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Abstract

Given a random set coming from the imprecise observation of a random variable, we study how
to model the information about the probability distribution of this random variable. Specifically,
we investigate whether the information given by the upper and lower probabilities induced by the
random set is equivalent to the one given by the class of the probabilities induced by the measurable
selections; together with sufficient conditions for this, we also give examples showing that they are
not equivalent in all cases.
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1. Introduction

Random sets, or measurable multi-valued mappings, constitute a useful generalisation
of random variables, and have been successfully applied in such different fields as econ-

Y This is an updated and expanded version of a paper of E. Miranda, |I. Couso and P. Gil, Study of the
probabilistic information of a random set, in: Proceedings of the 3rd ISIPTA Conference, Lugano, Switzerland,
2003, pp. 383-395 [22] presented at ISIPTA03, the 3rd International Symposium on Imprecise Probabilities and
Their Applications.

* Corresponding author.

E-mail addressessmiranda@escet.urjc.es (E. Miranda), couso@pinon.ccu.uniovi.es (I. Couso),
pedro@uniovi.es (P. Gil).

0022-247X/$ — see front mattér 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.10.022



E. Miranda et al. / J. Math. Anal. Appl. 307 (2005) 32—-47 33

omy [12] or stochastic geometry [18]. They have also been given different interpretations,
like the behavioral [25] or the evidential one [8]. In this paper, we follow the interpretation
given by Kruse and Meyer in [16], and regard them as a model for the imprecise observa-
tion of a random variablé/p. We assume that for some elements of the initial space we
cannot tell their image by (due to some inaccuracy during the observation process, or
simply to the existence of missing data), and we consider then a subset of the final space
which is sure to include these images. This reasoning leads naturally to the definition of a
random set, for which there are a humber of possible ways of summarizing the informa-
tion about the probability induced by the imprecisely observed random variable. The most
important ones are the class of probability distributions of the measurable selections (that
we shall denoteP (I")) and those bounded between the upper and lower probabilities the
random set induces (denotafi( P*) in this paper). Although working with the upper and
lower probabilities leads to a number of mathematical simplifications [26,28], the informa-
tion they provide is in general more imprecise than the one given by the set of distributions
of the measurable selections [20,23]; our aim in this paper is to study the relationships
between these models in order to understand the information conveyed by each of them.
In Section 2, we introduce some concepts and notations that we will use in the rest of
the paper, and recall some previous works on the subject. In Section 3, we investigate the
information that the upper and lower probabilities give about the values of the probability
distribution induced by the original random variable. This is a first step towards the com-
parison of the models of this probability distribution, which is carried out in Section 4.
Starting with a study of the extreme points Mf(P*) and their relationship withP (I"),
we prove several relationships between the upper and lower probabilities and the class of
probabilities of the measurable selections that hold under fairly general conditions, and
generalise some results from the literature. The paper concludes in Section 5 with some
additional comments and remarks.

2. Preliminary concepts

Let us introduce some notation that we will use throughout the paper. We will denote a
probability space by 2, A, P), a measurable space ¥, .4") and a multi-valued map-
ping, I' : 2 — P(X). On the other hand;X, d) will denote a metric space, an&, 1)
will denote a topological space. Given a subseif a topological space),(A) will denote
its boundary. Given a class of sét§ F(H) ando (H) will denote, respectively, the field
and theo -field generated b¥{. In the particular case where we consider the Beréield
generated by a topologyon X, we will also denoteg8y = o (7). The topology associated
to a metricd over X, i.e., the one generated by the open balls, will be denotecl(&y.

A topological space is said to B®lishwhen it is separable and complete for some com-
patible metricd, and it is calledSouslinif it is the continuous image of a Polish space.
A multi-valued mapping will be called open (respectively complete, closed, compact) if
I' (w) is an open (respectively complete, closed, compact) subsEtfof everyw € 2.
Given a random variabl® : 2 — R, Py and Fy will denote, respectively, its induced
probability and its distribution function. Finally,4 will denote the Lebesgue measure on

a setA € Br andP 4 will denote the set of probabilities that can be defined onrfeeld A'.
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Formally, a random set is a multi-valued mapping that satisfies some measurability con-
dition. Although in the literature we can find different conditions, such as the weak-, the
strong-, or the graph-measurability [13,14], we will only work in this paper with the strong
measurability: this condition is necessary if we want to be able to define the upper and
lower probabilities on the finat-field (and consequently, if we want the discussion car-
ried in this paper to be possible).

Definition 2.1. Let (£2, A, P) be a probability spacg,X,.A") a measurable space and
I': 2 — P(X) amulti-valued mapping. GiveA € A', itsupper inversédy I" is I'*(A) =
{we 2| I'(w)N A#@}, and itslower inverses I',(A) ={w e 2 |0 # I'(w) C A}. The
multi-valued mappind™ is said to bestrongly measurableshenl™*(A) and I, (A) belong
toAforall Ae A

When there is no possible confusion about the multi-valued mapping we are working
with, we will use the notatiom* := I"'*(A) and A, := I',(A). By arandom setwve will
mean throughout a strongly measurable multi-valued mapping.

Definition 2.2 [8]. Given a random seff : 2 — P(X), theupper probabilityof A € A’ is

Pi(A) = %;‘;:;, and thdower probability, P, (A) = ?E?}i;'

Note that the upper and lower probabilities of a random set can be definddoarause
we are assuming thdt is strongly measurable. This is not the case with other (weaker)
measurability conditions. Let us also remark that, becatise [(A€),]¢ forany A C X,
itis P (A)=1— P,r(A°) forall A e A, i.e., these two functions amnjugate P;. and
P.r areocc-alternating ando-monotone capacities, respectively [26] and in particular sat-
isfy Walley’'s axioms of coherence [28]. When there is ho ambiguity about which random
set is inducing the upper and lower probabilities, we will derte= P} and P, := Pir.

As we pointed out in the introduction, we are regarding random sets as a model of
the imprecise observation of random variables. Hence, we consider a random variable
Up: 2 — X (which we calloriginal random variable) and assume that for everyn
the initial space all we know aboli(w) is that it belongs to the sét(w). This idea has
two immediate consequences: first, we may assumdita} is non-empty for everw in
the initial space, whenc*(A) = P(A*) and P,(A) = P(A,) for all A € A’; and more
importantly, our knowledge abolify is given by the class afeasurable selection®r
selectoryof I',

S(I'):={U : 2 — X measurableU (o) € I' (») Yo}.

In particular, the probability distribution dfy belongs to

P(I):={Py |U e S}, 1)
and our information abouky,(A) is given by the set of values
P(I')(A) :={Py(A) | U e S(N}. (2)

Equations (1) and (2) are the most precise pieces of information/thgives about the
probability distribution ofUp, and about the valuesPy,(A) | A € A’}, respectively. In
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general, these two pieces of information are not equivalent: we can derive the sets in Eq. (2)
from Eqg. (1), but there may be different sets of probabilities whose sets of valud$ on
coincide. We may then consider

A(I") := | Q probability| Q(A) € P(I")(A) VA € A'}, (3)

which is the biggest set of probabilities compatible with the sets in Eq. (2). It was first
introduced by Couso in [6]. It is clear th&(I") € A(I"). When they coincide, the infor-
mation aboutPy, is equivalent to the information about the values this probability takes.
On the other hand, we can also consider the class

M(P*):={Q probability| 0(A) < P*(A) VA € A'} 4)

of probabilities dominated by*, or (following the notation of Levi [17]kredal setgen-
erated byP*, which has been more thoroughly studied in the literature ([4,6,8], among
others). Given a seft € A', its lower inverseA, is the greatest subset 6 which is
certain to be included irli]o‘l(A), and its upper inversd* is the smallest subset @
which is sure to includé]o_l(A) as a subset. Taking into account that all we know about
Up is that it is a measurable selection bf we deduce thaP,(A) < Py (A) < P*(A)

for all U € S(I'), A € A’. This implies thatA(I") € M(P*), and as a consequence
P(I') € A(I') € M(P*). However, both these inclusions can be strict, as the following
example shows.

Example 2.1 [6]. Let us consider the probability spa¢®, A, P), where2 = {w1, w>},
A="P(£2)andP({w1}) = § and the random st : £2 — P({1, 2, 3}) given by I'(w1) =
{1,2,3}, I'(w2) = {1, 2}. Then, it is easy to verify that

21 2 1 12 21
P(IN=17(@1 =, = =0, = =, = 1 S
( ) {( ’O’O)’ (3’ 370>7(3’0’ 3)7(37 370)’(07 ’0)’ (0’ 37 3)}?
where a vecton(p1, p2, p3) denotes(p({1}), p({2}), p({3})). The probability measure

given by (3, 3, 3) belongs toA (") \ P(I"). On the other hand0.5,0.3,0.2) € M (P*) \
A(I"). Hence, in this case we havI") C A(I") C M(P*).

The setM (P*) is convex and is uniquely determined by the upper probability. Hence, it
is easier to handle thah(I"); we see from the example that it may also be more imprecise.
The goal of this paper is to study the relationships betwegh) andM (P*), determining
under which conditions the upper probability of the random set keeps all the information
about the probability distribution of the original random variable (as we will show, if we
are only interested in the values taken By, in the finalo -field, the setA(I") allows us
to express the problem in terms of sets of probabilities instead of subsgslyf. This
problem was studied in [20] for the case whefds finite, in [24] for random intervals,
and in [4] for compact random sets on Polish spaces. We will generalise some of the results
from these references in this paper. On the other hand, other aspects of the sets of prob-
abilities induced by the measurable selections or the upper and lower probabilities were
investigated in [1,6,10,11]. Their relevance to this problem will be detailed later.
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3. P*(A), P.(A) asamodel for Py,(A)

We begin our study by comparing the information that the sets of probabilities defined
by Egs. (1), (3), and (4) give about the probability that the imagéydfelongs to a certain
setA of the finalo -field. This information is given by the sets

{pe€l0.1]|3Q € P(I'): Q(A) = p}, (5)
{pel0,1]1|30 € A("): Q(A)=p} and (6)
{pel0,1]|30 € M(P*): Q(A) = p}, (7)

respectively. As we see from Example 2A(I") can be strictly included i\ (I"). Nev-
ertheless, it can be checked that the sets given by Egs. (5) and (6) coincide with the class
P(I')(A) defined in Eq. (2). On the other hand, it is easy to see that the set defined in
Eq. (7) is actually the intervdlP,(A), P*(A)]. Let us study then under which conditions
P(I')(A) and[P.(A), P*(A)] coincide. For this, we must determine under which con-
ditions the maximum and minimum values B{I")(A) coincide, respectively, with the
upper and lower probabilities of, and also wher? (I")(A) is convex. We studied these
two problems in [23]. Concerning the first, we showed tRatA) and P*(A) are not
equal in general to the minimum and maximum value®¢f")(A). We also provided in

that paper sufficient conditions for these equalities, which we summarize in the following
theorem.

Theorem 3.1 [23]. Consider(£2, A, P) a probability space(X, t) a topological space
and I : 2 — P(X) arandom set. Under any of the following conditions

(1) £2is completeX is Souslin andsr(I") € A® Bx;
(2) X is a separable metric space atdis compact
(3) X is a Polish space and is closed

(4) X is ao-compact metric space and is closed
(5) X is a separable metric space aridis open

P*(A) =maxP(I')(A) and P.(A)=minP(I")(A) VA e Bx.

Moreover, if
(6) X is a separable metric space aidis complete, then

P*(A)=maxP(I')(A),  P.(A)=minP(I')(A) VA e F(t(d)).

As we show in [23, Example 1], the equaliti®s (A) = maxP (I")(A) and P,(A) =
min P(I")(A) do not hold in general, and therefore we must look for sufficient conditions
such as those listed in this theorem; in fact, it may even happemntitates not possess
any measurable selection, and in that case Bqth) and A(I") would be empty.

Let us make now a small digression concerning this theorem. When the equality
P*(A) = maxP(I")(A) holds for every sefA in the finalo-field, the upper probability
is the upper envelope of the skt/"). We already know from the coherencepf that it is
the upper envelope of the classfwfitely additive probabilities it dominates [28]; our the-
orem gives sufficient conditions fat* to be the upper envelope of the classofintably
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additive probabilities belonging t& (1), which is in general a subclass of(P*). This
is related to the problem studied by Kratschmer in [15]. A similar comment can be made
for P,.

Our result is also related to some properties proven by Couso. In [6], she showed that
the equalityP*(A) = supP(I')(A) YA € A’ implies the equality, for any bounded ran-
dom variable, of its Choquet integral ([9]) respect to the upper probability ahd the
supremum of its integrals respect to the distributions of the measurable selections. This
fact, together with Theorem 3.1 produces the following result, which generalizes [4, The-
orem 1].

Theorem 3.2. Let (£2, A, P) be a probability space(X, .A’) a measurable space and
let I" : 2 — P(X) be a random set satisfying any of the conditiqa} to (5) from
Theorem3.1 Then, for any bounded random variable: X — R, it is (C) [ VdP* =
sup [ VdQ|QeP(IM}and(C) [VdP,=inf{[VdQ| Qe P(I)}.

Let us remark that in particular, under the hypotheses of this theorem, given a finite
chainA; C A> C --- C A,, of elements of4’, there exists an elemeit of S(I") s.t.
Py(A;) = P*(A) foralli=1,...,m.

The second necessary condition for the equatity”) (A) = [ P«(A), P*(A)] is the con-
vexity of P(I")(A). This property does not hold in general either. It can be characterized in
terms of a property of the initial probability space. We need to remark that, as it is proven
in [23], the setP(I")(A) always has a maximum and a minimum value.

Proposition 3.3 [23]. Let (£2, A, P) be a probability spaceX, .A") a measurable space
and letI" : 2 — P(X) be a random set. Consider € A" and letUy, Uz € S(I") satisfy
Py, (A) =maxP(I")(A), Py,(A) =minP(I")(A). Then,

P(I')(A)isconvex <«  U;*(A)\ U, *(A) is not an atont

The right-hand side holds trivially, anél(I") (A) is consequently convex for all € A’,
when the initial probability space is non-atomic. This is for instance the case when we have
some additional information stating that the probability distributi®y is continuous.
Nevertheless, the non-atomicity @2, A, P) is not necessary foP (I")(A) to be convex,
as we showed in [20, Remark 1]. We can also see in the Example 1 from this reference
that U{l(A) \ Ugl(A) is not necessarily an atom (and, consequently, thdt)(A) is
not always a convex set). If we join now Theorem 3.1 and Proposition 3.3, we derive the
following corollary:

Corollary 3.4. Let (£2, A, P) be a probability spacg,X, .4’) a measurable space and let
I : 2 — P(X) be a random set satisfying any of the conditighsto (5) from Theo-
rem3.1 Then, for anyA € A/,

P(I')(A) =[Pi(A), P*(A)] & A*\ A, isnotan atom.

1 By this we mean that for every € (0, 1) there is some measurabeC Ufl(A) \ U;l(A) with P(B) =
aPUTHA)\ Uy HA)).
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This means that, under some conditions, the 8&5), A(I") and M (P*) provide the
same information about the values of the probability distribution of the original random
variable. Moreover, these conditions are not very restrictive: on the one hand, most random
sets used for practical purposes satisfy one of the conditions (1) to (5) from Theorem 3.1;
on the other hand, wheRy, is continuous§2, A, P) is necessarily non-atomic, and then
A*\ A, is not an atom for any € A’.

4. P*, P, asamodel for Py,

Let us study next the relationships between the #&t§), A(I") and M (P*), which
model the information about the probability distributi®p, . It can easily be checked that
A(I') coincides withM (P*) if and only if the setsP (I")(A) and[ P, (A), P*(A)] coincide
forall A € A’. Hence, our Corollary 3.4 gives sufficient conditions for the equality’) =
M (P*); as we argued before, these conditions are not very restrictive. Nevertheless, we
showed in [20] that this equality does not imply the one betwBén) and M (P*), not
even when the final space is finite. This is another way to see that the information provided
by I about the probability distribution dfp is not equivalent, in general, to the one about
the values of this distribution.

Although a possible approach to the study of the relationships betwéén and
M (P*) would be to study the relationship betwe&dl") and A(I") and combine the
results with the ones mentioned in the previous paragraph, it will be more fruitful for this
paper to study directly the relation betweii/") and M (P*). Our course of reasoning
will be based on the form of the extreme pointsM{ P*), and will use the following
supporting resulg

Theorem 4.1 [5]. LetX = {x1, ..., x,,} be afinite set and considerZalternating capac-
ity u : P(X) — [0, 1]. For any permutationt € S", let O, be the probability orfP(X)
determined by the equations

Ox ({xﬂ(l), .. ,xﬂ(j)}) = /L({xﬂ(l), .. ,xﬂ(j)}) vVi=1,...,n.

Then,Ext(M (1)) = (O | 7 € S"} and M (1) = Conu{Q | 7 € S"}).

Using this result, we proved in [20] that given a random Eet$2 — P(X) taking
values on a finite space, all the extreme pointd&fP*) belong toP(I"); hence,P(I")
andM (P*) coincide if and only ifP(I") is convex. It would be interesting to see whether
such an equivalence holds for more general final spaces, not necessarily finite. Although
the direct implication holds in general, the converse does not hold necessarily when the
cardinal ofX is infinite, as the following example shows.

2 This theorem is an extension, for 2-alternating capacities, of a result established by Dempster [8] for random
sets on finite spaces. Other proofs of this result in different contexts can be found in [3,27].
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Example 4.1. Consider the probability spac€0, 1), 80,1y, A(0,1)), the measurable space
((0, 1), B(o,1y), and the multi-valued mapping

r:0,1)—P((0,1), o< O w).
It is strongly measurable: gives € 8,1y non-empty, it is
rA)=(inf{lAn,1},1),

and trivially I'*(9) = ¢. We are going to prove thaP(I") coincides with the set of
probabilitieSC ={0 € Pﬁ(o,l) | EINQ € ﬂ(o,l),)\‘(o’l)(NQ) =0, s.t. Q((O,x]) >x Vx €
(0,1) \ Ng}. Note that any element & satisfiesQ((0, x]) > x Vx € (0, 1): it suffices
to use the right-continuity of the distribution function associated to a probability.

(©) LetU be a measurable selectionBf Then,

— Givenx € (0, 1), Py ((0, x]) = P«((0,x]) = A0,1)((0, x]) = x.

— Let us denoteNy := {x € (0,1) | Py((0,x]) = x}. This is a subset of0, 1),
which is totally bounded; moreover, the right-continuity of the distribution func-
tion of U, Fy, implies that the limit of a decreasing sequence of elements of
Ny also belongs taVy . Hence, for any: € N, there existtf, ..., x;, € Ny S.t.

Ny =Ny 0 (Ul 5+ 3.

Letus defined,, = {w e (0,1) |w — U(w) > nl}. Itis clear that the sequen¢d,, },
is increasing and tha0, 1) = J,, A,, becausé/ is a selection of". Givenx € Ny
andn e N,

x =Py ((0,x]) =101 ({@| U@) <x}) = A0,1((0 x))

1 1
+)\(0,1)<|:x,x + ;il N An> =x +)\.(O)l)([.x,x + ;li| ﬂAn),

whencei o1 ([x, x + 11N 4,) = 0, and this implies that

m
L 1
ro,np(NyNAy) < ZMO,l)([xi",x;’ + —] N An) =0
i=1 n
= loynWNuNA,)=0 Vn.

Therefore o,1)(Ny) = lim, A,1y(Ny N A,) =0, whencePy C.

(2) Conversely, considep € C, and IetN/Q ={x€(0,1)| Q((0, x)) = x}. Taking into
account thatp ((0, x)) = Q((0, x]) except for the countable number of discontinuity
points of Fp, we deduce thaQ((0, x)) > x for all x € (0, 1) except for a null set
(whencexrg,1 (N’Q) = 0), and, from the right-continuity af, itis Q((0, x)) > x Vx.

Let U : (0,1) — R be the quantile function 00, U(w) = inf{x | ® < Q((0, x])},
and let{B,}, be the measurable partition @0, 1) given by B1 := (%, 1), B, :=
(3, Zn—{l] Vn > 2. Let us define

U(w), if o ¢ N,

U1:(0,1)— (0,1), w< Zlns ifa)eN’QﬂBn.
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— Considerw € (0,1). If w € N’Q, there is somer s.t. w € N’Q N B,, and then

Ur(w) = Zi <w. fw¢ N/Q, then Q((0, w)) > w, whence there is some’ < w
with 0((0, ']) > w. HenceU1(w) = U(w) =inf{x | o < Q((0, x])} < o' < w.On
the other hand, if it wer& (w) = 0, then it would beD (¥) > » > 0, a contradiction.
Hence,U1(w) € (0, w) Yw. This shows that/; is a selection of".

— GivenA € B,1),

UrHA) = (U7 A) NNG) U (U HA) N (NG))

=< U N’QmBn)UW1<A>ﬂ(N/Q>“)eﬁ<o,1>,

{nl 5 €A}

taking into account that/ is measurable and/;,, {B,}, belong toB.1). Hence,
U; is a measurable mapping.

— The quantile functio/ of Q satisfiesPy = Q. Taking into account thal/; (w) =
U(w) forall w ¢ N’Q and thatx o1 (N’Q) =0, we conclude thaPy, = Q.

Therefore,P(I") coincides withC, and it is immediate to verify that this set of prob-
abilities is convex. Consider now the Lebesgue measuygga) on B 1. It satisfies
r.1)(A) < A,p((inflfA N (0, 1)}, 1)) = P*(A) YA € Bo,1) hon-empty (and trivially
0,1 (@) = P*(?) = 0), whencek g1y € M(P*). However,g,1)((0, x]) = x Vx, whence
A,1) ¢ C = P(I'). Hence, the convexity aP (I") does not imply its equality with/ (P*).

In [21], we investigated the form of the extreme points Mfw) when u is a 2-
alternating and upper continuous capacity defined on a separable metricspduweidea
in that paper was to approximate a probability 8x — [0, 1] by a sequence of probabil-
ities that coincide withQ on a sequence of finite fields. In this section, we are going to use
a similar construction, this time applied to the upper probability induced by a random set
(which is not, in general, upper continuous). We will work with the topology of the weak
convergence, whose main properties can be found in [2]. Together with the well-known
Portmanteau’s theorem, we will also use the following result:

Proposition 4.2 [2]. Let (X, d) be a separable metric space, and consider a class Bx

closed under finite intersections and such that every open set is a finite or countable union
of elements frond/. Let{P,}, U P be a family of probability measures g#x such that

lim, P,(A) = P(A) VA eUd. Then{P,}, converges weakly t&.

The following lemma will be used later:

Lemma 4.3. Let (X, d) be a metric space, and consid€ a convex set of probabilities
defined omBx. Then, its closur& in the topology of the weak convergence is also convex.

Proof. ConsiderPy, P> € O, « € (0, 1), and let us show thatP; + (1 — «) P> € Q. There
are two sequence$}},, {P?}, € Q such that lim P} = Py, lim, P2 = P;. Let us con-
sider, for every natural number, the probabilityoePn1 +@A- oz)PnZ. It belongs toQ



E. Miranda et al. / J. Math. Anal. Appl. 307 (2005) 32—-47 41

because this set is convex by hypothesis.A &k ax P1 + (1 — «) Po-continuity set. Then,
O=(@P1+(1—a)P)(0A) =aP1(0A) + (1 —a)P2(0A), whenceA is also aP, and Pp-
continuity set. Applying Portmanteau’s theorem,,Jim,l(A) = P1(A) and lim, P,,Z(A) =
P>(A), and as a consequence ,I,i(aPnl + 1 - oz)P,,z)(A) =aP1(A) + (1 — a)Pa(A).
Using again Portmanteau’s theorem, we deduce that the Seqmﬁ#ei- 1- oc)PnZ}n
converges weakly ta P 4+ (1 — «) P>. Therefore, this probability belongs @ and this
setis convex. O

Consider a separable metric spacg d), and let{x,}, be a countable dense subset
of X. Let us define the classB(x;;¢;) | i € N, g; € Q}. This is a countable basis of
the topologyz (d), and we denote i{B,},. For every naturak, let 7, denote the field
generated byBs1, ..., B,}, and letF({B,},) be the field generated H\B, },. It can easily
be checked that ({B,},) = |U,, F»; moreover, the clas& ({B,},) satisfies the hypotheses
of Proposition 4.2: it is clear that it is closed under finite intersections, because it is a
field; on the other hand, any open set is a countable union of elementg &gm and in
particular fromZF ({B,},). Any element ofF, is a (finite and disjoint) union of elements
from D, :={C:NC2n---NC, | C; € {B;, Bf} Vi: 1,...,n}. Let us denote this class
D, = {Ef, E,’;}.

Next, we prove the main theorem of the paper. It establishes a relationship between
P(I') and M (P*) which holds, taking into account our results from the previous section,
under fairly general conditions.

Theorem 4.4. Let ($2, A, P) be a probability space(X, d) a separable metric space and
I' : 2 — P(X) arandom set such that*(A) = maxP(I")(A) VA € F({B,}»). Then,

(1) M(P*) = Con(P(I)).
(2) P(I')=M(P*) « P(I') is convex.

Proof. (1) Itis clear thaConv(P (")) € M(P*). Conversely, considap; € M (P*), and
fix n € N. Consider the finite measurable spagg,, P(D,)), and let us define the multi-
valued mapping

L,:2—PDy), o= (E]|T@)NE] #0].
This mapping is strongly measurable: giver {1, ..., k,},

ry({E'} ={wl|3iel, El e(w)}={w|3iel, I'()NE!+#0}

=F*<UE;?> e A

iel

iEI)

Let O be the probability measure dn(D,) determined by the equalities

O({E'}) = 01(E!) Vi=1,... k. (8)
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It belongs toM(Pjin):

Q({ zeI Ql(UE ) PF(UEn> = En}zel)
iel iel
foranyl C {1,...,k,}.
From Theorem 4.1M(P,’£n) = Conv{Q, | = € §¥}), where the probability measure
0, : P(D,) — [0, 1] is determined by

Ox({Exy > Enciy}) = P, ({ERy -+ Eniy}) PF(U En(z))
Vi=1... k.

For any of these extreme points, there is sdtpes P (1) with Pﬂ(E") =Q0x ({E”}) Vj=
1,...,k,: it suffices to take into account that, from Theorem 3. 2 we can approxmjate
on a finite chain, and then make a correspondence similar to that of Eq. (8) between the
restriction toF, of a probability defined oy and a probability orP?(D,). As a con-
sequence, given the probability € Conv{Q,, | = € S*}) defined through Eq. (8), there
existsP, € ConM P (I")) such thatP,,(E;?) = Q({E;’}) = Ql(E;?) Vji=1,...,k,, whence
P,(A) = Q1(A) YA € F,,. The sequencé¢P,}, € ConP(I")) satisfies lim P,(A) =
01(A) forall A € F({B,},). Applying Proposition 4.2, we conclude tha?,}, converges
weakly toQ1, whenceM (P*) C Conu P (I")). This implies the desired equality.

(2) The direct implication follows if we take into account that, from Lemma 4.3, the
closure of M (P*) is convex. For the converse implication, assume #h@rt) is convex.
Then, applying the first point of this theorem, it is

M(P*)=Con\P(I')) € Con(P(I"))=P(I') = P(I),

and this implies thaP (I"') = M(P*). O

Let us remark that the conclusions of this theorem do not necessarily hold when the
random set does not satisB/*(A) = maxP(I")(A) for all A € F({B,},); as we said be-
fore, in that case it may happen (see [23, Example 1]) #dT) is empty, or even if it is
not, that it contains only one distribution, while the clag¢P*) is much larger. In such a
situation our theorem would not hold.

The first point of this theorem generalises a result established in [24] for random inter-
vals, and also a result established by Castaldo and Marinacci for compact random sets on
Polish spaces in [4]. On the other hand, the second point of the theorem extends the result
mentioned before for the finite case: as we check in [19], when the final space is finite the
classesP(I") and M (P*) are closed, whence the equivalene&l™) = M (P*) < P(I")
convex become® (I') = M(P*) < P(I") convex.

As we mentioned in the introduction, the main advantag@/é®*) over P(I") as a
model of the information concerningy, is that it can be represented in terms of the upper
probability, and its disadvantage is that it usually produces a loss of precision. Even when
M (P*) = ConuP(I")), the upper probability can lose some important information respect
to P(I"), as we showed in [24]; this loss is smaller when the closurd¥6f) and M (P*)
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coincide. Taking into account the second point of this theorem, it becomes interesting to
establish sufficient conditions for the convexity B{I"). The first one is given in the
following proposition, which is an immediate consequence of Lemma 4.3.

Proposition 4.5. Let (£2, A, P) be a probability space(X, d) be a metric space and let
I : 2 — P(X) be arandom set. IP(I') is convex, therP (I") is convex.

Next, we are going to prove that if the initial probability space is non-atomic, the closure
P(I') is convex and therefore it coincides (under the hypotheses of Theorem 4.4) with
M (P*). We need the following supporting result, where we use the notations established
before Theorem 4.4.

Lemma 4.6. Let (£2, A, P) be a non-atomic probability spacéX, d) a separable metric
space and : 2 — P(X) arandom set. Then, the class of probabilities

H, :={Q : P(D,) — [0, 1] probability| 30" € P(I") such that
O({EM) =0 (BN Vi=1,... ki}

is convex for every.

Proof. Fix n € N, and consideP,, P> € H,, a € (0, 1). Then, there exist/1, U> € S(I")
with Py, (E}') = PL({E}'}), Py,(E}') = P2({E]'}) Vi =1, ..., k,. Let us consider the mea-
surable partition of2 given by {(Cy; | i, j =1, ..., k,} with C;; = U7 HE! N Ugl(E;F);
from the non-atomicity of$2, A, P), there is, for every, j, some measurablB;; < C;;
such thatP (D;;) = a P(C;;). DefineD = Ui’j D;; and the mappind@/ : £2 — R by

U :=Uilp + Uzlpe.

Taking into account thall/; andU, are selectors of", we deduce thal/ (w) € I' (w) Y.
Besides,U is measurable, becaugg and U, are measurable anb € A. Hence,U €
S(I'). Moreover,

Py(E}') = P(UTH(E) 0 D) + P(U5*(E}) N D°)

kll kn

=Y P+ Y (P(Cj)— P(D)
i=1

j=1

kn kn
=>"aP(Ci)+ Y (L—a)P(Cy)
i=1 j=1
=aPy (E})+ Q- a)Py,(E}) YI=1,... k,

and we deduce from this thatP; + (1 — @) P, belongs taH,. O

Theorem 4.7. Let (£2, A, P) be a non-atomic probability spaceX, d) a separable metric
space and" : 2 — P(X) arandom set. TherR (I") is convex.
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Proof. Let us show first that CoriP (I")) is a subset ofP(I"). ConsiderPy, P, € P(I"),
a € (0, 1). Define, for every natural, probabilitiesP} and P? on P(D,) by PI{E") =

Pi(EN,Vj=1 . ki =12 Then, P!, P? belong toH,, and applying the previous
lemma, there exist8, € P(I") s.t.

Pi(A) =aPY({A)) + (1 — @) P2({A}) =aPL(A) + (L — @) P2(A), VA€ F,.

Now, applying Proposition 4.2, we deduce that the sequé¢Rgk, converges weakly to
a P14+ (1 — «) P> and as a consequence this probability belong®(tb). Therefore,

P(I') € Con(P(IN)) € P(I'),

whenceP (I') = ConvP(I")). Applying Lemma 4.3, this set of probabilities is convex.
This completes the proof.0O

The conclusion of this theorem does not hold in general when the initial probability
space is atomic: even in the finite case, whBig") is closed and therefore it iB(I") =
P(I') there are examples where it is not convex (see [20, Example 1]).

Now, using Theorems 3.1, 4.4, and 4.7, we can establish conditions on the images of
the random set that guarantee the equality between the closuPgg ofand M (P*).

Corollary 4.8. Let (£2, A, P) be a probability space,X, d) a separable metric space and
let I" : 2 — P(X) be arandom set. Under any of the following conditions

(1) £2 is completeX is Souslif andGr(I") € A® Bx,
(2) I is open,

(3) I' is complete,

(4) X iso-compact and is closed,

M (P*)=ConvP(I")). Ifin addition (£2, A, P) is non-atomic, thed/ (P*) = P(I").

Proof. The first part follows from Theorem 3.1 and the first point of Theorem 4.4. For the
second part, it suffices to apply the second point of Theorems 4.4 and@.7.

This corollary extends some results from [11]: it is proven there that given two closed
random setd7, I'»> taking values on a separable Banach space, the equality beRj@en
and Py, implies that

Conv(P(I'1)) = Con(( P (I2)).
Similar results can be found in [1,10], in those cases with other hypotheses on the ran-
dom set: in [1], Arstein and Hart show thB;i1 = P;i2 = P/(I1) = P'(I»), wherer; is a

closed random set dR" and P’(I;) is the set of distributions of itmtegrableselections,
for i =1, 2. On the other hand, Hart and Kéhlberg prove in [10] tﬁﬁltz P;i2 implies

3 Although a Souslin space is not in general metrizable, this extra hypothesis is necessary for the result.
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P(I') closed
P(I'y=M(P*)
P(I'") convex M (P*) closed

Fig. 1. Some relationships betweérn/") and M (P*) when their closures coincide.

that P(I'1) = P(I2), whereT; is an integrably bounded random set defined between a
non-atomic complete probability space dkél We have proven that the equality between
Pr, and Pr, implies the equality betwee@onv P (I'1)) andConv P (1)) only requiring
I, I'> to be complete on a separable metric space; moreover, we have showed that these
two sets of probabilities coincide withf (P;’il) andM (P;iz), respectively.

The corollary provides sufficient conditions for the equality between the closures, in the
topology of the weak convergence, Bf ") and M (P*). Under those conditions, i? (")
is closed, it coincides witl#/ (P*), and then the upper probability provides an accurate
representation of the information concerning the probability distributiobigofWe think
it is interesting at this point to clarify the relationship between a number of topological
conditions. This will avoid confusions and will help to understand the meaning of the
relationships we have established. WheneverR(g) = M (P*), itis easy to see that the
implications in Fig. 1 hold.

None of the converses of these implications is true in general.

Example 4.2.

(1) Let us start showing that the equality betwefl™) and M (P*) does not imply that
P(I') is closed. Consider the probability spa@e, 1), B0,1), A(0,1)), Which is non-
atomic, and let"” : (0, 1) - P(R) be given byl (w) = (0, 1) for all w € (0, 1). Then,
M(P*) ={Q : Br — [0, 1] probability| Q((0, 1)) = 1}. ConsiderQ € M(P*), and
let U : (0,1) — R denote its quantile function. Then, it is easy to see thas a
selector ofl" and satisfies’y = Q, whenceP (I") = M (P*). However, the sequence
of degenerate probability measures iqn{é;},, C M(P*), converges weakly tég ¢
M (P*). Hence, neitheM (P*) or P(I") is closed.

(2) Let us see now thal(I") is not necessarily closed whedi(P*) is closed. Consider
the probability spacgO0, 1], Bo,13. A[0,17) and the random closed intervé : [0, 1] —

P(R) given by I'(w) = [—w, w] for all w € [0, 1]. Then, M (P*) is closed (this is
indeed the case for all compact random sets on Polish spaces). However, we check in
[24] that P(I7) is not convex, and, taking into account Fig. 1, it is not closed either.

(3) Let us show finally that the convexity df(I") does not imply the equality (I') =
M(P*). Let I be the random set from Example 4.1. Then, the set of probabilities
P (I') is convex, but it does not coincide witf (P*).
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5. Conclusionsand open problems

The results established in this paper allow us to shed some light into the problem of
the representation of the information provided by a random set. On the one hand, given
an (unknown) selectdr, the information about its induced probability distribution is not
equivalent to the information about the values of this probability: the former is given by the
classP (I") of the distributions of the selectors, while the latter is given by the class of sets
{P(I"N)(A) | A € A'}, which is in a one-to-one correspondence with the set of probabilities
A(I'). We can deduce from our results that these two sets of probabilities do not coincide
except in very particular cases. On the other hand, the s¢éf¥ and M (P*) will be
equivalent under fairly general conditions, and so will the closureB(@f) and M (P*).

In those cases, the upper probability keeps most of the information given by the random set
about Py, but it may produce nonetheless a loss of precision. We want to stress that the
conditions for the equality? (I") = M (P*) are sufficiently general, because in practice it

is common to consider closed (or open) random sets taking valuR®,@nd also the non-
atomicity of the initial probability space is fairly usual (as we have said, it holds whenever
there is a continuous random variable starting on this space).

We want to point out three open problems from this paper: first, it would be interest-
ing to establish sufficient conditions for the equality betweéxi™) and M (P*). Under
those conditions, the upper probability would suffice to summarize the information about
the probability distribution of the original random variable. We obtained some conditions
of that type in [20] for random sets on finite spaces, and in [24] for random intervals.
We would like to know if the equality? (I") = M (P*) holds under more general situa-
tions. Secondly, it would be important to compare the information provided by the sets
of probabilities P(I") and P(I") about some parameters of the probability induced by
Uop; this would allow us, taking into account the sufficient conditions we have proven for
P(I') € M(P*) € M(P*) = P(I'), to determine when to us(I") or M(P*) to rep-
resent the information given by the random $etTaking into account Theorem 3.2, we
think that it is probable that both sets of probabilities keep the same information for the
expectation operator (see also [7]). And finally, it may be interesting to make an analogous
study under additional hypotheses ov&y, such as the continuity of its probability dis-
tribution. A possible approach to this problem would be to approximate in some way the
distribution of any measurable selection by a sequence of distributions of continuous mea-
surable selections. As suggested by one of the referees, and also related to this problem, it
would also be interesting the study of random sets or multi-valued mappings as a model
of the imprecise observation of a mapping (not necessarily measurable). The study of the
probabilistic information would be, however, more involved; one possible approach would
be to extend probability measure on the initial spac@{&2) (probably no longer as a
probability measure, but as an inner/outer measure). This would allow us to give a measure
to the upper and lower inverses of the subsets of the final space (and also on their inverses
by the selections); another alternative, as pointed out by the referee, would be to approxi-
mate the lower and upper inverses by sets where the probability is defined. We think that it
may be more interesting in this non-measurable context to use the approach considered in
[25] and to compare, using the results from that paper, the lower previsions induced by the
multi-valued mapping and the selectors.
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