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Abstract

Let E be a real g-uniformly smooth Banach space which is also uniformly convex (for example, L,
or £p spaces, 1 < p < 00), and K a nonempty closed convex (not necessarily bounded) subset of E. Let
T:K — K be a k-strictly asymptotically pseudocontractive map with a nonempty fixed-point set. It is
proved that (I — T') is demiclosed at 0. Furthermore, weak and strong convergence of an averaging iteration
method to a fixed point of 7' are proved.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let E be an arbitrary real Banach space and let J, (¢ > 1) denote the generalized duality
mapping from E into 2E” given by

Jo)={f € E*: (x, ) = x|1¥ and || ]| = [lx]*~"},
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where E* denotes the dual space of E and (.,.) denotes the generalized duality pairing. In partic-
ular, J; is called the normalized duality mapping and it is usually denoted by J. It is well known
(see, for example, [18]) that J; (x) = Ix11972J (x) if x # 0, and that if E* is strictly convex then
Jy is single-valued. In the sequel we shall denote single-valued generalized duality mapping
by Jjg.

Let K be a nonempty subset of E. A mapping T : K — K is called k-strictly asymptotically
pseudocontractive, with sequence {k,} C [1, 00), lim, o0k, = 1 (see, e.g., [6,9,10]) if for all
x,y € K, there exist j(x —y) € J(x — y) and a constant k € [0, 1) such that

1 1
(T =Ty, jx = ) < SA+k)llx = yI? = SA =B x = T"x = (y = T"y) L
for all n € N. If I denotes the identity operator, then (1) can be written in the form
1
(1= 1")x = (1 = T")y =) > A =R (1 = T")x = (1 = T")y|
1 2
_E(kn_l)”x_)}” . 2)

The class of k-strictly asymptotically pseudocontractive maps was first introduced in Hilbert
spaces by Qihou [10]. In Hilbert spaces, j is the identity and it is shown by one of the authors [9]
that (1) (and hence (2)) is equivalent to the inequality

|77 = Ty > < kallc = 12+ k[ (1 = T")x — (1 = T")y |,

3)

which is the inequality considered by Qihou [10].

A mapping T with domain D(7T') and range R(T) in E is called strictly pseudocontractive in
the terminology of Browder and Petryshyn [1] if there exists A > 0 such that

. 2

(Tx =Ty, jx =)< llx = ylI? = Afx =y = Tx =Ty,

4)
for all x,y € D(T) and for all j(x — y) € J(x — y). Without loss of generality we may assume
A € (0, 1). If I denotes the identity operator, then (4) can be written in the form
. 2
(I =T)x—=U =Ty, jlx =) Zr|U =Tx—=U-T)y|" (5)
In Hilbert spaces H, (4) (and hence (5)) is equivalent to the inequality

2
ITx — Tyl* < llx =yl +k||(I = T)x — (I = T)y

, k=(1-2)0) <1, (6)

and we can assume also that k > 0, so that k € [0, 1).

The class of strictly pseudocontractive mappings has been studied by several authors (see,
for example, [1,3,8,11,12]). It is shown in [8] that a strictly pseudocontractive map is L-
Lipschitzian (i.e., |Tx — Ty| < L|lx — y|| for all x, y € D(T) and for some L > 0). The class
of k-asymptotically pseudocontractive maps and the class of strictly pseudocontractive maps are
independent (see our examples at the end of this paper).

T is said to be uniformly L-Lipschitzian, if there exists a constant L > 0, such that

|7"x = T"y| < Llix -yl

for all x,y € K and n € N, and is said to be demiclosed at a point p if whenever {x,} is a
sequence in D(T') such that {x,} converges weakly to x € D(T') and {T x,} converges strongly
to p, then Tx = p. Furthermore, T is said to be demicompact if whenever {x,} is a bounded
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sequence in D(T) such that {x, — T'x,} converges strongly, then {x,} has a subsequence which
converges strongly.
In [10] Qihou proved the following:

Theorem 1.1. [10, p. 1836] Let H be a real Hilbert space and K a nonempty closed convex
and bounded subset of H. Let T : K — K be a completely continuous uniformly L-Lipschitzian
k-strictly asymptotically pseudocontractive mapping with a sequence {k,} C [1, 00) such that
3% (k2 — 1) < co. Let {a} be a real sequence satisfying the condition

(1) O<e<ap, <1 —k—e¢, foralln > 1 and for some € > 0. Then the sequence {x,} generated
from an arbitrary x| € K by

Xnp1 =1 —a)xy + a0y T"x,, n>1, (7

converges strongly to a fixed point of T.

The iteration scheme in Theorem 1.1 was introduced by Schu [13,14] and has been used by
several authors (see, for example, [4,6,7,9,10,15]).

In [6] one of the authors extended Theorem 1.1 from Hilbert spaces to much more general
real g-uniformly smooth Banach spaces, 1 < g < oo.

Let E be a real g-uniformly smooth Banach space which is also uniformly convex, K a
nonempty closed convex (not necessarily bounded) subset of E, and T: K — K a k-strictly
asymptotically pseudocontractive map with a nonempty fixed-point set.

It is our purpose in this paper to first prove that (I — 7') is demiclosed at 0. We then prove
weak and strong convergence theorems for the iterative approximation of fixed points of 7' using
the modified Mann iteration processes. Our class of Banach spaces includes the L, £, spaces,
1 < p < 00, and the Sobolev spaces W,{,’, 1 < p < co. Our main convergence theorem does not
require the assumption that 7 be completely continuous.

2. Preliminaries

In the sequel, we shall need the following: Let E be a real Banach space. The modulus of
smoothness of E is the function

PE : [0, 00) — [0, 00)
defined by

pE(T) = Sup{%(llx Yl =yl = Ll < 1, Iyl < r}.
E is uniformly smooth if and only if lim;_,¢ LE@) (),

Let g > 1. E is said to be g-uniformly smooth (or to have a modulus of smoothness of power
type ¢ > 1) if there exists a constant ¢ > 0 such that pg(7) < ct?. Hilbert spaces, L, (or £,)
spaces, 1 < p < oo, and the Sobolev spaces, W,f;, 1 < p < o0, are g-uniformly smooth. Hilbert
spaces are 2-uniformly smooth while

P p-uniformly smooth if 1 < p <2,
Lplorty) or W is { 2-uniformly smooth  if p > 2.
Theorem 2.1. [18, p. 1130] Let g > 1 and let E be a real Banach space. Then the following are
equivalent:
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(1) E is q-uniformly smooth.
(2) There exists a constant ¢; > 0 such that forall x,y € E

x4+ y 17 < x4+ q(y, Jg () + cqlIyII9. (8)
(3) There exists a constant d; such that for all x,y € E, and t € [0, 1]
[ad=Dx+1y]|! = A =)lx? +11y117 — g (Ddyllx — y]17, ©9)
where wq () =t9(1 — 1) +t(1 —1)9.

Furthermore, it is proved in [17] (see Remark 5, p. 208) that if E is g-uniformly smooth
(g > 1), then for all x, y € E there exists a constant L, > 0 such that

g ) = jg | < Lullx —yl12 7" (10)
E is said to have a Fréchet differentiable norm if forallx e U ={x € E: ||x| =1}

i lx + 2yl — lix|l

im ———

t—0 t

exists and is attained uniformly in y € U. In this case there exists an increasing function
b:[0, 00) — [0, co) with lim,_, o+ b(z) = O such that

1 ) 1 1 )
5|IX||2 +{h, j0)) < Sl + hlI> < EIIXII2 +(h, j@)) +b(IRN), Vx, heE. Y

Lemma 2.1. [5, Lemma 2.1, p. 29] Let C be a nonempty closed convex bounded subset of a
uniformly convex Banach space E, and let T : C — E be a nonexpansive mapping. Let {x,} be a
sequence in C such that {x,} converges weakly to some point x. Then there exists an increasing
continuous function h : [0, 00) — [0, co) with h(0) = 0 depending on the diameter of C such that

h(llx — Tx|l) <liminf||x, — Tx,]|.
n—o0

Lemma 2.2. [9] Let E be a real Banach space, K a nonempty subset of E and T: K — K a
k-strictly asymptotically pseudocontractive mapping. Then T is uniformly L-Lipschitzian.

Remark 2.1. Since ||[7"x — T"y|| < L|lx — y|, we have |lx — T"x — (y — T"y)|l <
(1+L)||x — y|l. Hence

(1 =T")x = (I =T")y. jyx = y)
= lx = yIl9H(I = T")x — (I = T")y, j(x — y))

1
> s —y||“{5<1 ~R (=" = (1 =Ty’
1
= 50 = Dllx = y||2} (using (2))

1 1
> 5=+ Ly 2| (1 -1")x - (I -T")y|? - 5k = Dllx = y[17. (12)

In what follows, L is the uniformly Lipschitzian constant of 7', ¢, d, and L, are the constants
appearing in (8), (9) and (10), respectively.
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3. Main results
We prove the following:

Lemma 3.1. Let E be a real g-uniformly smooth Banach space and K a nonempty convex subset
of E. Let T : K — K be a k-strictly asymptotically pseudocontractive map and let {o,} be a real
sequence in [0, 1]. Define T,, : K — K by

T.x =1 —oap)x +0,T"x, xek.

Then for all x,y € K we have
I Twx — Tuyll? < [1 + %an(kn - 1)] llx — ¥l
—a, [%(1 —k)(1+ L)~ cqaﬁl] |(1 = T")x — (1 = T")y]".
(13)

Proof. Using (8) we obtain

ITox = Tuy ¥ = x = y = o[ (1 = T")x = (1 = T")y]|*
<llx = yl19 = gan((I = T")x = (I = T")y, jy(x — )
+eqon [(1=T")x — (1 =T")y|*

1
<= yl17 - qanha =R+ D)2 (1= T")x = (1= T")y]*
1
— 5tk = Dllx ynq} +eqoi [ (1= T")x = (1= T")y]*
1
—ay [%(1 kA +L)y" anrql_l] [(1=1")x = (1 =T")y]".
completing the proof of Lemma 3.1. O

Remark 3.1. Let y = min{1, [$(1 —k)(1 + L)~ /c,]"/@~D}, and choose any « € (0, y).
Seta, =, Vn > 1, in Lemma 3.1. Then we obtain 7y , : K — K defined for all x € K by
Tonx =1 —a)x +aT"x.

Observe that || Ty nx — Tony||?9 <[1+ %a(kn — D]llx — y||4. Thus
q 1/q
1 Tonx — Ty nyll < [1 + Ea(kn - 1)] lx—yll, Vx,yeKk. (14)

Theorem 3.1. Let E be a real q-uniformly smooth Banach space which is also uniformly convex.
Let K be a nonempty closed convex subset of E and T :K — K a k-strictly asymptotically
pseudocontractive mapping with a nonempty fixed point set. Then (I — T) is demiclosed at zero.
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Proof. Let {x,} be a sequence in K which converges weakly to p and {x, — Tx,} converges
strongly to 0. We prove that (I — T)(p) = 0. Let x* € F(T). Then there exists R > 0 such
that ||x, —x*|| < R, Vn > 1. Let Bg = {x € E: ||lx —x*|| < R}, and let C = K N Bg. Then C
is nonempty closed convex and bounded, and {x,} € C. Let « and T, , be as in Remark 3.1.
Then || Tonx — Tanyll <1+ Fa(ky — DIY9|lx = yl = anllx — yll, ¥x,y € K, where a, =
[1+ %a(k, — 1)]"/9. Define Go,m : C — E by

1

Gymx =—Tymx, m2>=1.
am

Then G, is nonexpansive and it follows from Lemma 2.1 that there exists an increasing con-
tinuous function 4 : [0, co) — [0, oo) with £(0) = 0 depending on the diameter of C such that

h(Ip = Ganpll) < Hminf |, = Ga,mall (15)
Observe that
1
[l — Ga,mxn” = [Xn — —da,mXn
m
1 * *
< lxn = Tamxnll + {1 — — [am“xn x|+ llx ”]
am
1 *
Sln = Tamxall + (1= — )[an R+ Ix"]. (16)
m

Observe that
m
lxn — Tomxnll = O[”)Cn —T"x, ” < Z“ Tj_lxn - zjn “< Lm|xp — Txp|| >0
j=1
asn — Q.

Thus it follows from (16) that

. 1
limsup [|x, — Go,mXn || < (1 - a_)[amR + ”)C*”],

n—00 m

so that (15) implies that

1
h(“P_Ga,mP”) < (1_a_>[amR+”x*”]~ (17)

m

Observe that

1
||P - Got,mp” 2 ||P - Ta,mp” - (1 -

am

)”Ta,mp”

l *
Zlp—Tampl — 1—a— [am R + 1Ix*]1],

m
so that
1
P —Tampll <P — Gampll + (1 - a—)[amR + [lx*]
m
—1 1 * 1 *
<h 1— — )[amR+IIx*II] ) + (1= — )[anR + Ix*I] > 0
am am
as m — OQ.

Since T is continuous, we have (I — T)(p) =0, completing the proof of Theorem 3.1. O
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Lemma 3.2. Let E be a real q-uniformly smooth Banach space and let K be a nonempty convex
subset of E. Let T: K — K be a k-strictly asymptotically pseudocontractive mapping with a
sequence {k,} C [1,00) such that Zzil(kn — 1) < oo and let F(T) # 0. Let {oy,} be a real
sequence satisfying the conditions:

k]

D0, <l,n>1
(i) 0<a<al ' <b< %;")(1+L)—<q—2>,n>1.

Let {x,} be the sequence generated from an arbitrary x| € K by
Xne1 = —ap)xp + oy T"x,, n>=1.
Then

(@) lim,— oo |xn — x*|| exists for all x* € F(T);
(b) limy,—, 00 [lxp — Txy || = 0.

Proof. Let x* € F(T) and set x = x;,, y=x" and §, = %a(kn — 1) in Lemma 3.1. Then
llxn1 —x* 14
<[+ 8ulllon — 519 — @ [%(1 — k(1 +L)" — cqafi‘l} e =T |* - (18)

<[ +8,]llx, —x*||9 (using condition (ii)). 19)
Since Y o2 (kn — 1) < 00, it follows that > oo | 8, < 0o, and hence (19) implies that {||x, —x*||}

n=1

is bounded. Let ||x, — x*|| < M, Vn > 1. Then (19) implies that
xna1 = x* N7 < My — x5 + M6,
so that it follows from [9], [16, Lemma 1.1] that lim,,_, o, ||x, — x*|| exists, completing the proof
of (a). Using (18) we obtain
—(g— -1
xn 41— 19 < Mlxw — X[ — ey [%(1 —k1+ L) — o } |0 = T" x| ?

+ M1s,.
Hence a'/=D[4(1—k)(1+L)~"2 —c b1 Y5, ||x.,'—T.jxj~||q <l =x*94M9375_ 85 <
lxr — x*)|9 + M4 Z;’O:] 8j < oo. Thus Z;’O:] lxj — T/xj|l < oo, so that lim,_ o0 [Xn —
T"x,|l = 0. Since
1xn — Txnll Hx,, —T"x, || + || T"x, — Tx, || < ||xn —T"x, || + L|| 7" %, — x, ||

[ N [y

“xn —T"x, ” + L2||xn —xn—1l + L” Tn_lxn—l — Xn—1 ” + Lllxp—1 — xull
|

<
<
<
< on = T"xa | + LR+ L) [ xner = T

)

we have lim,,_,  [|X, — Tx,||=0. O

Corollary 3.1. Let E be a real q-uniformly smooth Banach space and K a nonempty closed
convex subset of E. Let T, {a,} and {x,} be as in Lemma 3.2. If {x,} clusters strongly at some
point p, then p € F(T) and {x,} converges strongly to p.
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Proof. {x,} has a subsequence {x,;} which converges strongly to p € K. Since T is continuous
at p, then Tx,; — Tp as j — oo. Hence limj_, oo [|xn; — Txp; |l = |[p — Tpll =0, so that
p € F(T). From Lemma 3.2, lim,,_, o || X, — x*|| exists, and since lim;_, oo xn; — pll =0, we
must have lim,,_,  ||x;, — p|l = 0, completing the proof of Corollary 3.1. O

Remark 3.2. In view of Corollary 3.1, we can conclude that if K is also closed in Lemma 3.2,
then either {x,} converges strongly to a fixed point of T or else {x,} has no subsequence which
converges strongly. In particular, if 7 is in addition completely continuous, or demicompact, then
{x, } converges strongly to a fixed point of T'.

Lemma 3.3. Let E be a real q-uniformly smooth Banach space which is also uniformly convex.
Let K be a nonempty convex subset of E and let T:K — K be a k-strictly asymptotically
pseudocontractive map with a sequence {k,} C [1, 0o) such that Z,(:ozl(kn — 1) < 00 and let
F(T)#40. Let {a, } and {x,} be as in Lemma 3.2. Then for all py, p> € F(T)

lim ||tx, + (1 =0)p1 — p2
n—oo
exists for all t € [0, 1].
Proof. Let 0,(¢) := |Itx, + (1 — t)p1 — p2|l. Then lim,— 0,(0) = ||p1 — p2ll, and from

Lemma 3.2 lim,,_, o 05, (1) = lim;,_, || X, — p2|| exists. It now remains to prove the lemma for
t € (0,1). Let T;, be as in Lemma 3.1, then

ITnx = Tuyll ST1+8,1"79x =yl =anllx —yl, V¥x,yeK,

where a, = (1 + 8,)!/4. Since 3"°° 8, < 0o, then [ a, < oco.

Set
Sn,m =Twim-1Twgm—2- Ty, m2= 1.
Then
n+m—1
”Sn,mx_Sn,my“§< l_[ aj)llx—)’H, Vx,y€K;
j=n

Sn,mxn = Xn+m and Sn,mp =p, VpeF().

Set bn,m = ”Sn,m(txn +A-=1p1) — tSn,mxn — (1 - t)Sn,mpln; D = (1_[;“;1 aj)2||xl - pill-
Let § denote the modulus of convexity of E. We prove that

D 4 n+m—1
58( an,m) < ( [ “f) e = pill = 1n4m = pil- (20)

J=n

If ||x, — p1]l = 0 for some ng, then x, = py, Vn > ng, so that clearly (20) holds and in fact {x,}
converges strongly to p; € F(T). Thus we may assume ||x,, — p1] > 0, Vn > 1. It is well known
(see, for example, [2, p. 108]) that

[tx + (1 =ty <1—=2min{r, (1 =)} (llx — yll) <1 =201 = )8(llx — yIl) 21)
for all t € [0, 1] and for all x, y € E such that ||x|| < 1, ||y|| < 1. Set
N Sn,mpl - Sn,m(txn +-=01p1) L Sn,m(txn +-p1)— Sn,mxn

Wn,m = , Zn,m : .
’ +m—1 ' +m—1
t(qT5 aplxn — pall A =0T aplxn — pil
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Then ||wy, ;| <1 and ||z,,, || <1 so that it follows from (21) that

2t(1 - t)s(”wn,m - Zn,m”) <1- ||twn,m + (A =Dznm ” (22)
Observe that
bu,m
“wn,m - Zn,m” = and
-0 apllx, = pil
”Sn mXn — Sn,mpl Il

AT apln = pill

Htwn,m + A =znm ” =

so that it follows from (22) that

n+m—1 b
2t(1—1) aj |lx, —p ||6( o )
( l—[ ’) : ~ (T2 ap) - pil

J=n
n+m—1
<( I1 a,-)nxn— Pl = 1Sn.mXn = Spmprll. (23)
j=n
Observe that
n+m—1 00 2 D
t(l—t)( [« )nxn pill < (]"[ ) lor = pill =
Jj=n =1

<1
4
(since t(l—1) < -, Vtel0, 1])

Since E is uniformly convex, then é(s)/s is nondecreasing and hence it follows from (23) that

D 4 n+m—1
Ea(an,m) < ( I1 a;) 10 = pill = ISn.mXn = Swmpil

Jj=n

n+m—1
=< 1_[ aj>||xn_p]”_||xn+m_pIH’

j=n
establishing (20). From Lemma 3.2 lim,,_, » ||x, — p1]| exists and hence lim,—, o ||X, — p1]l =
limy,— o6 || Xn4m — p1ll. Since §(0) = 0 and lim;,—, oo ]_[jin aj =1, then the continuity of § yields
lim,,— 0 by, ;m = 0 uniformly for all m > 1. Observe that
Ontm (1)
< ||txn+m +d=-0p1—p2+ (Sn,m(txn +(1 - f)Pl) — t8pmXn — (1 — t)Sn,mpl)H
+ ||_(Sn,m(txn + (1 - f)Pl) — tSpmXn — (1 — t)Sn,mpl)“
= ” Sn,m(txn +1 - f)Pl) — D2 ” +bum = HSn,m (txn +(1 - f)Pl) = Sp.mP2 ” + bu,m

n+m—1 n+m—1
< ( l_[ aj) ”txn +(-=0p1— Pz” +bym = ( l_[ aj)an(t) +bum.

j=n j=n

Hence limsup,,_, o, 0, (¢) < liminf,,_, o, 0, (¢), completing the proof of Lemma 3.3. O



M.O. Osilike et al. / J. Math. Anal. Appl. 326 (2007) 1334—1345 1343

Lemma 3.4. Let E be a real q-uniformly smooth Banach space which is also uniformly con-
vex. Let K be a nonempty convex subset of E and let T : K — K be a k-strictly asymptot-
ically pseudocontractive map with a sequence {k,} C [1,00) such that fozl(kn —1) < o0,
and let F(T) # 0. Let {a,} and {x,} be as in Lemma 3.2. Then for all pi, p» € F(T),
limy,— o0 (X, j(p1 — p2)) exists. Furthermore, if wy (x,) denotes the set of weak subsequential
limits of {x,}, then (p — q, j(p1 — p2)) =0, Vp1, p2 € F(T), and Vp, q € wy (xp).

Proof. Since E is both uniformly convex and uniformly smooth, it has a Fréchet differentiable
norm. Set x = p; — pp and h =t (x, — p1) in (8) to obtain

1 5 .
Slpr=poll + t{xy — p1. j (p1 — p2))
1 2
<5l +A=Dp1—p

1 .
<5lpi- pal? +t{xn — p1, j(p1 — p2)) +b(tllxn — prll).-

Since b is increasing and ||x, — p1|| < M, Vn > 1 and for some M > 0, then
1 2 )
Slpr=p2ll” + t{xn — p1. j(p1 — p2))
1 2
< EHtxn + (1 —1)p1 — p2

1 :
<3lpi— P2l +t{xy — p1, j(p1 — p2)) + bt M).

Thus,

1 . .
SIp1 = p2l? + tlim sup(x, — pr, j(p1 = p2)

n—oo

1 2
<5, lim |2x0 + (1 =) p1 = p2
n—oo

1 . .
<5lpi- pall? + rliminflx, — p1. j(p1 = p2)) + b M).

Hence limsup,_, . {(xn, j(p1 — p2)) < liminf,o0(xn, j(p1 — p2)) + b(EM)/t. Since
lim,_, o+ b(¢)/t = 0, then lim,— oo {x,, j(p1 — p2)) exists. Since lim,_, o0 (X, j(p1 — p2)) =
(p.j(p1 — p2)), Vp € wy(xy), we have (p —q, j(p1 — p2)) =0, Vp1,p2 € F(T) and
Vp,q € wy(xy). O

Theorem 3.2. Let E be a real q-uniformly smooth Banach space which is also uniformly convex.
Let K be a nonempty closed convex subset of E and let T : K — K be a k-strictly asymptotically
pseudocontractive map with a sequence {k,} C [1,00) such that Zzozl(k,, — 1) < o0, and let
F(T)#0. Let {a,} and {x,} be as in Lemma 3.2. Then {x,} converges weakly to a fixed point
of T.

Proof. Since {x,} is bounded, it has a weakly convergent subsequence {x,; ?":1. Suppose
{xn,;} converges weakly to p. Then p € K because K is weakly closed. Since lim; o [[Xn; —
Txn;ll=0and (I —T) is demiclosed at zero, we must have p — Tp =0, so that p € F(T).
If {x,,, } is another subsequence of {x,} which converges weakly to some g. Then as for p, we
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must have g € F(T), and it follows from Lemma 3.4 that p = g. Hence w,, (x,) is singleton, so
that {x,} converges weakly to a fixed pointof 7. O

We now show with the following examples that the class of k-strictly asymptotically pseudo-
contractive maps and the class of strictly pseudocontractive maps are independent.

Example 1. Let R denote the reals with the usual norm. Define T: R — R by Tx = —2x. Ob-
serve that

|x = Tx — (y = Ty)| =9Ix — yI%,
so that

1
(= Tx = =Tysx—y) =3k =P = glx ~Tx = = Ty)["

Thus, T is strictly pseudocontractive.
Forneven (n > 1)

(T"x —T"y, x — y) =2"x — y|* > 2Jx — y|%.
Since lim,,_ »0 k;, = 1, there exists N such that k,, < 2, Vn > N. Thus we have
(T"x —T"y, x — y) > 2x — y|?> > kplx — yI?

>kalx =y =A|(I = T")x = (I =T")y|’, Vae (O, ).

Thus, T is not asymptotically strictly pseudocontractive.
Example 2. Let X = 6, = {& = {x;}°;: x; € C, Y72, x> < oo}, and let B = {X € o
x|l < 1}. Define T': B — £, by

Tx = (0, xlz, arxy, azxy, .. .),

where {a;}72, is a real sequence satisfying: a» >0, 0 <a; <1, j #2, and ]_[‘]”:2 aj=1/2.
Then

n
|75 — 175 <2(1_[a,~>||f - 312
j=2

<z(li[af)“f‘9H2+)~H<I—T">x—(I—T")yuz

j=2

forall L € (0,1), n > 2 and x,y € X. Since limn_>002(]_[;f=2 aj) =1, it follows that T is as-
ymptotically strictly pseudocontractive.

Choose & = (4,1, 1,0,0,...), 7=(0,0,0,...) and a, = 3, then

_ - 1 as 111 10 1
(Tx-Ty,x-y)={((0,-,1,—-,0,0,0,...),{=,=,=,0,0,0,... ) )= —= > =
9 3 3'3° 3 27 3

_ _ _ _ — 112

=[x =FI*= X = FI* = =T)x - T -T)3|".

Hence T is not strictly pseudocontractive.
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