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Abstract

Given a random set coming from the imprecise observation of a random variable, we stud
to model the information about the probability distribution of this random variable. Specifi
we investigate whether the information given by the upper and lower probabilities induced
random set is equivalent to the one given by the class of the probabilities induced by the mea
selections; together with sufficient conditions for this, we also give examples showing that th
not equivalent in all cases.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Random sets, or measurable multi-valued mappings, constitute a useful genera
of random variables, and have been successfully applied in such different fields as
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omy [12] or stochastic geometry [18]. They have also been given different interpreta
like the behavioral [25] or the evidential one [8]. In this paper, we follow the interpreta
given by Kruse and Meyer in [16], and regard them as a model for the imprecise ob
tion of a random variableU0. We assume that for some elements of the initial space
cannot tell their image byU0 (due to some inaccuracy during the observation proces
simply to the existence of missing data), and we consider then a subset of the fina
which is sure to include these images. This reasoning leads naturally to the definitio
random set, for which there are a number of possible ways of summarizing the inf
tion about the probability induced by the imprecisely observed random variable. The
important ones are the class of probability distributions of the measurable selection
we shall denoteP(Γ )) and those bounded between the upper and lower probabilitie
random set induces (denotedM(P ∗) in this paper). Although working with the upper a
lower probabilities leads to a number of mathematical simplifications [26,28], the info
tion they provide is in general more imprecise than the one given by the set of distrib
of the measurable selections [20,23]; our aim in this paper is to study the relation
between these models in order to understand the information conveyed by each of t

In Section 2, we introduce some concepts and notations that we will use in the
the paper, and recall some previous works on the subject. In Section 3, we investig
information that the upper and lower probabilities give about the values of the proba
distribution induced by the original random variable. This is a first step towards the
parison of the models of this probability distribution, which is carried out in Sectio
Starting with a study of the extreme points ofM(P ∗) and their relationship withP(Γ ),
we prove several relationships between the upper and lower probabilities and the c
probabilities of the measurable selections that hold under fairly general condition
generalise some results from the literature. The paper concludes in Section 5 with
additional comments and remarks.

2. Preliminary concepts

Let us introduce some notation that we will use throughout the paper. We will den
probability space by(Ω,A,P ), a measurable space by(X,A′) and a multi-valued map
ping, Γ : Ω → P(X). On the other hand,(X,d) will denote a metric space, and(X, τ)

will denote a topological space. Given a subsetA of a topological space,∂(A) will denote
its boundary. Given a class of setsH, F(H) andσ(H) will denote, respectively, the fiel
and theσ -field generated byH. In the particular case where we consider the Borelσ -field
generated by a topologyτ on X, we will also denoteβX = σ(τ). The topology associate
to a metricd over X, i.e., the one generated by the open balls, will be denoted byτ(d).
A topological space is said to bePolishwhen it is separable and complete for some co
patible metricd , and it is calledSouslinif it is the continuous image of a Polish spac
A multi-valued mapping will be called open (respectively complete, closed, compa
Γ (ω) is an open (respectively complete, closed, compact) subset ofX for everyω ∈ Ω .
Given a random variableU : Ω → R, PU andFU will denote, respectively, its induce
probability and its distribution function. Finally,λA will denote the Lebesgue measure

a setA ∈ βR andPA′ will denote the set of probabilities that can be defined on aσ -fieldA′.
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Formally, a random set is a multi-valued mapping that satisfies some measurabilit
dition. Although in the literature we can find different conditions, such as the weak
strong-, or the graph-measurability [13,14], we will only work in this paper with the st
measurability: this condition is necessary if we want to be able to define the uppe
lower probabilities on the finalσ -field (and consequently, if we want the discussion c
ried in this paper to be possible).

Definition 2.1. Let (Ω,A,P ) be a probability space,(X,A′) a measurable space a
Γ : Ω →P(X) a multi-valued mapping. GivenA ∈ A′, itsupper inverseby Γ is Γ ∗(A) =
{ω ∈ Ω | Γ (ω) ∩ A �= ∅}, and itslower inverseis Γ∗(A) = {ω ∈ Ω | ∅ �= Γ (ω) ⊆ A}. The
multi-valued mappingΓ is said to bestrongly measurablewhenΓ ∗(A) andΓ∗(A) belong
to A for all A ∈A′.

When there is no possible confusion about the multi-valued mapping we are wo
with, we will use the notationA∗ := Γ ∗(A) andA∗ := Γ∗(A). By a random setwe will
mean throughout a strongly measurable multi-valued mapping.

Definition 2.2 [8]. Given a random setΓ : Ω → P(X), theupper probabilityof A ∈ A′ is
P ∗

Γ (A) = P(A∗)
P (X∗) , and thelower probability, P∗Γ (A) = P(A∗)

P (X∗) .

Note that the upper and lower probabilities of a random set can be defined onA′ because
we are assuming thatΓ is strongly measurable. This is not the case with other (wea
measurability conditions. Let us also remark that, becauseA∗ = [(Ac)∗]c for anyA ⊆ X,
it is P ∗

Γ (A) = 1− P∗Γ (Ac) for all A ∈ A′, i.e., these two functions areconjugate. P ∗
Γ and

P∗Γ are∞-alternating and∞-monotone capacities, respectively [26] and in particular
isfy Walley’s axioms of coherence [28]. When there is no ambiguity about which ran
set is inducing the upper and lower probabilities, we will denoteP ∗ := P ∗

Γ andP∗ := P∗Γ .
As we pointed out in the introduction, we are regarding random sets as a mo

the imprecise observation of random variables. Hence, we consider a random v
U0 :Ω → X (which we calloriginal random variable) and assume that for everyω in
the initial space all we know aboutU0(ω) is that it belongs to the setΓ (ω). This idea has
two immediate consequences: first, we may assume thatΓ (ω) is non-empty for everyω in
the initial space, whenceP ∗(A) = P(A∗) andP∗(A) = P(A∗) for all A ∈ A′; and more
importantly, our knowledge aboutU0 is given by the class ofmeasurable selections(or
selectors) of Γ ,

S(Γ ) := {
U : Ω → X measurable

∣∣ U(ω) ∈ Γ (ω) ∀ω
}
.

In particular, the probability distribution ofU0 belongs to

P(Γ ) := {
PU

∣∣ U ∈ S(Γ )
}
, (1)

and our information aboutPU0(A) is given by the set of values

P(Γ )(A) := {
PU(A)

∣∣ U ∈ S(Γ )
}
. (2)

Equations (1) and (2) are the most precise pieces of information thatΓ gives about the

probability distribution ofU0, and about the values{PU0(A) | A ∈ A′}, respectively. In
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general, these two pieces of information are not equivalent: we can derive the sets in
from Eq. (1), but there may be different sets of probabilities whose sets of valuesA′
coincide. We may then consider

	(Γ ) := {
Q probability

∣∣ Q(A) ∈ P(Γ )(A) ∀A ∈A′}, (3)

which is the biggest set of probabilities compatible with the sets in Eq. (2). It was
introduced by Couso in [6]. It is clear thatP(Γ ) ⊆ 	(Γ ). When they coincide, the infor
mation aboutPU0 is equivalent to the information about the values this probability ta
On the other hand, we can also consider the class

M
(
P ∗) := {

Q probability
∣∣ Q(A) � P ∗(A) ∀A ∈A′} (4)

of probabilities dominated byP ∗, or (following the notation of Levi [17])credal setgen-
erated byP ∗, which has been more thoroughly studied in the literature ([4,6,8], am
others). Given a setA ∈ A′, its lower inverseA∗ is the greatest subset ofΩ which is
certain to be included inU−1

0 (A), and its upper inverseA∗ is the smallest subset ofΩ
which is sure to includeU−1

0 (A) as a subset. Taking into account that all we know ab
U0 is that it is a measurable selection ofΓ , we deduce thatP∗(A) � PU(A) � P ∗(A)

for all U ∈ S(Γ ),A ∈ A′. This implies that	(Γ ) ⊆ M(P ∗), and as a consequen
P(Γ ) ⊆ 	(Γ ) ⊆ M(P ∗). However, both these inclusions can be strict, as the follow
example shows.

Example 2.1 [6]. Let us consider the probability space(Ω,A,P ), whereΩ = {ω1,ω2},
A = P(Ω) andP({ω1}) = 1

3 and the random setΓ : Ω → P({1,2,3}) given byΓ (ω1) =
{1,2,3}, Γ (ω2) = {1,2}. Then, it is easy to verify that

P(Γ ) =
{
(1,0,0),

(
2

3
,

1

3
,0

)
,

(
2

3
,0,

1

3

)
,

(
1

3
,

2

3
,0

)
, (0,1,0),

(
0,

2

3
,

1

3

)}
,

where a vector(p1,p2,p3) denotes(p({1}),p({2}),p({3})). The probability measur
given by(1

3, 1
3, 1

3) belongs to	(Γ ) \ P(Γ ). On the other hand,(0.5,0.3,0.2) ∈ M(P ∗) \
	(Γ ). Hence, in this case we haveP(Γ ) � 	(Γ ) � M(P ∗).

The setM(P ∗) is convex and is uniquely determined by the upper probability. Henc
is easier to handle thanP(Γ ); we see from the example that it may also be more impre
The goal of this paper is to study the relationships betweenP(Γ ) andM(P ∗), determining
under which conditions the upper probability of the random set keeps all the inform
about the probability distribution of the original random variable (as we will show, i
are only interested in the values taken byPU0 in the finalσ -field, the set	(Γ ) allows us
to express the problem in terms of sets of probabilities instead of subsets of[0,1]). This
problem was studied in [20] for the case whereX is finite, in [24] for random intervals
and in [4] for compact random sets on Polish spaces. We will generalise some of the
from these references in this paper. On the other hand, other aspects of the sets
abilities induced by the measurable selections or the upper and lower probabilitie

investigated in [1,6,10,11]. Their relevance to this problem will be detailed later.
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3. P ∗(A), P∗(A) as a model for PU0(A)

We begin our study by comparing the information that the sets of probabilities de
by Eqs. (1), (3), and (4) give about the probability that the image ofU0 belongs to a certain
setA of the finalσ -field. This information is given by the sets{

p ∈ [0,1] ∣∣ ∃Q ∈ P(Γ ): Q(A) = p
}
, (5){

p ∈ [0,1] ∣∣ ∃Q ∈ 	(Γ ): Q(A) = p
}

and (6){
p ∈ [0,1] ∣∣ ∃Q ∈ M

(
P ∗): Q(A) = p

}
, (7)

respectively. As we see from Example 2.1,P(Γ ) can be strictly included in	(Γ ). Nev-
ertheless, it can be checked that the sets given by Eqs. (5) and (6) coincide with th
P(Γ )(A) defined in Eq. (2). On the other hand, it is easy to see that the set defin
Eq. (7) is actually the interval[P∗(A),P ∗(A)]. Let us study then under which conditio
P(Γ )(A) and [P∗(A),P ∗(A)] coincide. For this, we must determine under which c
ditions the maximum and minimum values ofP(Γ )(A) coincide, respectively, with th
upper and lower probabilities ofA, and also whenP(Γ )(A) is convex. We studied thes
two problems in [23]. Concerning the first, we showed thatP∗(A) and P ∗(A) are not
equal in general to the minimum and maximum values ofP(Γ )(A). We also provided in
that paper sufficient conditions for these equalities, which we summarize in the follo
theorem.

Theorem 3.1 [23]. Consider(Ω,A,P ) a probability space,(X, τ) a topological space
andΓ : Ω → P(X) a random set. Under any of the following conditions:

(1) Ω is complete,X is Souslin andGr(Γ ) ∈A⊗ βX ;
(2) X is a separable metric space andΓ is compact;
(3) X is a Polish space andΓ is closed;
(4) X is aσ -compact metric space andΓ is closed;
(5) X is a separable metric space andΓ is open,

P ∗(A) = maxP(Γ )(A) and P∗(A) = minP(Γ )(A) ∀A ∈ βX.

Moreover, if
(6) X is a separable metric space andΓ is complete, then

P ∗(A) = maxP(Γ )(A), P∗(A) = minP(Γ )(A) ∀A ∈ F
(
τ(d)

)
.

As we show in [23, Example 1], the equalitiesP ∗(A) = maxP(Γ )(A) andP∗(A) =
minP(Γ )(A) do not hold in general, and therefore we must look for sufficient condit
such as those listed in this theorem; in fact, it may even happen thatΓ does not posses
any measurable selection, and in that case bothP(Γ ) and	(Γ ) would be empty.

Let us make now a small digression concerning this theorem. When the eq
P ∗(A) = maxP(Γ )(A) holds for every setA in the finalσ -field, the upper probability
is the upper envelope of the setP(Γ ). We already know from the coherence ofP ∗ that it is
the upper envelope of the class offinitely additive probabilities it dominates [28]; our th

orem gives sufficient conditions forP ∗ to be the upper envelope of the class ofcountably
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additive probabilities belonging toP(Γ ), which is in general a subclass ofM(P ∗). This
is related to the problem studied by Krätschmer in [15]. A similar comment can be
for P∗.

Our result is also related to some properties proven by Couso. In [6], she showe
the equalityP ∗(A) = supP(Γ )(A) ∀A ∈ A′ implies the equality, for any bounded ra
dom variable, of its Choquet integral ([9]) respect to the upper probability ofΓ and the
supremum of its integrals respect to the distributions of the measurable selection
fact, together with Theorem 3.1 produces the following result, which generalizes [4
orem 1].

Theorem 3.2. Let (Ω,A,P ) be a probability space,(X,A′) a measurable space an
let Γ : Ω → P(X) be a random set satisfying any of the conditions(1) to (5) from
Theorem3.1. Then, for any bounded random variableV : X → R, it is (C)

∫
V dP ∗ =

sup{∫ V dQ | Q ∈ P(Γ )} and(C)
∫

V dP∗ = inf{∫ V dQ | Q ∈ P(Γ )}.

Let us remark that in particular, under the hypotheses of this theorem, given a
chain A1 ⊆ A2 ⊆ · · · ⊆ Am of elements ofA′, there exists an elementU of S(Γ ) s.t.
PU(Ai) = P ∗(Ai) for all i = 1, . . . ,m.

The second necessary condition for the equalityP(Γ )(A) = [P∗(A),P ∗(A)] is the con-
vexity of P(Γ )(A). This property does not hold in general either. It can be characteriz
terms of a property of the initial probability space. We need to remark that, as it is p
in [23], the setP(Γ )(A) always has a maximum and a minimum value.

Proposition 3.3 [23]. Let (Ω,A,P ) be a probability space,(X,A′) a measurable spac
and letΓ : Ω → P(X) be a random set. ConsiderA ∈ A′ and letU1,U2 ∈ S(Γ ) satisfy
PU1(A) = maxP(Γ )(A), PU2(A) = minP(Γ )(A). Then,

P(Γ )(A) is convex ⇔ U−1
1 (A) \ U−1

2 (A) is not an atom.1

The right-hand side holds trivially, andP(Γ )(A) is consequently convex for allA ∈A′,
when the initial probability space is non-atomic. This is for instance the case when w
some additional information stating that the probability distributionPU0 is continuous.
Nevertheless, the non-atomicity of(Ω,A,P ) is not necessary forP(Γ )(A) to be convex,
as we showed in [20, Remark 1]. We can also see in the Example 1 from this refe
that U−1

1 (A) \ U−1
2 (A) is not necessarily an atom (and, consequently, thatP(Γ )(A) is

not always a convex set). If we join now Theorem 3.1 and Proposition 3.3, we deriv
following corollary:

Corollary 3.4. Let (Ω,A,P ) be a probability space,(X,A′) a measurable space and l
Γ : Ω → P(X) be a random set satisfying any of the conditions(1) to (5) from Theo-
rem3.1. Then, for anyA ∈ A′,

P(Γ )(A) = [
P∗(A),P ∗(A)

] ⇔ A∗ \ A∗ is not an atom.

1 By this we mean that for everyα ∈ (0,1) there is some measurableB ⊆ U−1
1 (A) \ U−1

2 (A) with P(B) =

αP (U−1

1 (A) \ U−1
2 (A)).
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This means that, under some conditions, the setsP(Γ ),	(Γ ) andM(P ∗) provide the
same information about the values of the probability distribution of the original ran
variable. Moreover, these conditions are not very restrictive: on the one hand, most r
sets used for practical purposes satisfy one of the conditions (1) to (5) from Theore
on the other hand, whenPU0 is continuous(Ω,A,P ) is necessarily non-atomic, and th
A∗ \ A∗ is not an atom for anyA ∈ A′.

4. P ∗, P∗ as a model for PU0

Let us study next the relationships between the setsP(Γ ),	(Γ ) andM(P ∗), which
model the information about the probability distributionPU0. It can easily be checked th
	(Γ ) coincides withM(P ∗) if and only if the setsP(Γ )(A) and[P∗(A),P ∗(A)] coincide
for all A ∈A′. Hence, our Corollary 3.4 gives sufficient conditions for the equality	(Γ ) =
M(P ∗); as we argued before, these conditions are not very restrictive. Neverthele
showed in [20] that this equality does not imply the one betweenP(Γ ) andM(P ∗), not
even when the final space is finite. This is another way to see that the information pro
by Γ about the probability distribution ofU0 is not equivalent, in general, to the one ab
the values of this distribution.

Although a possible approach to the study of the relationships betweenP(Γ ) and
M(P ∗) would be to study the relationship betweenP(Γ ) and 	(Γ ) and combine the
results with the ones mentioned in the previous paragraph, it will be more fruitful fo
paper to study directly the relation betweenP(Γ ) andM(P ∗). Our course of reasonin
will be based on the form of the extreme points ofM(P ∗), and will use the following
supporting result:2

Theorem 4.1 [5]. LetX = {x1, . . . , xn} be a finite set and consider a2-alternating capac-
ity µ : P(X) → [0,1]. For any permutationπ ∈ Sn, let Qπ be the probability onP(X)

determined by the equations

Qπ

({xπ(1), . . . , xπ(j)}
) = µ

({xπ(1), . . . , xπ(j)}
) ∀j = 1, . . . , n.

Then,Ext(M(µ)) = {Qπ | π ∈ Sn} andM(µ) = Conv({Qπ | π ∈ Sn}).

Using this result, we proved in [20] that given a random setΓ : Ω → P(X) taking
values on a finite space, all the extreme points ofM(P ∗) belong toP(Γ ); hence,P(Γ )

andM(P ∗) coincide if and only ifP(Γ ) is convex. It would be interesting to see wheth
such an equivalence holds for more general final spaces, not necessarily finite. Al
the direct implication holds in general, the converse does not hold necessarily wh
cardinal ofX is infinite, as the following example shows.

2 This theorem is an extension, for 2-alternating capacities, of a result established by Dempster [8] for

sets on finite spaces. Other proofs of this result in different contexts can be found in [3,27].
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Example 4.1. Consider the probability space((0,1), β(0,1), λ(0,1)), the measurable spac
((0,1), β(0,1)), and the multi-valued mapping

Γ : (0,1) →P
(
(0,1)

)
, ω ↪→ (0,ω).

It is strongly measurable: givenA ∈ β(0,1) non-empty, it is

Γ ∗(A) = (
inf

{
A ∩ (0,1)

}
,1

)
,

and trivially Γ ∗(∅) = ∅. We are going to prove thatP(Γ ) coincides with the set o
probabilitiesC := {Q ∈ Pβ(0,1)

| ∃NQ ∈ β(0,1), λ(0,1)(NQ) = 0, s.t. Q((0, x]) > x ∀x ∈
(0,1) \ NQ}. Note that any element ofC satisfiesQ((0, x]) � x ∀x ∈ (0,1): it suffices
to use the right-continuity of the distribution function associated to a probability.

(⊆) Let U be a measurable selection ofΓ . Then,
– Givenx ∈ (0,1),PU ((0, x]) � P∗((0, x]) = λ(0,1)((0, x]) = x.
– Let us denoteNU := {x ∈ (0,1) | PU((0, x]) = x}. This is a subset of(0,1),

which is totally bounded; moreover, the right-continuity of the distribution fu
tion of U , FU , implies that the limit of a decreasing sequence of element
NU also belongs toNU . Hence, for anyn ∈ N, there existxn

1 , . . . , xn
mn

∈ NU s.t.

NU = NU ∩ (
⋃mn

i=1[xn
i , xn

i + 1
n
]).

Let us defineAn = {ω ∈ (0,1) | ω − U(ω) � 1
n
}. It is clear that the sequence{An}n

is increasing and that(0,1) = ⋃
n An, becauseU is a selection ofΓ . Givenx ∈ NU

andn ∈ N,

x = PU

(
(0, x]) = λ(0,1)

({ω | U(ω) � x}) � λ(0,1)

(
(0, x)

)
+ λ(0,1)

([
x, x + 1

n

]
∩ An

)
= x + λ(0,1)

([
x, x + 1

n

]
∩ An

)
,

whenceλ(0,1)([x, x + 1
n
] ∩ An) = 0, and this implies that

λ(0,1)(NU ∩ An) �
mn∑
i=1

λ(0,1)

([
xn
i , xn

i + 1

n

]
∩ An

)
= 0

⇒ λ(0,1)(NU ∩ An) = 0 ∀n.

Therefore,λ(0,1)(NU) = limn λ(0,1)(NU ∩ An) = 0, whencePU ∈ C.
(⊇) Conversely, considerQ ∈ C, and letN ′

Q := {x ∈ (0,1) | Q((0, x)) = x}. Taking into
account thatQ((0, x)) = Q((0, x]) except for the countable number of discontinu
points ofFQ, we deduce thatQ((0, x)) > x for all x ∈ (0,1) except for a null se
(whenceλ(0,1)(N

′
Q) = 0), and, from the right-continuity ofFQ, it is Q((0, x)) � x ∀x.

Let U : (0,1) → R be the quantile function ofQ, U(ω) = inf{x | ω � Q((0, x])},
and let {Bn}n be the measurable partition of(0,1) given by B1 := (1

2,1), Bn :=
( 1

2n , 1
2n−1 ] ∀n � 2. Let us define

U1 : (0,1) → (0,1), ω ↪→
{

U(ω), if ω /∈ N ′
Q,

1 , if ω ∈ N ′ ∩ B .
2n Q n
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– Considerω ∈ (0,1). If ω ∈ N ′
Q, there is somen s.t. ω ∈ N ′

Q ∩ Bn, and then

U1(ω) = 1
2n < ω. If ω /∈ N ′

Q, thenQ((0,ω)) > ω, whence there is someω′ < ω

with Q((0,ω′]) > ω. Hence,U1(ω) = U(ω) = inf{x | ω � Q((0, x])} � ω′ < ω. On
the other hand, if it wereU(ω) = 0, then it would beQ(∅) � ω > 0, a contradiction
Hence,U1(ω) ∈ (0,ω) ∀ω. This shows thatU1 is a selection ofΓ .

– GivenA ∈ β(0,1),

U−1
1 (A) = (

U−1
1 (A) ∩ N ′

Q

) ∪ (
U−1

1 (A) ∩ (
N ′

Q

)c)
=

( ⋃
{n| 1

2n ∈A}
N ′

Q ∩ Bn

)
∪ (

U−1(A) ∩ (
N ′

Q

)c) ∈ β(0,1),

taking into account thatU is measurable andN ′
Q, {Bn}n belong toβ(0,1). Hence,

U1 is a measurable mapping.
– The quantile functionU of Q satisfiesPU = Q. Taking into account thatU1(ω) =

U(ω) for all ω /∈ N′
Q and thatλ(0,1)(N

′
Q) = 0, we conclude thatPU1 = Q.

Therefore,P(Γ ) coincides withC, and it is immediate to verify that this set of pro
abilities is convex. Consider now the Lebesgue measureλ(0,1) on β(0,1). It satisfies
λ(0,1)(A) � λ(0,1)((inf{A ∩ (0,1)},1)) = P ∗(A) ∀A ∈ β(0,1) non-empty (and trivially
λ(0,1)(∅) = P ∗(∅) = 0), whenceλ(0,1) ∈ M(P ∗). However,λ(0,1)((0, x]) = x ∀x, whence
λ(0,1) /∈ C = P(Γ ). Hence, the convexity ofP(Γ ) does not imply its equality withM(P ∗).

In [21], we investigated the form of the extreme points ofM(µ) when µ is a 2-
alternating and upper continuous capacity defined on a separable metric spaceX. The idea
in that paper was to approximate a probabilityQ : βX → [0,1] by a sequence of probabi
ities that coincide withQ on a sequence of finite fields. In this section, we are going to
a similar construction, this time applied to the upper probability induced by a rando
(which is not, in general, upper continuous). We will work with the topology of the w
convergence, whose main properties can be found in [2]. Together with the well-k
Portmanteau’s theorem, we will also use the following result:

Proposition 4.2 [2]. Let (X,d) be a separable metric space, and consider a classU ⊆ βX

closed under finite intersections and such that every open set is a finite or countable
of elements fromU . Let {Pn}n ∪ P be a family of probability measures onβX such that
limn Pn(A) = P(A) ∀A ∈ U . Then,{Pn}n converges weakly toP .

The following lemma will be used later:

Lemma 4.3. Let (X,d) be a metric space, and considerQ a convex set of probabilitie
defined onβX. Then, its closureQ̄ in the topology of the weak convergence is also con

Proof. ConsiderP1,P2 ∈ Q̄, α ∈ (0,1), and let us show thatαP1 + (1− α)P2 ∈ Q̄. There
are two sequences{P 1

n }n, {P 2
n }n ⊆ Q such that limn P 1

n = P1, limn P 2
n = P2. Let us con-
sider, for every natural numbern, the probabilityαP 1
n + (1 − α)P 2

n . It belongs toQ
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because this set is convex by hypothesis. LetA be aαP1 + (1−α)P2-continuity set. Then
0= (αP1 + (1− α)P2)(∂A) = αP1(∂A) + (1− α)P2(∂A), whenceA is also aP1 andP2-
continuity set. Applying Portmanteau’s theorem, limn P 1

n (A) = P1(A) and limn P 2
n (A) =

P2(A), and as a consequence limn(αP 1
n + (1 − α)P 2

n )(A) = αP1(A) + (1 − α)P2(A).
Using again Portmanteau’s theorem, we deduce that the sequence{αP 1

n + (1 − α)P 2
n }n

converges weakly toαP1 + (1 − α)P2. Therefore, this probability belongs tōQ and this
set is convex. �

Consider a separable metric space(X,d), and let{xn}n be a countable dense subs
of X. Let us define the class{B(xi;qj ) | i ∈ N, qj ∈ Q}. This is a countable basis o
the topologyτ(d), and we denote it{Bn}n. For every naturaln, let Fn denote the field
generated by{B1, . . . ,Bn}, and letF({Bn}n) be the field generated by{Bn}n. It can easily
be checked thatF({Bn}n) = ⋃

n Fn; moreover, the classF({Bn}n) satisfies the hypothese
of Proposition 4.2: it is clear that it is closed under finite intersections, because
field; on the other hand, any open set is a countable union of elements from{Bn}n, and in
particular fromF({Bn}n). Any element ofFn is a (finite and disjoint) union of elemen
from Dn := {C1 ∩ C2 ∩ · · · ∩ Cn | Ci ∈ {Bi,B

c
i } ∀i: 1, . . . , n}. Let us denote this clas

Dn := {En
1, . . . ,En

kn
}.

Next, we prove the main theorem of the paper. It establishes a relationship be
P(Γ ) andM(P ∗) which holds, taking into account our results from the previous sec
under fairly general conditions.

Theorem 4.4. Let (Ω,A,P ) be a probability space,(X,d) a separable metric space an
Γ : Ω →P(X) a random set such thatP ∗(A) = maxP(Γ )(A) ∀A ∈F({Bn}n). Then,

(1) M(P ∗) = Conv(P (Γ )).
(2) P(Γ ) = M(P ∗) ⇔ P(Γ ) is convex.

Proof. (1) It is clear thatConv(P (Γ )) ⊆ M(P ∗). Conversely, considerQ1 ∈ M(P ∗), and
fix n ∈ N. Consider the finite measurable space(Dn,P(Dn)), and let us define the mult
valued mapping

Γn : Ω → P(Dn), ω ↪→ {
En

i

∣∣ Γ (ω) ∩ En
i �= ∅}

.

This mapping is strongly measurable: givenI ⊆ {1, . . . , kn},

Γ ∗
n

({
En

i

}
i∈I

) = {
ω

∣∣ ∃i ∈ I, En
i ∈ Γn(ω)

} = {
ω

∣∣ ∃i ∈ I, Γ (ω) ∩ En
i �= ∅}

= Γ ∗
(⋃

i∈I

En
i

)
∈A.

Let Q be the probability measure onP(Dn) determined by the equalities({ }) ( )

Q En

i = Q1 En
i ∀i = 1, . . . , kn. (8)
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It belongs toM(P ∗
Γn

):

Q
({

En
i

}
i∈I

) = Q1

(⋃
i∈I

En
i

)
� P ∗

Γ

(⋃
i∈I

En
i

)
= P ∗

Γn

({
En

i

}
i∈I

)
for anyI ⊆ {1, . . . , kn}.

From Theorem 4.1,M(P ∗
Γn

) = Conv({Qπ | π ∈ Skn}), where the probability measu
Qπ :P(Dn) → [0,1] is determined by

Qπ

({
En

π(1), . . . ,E
n
π(j)

}) = P ∗
Γn

({
En

π(1), . . . ,E
n
π(j)

}) = P ∗
Γ

(
j⋃

i=1

En
π(i)

)

∀j = 1, . . . , kn.

For any of these extreme points, there is somePπ ∈ P(Γ ) with Pπ(En
j ) = Qπ({En

j }) ∀j =
1, . . . , kn: it suffices to take into account that, from Theorem 3.2, we can approximatP ∗

Γ

on a finite chain, and then make a correspondence similar to that of Eq. (8) betwe
restriction toFn of a probability defined onβX and a probability onP(Dn). As a con-
sequence, given the probabilityQ ∈ Conv({Qπ | π ∈ Skn}) defined through Eq. (8), ther
existsPn ∈ Conv(P (Γ )) such thatPn(E

n
j ) = Q({En

j }) = Q1(E
n
j ) ∀j = 1, . . . , kn, whence

Pn(A) = Q1(A) ∀A ∈ Fn. The sequence{Pn}n ⊆ Conv(P (Γ )) satisfies limn Pn(A) =
Q1(A) for all A ∈F({Bn}n). Applying Proposition 4.2, we conclude that{Pn}n converges
weakly toQ1, whenceM(P ∗) ⊆ Conv(P (Γ )). This implies the desired equality.

(2) The direct implication follows if we take into account that, from Lemma 4.3,
closure ofM(P ∗) is convex. For the converse implication, assume thatP(Γ ) is convex.
Then, applying the first point of this theorem, it is

M(P ∗) = Conv
(
P(Γ )

) ⊆ Conv
(
P(Γ )

) = P(Γ ) = P(Γ ),

and this implies thatP(Γ ) = M(P ∗). �
Let us remark that the conclusions of this theorem do not necessarily hold whe

random set does not satisfyP ∗(A) = maxP(Γ )(A) for all A ∈ F({Bn}n); as we said be
fore, in that case it may happen (see [23, Example 1]) thatP(Γ ) is empty, or even if it is
not, that it contains only one distribution, while the classM(P ∗) is much larger. In such
situation our theorem would not hold.

The first point of this theorem generalises a result established in [24] for random
vals, and also a result established by Castaldo and Marinacci for compact random
Polish spaces in [4]. On the other hand, the second point of the theorem extends th
mentioned before for the finite case: as we check in [19], when the final space is fin
classesP(Γ ) andM(P ∗) are closed, whence the equivalenceP(Γ ) = M(P ∗) ⇔ P(Γ )

convex becomesP(Γ ) = M(P ∗) ⇔ P(Γ ) convex.
As we mentioned in the introduction, the main advantage ofM(P ∗) over P(Γ ) as a

model of the information concerningPU0 is that it can be represented in terms of the up
probability, and its disadvantage is that it usually produces a loss of precision. Even
M(P ∗) = Conv(P (Γ )), the upper probability can lose some important information res

to P(Γ ), as we showed in [24]; this loss is smaller when the closures ofP(Γ ) andM(P ∗)
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coincide. Taking into account the second point of this theorem, it becomes interes
establish sufficient conditions for the convexity ofP(Γ ). The first one is given in th
following proposition, which is an immediate consequence of Lemma 4.3.

Proposition 4.5. Let (Ω,A,P ) be a probability space,(X,d) be a metric space and le
Γ : Ω →P(X) be a random set. IfP(Γ ) is convex, thenP(Γ ) is convex.

Next, we are going to prove that if the initial probability space is non-atomic, the clo
P(Γ ) is convex and therefore it coincides (under the hypotheses of Theorem 4.4
M(P ∗). We need the following supporting result, where we use the notations estab
before Theorem 4.4.

Lemma 4.6. Let (Ω,A,P ) be a non-atomic probability space,(X,d) a separable metric
space andΓ : Ω →P(X) a random set. Then, the class of probabilities

Hn := {
Q : P(Dn) → [0,1] probability

∣∣ ∃Q′ ∈ P(Γ ) such that

Q
({

En
i

}) = Q′(En
i

) ∀i = 1, . . . , kn

}
is convex for everyn.

Proof. Fix n ∈ N, and considerP1,P2 ∈ Hn, α ∈ (0,1). Then, there existU1,U2 ∈ S(Γ )

with PU1(E
n
i ) = P1({En

i }),PU2(E
n
i ) = P2({En

i }) ∀i = 1, . . . , kn. Let us consider the mea
surable partition ofΩ given by{Cij | i, j = 1, . . . , kn} with Cij = U−1

1 (En
i ) ∩ U−1

2 (En
j );

from the non-atomicity of(Ω,A,P ), there is, for everyi, j , some measurableDij ⊆ Cij

such thatP(Dij ) = αP (Cij ). DefineD = ⋃
i,j Dij and the mappingU : Ω → R by

U := U1ID + U2IDc .

Taking into account thatU1 andU2 are selectors ofΓ , we deduce thatU(ω) ∈ Γ (ω) ∀ω.
Besides,U is measurable, becauseU1 andU2 are measurable andD ∈ A. Hence,U ∈
S(Γ ). Moreover,

PU

(
En

l

) = P
(
U−1

1

(
En

l

) ∩ D
) + P

(
U−1

2

(
En

l

) ∩ Dc
)

=
kn∑

i=1

P(Dli) +
kn∑

j=1

(
P(Cjl) − P(Djl)

)

=
kn∑

i=1

αP (Cli) +
kn∑

j=1

(1− α)P (Cjl)

= αPU1

(
En

l

) + (1− α)PU2

(
En

l

) ∀l = 1, . . . , kn,

and we deduce from this thatαP1 + (1− α)P2 belongs toHn. �
Theorem 4.7. Let (Ω,A,P ) be a non-atomic probability space,(X,d) a separable metric

space andΓ : Ω →P(X) a random set. Then,P(Γ ) is convex.
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Proof. Let us show first that Conv(P (Γ )) is a subset ofP(Γ ). ConsiderP1,P2 ∈ P(Γ ),
α ∈ (0,1). Define, for every naturaln, probabilitiesP 1

n andP 2
n onP(Dn) by P i

n({En
j }) =

Pi(E
n
j ), ∀j = 1, . . . , kn, i = 1,2. Then,P 1

n ,P 2
n belong toHn, and applying the previou

lemma, there existsP ′
n ∈ P(Γ ) s.t.

P ′
n(A) = αP 1

n

({A}) + (1− α)P 2
n

({A}) = αP1(A) + (1− α)P2(A), ∀A ∈Fn.

Now, applying Proposition 4.2, we deduce that the sequence{P ′
n}n converges weakly to

αP1 + (1− α)P2 and as a consequence this probability belongs toP(Γ ). Therefore,

P(Γ ) ⊆ Conv
(
P(Γ )

) ⊆ P(Γ ),

whenceP(Γ ) = Conv(P (Γ )). Applying Lemma 4.3, this set of probabilities is conve
This completes the proof.�

The conclusion of this theorem does not hold in general when the initial proba
space is atomic: even in the finite case, whereP(Γ ) is closed and therefore it isP(Γ ) =
P(Γ ) there are examples where it is not convex (see [20, Example 1]).

Now, using Theorems 3.1, 4.4, and 4.7, we can establish conditions on the ima
the random set that guarantee the equality between the closures ofP(Γ ) andM(P ∗).

Corollary 4.8. Let (Ω,A,P ) be a probability space,(X,d) a separable metric space an
let Γ : Ω → P(X) be a random set. Under any of the following conditions:

(1) Ω is complete,X is Souslin3 andGr(Γ ) ∈A⊗ βX ,
(2) Γ is open,
(3) Γ is complete,
(4) X is σ -compact andΓ is closed,

M(P ∗) = Conv(P (Γ )). If in addition (Ω,A,P ) is non-atomic, thenM(P ∗) = P(Γ ).

Proof. The first part follows from Theorem 3.1 and the first point of Theorem 4.4. Fo
second part, it suffices to apply the second point of Theorems 4.4 and 4.7.�

This corollary extends some results from [11]: it is proven there that given two c
random setsΓ1,Γ2 taking values on a separable Banach space, the equality betweeP ∗

Γ1
andP ∗

Γ2
implies that

Conv
(
P(Γ1)

) = Conv
(
P(Γ2)

)
.

Similar results can be found in [1,10], in those cases with other hypotheses on th
dom set: in [1], Arstein and Hart show thatP ∗

Γ1
= P ∗

Γ2
⇒ P ′(Γ1) = P ′(Γ2), whereΓi is a

closed random set onRn andP ′(Γi) is the set of distributions of itsintegrableselections,
for i = 1,2. On the other hand, Hart and Köhlberg prove in [10] thatP ∗

Γ1
= P ∗

Γ2
implies
3 Although a Souslin space is not in general metrizable, this extra hypothesis is necessary for the result.
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P(Γ ) convex M
(
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closed

Fig. 1. Some relationships betweenP(Γ ) andM(P ∗) when their closures coincide.

that P(Γ1) = P(Γ2), whereΓi is an integrably bounded random set defined betwe
non-atomic complete probability space andRn. We have proven that the equality betwe
P ∗

Γ1
andP ∗

Γ2
implies the equality betweenConv(P (Γ1)) andConv(P (Γ2)) only requiring

Γ1,Γ2 to be complete on a separable metric space; moreover, we have showed tha
two sets of probabilities coincide withM(P ∗

Γ1
) andM(P ∗

Γ2
), respectively.

The corollary provides sufficient conditions for the equality between the closures,
topology of the weak convergence, ofP(Γ ) andM(P ∗). Under those conditions, ifP(Γ )

is closed, it coincides withM(P ∗), and then the upper probability provides an accu
representation of the information concerning the probability distribution ofU0. We think
it is interesting at this point to clarify the relationship between a number of topolo
conditions. This will avoid confusions and will help to understand the meaning o
relationships we have established. Whenever it isP(Γ ) = M(P ∗), it is easy to see that th
implications in Fig. 1 hold.

None of the converses of these implications is true in general.

Example 4.2.

(1) Let us start showing that the equality betweenP(Γ ) andM(P ∗) does not imply tha
P(Γ ) is closed. Consider the probability space((0,1), β(0,1), λ(0,1)), which is non-
atomic, and letΓ : (0,1) → P(R) be given byΓ (ω) = (0,1) for all ω ∈ (0,1). Then,
M(P ∗) = {Q : βR → [0,1] probability | Q((0,1)) = 1}. ConsiderQ ∈ M(P ∗), and
let U : (0,1) → R denote its quantile function. Then, it is easy to see thatU is a
selector ofΓ and satisfiesPU = Q, whenceP(Γ ) = M(P ∗). However, the sequenc
of degenerate probability measures on1

n
, {δ 1

n
}n ⊆ M(P ∗), converges weakly toδ0 /∈

M(P ∗). Hence, neitherM(P ∗) or P(Γ ) is closed.
(2) Let us see now thatP(Γ ) is not necessarily closed whenM(P ∗) is closed. Conside

the probability space([0,1], β[0,1], λ[0,1]) and the random closed intervalΓ1 : [0,1] →
P(R) given byΓ1(ω) = [−ω,ω] for all ω ∈ [0,1]. Then,M(P ∗) is closed (this is
indeed the case for all compact random sets on Polish spaces). However, we c
[24] thatP(Γ1) is not convex, and, taking into account Fig. 1, it is not closed eithe

(3) Let us show finally that the convexity ofP(Γ ) does not imply the equalityP(Γ ) =
M(P ∗). Let Γ be the random set from Example 4.1. Then, the set of probabi

P(Γ ) is convex, but it does not coincide withM(P ∗).
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5. Conclusions and open problems

The results established in this paper allow us to shed some light into the probl
the representation of the information provided by a random set. On the one hand
an (unknown) selectorU0, the information about its induced probability distribution is n
equivalent to the information about the values of this probability: the former is given b
classP(Γ ) of the distributions of the selectors, while the latter is given by the class o
{P(Γ )(A) | A ∈A′}, which is in a one-to-one correspondence with the set of probabi
	(Γ ). We can deduce from our results that these two sets of probabilities do not co
except in very particular cases. On the other hand, the sets	(Γ ) and M(P ∗) will be
equivalent under fairly general conditions, and so will the closures ofP(Γ ) andM(P ∗).
In those cases, the upper probability keeps most of the information given by the rand
aboutPU0, but it may produce nonetheless a loss of precision. We want to stress th
conditions for the equalityP(Γ ) = M(P ∗) are sufficiently general, because in practic
is common to consider closed (or open) random sets taking values onRn, and also the non
atomicity of the initial probability space is fairly usual (as we have said, it holds when
there is a continuous random variable starting on this space).

We want to point out three open problems from this paper: first, it would be inte
ing to establish sufficient conditions for the equality betweenP(Γ ) andM(P ∗). Under
those conditions, the upper probability would suffice to summarize the information
the probability distribution of the original random variable. We obtained some cond
of that type in [20] for random sets on finite spaces, and in [24] for random inter
We would like to know if the equalityP(Γ ) = M(P ∗) holds under more general situ
tions. Secondly, it would be important to compare the information provided by the
of probabilitiesP(Γ ) and P(Γ ) about some parameters of the probability induced
U0; this would allow us, taking into account the sufficient conditions we have prove
P(Γ ) ⊆ M(P ∗) ⊆ M(P ∗) = P(Γ ), to determine when to useP(Γ ) or M(P ∗) to rep-
resent the information given by the random setΓ . Taking into account Theorem 3.2, w
think that it is probable that both sets of probabilities keep the same information fo
expectation operator (see also [7]). And finally, it may be interesting to make an ana
study under additional hypotheses overU0, such as the continuity of its probability di
tribution. A possible approach to this problem would be to approximate in some wa
distribution of any measurable selection by a sequence of distributions of continuou
surable selections. As suggested by one of the referees, and also related to this pro
would also be interesting the study of random sets or multi-valued mappings as a
of the imprecise observation of a mapping (not necessarily measurable). The study
probabilistic information would be, however, more involved; one possible approach w
be to extend probability measure on the initial space toP(Ω) (probably no longer as
probability measure, but as an inner/outer measure). This would allow us to give a m
to the upper and lower inverses of the subsets of the final space (and also on their i
by the selections); another alternative, as pointed out by the referee, would be to a
mate the lower and upper inverses by sets where the probability is defined. We think
may be more interesting in this non-measurable context to use the approach consid
[25] and to compare, using the results from that paper, the lower previsions induced

multi-valued mapping and the selectors.
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