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In this paper, we study the existence of symmetric homoclinic orbits for first
order and second order Hamiltonian systems with some symmetric Hamiltonian
functions. © 2000 Academic Press
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In recent years, many authors [1-3, 5-30, 34, 36—46] have used the
variational methods to study the existence and the multiplicity of homo-
clinic orbits for Hamiltonian systems. In this paper, we will study the
existence of a symmetric homoclinic orbit for the first order symmetric
Hamiltonian system and the existence of infinitely many odd homoclinic
orbits for classical Hamiltonian systems with even potentials.

We are given a C* map H: R*M — R, and we consider the associated
system of ordinary differential equations

x(t) =JH'(x)
x(+») =0,

(1.1)
where J denotes the 2N X 2N matrix
(0 =T
’= (1 0 )
with J* =J 1 = —J.
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We obtain the following results:
THEOREM 1.1.  Assume H satisfies
(H1) H e C(R*,R)
(H2) H(-p,q)=H(p,q),V¥p,q €R"
(H3) H,0,0)=0
(H4) H"(0)=0
(H5) 3« > 2 such that Vx € R*N, aH(x) < H'(x)x
(H6) 3k, > 0 such that Vx € R*N, H(x) = k,|x|*
(H7) 3Tk, > 0 such that ¥x € R*, |H'(x)| < k,|x|*~".
Then (1.1) has at least one homoclinic orbit x = (p, q) to the origin which
satisfies p(—t) = —p(t) and q(—t) = q(¢).

Remark 1. In all published papers, there is a quadratic term for the
Hamiltonian function. Here we remove this term.

Remark 2. (H5) implies H(x) = 0(|x|*) as |x| — 0. (H4) can be can-
celed out.

THEOREM 1.2.  Assume V satisfies

(V) Ve CXR",R)

(V2) V(—x)=V(x),Vx € R";

(V3) thereisa u > 2 suchthat 0 < uV(x) <x-V'(x), Vx € R"\{0};
V4) 17"(0) = 0.

Then there are infinitely many odd homoclinic orbits for the second
order Hamiltonian system:

F+V(x)=0
x(+®°) =x(£») = 0.

(1.2)

2. THE PROOF OF THEOREM 1.1

Let W= W“2(R, R*") be the Sobolev space of R?"-valued functions
defined on R:

E={x=(p,q) €Wlp(—1t) = —p(1), q(=1) = q(1), Vi €R}. (2.1)
The functional corresponding to the system (1.1) is defined by

f) = [ M-kx)ydi- [T Hx)di  VxeE.  (22)
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Following the ideas of [35, 31-33], we have

LEMMA 2.1. Suppose (H1) and (H4) hold. Then f < C'(E,R), and
x = (p,q) € E is a critical point of f restricted on E if and only if it is a
C'(R,R")-solution of (1.1) such that p is odd and q even in t.

Proof. (i) By (H1) and (H4), similar to the proof of Coti Zelati and
Rabinowitz [26], f € C'(E, R).

(ii) Suppose x € E is a critical point of f on E. Then there holds
[ (-dy—H(x)-y)di=0, VyeE. (2.3)

By (HD), H' € C'(W"2, w"?). (H2) and (H3) imply H'(0) = 0. By x €
W12(R, R*N) and the regularity theorem on composition mappings, we
have u = H'(x(:)) € W"2(R, R*N) and u € E; that is, u = (u,, u,) satis-
fies

u(—1t) = —uy(t) and u,(—1t) = u,(t). (2.4)
We consider the boundary value problem of the linear system,
z(t) = Ju
) (2.5)
z(£) =0,

which possesses a unique solution Z(¢t) € C'(R, R*") and is given by
z(t)=J-[" u(s)ds, VieR (2.6)
By (2.4) and (2.6) we know that
Z(1) = (Zi(1), Zy(1)) = (—/twuz(s) ds, [ ui(s) ds)
satisfies

Z(—t) = —Z(1), Zy(—t) = Zy(1). (2.7)

By (2.6) and u € W'2(R, R*") we know Z € W>*(R, R*").
From (2.5) we obtain that for Vy € E there holds

[ (=Z-y - H'(x)-y)di = 0. (2.8)
Combining with (2.3) yields

[ 1Gi=2Z)yd=0. VyeL. (2.9)
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By (2.3) and (2.6) we have x € W**(R, R*"), Z € W>?(R, R*"). So
j=J(x—Z) e W" (R, R™). (2.10)

Set x = (xy, x,), Z = (Z,,Z,); then

y=J(x _Z) = (Zz — X, X _21) = ()717)72)-

Then
Vi(=1) = =3u(1),  Fo(=1) =3,(1). (2.11)
Hence y € E.
In (2.9), we can set y = j to obtain
[ 1i-zPai=o. (2.12)
Hence
x(t) — Z(t) = constant, V¢ € R. (2.13)

By x(4+©) = Z(+) = 0, we know
x(t) = Z(t) =0.
Thus x(t) = Z(¢t) € C}(R, R") and is a solution of (1.1) by (2.5). Now the
proof of Theorem 1.1 is similar to that of Hofer and Wysocki [29].
3. THE PROOF OF THEOREM 1.2

Let W = W"“2(R, R"), which has the usual norm (/* (4> + |g|*))"/?
which is equivalent to the norm

lgll = ( [ 1P di +1q(0) Iz)m- (3.1)
The functional corresponding to the system (1.2) is defined by
f(x) = fj’ [P - v(x)] dr,  Vxew. (3.2)
Let
E={xeW|x(—t) = —x(t),Vt €R}. (3.3)
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Then E is a closed subspace of W and, therefore, is a Hilbert space. By
x(—1) = —x(¢) we have x(0) = 0. Hence we have

o 1/2 B
||x||=(f |x|2dt) ,  Vxek. (3.4)

Following the ideas of [31-33, 35], we have

LEMMA 3.1 Suppose (V1), (V2), and (V4) hold. Then f € C I(E, R), and
x € E is a critical point of f restricted on E if and only if it is an odd
C*(R, R")-solution of (1.2).

Proof. (i) By (V1), (V4), and [26], we know f € C'(E, R).
(i) Suppose x € E is a critical point of f on E. Then there holds

[ G-V yyde=0, Vyek. (3.5)

By (V1), we have w = V'(x(+), 1) € C(R, R"). Furthermore, by (V1), V' €
CY(R" X R,R) and x € W"(R, R"). By (V2), we have V'(0) = 0. So
by the regular theorem about the composition mapping we have w €
WL2(R, R").

The boundary value problem of the linear system

Gg+w=20
| (3.6)
q(£*) =q(£>) =0
possesses a unique solution Q € C*(R, R") and
S - s
[[O(rydr=["—w(r)dr, VS5, €R (3.7)
S, s,
0(S) = O(8)) = — [ w(r)dr, VS, €R. (3.8)
S,
Because lim, _, _.. Q(S,) = 0, so /5 w(r)dr exists and
s .
—[" w(r)dr=0(S) (3.9)

_ft(meW(T) dT) ds = Q(t) — O(t,), Vi, t €R. (3.10)

1y -
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Because lim, , .. Q(r,) = 0,50 — [* (/% w(r)dr)ds exists and

o =-[ f_‘:w(f) dr ds. (3.11)

So Q € CX(R, R"). . )
Since w is odd, so is Q. By Q(+%) = Q(+%) = 0, we know Q € E.
From (3.6) we obtain that for Vy € E there holds

[ (05— V'(x)-y)di = 0. (3.12)

Combining with (3.5) yields

oo

| (#-0)-ydi=0, VyeE (3.13)

Letting y = x — Q, by the fact x(0) = Q(0) = 0 we obtain

1x(1) — O(1)] < [()"‘Ix(s) — O(s)|ds < Vil — Ol =0, VeeR.
(3.14)

Thus x = Q € C*(R, R") and is a solution of (1.2) by (3.6).
Now the proof of Theorem 1.2 follows from Lemma 3.1 and the
arguments of Coti Zelati-Rabinowitz [26].
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