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Abstract

We prove an existence result for solutions of nonlinear elliptic unilateral problems having natural growth
terms and L1 data in Orlicz–Sobolev spaces.
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1. Introduction

Let Ω be an open bounded subset of R
N , N � 2, with the segment property and let f ∈

L1(Ω). Consider the following nonlinear Dirichlet problem:

A(u) + g(x,u,∇u) = f, (1.1)

where A(u) = −div(a(x,u,∇u)) is a Leray–Lions operator defined on D(A) ⊂ W 1
0 LM(Ω),

with M is an N -function and g(x, s, ζ ) is a nonlinearity having the same sign of s and satisfying
the following natural growth condition:
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∣∣g(x, s, ζ )
∣∣ � b

(|s|)(c(x) + M
(|ζ |)).

In the variational case (i.e., where f ∈ W−1EM(Ω)), it is well known that Gossez and Mustonen
solved the following obstacle problem in the case where g(x,u,∇u) ≡ g(x,u):⎧⎪⎨

⎪⎩
u ∈ Kφ,〈
A(u),u − v

〉 +
∫
Ω

g(x,u)(u − v)dx � 〈f,u − v〉, ∀v ∈ Kφ ∩ L∞(Ω), (1.2)

where Kφ is a convex subset in W 1
0 LM(Ω) given by

Kφ = {
v ∈ W 1

0 LM(Ω): v � φ a.e. in Ω
}
,

where φ is a measurable function satisfying some regularity condition. Contributions in this
direction include, for equations, [3,7,11].

In the general case where f belongs to L1(Ω), many results have been obtained in this case,
see, for example, [2] if g ≡ g(x,u,∇u) satisfying further the following coercivity condition:

∣∣g(x, s, ζ )
∣∣ � β|ζ |p for |s| � λ. (1.3)

Recently, the condition (1.3) is removed by the authors in [6].
It is our purpose in this paper to prove an existence theorem for unilateral problems corre-

sponding to (1.1) without assuming the Δ2 condition on the N -function M . So that, we generalize
all previous works [4–6,8,12,13].

As examples of problems to which the present result can be applied (see also Remark 3.2),
we give:

−div
(
exp

(|∇u|)∇u
) + u exp(−u) exp

(|∇u|)|∇u|2 = f,

−div
(|∇u|p−2∇u logα

(
1 + |∇u|)) + u

∣∣cos(u)
∣∣|∇u|p logα

(
1 + |∇u|) = f

with f ∈ L1(Ω), p � 1 and α > 0.

2. Preliminaries

2.1. Let M : R+ → R
+ be an N -function, i.e., M is continuous, convex, with M(t) > 0 for

t > 0, M(t)
t

→ 0 as t → 0 and M(t)
t

→ ∞ as t → ∞.

Equivalently, M admits the representation: M(t) = ∫ t

0 a(s) ds, where a : R+ → R
+ is nonde-

creasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0 and a(t) tends to ∞ as t → ∞.
The N -function M conjugate to M is defined by M(t) = ∫ t

0 ā(s) ds, where a : R+ → R
+ is

given by ā(t) = sup{s: a(s) � t} (see [1]).
The N -function is said to satisfy the Δ2 condition, if for some k > 0,

M(2t) � kM(t) ∀t � 0, (2.1)

when (2.1) holds only for t � some t0 > 0 then M is said to satisfy the Δ2 condition near infinity.
We will extend these N -functions into even functions on all R.
Let P and Q be two N -functions. P 
 Q means that P grows essentially less rapidly than Q,

i.e., for each ε > 0, P(t)
Q(εt)

→ 0 as t → ∞.

This is the case if and only if limt→∞ Q−1(t)
−1 = 0.
P (t)
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2.2. Let Ω be an open subset of R
N . The Orlicz class KM(Ω) (respectively the Orlicz space

LM(Ω)) is defined as the set of (equivalence classes of) real valued measurable functions u on
Ω such that:∫

Ω

M
(
u(x)

)
dx < +∞

(
respectively

∫
Ω

M

(
u(x)

λ

)
dx < +∞ for some λ > 0

)
.

LM(Ω) is Banach space under the norm

‖u‖M,Ω = inf

{
λ > 0:

∫
Ω

M

(
u(x)

λ

)
dx � 1

}

and KM(Ω) is a convex subset of LM(Ω).
The closure in LM(Ω) of the set of bounded measurable functions with compact support in Ω

is denoted by EM(Ω). The equality EM(Ω) = LM(Ω) holds if only if M satisfies Δ2 condition,
for all t or for t large according to whether Ω has infinite measure or not. The dual of EM(Ω)

can be identified with LM(Ω) by means of the pairing
∫
Ω

uv dx, and the dual norm of LM(Ω)

is equivalent to ‖.‖M,Ω . The space LM(Ω) is reflexive if and only if M and M satisfy the Δ2

condition, for all t or for t large, according to whether Ω has infinite measure or not.

2.3. We now turn to the Orlicz–Sobolev space, W 1LM(Ω) (respectively W 1EM(Ω)) is the
space of all functions u such that u and its distributional derivatives up to order 1 lie in LM(Ω)

(respectively EM(Ω)). It is a Banach space under the norm

‖u‖1,M =
∑

|α|�1

∥∥Dαu
∥∥

M
.

Thus, W 1LM(Ω) and W 1EM(Ω) can be identified with subspaces of product of N + 1 copies
of LM(Ω). Denoting this product by ΠLM , we will use the weak topologies σ(ΠLM,ΠEM)

and σ(ΠLM,ΠLM).
The space W 1

0 EM(Ω) is defined as the (norm) closure of the Schwartz space D(Ω) in
W 1EM(Ω) and the space W 1

0 LM(Ω) as the σ(ΠLM,ΠEM) closure of D(Ω) in W 1LM(Ω).
We say that un converges to u for the modular convergence in W 1LM(Ω) if for some λ > 0

∫
Ω

M

(
Dαun − Dαu

λ

)
dx → 0 for all |α| � 1.

This implies convergence for σ(ΠLM,ΠLM).
If M satisfies Δ2 condition on R

+, then modular convergence coincides with norm conver-
gence.

2.4. Let W−1LM(Ω) (respectively W−1EM(Ω)) denote the space of distributions on Ω

which can be written as sums of derivatives of order � 1 of functions in LM (respectively
EM(Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property then the space D(Ω) is dense in W 1
0 LM(Ω) for

the modular convergence and thus for the topology σ(ΠLM,ΠLM) (cf. [9,10]). Consequently,
the action of a distribution in W−1LM(Ω) on an element of W 1LM(Ω) is well defined.
0
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2.5. We recall some lemmas introduced in [3] (see also [11]) which we will be used in this
paper.

Lemma 2.1. Let F : R → R be uniformly Lipschitzian, with F(0) = 0. Let M be an N -function
and let u ∈ W 1LM(Ω) (respectively W 1EM(Ω)). Then F(u) ∈ W 1LM(Ω) (respectively
W 1EM(Ω)). Moreover, if the set D of discontinuity points of F ′ is finite, then

∂

∂xi

F (u) =
{

F ′(u) ∂
∂xi

u a.e. in {x ∈ Ω: u(x) /∈ D},
0 a.e. in {x ∈ Ω: u(x) /∈ D}.

Lemma 2.2. Let F : R → R be uniformly Lipschitzian, with F(0) = 0. We suppose that the set of
discontinuity points of F ′ is finite. Let M be an N -function, then the mapping F :W 1LM(Ω) →
W 1LM(Ω) is sequentially continuous with respect to the weak∗ topology σ(ΠLM,ΠEM).

2.6. We give now the following lemma which concerns operators of the Nemytskii type in
Orlicz spaces (see [3]).

Lemma 2.3. Let Ω be an open subset of R
N with finite measure. Let M , P and Q be N -functions

such that Q 
 P , and let f :Ω × R → R be a Carathéodory function such that for a.e. x ∈ Ω

and for all s ∈ R,∣∣f (x, s)
∣∣ � c(x) + k1P

−1M
(
k2|s|

)
,

where k1, k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskii operator Nf defined by
Nf (u)(x) = f (x,u(x)) is strongly continuous from

P
(

EM(Ω),
1

k2

)
=

{
u ∈ LM(Ω): d

(
u,EM(Ω)

)
<

1

k2

}

into EQ(Ω).

3. The main result

Let Ω be an open bounded subset of R
N , N � 2, with the segment property. Let

Kψ = {
v ∈ W 1

0 LM(Ω): v � ψ a.e. in Ω
}
,

where ψ :Ω → R is a given measurable function. Let M and P be two N -functions such
that P 
 M . Let A(u) = −div(a(x,u,∇u)) be a Leray–Lions operator defined on D(A) ⊂
W 1

0 LM(Ω) into W−1LM(Ω) where a :Ω × R × R
N → R

N is a Carathéodory function satisfy-
ing for a.e. x ∈ Ω and for all ζ, ζ ′ ∈ R

N (ζ �= ζ ′) and all s ∈ R,

∣∣a(x, s, ζ )
∣∣ � h(x) + k1P

−1
M

(
k2|s|

) + k3M
−1

M
(
k4|ζ |), (3.1)(

a(x, s, ζ ) − a(x, s, ζ ′)
)
(ζ − ζ ′) > 0, (3.2)

a(x, s, ζ )
(
ζ − ∇ν(x)

)
� αM

(|ζ |) − d(x) (3.3)

with ν(x) ∈ Kψ ∩ L∞(Ω) ∩ W 1
0 EM(Ω), d ∈ L1(Ω), α, k1, k2, k3, k4 > 0 and h ∈ EM(Ω).

Furthermore, let g :Ω × R × R
N → R be a Carathéodory function such that for a.e. x ∈ Ω

and for all s ∈ R and all ζ ∈ R
N ,
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g(x, s, ζ )s � 0, (3.4)∣∣g(x, s, ζ )
∣∣ � b

(|s|)(c(x) + M
(|ζ |)), (3.5)

where b : R+ → R is a continuous and nondecreasing function and c(x) is a given nonnegative
function in L1(Ω).

Now, assume that

Kψ ∩ W 1
0 EM(Ω) is dense in Kψ (3.6)

for the modular convergence in W 1
0 LM(Ω). Finally, we assume that

f ∈ L1(Ω). (3.7)

We define by T
1,M
0 (Ω) as the set of measurable functions u :Ω → R such that Tk(u) ∈

W 1
0 LM(Ω) ∩ D(A), where Tk(s) = max(−k,min(k, s)), ∀s ∈ R, ∀k � 0.

We shall prove the following existence theorem.

Theorem 3.1. Assume that (3.1)–(3.7) hold true. Then there exists at least one solution of the
following obstacle problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ T
1,M
0 (Ω),

u � ψ a.e. in Ω, g(x,u,∇u) ∈ L1(Ω),∫
Ω

a(x,u,∇u)∇Tk(u − v)dx +
∫
Ω

g(x,u,∇u)Tk(u − v)dx

�
∫
Ω

f Tk(u − v)dx, ∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

(Pψ )

Remark 3.1. If ψ ∈ W 1
0 EM(Ω) ∩ L∞(Ω) or if there exists ψ ∈ Kψ ∩ L∞(Ω) ∩ W 1

0 EM(Ω)

such that ψ − ψ is continuous then (3.6) is satisfied.
Note that if M satisfies the Δ2 condition, then the density (3.6) is trivially satisfied.

Remark 3.2. Let m : R → R be continuous, odd, strictly increasing from −∞ to +∞ and con-
sider the Dirichlet problem

−div

(
a(x,u)m

(|∇u|) ∇u

|∇u|
)

+ g(u)m
(|∇u|)|∇u| = f in Ω,

where a(x,u) is a Carathéodory function such that α � a(x,u) � β and g is a continuous
function satisfying g(s)s � 0. Then, the assumptions (3.1)–(3.5) of Theorem 3.1 hold true (see
Remark 8 of [12]).

Proof of Theorem 3.1. Step 1: A priori estimates.
For the sake of simplicity, we assume that d(x) = 0. Let now λ such that λ � ‖ν‖∞, γ =

(
b(λ)
2α

)2 and φ(s) = s exp(γ s2). It is well known that

φ′(s) − b(λ)

α

∣∣φ(s)
∣∣ � 1

2
, ∀s ∈ R. (3.8)
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Consider the approximate problems:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un ∈ Kψ ∩ D(A),

〈
A(un),un − w

〉 +
∫
Ω

gn(x,un,∇un)(un − w)dx �
∫
Ω

fn(un − w)dx,

∀w ∈ Kψ,

(3.9)

where gn(x, s, ζ ) = Tn(g(x, s, ζ )) and fn is a sequence of smooth functions which converges
strongly to f in L1(Ω).

By Proposition 1 of [12], there exists at least one solution un of (3.9). By taking v = un −
δφ(T2‖ν‖∞(un − ν)), as test function in (3.9), with δ = exp(−4γ ‖ν‖2∞), we obtain∫

{|un−ν|<2‖ν‖∞}
a(x,un,∇un)∇(un − ν)φ′(T2‖ν‖∞(un − ν)

)
dx

+
∫
Ω

gn(x,un,∇un)φ
(
T2‖ν‖∞(un − ν)

)
dx

�
∫
Ω

fnφ
(
T2‖ν‖∞(un − ν)

)
dx

which gives, since gn(x,un,∇un)φ(T2‖ν‖∞(un − ν)) � 0 on the set {x ∈ Ω: |un| � ‖ν‖∞},∫
{|un−ν|<2‖ν‖∞}

a(x,un,∇un)∇(un − ν)φ′(T2‖ν‖∞(un − ν)
)
dx

+
∫

{|un|<‖ν‖∞}
gn(x,un,∇un)φ

(
T2‖ν‖∞(un − ν)

)
dx

�
∫
Ω

fnφ
(
T2‖ν‖∞(un − ν)

)
dx.

Thanks to (3.5), one easily obtains∫
{|un−ν|<2‖ν‖∞}

a(x,un,∇un)∇(un − ν)φ′(T2‖ν‖∞(un − ν)
)
dx

�
∫

{|un|<‖ν‖∞}
b
(‖ν‖∞

)∣∣φ(
T2‖ν‖∞(un − ν)

)∣∣(c(x) + M
(|ζ |))dx + C

which implies∫
{|un−ν|<2‖ν‖∞}

αM
(|∇un|

)[
φ′(T2‖ν‖∞(un − ν)

) − b
(‖ν‖∞

)
φ
(
T2‖ν‖∞(un − ν)

)]
dx � C

and by using (3.9), one easily has∫
M

(|∇un|
)
dx � C, ∀n,
{|un−ν|<2‖ν‖∞}



A. Elmahi, D. Meskine / J. Math. Anal. Appl. 328 (2007) 1417–1434 1423
consequently∫
{|un|<‖ν‖∞}

M
(|∇un|

)
dx � C, ∀n. (3.10)

On the other hand, the choice of w = un − Tk(un − v) as test function in (3.9) with v ∈ Kψ ,
yields⎧⎪⎨

⎪⎩
〈
A(un), Tk(un − v)

〉 +
∫
Ω

gn(x,un,∇un)Tk(un − v)dx �
∫
Ω

fnTk(un − v)dx,

∀v ∈ Kψ, ∀k > 0.

(Pn)

Take now, v = ν as test function in (Pn), we obtain for every k > 0,∫
{|un−ν|<k}

a(x,un,∇un)∇(un − ν)dx +
∫

{|un|<‖ν‖∞}
gn(x,un,∇un)Tk(un − ν)dx

�
∫
Ω

fnTk(un − ν)dx.

Consequently from (3.5) and (3.10), one easily has∫
{|un−ν|�k}

a(x,un,∇un)∇(un − ν)dx � Ck. (3.11)

Thus by using (3.3) (with d(x) = 0) we obtain

α

∫
{|un−ν|�k}

M
(|∇un|

)
dx � Ck.

Finally, we have for any h > 0,∫
{|un|�h}

M
(|∇un|

)
dx �

∫
{|un−ν|�h+‖ν‖∞}

M
(|∇un|

)
dx � C

(
h + ‖ν‖∞

)
(3.12)

which shows that∫
Ω

M
(∣∣∇Th(un)

∣∣)dx � C
(
h + ‖ν‖∞

)
, (3.13)

thanks to Lemma 5.7 of [9] there exist two positive constants c1 and c2 such that∫
Ω

M(v)dx � c1

∫
Ω

M
(
c2|∇v|)dx, ∀v ∈ W 1

0 LM(Ω). (3.14)

Choosing, now v = |Th(un)|
c2

in (3.14) and using (3.13), we get

∫
M

( |Th(un)|
c2

)
dx � c3

(
h + ‖ν‖∞

)

Ω
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which implies that

meas
{|un| > h

}
� c3(h + ‖ν‖∞)

M( h
c2

)
, ∀n, ∀k � ‖ν‖∞.

We have for any δ > 0

meas
{|un − um| > δ

}
� meas

{|un| > h
} + meas

{|um| > h
}

+ meas
{∣∣Th(un) − Th(um)

∣∣ > δ
}

which gives

meas
{|un − um| > δ

}
� 2c3(h + ‖ν‖∞)

M( h
c2

)
+ meas

{∣∣Th(un) − Th(um)
∣∣ > δ

}
. (3.15)

Thanks to (3.13), we deduce that (Th(un)) is bounded in W 1
0 LM(Ω) and then we can assume

that (Th(un)) is a Cauchy sequence in measure in Ω .
Let ε > 0, then by (3.15) and the fact that t

M( t
c2

)
→ 0 as t → ∞, there exists h(ε) > 0 such

that

meas
{|un − um| > δ

}
� ε for all n,m � n0

(
h(ε), δ

)
.

This proves that (un) is a Cauchy sequence in measure and then converges almost everywhere to
some measurable function u. Finally, we deduce from (3.13) and Lemma 4.4 of [9], that

Th(un) → Th(u) weakly in W 1
0 LM(Ω) for σ(ΠLM,ΠEM), strongly in EM(Ω).

(3.16)

Let us show now, that (a(x,Th(un),∇Th(un))n is bounded in (LM(Ω))N . Let ϕ ∈ (EM(Ω))N ,
then by using (3.2), one easily has for every k > 0,∫

{|un−ν|�k}
a(x,un,∇un)(k4ϕ) − ∇ν dx

�
∫

{|un−ν|�k}
a(x,un,∇un)(∇un − ∇ν)dx −

∫
{|un−ν|�k}

a(x,un, k4ϕ)(∇un − k4ϕ)dx

which gives by (3.11)∫
{|un−ν|�k}

a(x,un,∇un)(k4ϕ) − ∇ν dx � Ck −
∫

{|un−ν|�k}
a(x,un, k4ϕ)(∇un − k4ϕ)dx.

Since ϕ is arbitrary in (EM(Ω))N , we choose η = k4ϕ − ∇ν in the last inequality with
‖η‖(LM(Ω))N = 1 and we find∫

{|un−ν|�k}
a(x,un,∇un)η dx � Ck −

∫
{|un−ν|�k}

a(x,un, η + ν)(∇un − η − ∇ν)dx

which implies by using (3.1), that∫
a(x,un,∇un)η dx � Ck,ν,
{|un−ν|�k}
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where Ck,ν is a constant which depends on k and ν but not on n.
Consequently by using the dual norm, one has |a(x,un,∇un)|χ{|un−ν|�k} is bounded in

(LM(Ω))N .
On the other hand, we have∫

Ω

a
(
x,Th(un),∇Th(un)

)
η dx �

∫
Ω

∣∣a(x,un,∇un)
∣∣χ{|un−ν)|�h+‖ν‖∞}η dx

which gives by Hölder inequality∫
Ω

a
(
x,Th(un),∇Th(un)

)
η dx � 2

∥∥a(x,un,∇un)χ{|un−ν|�h+‖φ‖∞}
∥∥

(LM(Ω))N
,

where we have used the fact that ‖η‖(LM(Ω))N = 1. So that a(x,Th(un),∇Th(un))n is bounded
in (LM(Ω))N .

Step 2: Convergence of truncations.
Thanks to the assumption (3.6), there exists a sequence wj ∈ Kψ(Ω) ∩ W 1EM(Ω) which

converges to Tk(u) for the modular convergence in W 1
0 LM(Ω).

Consider now the function θm,m > 0 defined by

θm(t) = 1 − ∣∣Tm

(
un − Tm(un)

)∣∣.
Let vn,m,j = un − ηθm(un − ν)φ(z

j
n), with η = exp(−4γ k2), zn = Tk(un) − Tk(wj ) and m >

k + ‖ν‖∞, with k � ‖ν‖∞. The use of vn,m,j as test function in (Pn) gives, for all h > 0,

〈
A(un), Th

(
ηθm(un − ν)φ

(
z
j
n

))〉 +
∫
Ω

gn(x,un,∇un)Th

(
ηθm(un − ν)φ

(
z
j
n

))
dx

�
∫
Ω

fnTh

(
ηθm(un − ν)φ

(
z
j
n

))
dx,

and by taking h > 2k we obtain

〈
A(un), θm(un − ν)φ

(
z
j
n

)〉 +
∫
Ω

gn(x,un,∇un)θm(un − ν)φ
(
z
j
n

)
dx

�
∫
Ω

fnθm(un − ν)φ
(
z
j
n

)
dx

which gives∫
Ω

a(x,un,∇un)
[∇Tk(un) − ∇Tk(wj)

]
θm(un − ν)φ′(zj

n

)
dx

+
∫
Ω

a(x,un,∇un)(∇un − ∇ν)θ ′
m(un − ν)φ

(
z
j
n

)
dx

+
∫
Ω

gn(x,un,∇un)θm(un − ν)φ
(
z
j
n

)
dx

�
∫

fnθm(un − ν)φ
(
z
j
n

)
dx. (3.17)
Ω
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Denote by ε1(n, j), ε2(n, j), . . . various sequences of real numbers which converge to zero
when n and j tend to infinity in this order. Since gn(x,un,∇un)θm(un)φ(z

j
n) � 0 on the sub-

set {x ∈ Ω: |un(x)| > k}, we deduce from (3.17) that
∫
Ω

a(x,un,∇un)
[∇Tk(un) − ∇Tk(wj )

]
θm(un − ν)φ′(zj

n

)
dx

+
∫
Ω

a(x,un,∇un)∇un − ∇νθ ′
m(un − ν)φ

(
z
j
n

)
dx

+
∫

{|un|�k}
gn(x,un,∇un)θm(un − ν)φ

(
z
j
n

)
dx

�
∫
Ω

fnθm(un − ν)φ
(
z
j
n

)
dx = ε1(n, j). (3.18)

For the first term of the left-hand side of the last inequality, we have
∫
Ω

a(x,un,∇un)
[∇Tk(un) − ∇Tk(wj )

]
θm(un − ν)φ′(zj

n

)
dx

=
∫

{|un|�k}
a(x,un,∇un)

[∇Tk(un) − ∇Tk(wj )
]
θm(un − ν)φ′(zj

n

)
dx

−
∫

{|un|>k}
a(x,un,∇un)∇Tk(wj )θm(un − ν)φ′(zj

n

)
dx,

by using the fact that θm(un − ν) = 0 on the set {x ∈ Ω: |un| > 2m} and θm(un − ν) = 1 on the
set {x ∈ Ω: |un| � k}, since m > k + ‖ν‖∞, we obtain

∫
Ω

a(x,un,∇un)
[∇Tk(un) − ∇Tk(wj )

]
θm(un − ν)φ′(zj

n

)
dx

=
∫

{|un|�k}
a(x,un,∇un)

[∇Tk(un) − ∇Tk(wj )
]
φ′(zj

n

)
dx

−
∫

{2m�|un|>k}
a(x,un,∇un)∇Tk(wj )θm(un − ν)φ′(zj

n

)
dx.

The second term of the right-hand side of the last equality reads as

−
∫

{|un|>k}
a
(
x,T2m(un),∇T2m(un)

)∇Tk(wj )θm(un − ν)φ′(zj
n

)
dx

= −
∫

{|u|>k}
h2m∇Tk(u)θm(u − ν)dx + ε2(n, j).
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Since ∇Tk(u) = 0 on {|u| > k}, we deduce that

−
∫

{2m�|un|>k}
a(x,un,∇un)∇Tk(wj )θm(un − ν)φ′(zn) dx = ε(n, j),

where we have used the fact that

a
(
x,T2m(un),∇T2m(un)

) → h2m weakly in
(
LM(Ω)

)N for σ
(
ΠLM(Ω),ΠEM(Ω)

)
.

Denote now by χj,s and χs respectively the characteristic functions of the sets Ω
j
s = {x ∈ Ω:

|∇Tk(wj )| � s} and Ωs = {x ∈ Ω: |∇Tk(u)| � s}. We have∫
{|un|�k}

a(x,un,∇un)
[∇Tk(un) − ∇Tk(wj )

]
φ′(zj

n

)
dx

=
∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(wj )χj,s

)]

× [∇Tk(un) − ∇Tk(u)χj,s

]
φ′(zj

n

)
dx

+
∫
Ω

a
(
x,Tk(un),∇Tk(wj )χj,s

)[∇Tk(un) − ∇Tk(wj )χj,s

]
φ′(zj

n

)
dx

−
∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(wj )χΩ\Ωj
s
φ′(zj

n

)
dx. (3.19)

The second term of the right-hand side of (3.19) tends
∫
Ω\Ωs

a(x,Tk(u),0)∇Tk(u)dx, as n and
j tend to infinity. Indeed, since

a
(
x,Tk(un),∇Tk(wj )χj,s

)
φ′(zj

n

) → a
(
x,Tk(u),∇Tk(wj )χj,s

)
strongly in

(
EM(Ω)

)N

by Lemma 2.3 and

∇Tk(un) ⇀ ∇Tk(u) weakly in
(
LM(Ω)

)N for σ
(
ΠLM(Ω),ΠEM(Ω)

)
.

For what concerns the third term, one can remark that∫
Ω

a
(
x,Tk(un),∇Tk(wj )χj,s

)[∇Tk(un) − ∇Tk(wj )χj,s

]
φ′(zj

n

)
dx

=
∫
Ω

a
(
x,Tk(u),∇Tk(wj )χj,s

)[∇Tk(u) − ∇Tk(wj )χj,s

]
dx

=
∫

Ω\Ωs

a
(
x,Tk(u),0

)∇Tk(u)dx + ε3(n, j),

where we have used the fact

a
(
x,Tk(u),∇Tk(wj )χj,s

) → a
(
x,Tk(u),∇Tk(u)χs

)
strongly in

(
EM(Ω)

)N

and

Tk(wj ) → Tk(u) for the modular convergence in W 1
0 LM(Ω).
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The third term of (3.19) tends to − ∫
Ω

hk∇Tk(u)χΩ\Ωs dx as n, j → ∞ since

a
(
x,Tk(un),∇Tk(un)

)
⇀ hk weakly for σ

(
ΠLM(Ω),ΠEM(Ω)

)
while ∇Tk(wj )χΩ\Ωj

s
∈ EM(Ω) and ∇Tk(wj )χΩ\Ωj

s
→ ∇Tk(u)χΩ\Ωs as j tends to infinity.

Consequently, from (3.19) we have
∫
Ω

a(x,un,∇un)
[∇Tk(un) − ∇Tk(wj )

]
φ′(zj

n

)
θm(un) dx

=
∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(wj )χj,s

)]

× [∇Tk(un) − ∇Tk(wj )χj,s

]
φ′(zj

n

)
dx

−
∫
Ω

hk∇Tk(u)χΩ\Ωs dx +
∫

Ω\Ωs

a
(
x,Tk(u),0

)∇Tk(u)dx + ε3(n, j). (3.20)

On the other hand,
∣∣∣∣
∫
Ω

a(x,un,∇un)(∇un − ∇ν)θ ′
m(un − ν)φ

(
z
j
n

)
dx

∣∣∣∣

� 2φ(2k)

m

∫
{m�|un−ν|�2m}

a(x,un,∇un)(∇un − ∇ν)dx

and by using un − Tm(un − ν − Tm(un − ν)) as test function in (3.8), we obtain
∣∣∣∣
∫
Ω

a(x,un,∇un)(∇un − ∇ν)θ ′
m(un − ν)φ(zn) dx

∣∣∣∣ � 2φ(2k)

∫
{|un−ν|�m}

|fn|dx. (3.21)

If we denote by Kn,m,j the third term of the left-hand side of (3.19), one has by using the fact
that

0 � θm(un − ν) � 1, (3.22)

|Kn,m,j | �
∫

{|un|�k}
b(k)

(
c(x) + M

(|∇un|
))∣∣φ(

z
j
n

)∣∣dx

� b(k)

∫
Ω

c(x)
∣∣φ(

z
j
n

)∣∣dx + b(k)

α

∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(un)
∣∣φ(

z
j
n

)∣∣dx

� ε4(n, j) + b(k)

α

∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(wj )χj,s

)]

× [∇Tk(un) − ∇Tk(wj )χj,s

]∣∣φ(
z
j
n

)∣∣dx, (3.23)

indeed, we have
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∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(un)
∣∣φ(

z
j
n

)∣∣dx

=
∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(wj )χj,s

)]

× [∇Tk(un) − ∇Tk(wj )χj,s

]∣∣φ(
z
j
n

)∣∣dx

+
∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(wj )χj,s

∣∣φ(
z
j
n

)∣∣dx

+
∫
Ω

a
(
x,Tk(un),∇Tk(wj )χj,s

)[∇Tk(un) − ∇Tk(wj )χj,s

]∣∣φ(
z
j
n

)∣∣dx. (3.24)

It is easy to see that the second term of the right-hand side of the last equality can be reads as∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(wj )χj,s

∣∣φ(
z
j
n

)∣∣dx

=
∫
Ω

hk∇Tk(wj )χj,s

∣∣φ(
Tk(u) − Tk(wj )

)∣∣ + εj (n) = ε5(n, j),

where εj (n) is a sequence which converges to 0 as n → ∞ for j fixed.
For the third term of the right-hand side of (3.24), it is easily seen that∫

Ω

a
(
x,Tk(un),∇Tk(wj )χj,s

)[∇Tk(un) − ∇Tk(wj )χj,s

]∣∣φ(
z
j
n

)∣∣dx = ε6(n, j).

Combining (3.20), (3.21) and (3.23) we obtain∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(wj )χj,s

)]

× [∇Tk(un) − ∇Tk(wj )χj,s

](
φ′(zj

n

) − b(k)

α

∣∣φ(
z
j
n

)∣∣)dx

� ε7(n, j) +
∫
Ω

hk∇Tk(u)χΩ\Ωs dx + φ(2k)

∫
{|un−ν|�m}

|fn|dx

+
∫

Ω\Ωs

∣∣a(
x,Tk(u),0

)∣∣∣∣∇Tk(u)
∣∣dx

which implies, by using (3.8)∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(wj )χj,s

)][∇Tk(un) − ∇Tk(wj )χj,s

]

� 2ε7(n, j) + 2
∫
Ω

hk∇Tk(u)χΩ\Ωs dx + 4φ(2k)

∫
{|un−ν|�m}

|fn|dx

+
∫

2
∣∣a(

x,Tk(u),0
)∣∣∣∣∇Tk(u)

∣∣dx. (3.25)
Ω\Ωs
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Remark now that∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(u)χs

)][∇Tk(un) − ∇Tk(u)χs

]
dx

=
∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(wj )χj,s

)]

× [∇Tk(un) − ∇Tk(wj )χj,s

]
dx

+
∫
Ω

a
(
x,Tk(un),∇Tk(un)

)[∇Tk(wj )χj,s − ∇Tk(u)χs

]
dx

−
∫
Ω

a
(
x,Tk(un),∇Tk(u)χs

)[∇Tk(un) − ∇Tk(u)χs

]
dx

+
∫
Ω

a
(
x,Tk(un),∇Tk(wj )χj,s

)[∇Tk(un) − ∇Tk(wj )χj,s

]
dx. (3.26)

We argue as above to show that∫
Ω

a
(
x,Tk(un),∇Tk(un)

)[∇Tk(wj )χj,s − ∇Tk(u)χs

]
dx = ε8(n, j),

−
∫
Ω

a
(
x,Tk(un),∇Tk(u)χs

)[∇Tk(un) − ∇Tk(u)χs

]
dx

= −
∫

Ω\Ωs

a
(
x,Tk(u),0

)∇Tk(u)dx + ε9(n, j)

and ∫
Ω

a
(
x,Tk(un),∇Tk(wj )χj,s

)[∇Tk(un) − ∇Tk(wj )χj,s

]
dx

=
∫

Ω\Ωs

a
(
x,Tk(u),0

)∇Tk(u)dx + ε10(n, j).

Consequently, one has∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(u)χs

)][∇Tk(un) − ∇Tk(u)χs

]
dx

=
∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(wj )χj,s

)]

× [∇Tk(un) − ∇Tk(wj )χj,s

]
dx

+
∫
Ω

a
(
x,Tk(un),∇Tk(un)

)[∇Tk(wj )χj,s − ∇Tk(u)χs

]
dx + ε11(n, j). (3.27)
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Let now r � s, then∫
Ωr

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(u)

)][∇Tk(un) − ∇Tk(u)
]
dx

�
∫
Ω

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(u)χs

)][∇Tk(un) − ∇Tk(u)χs

]
dx,

hence, from (3.27) and (3.25)∫
Ωr

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(u)

)][∇Tk(un) − ∇Tk(u)
]
dx

� 2ε7(n, j) + ε11(n, j) + 2
∫
Ω

hk∇Tk(u)χΩ\Ωs dx + 4φ(2k)

∫
{|un|�m}

|fn|dx

+
∫

Ω\Ωs

2
∣∣a(

x,Tk(u),0
)∣∣∣∣∇Tk(u)

∣∣dx.

By letting respectively n, j,m and s to infinity, one easily has

lim
n→∞

∫
Ωr

[
a
(
x,Tk(un),∇Tk(un)

) − a
(
x,Tk(un),∇Tk(u)

)][∇Tk(un) − ∇Tk(u)
]
dx = 0

and then as in [4]

∇un → ∇u a.e. in Ω. (3.28)

On the other hand, we have from (3.25) and (3.27)∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(un) dx

�
∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(u)χs dx

+
∫
Ω

a
(
x,Tk(un),∇Tk(u)χs

)[∇Tk(un) − ∇Tk(u)χs

]
dx + ε11(n, j)

+ 2
∫
Ω

hk∇Tk(u)χΩ\Ωs dx + 2
∫

Ω\Ωs

∣∣a(
x,Tk(u),0

)∇Tk(u)
∣∣dx

+ 4φ(2k)

∫
{|un|�m}

|fn|dx,

by passing to the limit sup on n, one has

lim sup
n→+∞

∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(un) dx

� lim sup
n→+∞

∫
a
(
x,Tk(un),∇Tk(un)

)∇Tk(u)χs dx
Ω
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+ lim sup
n→+∞

∫
Ω

a
(
x,Tk(un),∇Tk(u)χs

)[∇Tk(un) − ∇Tk(u)χs

]
dx

+ lim sup
n→+∞

ε11(n, j) + 2
∫
Ω

hk∇Tk(u)χΩ\Ωs dx

+ 2
∫

Ω\Ωs

∣∣a(
x,Tk(u),0

)∇Tk(u)
∣∣dx + 4φ(2k)

∫
{|u|�m}

|f |dx. (3.29)

The second term of the last inequality tends to
∫
Ω

a(x,Tk(u),∇Tk(u))∇Tk(u)χs dx since

a
(
x,Tk(un),∇Tk(un)

)
⇀ a

(
x,Tk(u),∇Tk(u)

)
weakly in

(
LM(Ω)

)N for σ
(
ΠLM(Ω),ΠEM(Ω)

)
,

while ∇Tk(u)χs ∈ EM(Ω).
The third term of inequality (3.29) tends to

∫
Ω

a(x,Tk(u),0)∇Tk(u)χΩ\Ωs dx since

a
(
x,Tk(un),∇Tk(u)χs

) → a
(
x,Tk(u),∇Tk(u)χs

)
strongly in

(
EM(Ω)

)N
,

by Lemma 2.3 while ∇Tk(un) tends weakly to ∇Tk(u). Consequently, we get, by letting j to
infinity

lim sup
n→+∞

∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(un) dx

�
∫
Ω

a
(
x,Tk(u),∇Tk(u)

)∇Tk(u)χs dx + 2
∫
Ω

hk∇Tk(u)χΩ\Ωs dx

+ 4φ(2k)

∫
{|u|�m}

|f |dx + 3
∫
Ω

∣∣a(
x,Tk(u),0

)∇Tk(u)
∣∣χΩ\Ωs dx.

By using the fact that a(x,Tk(u),∇Tk(u))∇Tk(u), |a(x,Tk(u),0)∇Tk(u)| and hk∇Tk(u) belong
to L1(Ω) and by letting s → ∞, we get since meas(Ω \ Ωs) → 0,

lim sup
n→+∞

∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(un) dx

�
∫
Ω

a
(
x,Tk(u),∇Tk(u)

)∇Tk(u)dx + 4φ(2k)

∫
{|u|�m}

|f |dx

and by letting m → ∞, we obtain

lim sup
n→+∞

∫
Ω

a
(
x,Tk(un),∇Tk(un)

)∇Tk(un) dx �
∫
Ω

a
(
x,Tk(u),∇Tk(u)

)∇Tk(u)dx

which gives by Fatou’s lemma

lim
n→+∞

∫
a
(
x,Tk(un),∇Tk(un)

)∇Tk(un) dx =
∫

a
(
x,Tk(u),∇Tk(u)

)∇Tk(u)dx. (3.30)
Ω Ω
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Step 3: Passage to the limit.
Let now v ∈ Kψ ∩ L∞(Ω), then there exists a sequence vj ∈ Kψ ∩ W 1EM(Ω) such that

vj → v in W 1
0 LM(Ω) for the modular convergence.

By using Th(vj ), h � ‖v‖∞, as test function in (Pn), one has∫
Ω

a
(
x,TH (un),∇TH un

)∇Tk

(
un − Th(vj )

)
dx +

∫
Ω

gn(x,un,∇un)Tk

(
un − Th(vj )

)
dx

�
∫
Ω

fnTk

(
un − Th(vj )

)
dx, (3.31)

where H = k + h.
On the one hand,∫

Ω

a
(
x,TH (un),∇TH (un)∇Tk

(
un − Th(vj )

))
dx

=
∫
Ω

a
(
x,TH (un),∇TH (un) − a

(
x,TH (un),∇Th(vj )χj,s

))∇Tk

(
un − Th(vj )χj,s

)
dx

+
∫
Ω

a
(
x,TH (un),∇Th(vj )χj,s

)∇Tk

(
un − Th(vj )χj,s

)
dx

+
∫

{|∇Th(vj )|�s}
a
(
x,TH (un),∇TH (un)

)∇Th(vj ) dx,

by using Fatou’s lemma and the fact that ∇Th(vj ) ∈ (EM(Ω))N ,

a
(
x,TH (un),∇TH (un)

) → a
(
x,TH (u),∇TH (u)

)
for σ(ΠLM,ΠEM)

and

a
(
x,TH (un),∇Th(vj )χj,s

) → a
(
x,TH (u),∇Th(vj )χj,s

)
strongly in

(
EM(Ω)

)N
,

we obtain as n and s → ∞,

lim inf
n→+∞

∫
Ω

a(x,un,∇un)∇Tk

(
un − Th(vj )

)
dx

�
∫
Ω

a(x,u,∇u)∇Tk

(
u − Th(vj )

)
dx. (3.32)

About the second term of (3.31), one can write∫
Ω

gn(x,un,∇un)Tk

(
un − Th(vj )

)
dx

=
∫

{|un|<h}
gn(x,un,∇un)Tk

(
un − Th(vj )

)
dx

+
∫

gn(x,un,∇un)Tk

(
un − Th(vj )

)
dx
{|un|>h}
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and consequently by using Fatou’s lemma in the first term of the last inequality and the conver-
gence (3.30) in the second

lim sup
n→+∞

∫
Ω

gn(x,un,∇un)Tk

(
un − Th(vj )

)
dx �

∫
Ω

g(x,u,∇u)Tk

(
u − Th(vj )

)
dx. (3.33)

Combining (3.31)–(3.33) to obtain finally∫
Ω

a
(
x,TH (u),∇TH (u)

)∇Tk

(
u − Th(vj )

)
dx +

∫
Ω

g(x,u,∇u)Tk

(
u − Th(vj )

)
dx

�
∫
Ω

f Tk

(
u − Th(vj )

)
dx

in which we can pass to the limit in j thanks to the modular convergence of vj , to obtain∫
Ω

a(x,u,∇u)∇Tk(u − v)dx +
∫
Ω

g(x,u,∇u)Tk(u − v)dx �
∫
Ω

f Tk(u − v)dx,

where we have used the fact that Th(v) = v since h � ‖v‖∞. This completes the proof. �
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