ΨT (p({Si,s})) = p({Ti,s}) for any polynomial p({Si,s}) ∈ P({Si,s}).

Proof. Let {Aι}ι be a bounded net in F∞(BΛ). Then WOT-limι Aι = 0 if and only if w*-limι Aι =
0. The latter relation implies WOT-limι Aι ⊗ IH = 0 and w*-limι Aι ⊗ IH = 0. Now, it is clear that 
WOT-limι K

∗
T (Aι⊗ IH)KT = 0, thus ΨT is WOT-continuous. Since the map A 
→ A ⊗ IH is SOT-continous 

on bounded sets, so is ΨT .
To prove (ii), note first that a net {Aι}ι in F∞(BΛ) converges to 0 in the w*-topology if and only if 

Aι ⊗ IH → 0 in the w*-topology. This implies that ΨT is continuous in the w*-topology.
On the other hand, since T is a pure k-tuple, the noncommutative Berezin kernel KT is an isometry. Due 

to Theorem 1.1, we have

[ΨT (Aij)]m×m = diagm(K∗
T ) [Aij ⊗ I]m×m diagm(KT )

which implies ∥∥∥[ΨT (Aij)]m×m

∥∥∥ ≤
∥∥∥[Aij ]m×m

∥∥∥
for every matrix [Aij ⊗ I]m×m with entries in F∞(BΛ). This proves that ΨT is a unital completely contrac-
tive linear map.

Due to Theorem 1.1, ΨT is a homomorphism on the algebra of polynomial P({Si,s}) which, due to 
Theorem 2.1, is sequentially WOT-dense in F∞(BΛ). Since ΨT is WOT- continuous on bounded sets and 
using the principle of uniform boundedness, one can easily see that ΨT is a homomorphism on F∞(BΛ). 
This completes the proof of item (ii).
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Now, we prove part (iii) of the theorem. According to Theorem 2.3, we have

A = SOT- lim
r→1

ϕ({rSi,s}) and ‖A‖ = sup
0≤r<1

‖ϕ({rSi,s})‖.

Since the map X 
→ X ⊗ IH is SOT-continuous on bounded sets, we have

K∗
T (A⊗ IH)KT = SOT- lim

r→1
K∗

T (ϕ({rSi,s}) ⊗ IH)KT . (3.1)

On the other hand,

ϕ({rSi,s}) =
∑

(β1,...,βk)∈F+
n1×···×F+

nk

c(β1,...,βk)r
|β1|+···+|βk|S1,β1 . . . S1,βk

is in A(BΛ) and the convergence is in the operator norm. Setting

qn({rSi,s}) :=
∑

(β1,...,βk)∈F+
n1×···×F+

nk
|β1|+···+|βk|≤n

c(β1,...,βk)r
|β1|+···+|βk|S1,β1 . . . S1,βk

,

we have ϕ({rSi,s}) = limn→∞ qn({rSi,s}). Using the von Neumann type inequality

‖qn({rTi,s}) − qm({rTi,s})‖ ≤ ‖qn({rSi,s}) − qm({rSi,s)}‖, (3.2)

we also deduce that ϕ({rTi,s}) = limn→∞ qn({rTi,s}) in the norm topology. Consequently,

K∗
T (ϕ({rSi,s}) ⊗ IH)KT = lim

n→∞
K∗

T (qn({rSi,s}) ⊗ IH)KT = lim
n→∞

qn({rTi,s}) = ϕ({rTi,s}).

Hence, and using relation (3.1), we obtain

ΨT (A) = K∗
T (A⊗ IH)KT = SOT- lim

r→1
ϕ({rTi,s}).

The fact that ΨT (p({Si,s})) = p({Ti,s}) for any polynomial p({Si,s}) ∈ P({Si,s}) is due to Theorem 1.1. 
The proof is complete. �
Lemma 3.2. Let T := (T1, . . . , Tk) ∈ BΛ(H) and let A ∈ F∞(BΛ) have the Fourier representation

ϕ({Si,s}) :=
∞∑
p=0

∑
(β1,...,βk)∈F+

n1×···×F+
nk

|β1|+···+|βk|=p

c(β1,...,βk)S1,β1 . . . Sk,βk
.

Then the series defining ϕ({rTi,s}, r ∈ [0, 1), is convergent in the operator norm topology and

ϕ({rTi,s)} = K∗
rT (A⊗ IH)KrT , r ∈ [0, 1),

where KT is the noncommutative Berezin kernel of T .

Proof. The fact that the series defining ϕ({rTi,s)}, r ∈ [0, 1), is convergent in the operator norm topology 
follows from the proof of Theorem 3.1, where we showed that ϕ({rTi,s}) = limn→∞ qn({rTi,s}). Moreover, 
if ε > 0, there exists N ∈ N such that
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‖qn({rtSi,s}) − ϕ({rtTi,s})‖ ≤ ‖qn({rSi,s}) − ϕ({rTi,s})‖ <
ε

3

for every t ∈ [0, 1] and n ≥ N . Let δ ∈ (0, 1) be such that

‖qN ({rtSi,s}) − ‖qN ({rSi,s}))‖ <
ε

3 , t ∈ [δ, 1).

Now, we can see that

‖ϕ({rSi,s}) − ϕ({rtSi,s})‖ ≤ ‖ϕ({rSi,s}) − qN ({rSi,s})‖ + ‖qN ({rSi,s}) − qN ({rtSi,s})‖
= ‖qN ({rtSi,s}) − ϕ({rtSi,s})‖ < ε

for every t ∈ [δ, 1). This shows that ϕ({rSi,s}) = limt→1 ϕ({rtSi,s}) in the operator norm. On the other 
hand, as we saw in the proof of Theorem 3.1,

ϕ({rtSi,s}) = K∗
rT (ϕ({tSi,s}) ⊗ IH)KrT , r, t ∈ [0, 1).

Using the fact that X 
→ X ⊗ IH is SOT-continuous on bounded sets and, due to Theorem 2.3, A =
SOT- limt→1 ϕ({tSi,s}), we pass to the limit in the relation above as t → 1 and obtain

ϕ({rTi,s)} = K∗
rT (A⊗ IH)KrT , r ∈ [0, 1).

The proof is complete. �
We say that T := (T1, . . . , Tk) ∈ BΛ(H) is a completely non-coisometric k-tuple if there is no h ∈ H, 

h �= 0, such that

〈
(id− Φpk

Tk
) ◦ · · · ◦ (id− Φp1

T1
)(I)h, h

〉
= 0

for all (p1, . . . , pk) ∈ Nk. We saw in the proof of Theorem 1.1 that

(id− Φpk

Tk
) ◦ · · · ◦ (id− Φp1

T1
)(I) =

p1−1∑
s1

ΦT1 ◦ · · · ◦
(

pk−1∑
sk=1

ΦTk
◦ (ΔT (I))

)
.

This shows that the sequence 
{
(id− Φpk

Tk
) ◦ · · · ◦ (id− Φp1

T1
)(I)

}
(p1,...,pk)∈Nk

is increasing and, consequently, 
T is completely non-coisometric if and only if there is no h ∈ H, h �= 0, such that

lim
pk→∞

. . .

〈
lim

p1→∞
(id− Φpk

Tk
) ◦ · · · ◦ (id− Φp1

T1
)(I)h, h

〉
= 0.

Note that each pure k-tuple is completely non-coisometric.
The main result of this section is the following

Theorem 3.3. Let T := (T1, . . . , Tk) ∈ BΛ(H) be a completely non-coisometric tuple. Then

ΨT (A) := SOT- lim
r→1

K∗
rT (A⊗ IH)KrT , A ∈ F∞(BΛ),

exists and defines a linear map ΨT : F∞(BΛ) → B(H) with the following properties.
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(i) If ϕ({Si,s}) is the Fourier representation of A ∈ F∞(BΛ), then

ΨT (A) = SOT- lim
r→1

ϕ({rTi,s}).

(ii) ΨT is WOT-(resp. SOT-, w*-) continuous on bounded sets.
(iii) ΨT is a unital completely contractive homomorphism.

Proof. Let A ∈ F∞(BΛ) have the Fourier representation

ϕ({Si,s}) :=
∞∑
p=0

∑
(β1,...,βk)∈F+

n1×···×F+
nk

|β1|+···+|βk|=p

c(β1,...,βk)S1,β1 . . . Sk,βk
.

According to Theorem 1.1, we have

Ti,sK
∗
T = K∗

T (Si,s ⊗ IH)

for all i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}, where KT is the noncommutative Berezin kernel of T . Since the 
series ϕ({rSi,s}), r ∈ [0, 1), is convergent in the operator norm, so is ϕ({rTi,s}). To see this, it is enough to 
use relation (3.2), where

qn({rSi,s}) :=
∑

(β1,...,βk)∈F+
n1×···×F+

nk
|β1|+···+|βk|≤n

c(β1,...,βk)r
|β1|+···+|βk|S1,β1 . . . S1,βk

.

Now, note that

qn({rTi,s})K∗
T = K∗

T (qn({rSi,s}) ⊗ IH).

Taking n → ∞, we deduce that

ϕ({rTi,s})K∗
T = K∗

T (ϕ({rSi,s}) ⊗ IH). (3.3)

On the other hand, due to Theorem 2.3, we have

A⊗ IH = SOT- lim
r→1

ϕ({rSi,s}) ⊗ IH.

Using the later relation in (3.3), we deduce that the map Ω : rangeK∗
T → H defined by

Ω(K∗
T f) := lim

r→1
ϕ({rTi,s})K∗

T f, f ∈ �2(F+
n1

× · · · × F+
nk

) ⊗DT ,

is well-defined, linear, and

‖ΩK∗
T f‖ ≤ lim sup

r→1
‖ϕ({rTi,s})‖‖K∗

T f‖

≤ lim sup
r→1

‖ϕ({rSi,s})‖‖K∗
T f‖

≤ ‖A‖‖K∗f‖.
T
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Since T is a completely non-coisometric tuple, Theorem 1.1 shows that K∗
TKT is a one-to-one operator, 

which implies rangeK∗
T = H. Due to inequalities above, Ω has a unique extension Ω̃ to a bounded operator 

on H with ‖Ω̃‖ ≤ ‖A‖.
In what follows, we show that

Ω̃h = lim
r→1

ϕ({rTi,s})h, h ∈ H. (3.4)

Fix h ∈ H and let {hk}∞k=1 ⊂ rangeK∗
T such that hk → h as k → ∞. Since ‖ϕ({rTi,s})‖ ≤ ‖ϕ({rSi,s})‖ ≤

‖A‖ for every r ∈ [0, 1), we deduce that

‖Ω̃h− ϕ({rSi,s})h‖ ≤ ‖Ω̃h− Ω̃hk‖ + ‖Ω̃hk − ϕ({rTi,s})hk‖ + ‖ϕ({rTi,s})hk − ϕ({rTi,s})h‖
≤ ‖Ω̃‖‖h− hk‖ + ‖Ω̃hk − ϕ({rTi,s})hk‖ + ‖ϕ({rTi,s})‖‖hk − h‖
≤ 2‖A‖‖h− hk‖ + ‖Ω̃hk − ϕ({rTi,s})hk‖.

Using the fact that Ω̃hk − limr→1 ϕ({rTi,s})hk, we deduce relation (3.4). According to Lemma 3.2, we have

ϕ({rTi,s)} = K∗
rT (A⊗ IH)KrT , r ∈ [0, 1).

Consequently, taking r → 1 and using relation (3.4), we obtain

Ω̃ = SOT- lim
r→1

K∗
rT (A⊗ IH)KrT ,

which shows that ΨT (A) = Ω̃. Therefore, item (i) holds. To prove part (ii), let [Apq]m×m be a matrix with 
entries in F∞(BΛ) and let ϕpq({Si,s} be the Fourier representation of Apq. Lemma 3.2 shows that

[ϕpq({rTi,s)}]m×m = diagm(K∗
rT )[Apq ⊗ IH]m×mdiagm(KrT ), r ∈ [0, 1).

On the other hand, since KrT is an isometry, we deduce that

‖[ϕpq({rTi,s)}]m×m‖ ≤ ‖[Apq ⊗ IH]m×m‖, r ∈ [0, 1),m ∈ N.

Since ΨT (Apq) = SOT- limr→1 ϕpq({rTi,s}), we deduce that ΨT is a completely contractive linear map. Now, 
using that fact that ΨT is a homomorphism on the algebra of polynomials P({Si,s}) and that F∞(BΛ) is 
the sequential WOT-closure of P({Si,s}) (see Theorem 2.1), one can use the WOT-continuity of ΨT on 
bounded sets to deduce that ΨT is a homomorphism on F∞(BΛ).

Now, we prove part (iii). Due to the proof of part (i), we have ‖ΨT (A)‖ ≤ ‖A‖ for all A ∈ F∞(BΛ). On 
the other hand, taking r → 1 in relation (3.3) we obtain

ΨT (A)K∗
T = K∗

T (A⊗ IH), A ∈ F∞(BΛ). (3.5)

Let {Aι} be a bounded net in F∞(BΛ) such that Aι → A ∈ F∞(BΛ) in the WOT (resp. SOT). Then 
Aι ⊗ IH → A ⊗ IH in the WOT (resp. SOT). Due to relation (3.5), we have ΨT (Aι)K∗

T = K∗
T (Aι ⊗ IH). 

Since rangeK∗
T = H and {ΨT (Aι)}ι is a bounded net, we can easily see that ΨT (Aι) → ΨT (A) in the WOT 

(resp. SOT). The proof is complete. �
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4. Free holomorphic functions on regular Λ-polyballs

In this section, we introduce the algebra H∞(B◦
Λ) of bounded free holomorphic functions on the interior of 

BΛ(H), for any Hilbert space H, and prove that it is completely isometric isomorphic to the noncommutative 
Hardy algebra F∞(BΛ) introduced in Section 2. We also introduce the algebra A(B◦

Λ) and show that it is 
completely isometric isomorphic to the noncommutative Λ-polyball algebra A(BΛ).

If A ∈ B(H) is an invertible positive operator, we write A > 0. Recall that if X ∈ BΛ(H), then

ΔX(I) := (id− ΦXk
) ◦ · · · ◦ (id− ΦX1)(I).

Proposition 4.1. The set

B◦
Λ(H) := {X ∈ BΛ(H) : ΔX(I) > 0}

is relatively open in BΛ(H) and

B◦
Λ(H) = BΛ(H).

Moreover, the interior of BΛ(H) coincides with B◦
Λ(H).

Proof. Let X = (X1, . . . , Xk) ∈ B◦
Λ(H) and assume that ΔX(I) > cI for some c > 0. If d ∈ (0, c), then 

there exists ε > 0 such that for all Y = (Y1, . . . Yk) ∈ BΛ(H) with ‖Xi − Yi‖ < ε for i ∈ {1, . . . , k}, we have

−dI ≤ ΔY (I) − ΔX(I) ≤ dI.

Hence,

ΔY (I) = (ΔY (I) − ΔX(I)) + ΔX(I) ≥ (c− d)I > 0

and, consequently, Y ∈ B◦
Λ(H). Therefore, B◦

Λ(H) is a relatively open set in BΛ(H).
Now, we prove that B◦

Λ(H) = BΛ(H). To prove the inclusion B◦
Λ(H) ⊂ BΛ(H), let Y = (Y1, . . . Yk) ∈

BΛ(H), and let Y (n) = (Y (n)
1 , . . . Y (n)

k ) ∈ BΛ(H) be a sequence such that Y (n) → Y , as n → ∞, in the 
norm topology of B(H)n1+···+nk . Since, for every i, j ∈ {1, . . . , k} with i �= j and every s ∈ {1, . . . , ni}, 
t ∈ {1, . . . , nj},

Y
(n)
i,s Y

(n)
j,t = λij(s, t)Y (n)

j,t Y
(n)
i,s ,

taking n → ∞, we obtain Yi,sYj,t = λij(s, t)Yj,tYi,s. On the other hand, we have

(id− Φ
rY

(n)
k

) ◦ · · · ◦ (id− Φ
rY

(n)
1

)(I) ≥ 0, r ∈ [0, 1), n ∈ N,

which implies

(id− ΦrYk
) ◦ · · · ◦ (id− ΦrY1)(I) ≥ 0, r ∈ [0, 1).

Consequently, Y ∈ BΛ(H).
Now, we prove the inclusion BΛ(H) ⊂ B◦

Λ(H). Let Y ∈ BΛ(H) and r ∈ [0, 1). According to Lemma 
4.3 from [16], if i, j ∈ {1, . . . , k} with i �= j, then Si,s commutes with Sj,αS

∗
j,α for any s ∈ {1, . . . , ni} and 

α ∈ F+
n . Moreover, for any i1, . . . , ip distinct elements in {1, . . . , k} and α1 ∈ F+

n , . . . , αp ∈ F+
n ,
j i1 ip
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(
Si1,α1S

∗
i1,α1

)
· · ·
(
Sip,αp

S∗
ip,αp

)
= Si1,α1 · · ·Sip,αp

S∗
ip,αp

· · ·S∗
i1,α1

.

Consequently, we deduce that

(id− ΦrSk
) ◦ · · · ◦ (id− ΦrS1)(I) =

k∏
i=1

(I − ΦrSi
(I)) ≥

k∏
i=1

(1 − r2)I.

Applying Theorem 1.1 when X = tY , t ∈ [0, 1), we obtain

(id− ΦrtYk
) ◦ · · · ◦ (id− ΦrtY1)(I) = K∗

tY [(id− ΦrSk
) ◦ · · · ◦ (id− ΦrS1)(I)]KtY

≥
k∏

i=1
(1 − r2)I.

Here, we use the fact that tY is a pure k–tuple and KtY is an isometry. Taking t → 1, we get

(id− ΦrYk
) ◦ · · · ◦ (id− ΦrY1)(I) ≥

k∏
i=1

(1 − r2)I

which shows that rY ∈ B◦
Λ(H) for all r ∈ [0, 1). Hence, it is clear that Y ∈ B◦

Λ(H).
Now, we prove the last part of the proposition. If X ∈ Int(BΛ(H)), the interior of BΛ(H), then there 

exists r0 ∈ (0, 1) such that 1
r0
X ∈ BΛ(H). Hence, X ∈ r0BΛ(H). Thus X = r0Y for some Y ∈ BΛ(H). We 

proved above that r0Y ∈ B◦
Λ(H). Consequently, Int(BΛ(H)) ⊂ B◦

Λ(H). Since B◦
Λ(H) is relatively open in 

BΛ(H), we conclude that Int(BΛ(H)) = B◦
Λ(H). The proof is complete. �

Corollary 4.2. B◦
Λ(H) =

⋃
0≤r<1 rBΛ(H).

For each i ∈ {1, . . . , k}, let Zi = (Zi,1, . . . , Zi,ni
) be an ni-tuple of noncommutative indeterminates 

subject to the relations

Zi,sZj,t = λij(s, t)Zj,tZi,s

for every i, j ∈ {1, . . . , k} with i �= j and every s ∈ {1, . . . , ni}, t ∈ {1, . . . , nj}. We set Zi,α := Zi,p1 · · ·Zi,pm

if α = gip1
· · · gipm

∈ F+
ni

, where p1, . . . , pm ∈ {1, . . . , ni} and Zi,gi
0

:= 1. If β := (β1, . . . , βk) ∈ F+
n1

×· · ·×F+
nk

, 
we denote Zβ := Z1,β1 · · ·Zk,βk

and aβ := a(β1...βk) ∈ C. A formal power series

ϕ :=
∑

β∈F+
n1×···×F+

nk

aβZβ, aβ ∈ C,

in indeterminates Zi,s, where i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}, is called free holomorphic function on B◦
Λ

if the series

ϕ({Xi,s}) :=
∞∑
p=0

∑
β=(β1,...,βk)∈F+

n1
×···×F+

nk
|β1|+···+|βk|=p

aβXβ

is convergent in the operator norm topology for any X ∈ B◦
Λ(H) and any Hilbert space H. We remark that 

the coefficients of a free holomorphic functions on B◦
Λ are uniquely determined by its representation on an 

infinite dimensional separable Hilbert space. Indeed, assume that ϕ({rSi,s}) = 0 for any r ∈ [0, 1), where 
S = (S1, . . . , Sk) is the universal model associated with the Λ-polyball BΛ. Using relation (1.1), we obtain
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0 = 〈ϕ({rSi,s})χg0 , S1,α1 · · ·Sk,αk
χg0〉

= r|α1|+···+|αk|

〈 ∑
(β1,...,βk)∈F+

n1×···×F+
nk

a(β1,...,βk)μ(β,g0)χ(β1,...,βk),μ(α,g0)χ(α1,...,αk)

〉

= r|α1|+···+|αk|a(α1,...,αk)|μ(α,g0)|2 = r|α1|+···+|αk|a(α1,...,αk).

Hence, a(α1,...,αk) = 0, which proves our assertion. We denote by Hol(B◦
Λ) the set of all free holomorphic 

functions on B◦
Λ.

Proposition 4.3. Let S = (S1, . . . , Sk) be the universal model associated with the Λ-polyball BΛ. Then ϕ :=∑
β∈F+

n1×···×F+
nk

aβZβ is in Hol(B◦
Λ) if and only if the series

ϕ({rSi,s}) :=
∞∑
p=0

∑
β=(β1,...,βk)∈F+

n1×···×F+
nk

|β1|+···+|βk|=p

r|β1|+···+|βk|aβSβ

is convergent in the operator norm topology for all r ∈ [0, 1).

Proof. The direct implication is obvious. Note that the converse of the proposition is due to Theorem 3.1. �
We remark that Hol(B◦

Λ) is an algebra. Let H∞(B◦
Λ) be the set of all ϕ ∈ Hol(B◦

Λ) such that

‖ϕ‖∞ := sup ‖ϕ({Xi,s})‖ < ∞,

where the supremum is taken over all {Xi,s} ∈ B◦
Λ(H) and any Hilbert space H. It is easy to see that 

H∞(B◦
Λ) is a Banach algebra under pointwise multiplication and the norm ‖ · ‖∞. There is an operator 

space structure on H∞(B◦
Λ), in the sense of Ruan (see [10], p. 181), if we define the norms ‖ · ‖m on 

Mm×m(H∞(B◦
Λ)) by setting

‖[ϕuv]m×m‖m := sup ‖[ϕuv({Xi,s})]m×m‖,

where the supremum is taken over all {Xi,s} ∈ B◦
Λ(H) and any Hilbert space. We remark that if ϕ ∈ Hol(B◦

Λ)
and r ∈ [0, 1), then ϕ is continuous on rBΛ(H) and

‖ϕ({Xi,s})‖ ≤ ‖ϕ({rSi,s})‖

for every {Xi,s} ∈ rBΛ(H). Moreover, the series defining ϕ({Xi,s}) converges uniformly on rBΛ(H) in the 
operator norm topology.

Given A ∈ F∞(BΛ) and a Hilbert space H, we define the noncommutative Berezin transform associated 
with the regular Λ-polyball B◦

Λ(H) to be the map B[A] : B◦
Λ(H) → B(H) defined by

B[A](X) := K∗
X [A⊗ IH]KX , X ∈ B◦

Λ(H).

Theorem 4.4. The map Γ : H∞(B◦
Λ) → F∞(BΛ) defined by

Γ

⎛⎝ ∑
β∈F+

n1×···×F+
nk

aβZβ

⎞⎠ :=
∑

β∈F+
n1×···×F+

nk

aβSβ

is a completely isometric isomorphism of operator algebras. Moreover, if f ∈ Hol(B◦
Λ), then the following 

statements are equivalent.
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(i) f ∈ H∞(B◦
Λ);

(ii) sup1≤r<1 ‖f({rSi,s})‖ < ∞;
(iii) there exists A ∈ F∞(BΛ) with f = B[A], where B is the noncommutative Berezin transform associated 

with the Λ-polyball B◦
Λ.

In this case, we have

Γ(f) = SOT- lim
r→1

f({rSi,s} and Γ−1(f) = B[A].

Moreover, ‖Γ(f)‖ = sup1≤r<1 ‖f({rSi,s})‖.

Proof. Let f =
∑

β∈F+
n1×···×F+

nk
aβZβ be in H∞(B◦

Λ). Since rS ∈ B◦
Λ(�2(F+

n1
× · · · × F+

nk
)) for all r ∈ [0, 1), 

the series

f({rSi,s}) :=
∞∑
p=0

∑
β=(β1,...,βk)∈F+

n1×···×F+
nk

|β1|+···+|βk|=p

r|β1|+···+|βk|aβSβ

is convergent in the operator norm topology for all r ∈ [0, 1) and M := sup1≤r<1 ‖f({rSi,s})‖ < ∞. 
Consequently, for every r ∈ [0, 1) and γ ∈ F+

n1
× · · · × F+

nk
, we have

f({rSi,s})(χγ) =
∑

(β1,...,βk)∈F+
n1×···×F+

nk

a(β1,...,βk)r
|β1|+···+|βk|μ(β,γ)χ(β1γ1,...,βkγk)

and ∑
(β1,...,βk)∈F+

n1×···×F+
nk

|a(β1,...,βk)|2r2(|β1|+···+|βk|) = ‖f({rSi,s})(χg0)‖2 < M2.

Hence, 
∑

(β1,...,βk)∈F+
n1×···×F+

nk
|a(β1,...,βk)|2 < M2 and, for every noncommutative polynomial p ∈ P in 

�2(F+
n1

× · · · × F+
nk

), we have f({rSi,s})p → f({Si,s})p as r → 1. Since sup1≤r<1 ‖f({rSi,s})‖ < ∞, we 
deduce that supp∈P,‖p‖≤1 ‖f({Si,s})p‖ < ∞. Consequently, 

∑
β∈F+

n1×···×F+
nk

aβSβ is the Fourier series of an 
element A ∈ F∞(BΛ) which, according to Theorem 2.3, satisfies the relation A = SOT- limr→1 f({rSi,s}
and ‖A‖ = sup1≤r<1 ‖f({rSi,s})‖. This proves that Γ is a well-defined isometric linear map. The fact that Γ
is surjective is due to Theorem 2.3 and the fact that ‖ϕ({Xi,s})‖ ≤ ‖ϕ({rSi,s})‖ for any {Xi,s} ∈ rBΛ(H). 
Passing to matrices, we can use similar techniques to show that Γ is a completely isometric isomorphism. 
The rest of the proof follows from Theorem 2.3 and Theorem 3.1. The proof is complete. �

Denote by A(B◦
Λ) the set of all functions f ∈ Hol(B◦

Λ) such that the map B◦
Λ(H) � X 
→ f(X) ∈ B(H)

has a continuous extension to BΛ(H) for every Hilbert space H. Using standards arguments, we can show 
that A(B◦

Λ) is a Banach algebra with pointwise multiplication and the norm ‖ · ‖∞. It also has an operator 
space structure with respect to the norms ‖ · ‖m, m ∈ N, defined after Proposition 4.3. One can prove the 
following result.

Theorem 4.5. The map Γ : A(B◦
Λ) → A(BΛ) defined by

Γ

⎛⎝ ∑
+ +

aβZβ

⎞⎠ :=
∑

+ +

aβSβ
β∈Fn1×···×Fnk
β∈Fn1×···×Fnk
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is a completely isometric isomorphism of operator algebras. Moreover, if f ∈ Hol(B◦
Λ), then the following 

statements are equivalent.

(i) f ∈ A(B◦
Λ);

(ii) limr→1 f({rSi,s}) exists in the operator norm topology;
(iii) there exists A ∈ A(BΛ) with f = B[A], where B is the noncommutative Berezin transform.

In this case, we have

Γ(f) = SOT- lim
r→1

f({rSi,s} and Γ−1(f) = B[A].

Proof. Using Theorem 4.4, Theorem 4.9 from [16], and an approximation argument, one can complete the 
proof. �
5. Characteristic functions and multi-analytic models

In this section, we characterize the elements in the noncommutative Λ-polyball which admit a character-
istic functions. We provide a model theorem for the class of completely non-coisometric k-tuple of operators 
in BΛ(H) which admit characteristic functions, and show that the characteristic function is a complete 
unitary invariant for this class of k-tuples.

An operator A : �2(F+
n1

× · · · × F+
nk

) ⊗H → �2(F+
n1

× · · · × F+
nk

) ⊗K is called multi-analytic with respect 
to the universal model S = (S1, . . . , Sk), Si = (Si,1, . . . , Si,ni

), associated with the Λ-polyball BΛ if

A(Si,s ⊗ IH) = (Si,s ⊗ IK)A

for every i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}. If, in addition, A is a partial isometry, we call it an inner multi-
analytic operator. The support of A is the smallest reducing subspace supp (A) ⊂ �2(F+

n1
× · · · × F+

nk
) ⊗H

under all the operators Si,s, containing the co-invariant subspace A∗(�2(F+
n1 × · · · × F+

nk) ⊗K). According 
to Theorem 5.1 from [16], we have

supp (A) = �2(F+
n1

× · · · × F+
nk

) ⊗ L,

where L := (PC⊗IH)A∗(�2(F+
n1 × · · · × F+

nk) ⊗K) and PC is the orthogonal projection of �2(F+
n1

×· · ·×F+
nk

)
onto C which is identified to the subspace Cχ(g0

1,...g
0
k) of �2(F+

n1
× · · · × F+

nk
).

In [16], we proved the following Beurling type factorization result which extends the corresponding result, 
when k = 1, from [12].

Theorem 5.1. Let S = (S1, . . . , Sk) be the universal model associated with the Λ-polyball and let Y be a 
selfadjoint operator on the Hilbert space �2(F+

n1
×· · ·×F+

nk
) ⊗K. Then the following statements are equivalent.

(i) There is a multi-analytic operator A : �2(F+
n1

× · · · × F+
nk

) ⊗ L → �2(F+
n1

× · · · × F+
nk

) ⊗K such that

Y = AA∗.

(ii) (id − ΦS1⊗IK) ◦ · · · ◦ (id − ΦSk⊗IK)(Y ) ≥ 0, where the completely positive maps ΦSi⊗IK are defined in 
Section 1.

We recall [16] the construction of the operator A in part (i) of Theorem 5.1. Consider the subspace 
G := Y 1/2

(
�2(F+

n1 × · · · × F+
nk) ⊗K

)
and set
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Ci,s(Y 1/2g) := Y 1/2(S∗
i,s ⊗ IK)g

for every g ∈ �2(F+
n1

× · · · × F+
nk

) ⊗ K, i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}. The operator Ci,s is well-defined 
on the range of Y 1/2 and can be extended by continuity to the space G. Setting Mi,s := C∗

i,s, we note 
that M = (M1, . . . , Mk), where Mi = (Mi,1, . . . , Mi,ni

), is a pure element in the regular Λ-polyball BΛ(G). 
Consequently, the associated noncommutative Berezin kernel KM : G → �2(F+

n1
× · · · × F+

nk
) ⊗ ΔM (I)G is 

an isometry and

KMM∗
i,s =

(
S∗
i,s ⊗ IG

)
KM

for every i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}. One can see that the map

A := Y 1/2K∗
M : �2(F+

n1
× · · · × F+

nk
) ⊗ ΔM (I)G → �2(F+

n1
× · · · × F+

nk
) ⊗K

is a multi-analytic operator and Y = AA∗.
Following the classical result of Beurling [1], we say that M ⊂ �2(F+

n1
× · · · × F+

nk
) ⊗K is a Beurling type 

jointly invariant subspace under the operators Si,s ⊗ IK, where i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}, if there 
is an inner multi-analytic operator Ψ : �2(F+

n1
× · · · × F+

nk
) ⊗ L → �2(F+

n1
× · · · × F+

nk
) ⊗K such that

M = Ψ
(
�2(F+

n1
× · · · × F+

nk
) ⊗ L

)
.

In what follows, we use the notation ((S1 ⊗ IK)|M, . . . , (Sk ⊗ IK)|M), where

(Si ⊗ IK)|M := ((Si,1 ⊗ IK)|M, . . . , (Si,ni
⊗ IK)|M), i ∈ {1, . . . , k}.

We proved in [16] the following characterization of the Beurling type jointly invariant subspaces under 
the universal model of the regular Λ-polyball. For a related result, in the commutative case, we refer the 
reader to [9].

Theorem 5.2. Let M ⊂ �2(F+
n1

× · · · × F+
nk

) ⊗ K be a jointly invariant subspace under Si,s ⊗ IK, where 
i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}. Then the following statements are equivalent.

(i) M is a Beurling type jointly invariant subspace.
(ii) (id − ΦS1⊗IK) ◦ · · · ◦ (id − ΦSk⊗IK)(PM) ≥ 0, where PM is the orthogonal projection onto M.
(iii) The k-tuple ((S1 ⊗ IK)|M, . . . , (Sk ⊗ IK)|M) is doubly Λ-commuting.
(iv) There is an isometric multi-analytic operator Ψ : �2(F+

n1
× · · · × F+

nk
) ⊗ L → �2(F+

n1
× · · · × F+

nk
) ⊗ K

such that

M = Ψ
(
�2(F+

n1
× · · · × F+

nk
) ⊗ L

)
.

We say that two multi-analytic operators A : �2(F+
n1

× · · · × F+
nk

) ⊗ K1 → �2(F+
n1

× · · · × F+
nk

) ⊗ K2
and A′ : �2(F+

n1
× · · · × F+

nk
) ⊗ K′

1 → �2(F+
n1

× · · · × F+
nk

) ⊗ K′
2 coincide if there are two unitary operators 

uj ∈ B(Kj , K′
j), j = 1, 2, such that

A′(I�2(F+
n1×···×F+

nk
) ⊗ u1) = (I�2(F+

n1×···×F+
nk

) ⊗ u2)A.

Lemma 5.3. Let As : �2(F+
n1

× · · · × F+
nk

) ⊗ Hs → �2(F+
n1

× · · · × F+
nk

) ⊗ K, s = 1, 2, be multi-analytic 
operators with respect to S := (S1, . . . , Sk) such that A1A

∗
1 = A2A

∗
2. Then there is a unique partial isometry 

V : H1 → H2 such that
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A1 = A2(I�2(F+
n1×···×F+

nk
) ⊗ V ),

where I�2(F+
n1×···×F+

nk
) ⊗ V is an inner multi-analytic operator with initial space supp (A1) and final space 

supp (A2). In particular, the multi-analytic operators A1|supp (A1) and A2|supp (A2) coincide.

Proof. Using the definition of the universal model S := (S1, . . . , Sk), one can easily prove that (id −
ΦS1) ◦ · · · ◦ (id − ΦSk

)(I) = PC, where PC is the orthogonal projection from �2(F+
n1

× · · · × F+
nk

) onto 
C1 ⊂ �2(F+

n1
× · · · × F+

nk
). Since A1, A2 are multi-analytic operators with respect to S and A1A

∗
1 = A2A

∗
2, 

we deduce that

‖(PC ⊗ IH1)A∗
1f‖2 = 〈A1(id− ΦS1⊗I) ◦ · · · ◦ (id− ΦSk⊗I)(I)A∗

1f, f〉
= 〈(id− ΦS1⊗I) ◦ · · · ◦ (id− ΦSk⊗I)(A1A

∗
1)f, f〉

= 〈(id− ΦS1⊗I) ◦ · · · ◦ (id− ΦSk⊗I)(A2A
∗
2)f, f〉

= 〈A2(id− ΦS1⊗I) ◦ · · · ◦ (id− ΦSk⊗I)(I)A∗
2f, f〉

= ‖(PC ⊗ IH2)A∗
2f‖2

for all f ∈ �2(F+
n1

× · · · × F+
nk

) ⊗ K. Define Ls := (PC ⊗ IHs
)A∗

s(�2(F+
n1 × · · · × F+

nk) ⊗K), s = 1, 2, and 
consider the unitary operator U : L1 → L2 defined by

U(PC ⊗ IH1)A∗
1f := (PC ⊗ IH2)A∗

2f, f ∈ �2(F+
n1

× · · · × F+
nk

) ⊗K.

Now, we can extend U to a partial isometry V : H1 → H2 with initial space L1 = supp (A1) and final 
space L2 = supp (A2). Moreover, we have A1V

∗ = A2|C⊗H2 . Since A1, A2 are multi-analytic operators with 
respect to S, we deduce that A1(I�2(F+

n1×···×F+
nk

) ⊗ V ∗) = A2. The last part of the lemma is obvious. �
We say that T = (T1, . . . , Tk) ∈ BΛ(H) has characteristic function if there is a Hilbert space E and a 

multi-analytic operator Ψ : �2(F+
n1

× · · · × F+
nk

) ⊗ E → �2(F+
n1

× · · · × F+
nk

) ⊗ΔT (I)(H) with respect to Si,j , 
i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}, such that

KTK
∗
T + ΨΨ∗ = I,

where KT : H → �2(F+
n1

× · · · × F+
nk

) ⊗ D(T ) is the noncommutative Berezin kernel associated with T . 
According to Lemma 5.3, if there is a characteristic function for T ∈ BΛ(H), then it is essentially unique.

Theorem 5.4. A k-tuple T = (T1, . . . , Tk) in the noncommutative Λ-polyball BΛ(H) admits a characteristic 
function if and only if

ΔS⊗I(I −KTK
∗
T ) ≥ 0,

where KT is the noncommutative Berezin kernel associated with T and

ΔS⊗I := (id− ΦS1⊗I) ◦ · · · ◦ (id− ΦSk⊗I).

If, in addition, T is a pure k-tuple in BΛ(H), then the following statements are equivalent.

(i) T admits a characteristic function.
(ii) (KTH)⊥ is a Beurling type invariant subspace under all the operators Si,s ⊗ I.
(iii) The k-tuple (S ⊗ I)|(K H)⊥ is doubly Λ-commuting.
T
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(iv) There is a Beurling type invariant subspace M under Si,s ⊗ ID for some Hilbert space D such that 
T ∗
i,s = (S∗

i,s ⊗ ID)|M⊥ for any i ∈ {1, . . . , k}, s ∈ {1, . . . , ni} and

�2(F+
n1

× · · · × F+
nk

) ⊗D =
∨

α∈F+
n1×···×F+

nk

(Sα ⊗ ID)M⊥.

Proof. Assume that T has characteristic function. Then there is a multi-analytic operator Ψ such that 
KTK

∗
T + ΨΨ∗ = I. Since Ψ is a multi-analytic operator and, ΔS⊗I(I) = PC ⊗ I, we have

ΔS⊗I(I −KTK
∗
T ) = ΔS⊗I(ΨΨ∗) = ΨΔS⊗I(I)Ψ∗ = Ψ(PC ⊗ I)Ψ∗ ≥ 0.

In order to prove the converse, we apply Theorem 5.1 to the operator Y = I −KTK
∗
T .

To prove the second part of the theorem, note that if T is a pure k-tuple in BΛ, then the Berezin kernel 
KT is an isometry and I − KTK

∗
T = PM, where PM is the orthogonal projection onto M := (KTH)⊥. 

Using the first part of the theorem and applying Theorem 5.2, one obtains the equivalences of the items (i), 
(ii), and (iii).

Due to Theorem 5.6 from [16], if T = (T1, . . . , Tk) is a pure k-tuple in the regular Λ-polyball and

KT : H → �2(F+
n1

× · · · × F+
nk

) ⊗ ΔT (I)(H),

is the corresponding noncommutative Berezin kernel, then the dilation provided by Theorem 1.1 is minimal, 
i.e.

�2(F+
n1

× · · · × F+
nk

) ⊗ ΔT (I)(H) =
∨

α∈F+
n1×···×F+

nk

(Sα ⊗ ID(T ))KTH.

Moreover, this dilation is unique up to an isomorphism. Setting M := (KTH)⊥, D := D(T ) := ΔT (I)(H), 
and identifying H with KTH, we conclude that (ii) =⇒ (iv). Now, we prove the implication (iv) =⇒ (ii).

Assume that T ∈ BΛ(H) is a pure element and that there is a Beurling type invariant subspace M under 
Si,s ⊗ ID such that T ∗

i,s = (S∗
i,s ⊗ ID)|M⊥ and �2(F+

n1
× · · · × F+

nk
) ⊗ D =

∨
α∈F+

n1×···×F+
nk

(Sα ⊗ ID)M⊥. 
Using the uniqueness of the dilation provided by the noncommutative Berezin kernel associate with T , we 
deduce that there is a unitary operator Ω : D(T ) → D such that (I�2(F+

n1×···×F+
nk

) ⊗Ω)KTH = M⊥. Hence, 
(I�2(F+

n1×···×F+
nk

) ⊗ Ω)KTK
∗
T (I�2(F+

n1×···×F+
nk

) ⊗ Ω∗) = PM⊥ . Since M is a Beuling type invariant subspace, 
there is an inner multi-analytic operator Ψ : �2(F+

n1
× · · · × F+

nk
) ⊗ L → �2(F+

n1
× · · · × F+

nk
) ⊗D such that

PM = ΨΨ∗.

Now, one can easily see that

I −KTK
∗
T = ΦΦ∗,

where Φ := (I�2(F+
n1×···×F+

nk
) ⊗ Ω∗)Ψ is an inner multi-analytic operator. The proof is complete. �

If T has characteristic function, the multi-analytic operator A provided by Theorem 5.1 when Y =
I − KTK

∗
T , which we denote by ΘT , is called the characteristic function of T . More precisely, due to the 

remarks following Theorem 5.1, one can see that ΘT is the multi-analytic operator

ΘT : �2(F+
n × · · · × F+

n ) ⊗ ΔMT
(I)(MT ) → �2(F+

n × · · · × F+
n ) ⊗ ΔT (I)(H)
1 k 1 k
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defined by ΘT := (I −KTK
∗
T )1/2K∗

MT
, where

KT : H → �2(F+
n1

× · · · × F+
nk

) ⊗ ΔT (I)(H)

is the noncommutative Berezin kernel associated with T ∈ BΛ(H) and

KMT
: H → �2(F+

n1
× · · · × F+

nk
) ⊗ ΔMT

(I)(MT )

is the noncommutative Berezin kernel associated with MT ∈ BΛ(MT ). Here, we have

MT := range (I −KTK∗
T )

and MT := (M1, . . . , Mk) is the k-tuple with Mi := (Mi,1, . . . , Mi,ni
) and Mi,s ∈ B(MT ) given by Mi,s :=

A∗
i,s, where Ai,s ∈ B(MT ) is uniquely defined by

Ai,s

[
(I −KTK

∗
T )1/2f

]
:= (I −KTK

∗
T )1/2(Si,s ⊗ I)f

for all f ∈ �2(F+
n1

× · · · × F+
nk

) ⊗ ΔT (I)(H). According to Theorem 5.1, we have KTK
∗
T + ΘTΘ∗

T = I.

Theorem 5.5. Let T = (T1, . . . , Tk) be a k-tuple in BΛ(H) which admits characteristic function. Then T is 
pure if and only if the characteristic function ΘT is an inner multi-analytic operator. Moreover, in this case 
T = (T1, . . . , Tk) is unitarily equivalent to G = (G1, . . . , Gk), where Gi := (Gi,1, . . . , Gi,ni

) is defined by

Gi,s := PHT
(Si,s ⊗ I) |HT

, i ∈ {1, . . . , k}, s ∈ {1, . . . , ni},

and PHT
is the orthogonal projection of �2(F+

n1
× · · · × F+

nk
) ⊗ ΔT (I)(H) onto

HT :=
{
�2(F+

n1
× · · · × F+

nk
) ⊗ ΔT (I)(H)

}
� rangeΘT .

Proof. Assume that T is a pure k-tuple in BΛ(H) which admits characteristic function. Theorem 1.1 shows 
that

K∗
TKT = lim

pk→∞
. . . lim

p1→∞
(id− Φpk

Tk
) ◦ · · · ◦ (id− Φp1

T1
)(I), (5.1)

where the limits are in the weak operator theory. Consequently, since T is a pure k-tuple, the noncommu-
tative Berezin kernel associated with T , i.e.,

KT : H → �2(F+
n1

× · · · × F+
nk

) ⊗ ΔT (I)(H)

is an isometry. Moreover, the subspace KTH is coinvariant under the operators Si,s ⊗ IΔT (I)(H), i ∈
{1, . . . , k}, s ∈ {1, . . . , ni}, and Ti,s = K∗

T (Si,s ⊗ IΔT (I)(H))KT . Since KTK
∗
T is the orthogonal projec-

tion of �2(F+
n1

× · · · ×F+
nk

) ⊗ΔT (I)(H) onto KTH and KTK
∗
T + ΘTΘ∗

T = I, we deduce that ΘT is a partial 
isometry and KTH = HT . Taking into account that KT is an isometry, we can identify H with KTH. 
Therefore, T = (T1, . . . , Tk) is unitarily equivalent to G = (G1, . . . , Gk).

Conversely, assume that ΘT is an inner multi-analytic operator. Since KTK
∗
T + ΘTΘ∗

T = I, and ΘT is 
a partial isometry, the noncommutative Berezin kernel KT is a partial isometry. On the other hand, since 
T is completely non-coisometric, KT is a one-to-one partial isometry and, consequently, an isometry. Due 
to Theorem 1.1, relation (5.1) holds. Hence, we deduce that T is a pure k-tuple in BΛ(H). The proof is 
complete. �
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Now, we are able to provide a model theorem for the class of completely non-coisometric k-tuple of 
operators in BΛ(H) which admit characteristic functions.

Theorem 5.6. Let T = (T1, . . . , Tk) be a completely non-coisometric k-tuple in the Λ-polyball BΛ(H) which 
admits characteristic function, and let S := (S1, . . . , Sk) be the universal model associated to BΛ(H). Set

D := ΔT (I)(H), D∗ := ΔMT
(I)(MT ),

and DΘT
:= (I − Θ∗

TΘT )1/2, where ΘT is the characteristic function of T . Then T is unitarily equivalent to 
G := (G1, . . . , Gk) ∈ BΛ(HT ), where Gi := (Gi,1, . . . , Gi,ni

) and, for each i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}, 
Gi,s is a bounded operator acting on the Hilbert space

HT :=
[(
�2(F+

n1
× · · · × F+

nk
) ⊗D

)⊕
DΘT

(�2(F+
n1 × · · · × F+

nk) ⊗D∗)
]

�
{
ΘTϕ⊕DΘT

ϕ : ϕ ∈ �2(F+
n1

× · · · × F+
nk

) ⊗D∗
}

and is uniquely defined by the relation(
PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

)
G∗

i,sf = (S∗
i,s ⊗ ID)

(
PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

)
f

for every f ∈ HT . Here, PKT

�2(F+
n1×···×F+

nk
)⊗D is the orthogonal projection of the Hilbert space

KT :=
(
�2(F+

n1
× · · · × F+

nk
) ⊗D

)⊕
DΘT

(�2(F+
n1 × · · · × F+

nk) ⊗D∗)

onto the subspace �2(F+
n1

× · · · × F+
nk

) ⊗D and PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

is a one-to-one operator.

Proof. A straightforward computation reveals that the operator Ψ : �2(F+
n1

× · · ·×F+
nk

) ⊗D∗ → KT defined 
by

Ψϕ := ΘTϕ⊕DΘT
ϕ, ϕ ∈ �2(F+

n1
× · · · × F+

nk
) ⊗D∗,

is an isometry and

Ψ∗(g ⊕ 0) = Θ∗
T g, g ∈ �2(F+

n1
× · · · × F+

nk
) ⊗D. (5.2)

Consequently, we deduce that

‖g‖2 = ‖PKT

HT
(g ⊕ 0)‖2 + ‖ΨΨ∗(g ⊕ 0)‖2 = ‖PKT

HT
(g ⊕ 0)‖2 + ‖Θ∗

T g‖2

for every g ∈ �2(F+
n1

× · · · × F+
nk

) ⊗D, where PKT

HT
the orthogonal projection of KT onto the subspace HT . 

Since

‖K∗
T g‖2 + ‖Θ∗

T g‖2 = ‖g‖2, g ∈ �2(F+
n1

× · · · × F+
nk

) ⊗D,

we have

‖K∗
T g‖ = ‖PKT (g ⊕ 0)‖, g ∈ �2(F+

n × · · · × F+
n ) ⊗D. (5.3)
HT 1 k
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Due to the fact that the k-tuple T = (T1, . . . , Tk) is completely non-coisometric in BΛ(H), the noncommu-
tative Berezin kernel KT is a one-to-one operator. Thus rangeK∗

T = H. Let f ∈ HT be with the property 

that 
〈
f,PKT

HT
(g ⊕ 0)

〉
= 0 for any g ∈ �2(F+

n1
×· · ·×F+

nk
) ⊗D. Due to the definition of HT and the fact that 

KT coincides with the closed span of all vectors g ⊕ 0, for g ∈ �2(F+
n1

× · · · × F+
nk

) ⊗D, and ΘTϕ ⊕DΘT
ϕ, 

for ϕ ∈ �2(F+
n1

× · · · × F+
nk

) ⊗D, we must have f = 0. Consequently,

HT =
{
PKT

HT
(g ⊕ 0) : g ∈ �2(F+

n1
× · · · × F+

nk
) ⊗D

}
.

Now, using relation (5.3), we deduce that there is a unitary operator Γ : H → HT such that

Γ(K∗
T g) = PKT

HT
(g ⊕ 0), g ∈ �2(F+

n1
× · · · × F+

nk
) ⊗D. (5.4)

For each i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}, we define the operator Gi,s : HT → HT by relation

Gi,s := ΓTi,sΓ∗, i ∈ {1, . . . , k}, s ∈ {1, . . . , ni}.

Since T ∈ BΛ(H), we also have G ∈ BΛ(H). The next step is to show that

(
PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

)
G∗

i,sf = (S∗
i,s ⊗ ID)

(
PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

)
f (5.5)

for every i ∈ {1, . . . , k}, s ∈ {1, . . . , ni}, and f ∈ HT . Taking into account relations (5.4) and (5.2), the fact 
that Ψ is an isometry and PKT

HT
(g ⊕ 0) + ΨΨ∗(g ⊕ 0) = g ⊕ 0, we obtain

PKT

�2(F+
n1×···×F+

nk
)⊗DΓK∗

T g = PKT

�2(F+
n1×···×F+

nk
)⊗DPKT

HT
(g ⊕ 0)

= g − PKT

�2(F+
n1×···×F+

nk
)⊗DΨΨ∗(g ⊕ 0)

= g − ΘTΘ∗
T g = KTK

∗
T g

for all g ∈ �2(F+
n1

× · · · × F+
nk

) ⊗D. Since rangeK∗
T = H, we obtain

PKT

�2(F+
n1×···×F+

nk
)⊗DΓ = KT . (5.6)

On the other hand, since T is a completely non-coisometric tuple, the noncommutative Berezin kernel KT

is one-to-one. Now, relation (5.6) implies

PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

= KTΓ∗

and shows that PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

is a one-to-one operator acting from HT to �2(F+
n1

× · · · × F+
nk

) ⊗D. 
Hence, using relation (5.6) and Theorem 1.1, we deduce that

(
PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

)
G∗

i,sΓh =
(
PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

)
ΓT ∗

i,sh

= KTT
∗
i,sh

=
(
S∗
i,s ⊗ ID

)
KTh

=
(
S∗
i,s ⊗ ID

) (
PKT

2 + + |HT

)
Γh
� (Fn1×···×Fnk
)⊗D
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for every i ∈ {1, . . . , k}, s ∈ {1, . . . , ni}, and h ∈ H. Therefore, relation (5.5) holds. We remark that, since 
the operator PKT

�2(F+
n1×···×F+

nk
)⊗D|HT

is one-to-one, the relation (5.5) uniquely determines each operator G∗
i,s

for all i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}. The proof is complete. �
Now, we show that the characteristic function ΘT is a complete unitary invariant for the completely 

non-coisometric k-tuples in BΛ(H) which admit characteristic functions.

Theorem 5.7. Let T := (T1, . . . , Tk) ∈ BΛ(H) and T ′ := (T ′
1, . . . , T

′
k) ∈ BΛ(H′) be two completely non-

coisometric k-tuples which admit characteristic functions. Then T and T ′ are unitarily equivalent if and 
only if their characteristic functions ΘT and ΘT ′ coincide.

Proof. To prove the direct implication of the theorem, assume that the k-tuples T and T ′ are unitarily 
equivalent. Let W : H → H′ be a unitary operator such that Ti,s = W ∗T ′

i,sW for every i ∈ {1, . . . , k} and 
s ∈ {1, . . . , ni}. Note that WΔT (I) = ΔT ′(I)W and WD = D′, where the subspaces D and D′ are given by

D := ΔT (I)(H), D′ := ΔT ′(I)(H′).

On the other hand, using the definition of the noncommutative Berezin kernel associated with Λ-polyballs, 
it is easy to see that (I�2(F+

n1×···×F+
nk

) ⊗W )KT = KT ′W . Consequently,

(I�2(F+
n1×···×F+

nk
) ⊗W )(I −KTK

∗
T )(I�2(F+

n1×···×F+
nk

) ⊗W ) = I −KT ′K∗
T ′

and (I�2(F+
n1×···×F+

nk
) ⊗W )MT = MT ′ , where MT := range (I −KTK∗

T ) and MT ′ := range (I −KT ′K∗
T ′). 

As mentioned in the remarks preceding Theorem 5.5, MT := (M1, . . . , Mk) ∈ BΛ(MT ) is the k-tuple with 
Mi := (Mi,1, . . . , Mi,ni

) and Mi,s ∈ B(MT ), where Mi,s := A∗
i,s and Ai,s ∈ B(MT ) is uniquely defined by 

relation

Ai,s

[
(I −KTK

∗
T )1/2x

]
:= (I −KTK

∗
T )1/2(Si,s ⊗ I)x

for all x ∈ �2(F+
n1

×· · ·×F+
nk

) ⊗ΔT (I)(H). In a similar manner, we define the k-tuple MT ′ ∈ BΛ(MT ′) and 
the operators A′

i,s ∈ B(MT ′). It is easy to see that

Ai,s(I −KTK
∗
T )1/2f = (I�2(F+

n1×···×F+
nk

) ⊗W ∗)A′
i,s(I −KT ′K∗

T ′)1/2(I�2(F+
n1×···×F+

nk
) ⊗W ∗)f

= (I�2(F+
n1×···×F+

nk
) ⊗W ∗)A′

i,s(I�2(F+
n1×···×F+

nk
) ⊗W )(I −KTK

∗
T )1/2f

for all f ∈ �2(F+
n1

× · · · × F+
nk

) ⊗ ΔT (I)(H). This implies

Ai,s = (I�2(F+
n1×···×F+

nk
) ⊗W ∗)A′

i,s(I�2(F+
n1×···×F+

nk
) ⊗W ).

It is clear now that (I�2(F+
n1×···×F+

nk
) ⊗W )D∗ = D′

∗, where D∗ := ΔMT
(I)(MT ) and D′

∗ := ΔMT ′ (I)(MT ′). 
Define the unitary operators u and u′ by setting

u := W |D : D → D′ and u∗ := (I�2(F+
n1×···×F+

nk
) ⊗W )|D∗ : D∗ → D′

∗.

Straightforward calculations reveal that

(I�2(F+ ×···×F+ ) ⊗ u)ΘT = ΘT ′(I�2(F+ ×···×F+ ) ⊗ u∗),
n1 nk n1 nk
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which proves the direct implication of the theorem. Conversely, assume that the characteristic functions of 
T and T ′ coincide. In this case, there exist unitary operators u : D → D′ and u∗ : D∗ → D′

∗ such that

(I�2(F+
n1×···×F+

nk
) ⊗ u)ΘT = ΘT ′(I�2(F+

n1×···×F+
nk

) ⊗ u∗).

Hence, we deduce that

DΘT
=
(
I�2(F+

n1×···×F+
nk

) ⊗ u∗
)∗

DΘT ′

(
I�2(F+

n1×···×F+
nk

) ⊗ u∗
)

and

(
I�2(F+

n1×···×F+
nk

) ⊗ u∗
)
DΘT

(�2(F+
n1 × · · · × F+

nk) ⊗D∗) = DΘT ′ (�2(F+
n1 × · · · × F+

nk) ⊗D′
∗),

where DΘT
:= (I − Θ∗

TΘT )1/2. Define now the unitary operator U : KT → KT ′ by setting

U := (I�2(F+
n1×···×F+

nk
) ⊗ u) ⊕ (I�2(F+

n1×···×F+
nk

) ⊗ u∗).

It is easy to see that the operator Ψ : �2(F+
n1

× · · · × F+
nk

) ⊗D∗ → KT , defined by

Ψϕ := ΘTϕ⊕DΘT
ϕ, ϕ ∈ �2(F+

n1
× · · · × F+

nk
) ⊗D∗,

and the corresponding operator Ψ′ satisfy the relations

UΨ
(
I�2(F+

n1×···×F+
nk

) ⊗ u∗
)∗

= Ψ′ (5.7)

and

(
I�2(F+

n1×···×F+
nk

) ⊗ u
)
PKT

�2(F+
n1×···×F+

nk
)⊗DU

∗ = P
KT ′

�2(F+
n1×···×F+

nk
)⊗D′ , (5.8)

where PKT

�2(F+
n1×···×F+

nk
)⊗D is the orthogonal projection of KT onto �2(F+

n1
× · · · × F+

nk
) ⊗ D. On the other 

hand relation (5.7) implies

UHT = UKT � UΨ(�2(F+
n1

× · · · × F+
nk

) ⊗D∗)

= KT ′ � Ψ′(I�2(F+
n1×···×F+

nk
) ⊗ u∗)(�2(F+

n1
× · · · × F+

nk
) ⊗D∗)

= KT ′ � Ψ′(�2(F+
n1

× · · · × F+
nk

) ⊗D′
∗).

Consequently, U |HT
: HT → HT ′ is a unitary operator. We remark that

(S∗
i,s ⊗ ID′)(I�2(F+

n1×···×F+
nk

) ⊗ u) = (I�2(F+
n1×···×F+

nk
) ⊗ u)(S∗

i,s ⊗ ID) (5.9)

for every i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}. Let G := (G1, . . . , Gn) and G′ := (G′
1, . . . , G

′
n) be the model 

operators provided by Theorem 5.6 for T and T ′, respectively. Taking into account relations (5.8), (5.9), 
and relation (5.5) for T ′ and T , respectively, we deduce that
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P
KT ′

�2(F+
n1×···×F+

nk
)⊗D′G

′
i,s

∗
Uf = (S∗

i,s ⊗ ID′)PKT

�2(F+
n1×···×F+

nk
)⊗DUx

= (S∗
i,s ⊗ ID′)(I�2(F+

n1×···×F+
nk

) ⊗ u)PKT

�2(F+
n1×···×F+

nk
)⊗Df

= (I�2(F+
n1×···×F+

nk
) ⊗ u)(S∗

i,s ⊗ ID)PKT

�2(F+
n1×···×F+

nk
)⊗Df

= (I�2(F+
n1×···×F+

nk
) ⊗ u)PKT

�2(F+
n1×···×F+

nk
)⊗DG

∗
i f

= P
KT ′

�2(F+
n1×···×F+

nk
)⊗D′UG∗

i,sf

for every f ∈ HT , i = {1, . . . , k}, and s ∈ {1, . . . , ni}. According to Theorem 5.6, PKT ′

�2(F+
n1×···×F+

nk
)⊗D′ |HT ′

is a one-to-one operator. Consequently, the relations above imply (U |HT
)G∗

i,s = (G′
i,s)∗ (U |HT

) for every 
i ∈ {1, . . . , k} and s ∈ {1, . . . , ni}. Using Theorem 5.6, we conclude that the k-tuples T and T ′ are unitarily 
equivalent. This completes the proof. �
Corollary 5.8. If T := (T1, . . . , Tk) ∈ BΛ(H) is completely non-coisometric and has characteristic function 
ΘT = 0, then T is unitarily equivalent to (S1 ⊗ ID, . . . , Sk ⊗ ID) for some Hilbert space D.
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