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Abstract

In this paper we give a necessary and sufficient condition to decide whether the Teichmüller equivalency
class [α] of a truncation α induced by a uniquely extremal Beltrami differential is a Strebel point in T .
We also obtain a necessary and sufficient condition of the unique extremality of α. Using the properties of
truncations we provide a method to construct Hamilton sequences. We also get a sufficient condition for
the extremality of f (z, t) to be equivalent to that of F(w, t). The corresponding results in the infinitesimal
case are obtained, too.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let R be a hyperbolic Riemann surface covered by the unit disk Δ = {z ∈ C | |z| < 1}. We
adopt the concepts and notations in [2] in this paper. Denote by QC(R) all the quasiconformal
mappings f from R onto f (R). Two mappings f and g are equivalent if there is a conformal
mapping c from f (R) onto g(R) and a homotopy through quasiconformal mappings ht mapping
R onto g(R) such that h0 = c ◦ f , h1 = g and ht (p) = c ◦ f (p) = g(p) for every p in the ideal
boundary of R. We denote the equivalency class of a quasiconformal mapping f in QC(R) by
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[f ] or [μ], where μ is the Beltrami coefficient of f . The Teichmüller space T is defined by
the set of Teichmüller equivalence classes [f ] of f ∈ QC(R). Denote by L∞(R) the Banach
space of Beltrami differentials μ = μ(z) dz/dz on R with finite L∞-norm and denote by M(R)

the open unit ball in L∞(R). Thus T can be represented as the space of equivalent classes of
Beltrami differentials μ in M(R). We say that u and v in M(R) are Teichmüller equivalent if
they induce quasiconformal mappings on R whose lifts to Δ have extensions to the closure of
Δ with the same boundary values. If k is a constant and |μ| ≡ k a.e., then we say that μ has a
constant absolute value.

Write K(μ) = (1 + ‖μ‖∞)/(1 − ‖μ‖∞). Let K([μ]) be the infimum of K(ν) over all the
Beltrami differentials ν in [μ]. We say that ν is extremal in [μ] if K(ν) = K([μ]). A quasicon-
formal mapping f is extremal if its Beltrami differential is extremal. Hamilton [6], Krushkal [9]
and Reich–Strebel [21] gave some criteria to determine whether a Beltrami differential or a qua-
siconformal mapping is extremal. Let τ be a point of T , we say that μ ∈ τ is uniquely extremal
if K(ν) > K(μ) = K(τ) for every ν ∈ τ such that ν �= μ. One can refer to [2,12,17–19,25] for
current researches about unique extremality.

A(R) is the set of all the holomorphic functions ϕ in R with ‖ϕ‖ = ∫∫
R

|ϕ| < ∞. Write
A1(R) = {ϕ | ϕ ∈ A(R), ‖ϕ‖ = 1}. Suppose that μ,ν ∈ L∞(R). We say that μ and ν are
infinitesimal equivalent if

∫∫
R

μϕ = ∫∫
R

νϕ holds for every ϕ ∈ A(R). Denote by [μ]B the infin-
itesimal equivalent class of μ. Write B = {[μ]B | μ ∈ L∞(R)}.

A sequence {ϕn} ⊂ A1(R) is a Hamilton sequence for μ if and only if the Hamilton–Krushkal
condition (see [6,9,21], see also [4]) holds, namely,

lim
n→∞

∣∣∣∣
∫ ∫
R

μϕn

∣∣∣∣ = ‖μ‖∞. (1.1)

Particularly, we say that {ϕn} is degenerating if limn→∞ ϕn = 0 locally uniformly in R.
The boundary dilatation H([μ]) of the Teichmüller equivalent class of [μ] ∈ T is the infimum

of the quantity H ∗(ν) over all elements ν ∈ [μ], where

H ∗(ν) = inf
{
K(η|R−E)

∣∣ for all η ∈ [ν] and compact subsets E ⊂ R
}
.

Obviously H([μ]) � K([μ]). If H([μ]) < K([μ]) then [μ] is called a Strebel point (see [10])
of the Teichmüller space T . By Strebel’s frame mapping theorem (see [22]), every Strebel point
[μ] can be represented by a unique Beltrami coefficient of the form kϕ̄/|ϕ|, where k = (K −
1)/(K +1), K = K([μ]) and ϕ ∈ A1(R). There does not exist a degenerating Hamilton sequence
for the extremal representative of any Strebel point (see [22]). In [3], Earle and Li proved that the
converse also holds. The set of all the Strebel points in T is open and dense (see [10], also [5]).

Suppose that E ⊂ R is a compact subset with positive measure and r is a positive constant.
Set

α =
{

μ(z), on E,

μ(z)/(1 + r), on R − E.
(1.2)

We call α a truncation (see [2]) of μ decided by r and E.
Truncations are usually used to solve some extremal problems (see [2,10,13,27,33]). For ex-

ample, Bozin, Lakic, Markovic and Mateljevic [2] proved that the Teichmüller equivalence class
[α] of each truncation α induced by a uniquely extremal μ with a constant absolute value is a
Strebel point in T . Using this result, they proved that the unique extremality of μ in [μ] is equiv-
alent to that in [μ]B . Hence it attracts much attention to study properties of truncations. In [33]
Zhu and Chen proved that for a uniquely extremal μ either [α] is a Strebel point in T or α is
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uniquely extremal. The purpose of this paper is to discuss the extremality of truncations and its
applications.

First, only basing on calculating the essential supremum of the truncation α(z) as z varies
over E, that is, ‖α|E‖∞, we will give a necessary and sufficient condition to determine whether
[α] is a Strebel point in T . We also get a necessary and sufficient condition to decide if α is
uniquely extremal for a uniquely extremal μ which unnecessarily has a constant absolute value.

Next, we obtain a sufficient condition for α to be extremal when μ is extremal but unneces-
sarily uniquely extremal.

Then, since Hamilton sequences play a vital role in studying extremality or unique extremality
of quasiconformal mappings, it is of great interest to construct a Hamilton sequence for a given
extremal quasiconformal mapping (see [7,8,11,15,21,23,24,30–32] for construction methods and
their development). Using the properties of truncations we will give a method to construct a
Hamilton sequence {ϕn} for a uniquely extremal μf , where {ϕn} is decided by a sequence of
truncations.

Last, suppose that F(w, t) is a family of quasiconformal deformations (see [1] for the de-
finition) such that ∂̄F (w, t) has a uniform bound M , f (z, t) (f (z,0) = z) is the solution of
Löwner-type differential equation dw/dt = F(w, t) (see [16] for more properties of the so-
lution). In [26], for a Beltrami coefficient with separable variables, Shen obtained a sufficient
condition for the extremality of F(w, t) to be equivalent to that of f (z, t). By considering a class
of truncated Beltrami coefficients we will get another sufficient condition. Using this result and
the properties of truncations we will obtain a sufficient condition for f (z, t) and F(w, t) to be
extremal simultaneously.

This paper is organized as follows. Section 1 gives introduction. Section 2 obtains some prop-
erties of truncations. Section 3 finds a method to construct Hamilton sequences. Section 4 studies
the extremality of f (z, t) and F(w, t). Section 5 discusses corresponding properties of trunca-
tions in the infinitesimally extremal case.

2. Properties of truncations of extremal Beltrami differentials

Denote by χE the characteristic function of a set E. In [33] Zhu and Chen proved the following
Theorem A.

Theorem A.

(1) If μ ∈ M(Δ) is extremal, and for every compact subset E of Δ and every r > 0, [μχE +
(1/(1 + r))μχΔ−E] is a Strebel point in T , then μ is uniquely extremal.

(2) If μ ∈ M(Δ) is uniquely extremal, then for every compact subset E of Δ and every r > 0,
either [μχE + (1/(1 + r))μχΔ−E] is a Strebel point in T, or μχE + (1/(1 + r))μχΔ−E is
uniquely extremal.

Now let us study how to judge the above two cases at (2) of Theorem A. At first, we
give a sufficient condition for [μχE + (1/(1 + r))μχΔ−E] to be a Strebel point in T in
Theorem 2.1 and a sufficient condition for α to be extremal (uniquely extremal) in Theo-
rem 2.2 (Corollary 2.1). Then, by these results we give a necessary and sufficient condition for
[μχE + (1/(1 + r))μχΔ−E] to be a Strebel point in T and a necessary and sufficient condition
for μχE + (1/(1 + r))μχΔ−E to be uniquely extremal (see Theorem 2.3). From now on, we
always assume that K([μ]) > 1 and ‖μ‖∞ = k with 0 < k < 1.
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Theorem 2.1. Suppose μ ∈ M(R) is uniquely extremal. Let α be a truncation of μ decided by
a compact subset E of R with positive measure and r > 0. If ‖α|E‖∞ > k/(1 + r), then the
Teichmüller equivalence class [α] is a Strebel point in T .

Proof. Suppose that μ ∈ M(R). Let α be a truncation of μ decided by E and r > 0, where E is
a compact subset of R with positive measure. If ‖α|E‖∞ > k/(1 + r) then ‖α‖∞ > k/(1 + r).
Now we will prove that [α] is a Strebel point in T , that is, H([α]) < K([α]).

For convenience, set s = k/(1+ r). We have H([α]) � (1+ s)/(1− s) since α ∈ [α]. Suppose
the result of Theorem 2.1 does not hold, namely, H([α]) = K([α]). Thus there at least exists a
Beltrami differential η ∈ [α], such that ‖η‖∞ � s. Assume that f μ, f α and f η are quasiconfor-
mal mappings of Δ onto itself, which are normalized to fix three boundary points −1, 1, i, and
whose Beltrami coefficients are the lifts of μ, α and η, respectively. Let F ⊂ Δ be the lift of a
compact set E ⊂ R and g = f μ ◦ (f α)−1. Then

|μg| =
∣∣∣∣ μf μ − μf α

1 − μf μμf α

∣∣∣∣ =
{

0, on f α(F ),
r|μ|/(1+r)

1−|μ|2/(1+r)
, on Δ − f α(F ). (2.1)

It is clear that ‖μg‖∞ � [rk/(1 + r)]/[1 − k2/(1 + r)]. Since α, η ∈ [α], we know that f μ =
g ◦ f α and g ◦ f η have the same boundary values. Furthermore,

K
[
g ◦ f η

]
� K[g] · K[

f η
]
� 1 + rk/(1 + r − k2)

1 − rk/(1 + r − k2)
· K[

f η
]

= 1 + k

1 − k
· 1 + r − k

1 + r + k
· K[

f η
]
� 1 + k

1 − k
· 1 + r − k

1 + r + k
· 1 + r + k

1 + r − k
= K

[
f μ

]
.

Thus g ◦ f η = f μ by the fact that μ is uniquely extremal, that is, f η = g−1 ◦ f μ = f α . Hence
η = α. But this contradicts the inequality ‖η‖∞ � s < ‖α‖∞. Therefore [α] is a Strebel point
in T , namely, there exists sr > s and a unit vector ϕr ∈ A1(R) such that α ∈ [srϕr/|ϕr |]. �
Theorem 2.2. Suppose that μ ∈ M(R) is extremal. Let α be a truncation of μ decided by a
compact subset E of R with positive measure and r > 0. If ‖α|E‖∞ � k/(1 + r), then α is
extremal, too.

Proof. From the assumption that ‖α|E‖∞ � k/(1 + r), we know that ‖μ|R−E‖∞ = k. Then
‖α‖∞ = k/(1 + r) . Since μ is extremal, there exists a Hamilton sequence {ϕn} ⊂ A1(R) for μ,
that is,

lim
n→∞

∣∣∣∣
∫ ∫
R

μϕn

∣∣∣∣ = ‖μ‖∞ = k. (2.2)

In the following we are going to show that {ϕn} is also a Hamilton sequence for α. By the
definition of α and (2.2) it follows that∣∣∣∣

∫ ∫
R

αϕn

∣∣∣∣ =
∣∣∣∣
∫ ∫

R−E

μ

1 + r
ϕn +

∫ ∫
E

μϕn

∣∣∣∣ =
∣∣∣∣
∫ ∫
R

μ

1 + r
ϕn +

∫ ∫
E

μϕn −
∫ ∫
E

μ

1 + r
ϕn

∣∣∣∣
� 1

1 + r

∣∣∣∣
∫ ∫

μϕn

∣∣∣∣ −
∣∣∣∣
∫ ∫

r

1 + r
μϕn

∣∣∣∣ � 1

1 + r

∣∣∣∣
∫ ∫

μϕn

∣∣∣∣ − r

1 + r
k

∫ ∫
|ϕn|.
R E R E
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From the assumption of Theorem 2.2 it is clear that |μ| � k/(1 + r) < k when z ∈ E. The
sequence {ϕn} is an absolute maximal sequence of the functional supϕ∈A(R),‖ϕ‖�1|

∫∫
R

μϕ| since
it is a Hamilton sequence for μ (see [21]). Then from the properties of an absolute maximal
sequence (see [21]) we have

∫∫
E

|ϕn| → 0 as n → ∞. Thus∣∣∣∣
∫ ∫
R

αϕn

∣∣∣∣ � 1

1 + r

∣∣∣∣
∫ ∫
R

μϕn

∣∣∣∣ − r

1 + r
k

∫ ∫
E

|ϕn| → k

1 + r
, n → ∞.

On the other hand, it is clear that |∫∫
R

αϕn| � ‖α‖∞ = k/(1+ r). Hence {ϕn} is also a Hamil-
ton sequence for α. Then α is an extremal Beltrami differential. �
Corollary 2.1. If μ is uniquely extremal, then α is also uniquely extremal under all the assump-
tions of Theorem 2.2.

Proof. From Theorem 2.2 we know that α is extremal. Now we only need to prove that α is
also uniquely extremal. Otherwise, there exists an extremal Beltrami differential η ∈ [α], η �= α.
Thus ‖η‖∞ = k/(1 + r), f μ ◦ (f α)−1 ◦ f η has the same boundary values as that of f μ, and
f μ �= f μ ◦ (f α)−1 ◦ f η . Since μ is uniquely extremal, it follows that

1 + k

1 − k
= K

[
f μ

]
< K

[
f μ ◦ (

f α
)−1 ◦ f η

]
� K

[
f μ ◦ (

f α
)−1] · K[

f η
]

= 1 + k

1 − k
· 1 + r − k

1 + r + k
· K[

f η
] = 1 + k

1 − k
· 1 + r − k

1 + r + k
· 1 + r + k

1 + r − k
= 1 + k

1 − k
.

It is impossible. Hence α is also uniquely extremal. �
Theorem 2.3. Suppose that μ is uniquely extremal. Let α be a truncation of μ decided by a
compact subset E of R with positive measure and r > 0. Then the Teichmüller equivalence class
[α] is a Strebel point in T if and only if ‖α|E‖∞ > k/(1 + r), and α is uniquely extremal if and
only if ‖α|E‖∞ � k/(1 + r).

Proof. If ‖α|E‖∞ > k/(1+r), then [α] is a Strebel point in T by Theorem 2.1. Conversely, if [α]
is a Strebel point in T , then ‖α|E‖∞ > k/(1+ r). Otherwise, the inequality ‖α|E‖∞ � k/(1+ r)

holds. By Corollary 2.1 we have that α is uniquely extremal. However α itself cannot be an
extremal representative of a Strebel point [α] with its extremal representative sr ϕ̄/|ϕ| satisfying
sr > k/(1 + r), since ‖α|E‖∞ � k/(1 + r), a contradiction.

If ‖α|E‖∞ � k/(1 + r), then α is uniquely extremal by Corollary 2.1. Conversely, if α is
uniquely extremal, then ‖α|E‖∞ � k/(1 + r). Otherwise, the inequality ‖α|E‖∞ > k/(1 + r)

holds, then from Theorem 2.1, we see that [α] is a Strebel point in T . So its extremal represen-
tative has a constant absolute value. Thus α itself cannot be uniquely extremal, since α cannot
have a constant absolute value from the fact that |α|R−E | � k/(1 + r), a contradiction. �
3. A method to construct a Hamilton sequence

In 1969, Hamilton [6] proved that there really exist Hamilton sequences for every extremal
quasiconformal mapping in an abstract way. Krushkal [9] obtained similar results in the special
case that Beltrami coefficients have a constant absolute value. In 1974, Reich and Strebel [21]
proved that the quadratic differential sequence {ϕn} is a Hamilton sequence, where {ϕn} is deter-
mined by the extremal quasiconformal mapping of the polygon Pn with Δ as its interior and n
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vertices on ∂Δ onto another polygon P ′
n. Hayman [7] and Reich [7,15] used the putative method

to construct Hamilton sequences for Teichmüller mappings. But this method is invalid for the
affine mapping in the chimney domain (see [15]). So the scope should be confined properly when
using it to construct a Hamilton sequence. Recently, the applicable scope of putative method was
extended to some extent (see [8,30–32]). But this problem is still not solved completely.

At the same time, many other methods to construct Hamilton sequences were given (see [11,
23,24]). For example, Strebel [23] used point shift differential sequences (see [23] for the de-
finition) to construct Hamilton sequences. Sun and Wu [28] extended the applicable scope of
Strebel’s result in [23] after proving that a degenerating point shift differential sequence is a
common Hamilton sequence (see [21,29] for the definition). Using the fact that the set of all the
Strebel points is dense in T (see [10], see also [5]), Li [11] showed that the Strebel differential
sequence induced by Strebel points which converges at μ in T is a Hamilton sequence for μ.

In this section, we will apply our results about truncations to provide a method to construct a
Hamilton sequence.

Lemma 3.1. Let a > 1. Then two functions

f (x) = 1 + x2

1 − x2
− 1 + x2/a2

1 − x2/a2
and g(x) = 1

1 − x2
− 1/a

1 − x2/a2
(3.1)

increase in (0,1).

Proof. When x ∈ (0,1), by direct calculation we have

f ′(x) = 4x(1 − 1/a2)(1 − x4/a2)

(1 − x2)2(1 − x2/a2)2
> 0

and

g′(x) � (2/a)(1 − 1/a)3(1 + 1/a)2x

(1 − x2)2(1 − x2/a2)2
> 0.

Thus both f (x) and g(x) increase in (0,1). �
By the main inequality (see [21]) Bozin, Lakic, Markovic and Mateljevic proved the following

Lemma A (see [2]).

Lemma A. If there exists a unit vector ϕ ∈ A1(R) such that [μ] = [kϕ̄/|ϕ|] in T for some
k ∈ (0,1), then

1 + k

1 − k
�

∫ ∫
R

|ϕ| |1 + μϕ/|ϕ||2
1 − |μ|2 . (3.2)

Theorem 3.1. If there exists a sequence of truncations

αn =
{

μ(z), z ∈ En,

μ(z)/(1 + 1/n), z ∈ R − En,
(3.3)

satisfying all the assumptions of Theorem 2.1, where {En} is a sequence of compact subsets of
R with positive measure, then the Strebel differential sequence {ϕn} induced by a Strebel-point
sequence {[αn]} ⊂ T is a Hamilton sequence for μ.
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Proof. Under the assumptions of Theorem 3.1, it is clear that [αn] is a Strebel point in T by
Theorem 2.1, namely, there exists sn > s = k/(1 + 1/n) and a unit vector ϕn ∈ A1(R) such that
αn ∈ [snϕn/|ϕn|]. Thus by Lemma A, it follows that

1 + k/(1 + 1/n)

1 − k/(1 + 1/n)
<

1 + sn

1 − sn
�

∫ ∫
R

|ϕn| |1 + αnϕn/|ϕn||2
1 − |αn|2 . (3.4)

Let μn = μ/(1 + 1/n). From (3.4) we have

1 + k/(1 + 1/n)

1 − k/(1 + 1/n)

<

∫ ∫
R−En

|ϕn| |1 + μnϕn/|ϕn||2
1 − |μn|2 +

∫ ∫
En

|ϕn| |1 + μϕn/|ϕn||2
1 − |μ|2

=
∫ ∫
R

|ϕn| |1 + μnϕn/|ϕn||2
1 − |μn|2 +

∫ ∫
En

( |1 + μϕn/|ϕn||2
1 − |μ|2 − |1 + μnϕn/|ϕn||2

1 − |μn|2
)

|ϕn|.

Let

A =
∫ ∫
R

|ϕn| |1 + μnϕn/|ϕn||2
1 − |μn|2 ,

B =
∫ ∫
En

( |1 + μϕn/|ϕn||2
1 − |μ|2 − |1 + μnϕn/|ϕn||2

1 − |μn|2
)

|ϕn|.

Then

B =
∫ ∫
En

(
1 + |μ|2
1 − |μ|2 − 1 + |μ|2/(1 + 1/n)2

1 − |μ|2/(1 + 1/n)2

)
|ϕn|

+ 2 Re
∫ ∫
En

(
1

1 − |μ|2 − 1/(1 + 1/n)

1 − |μ|2/(1 + 1/n)2

)
μϕn.

By Lemma 3.1 we get

B �
[(

1 + k2

1 − k2
− 1 + k2/(1 + 1/n)2

1 − k2/(1 + 1/n)2

)
+ 2k

(
1

1 − k2
− 1/(1 + 1/n)

1 − k2/(1 + 1/n)2

)]∫ ∫
En

|ϕn|

� 8k

(1 − k2)2

(
1 − 1/(1 + 1/n)

) ∫ ∫
En

|ϕn| � 8k

(1 − k2)2

1

n

∫ ∫
En

|ϕn|, (3.5)

and

A � 1

1 − k2/(1 + 1/n)2

∫ ∫
R

[
1 + |μ|2

(1 + 1/n)2
+ 2

Reμϕn

1 + 1/n

]

� 1 + k2/(1 + 1/n)2

1 − k2/(1 + 1/n)2
+ 2

[1 − k2/(1 + 1/n)2](1 + 1/n)
Re

∫ ∫
μϕn. (3.6)
R
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From (3.4)–(3.6) we obtain

2k/(1 + 1/n)

1 − k2/(1 + 1/n)2
= 1 + k/(1 + 1/n)

1 − k/(1 + 1/n)
− 1 + k2/(1 + 1/n)2

1 − k2/(1 + 1/n)2

<
2

1 + 1/n
· 1

1 − k2/(1 + 1/n)2
Re

∫ ∫
R

μϕn + 8k

(1 − k2)2
· 1

n

∫ ∫
En

|ϕn|.

Using the above inequality it follows that

k − Re
∫ ∫
R

μϕn <
1 − k2/(1 + 1/n)2

2/(1 + 1/n)

8k

(1 − k2)2

1

n

∫ ∫
En

|ϕn| � 8k

(1 − k2)2

1

n

∫ ∫
En

|ϕn|.

Thus k − Re
∫∫

R
μϕn → 0 as n → ∞, that is, {ϕn} is a Hamilton sequence for μ. �

Remark 3.1. If there exists a compact subset E of R with positive measure such that
‖μ|E‖∞ = k, then αn can be chose as [μχE + (1/(1 + 1/n))μχR−E].

4. Extremality of f (z, t) and F(w, t)

In this section, we will deal with quasiconformal solutions w = f (z, t) (f (z,0) = z) of the
following Löwner-type differential equation

dw

dt
= F(w, t) (4.1)

in Δ.
Given a family of quasiconformal deformations F(w, t) such that ∂̄F has a uniform bound M ,

Reich proved that the solution f (z, t) of (4.1) with the initial condition f (z,0) = z, which is an
e2Mt -quasiconformal mapping, is unique (see [16]). If, additionally, F(w, t) satisfies the normal-
ized condition

�[
w̄F (w, t)

] = 0, F (1, t) = F(−1, t) = F(i, t) = 0, w ∈ ∂Δ, (4.2)

then f (z, t) maps Δ onto itself with f (−1, t) = −1, f (1, t) = 1, f (i, t) = i. Reich and Chen
[20] proved that F is an extremal quasiconformal deformation if and only if its ∂̄-derivative
satisfies the Hamilton–Krushkal condition. The maximal dilatation K[f ] of f can be estimated
in terms of the essential supremum of ∂̄F . It is of interest to find out whether minimizing the
essential supremum of ∂̄F is equivalent to minimizing the maximal dilatation K[f ].

To answer this question, Shen proved the following counterexample Theorem B in [26] by
considering the family of Beltrami coefficients α(z, t) = tχΔ−E(z)μ(z)+ t2χEμ(z), where μ(z)

is an extremal Beltrami coefficient in Δ which has a degenerating Hamilton sequence and a
constant absolute value.

Theorem B. There exists a family of quasiconformal deformations F(w, t) on Δ̄ × [0, T ] such
that the solution f (z, t) of the system (4.1) and F(w, t) themselves satisfy the following

(1) For t ∈ [0, t1], neither f (z, t) nor F(w, t) is extremal.
(2) For t ∈ [t1, t2], f (z, t) is not extremal while F(w, t) is.
(3) For t ∈ [t2, T ], both f (z, t) and F(w, t) are extremal.
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He also gave a sufficient condition for the extremality of f (z, t) to be equivalent to that of
F(w, t).

Theorem C. Let f (z, t) be the solution of the system (4.1). If the Beltrami coefficient α(z, t) of
f (z, t) has the form

α(z, t) = k(t)μ(z)

for some differentiable function k(t) with k(0) = 0 and k′(t) > 0, then for each fixed t > 0,
f (z, t) is extremal if and only if F(w, t) is extremal.

The class of Beltrami coefficients studied in Theorem C were confined to have separable
variables t and z. Next we will consider another family of Beltrami coefficients with the form of
truncations defined by

α(z, t) = tχE(z)μ(z) + t2χΔ−E(z)μ(z), (4.3)

where E is a compact subset of Δ with positive measure. A new sufficient condition for the
extremality of f (z, t) to be equivalent to that of F(w, t) will be given in the following Theo-
rem 4.1.

Let f (z, t) be the solution of (4.1). As did in [16], differentiating both sides of the equation

df (z, t)

dt
= F

(
f (z, t), t

)
(4.4)

partially with respect to z and z̄ yields the relation

∂̄F
(
f (z, t), t

) = ∂tμ(z, t)

1 − |μ(z, t)|2 · fz(z, t)

fz(z, t)
, (4.5)

where μ(z, t) is the Beltrami coefficient of f (z, t). Denote by v(w, t) the Beltrami coefficient of
inverse mapping f −1(w, t). Then the relation (4.5) is equivalent to

∂̄F (w, t) = −∂tμ(z, t)

μ(z, t)
· v(w, t)

1 − |v(w, t)|2
(
z = f −1(w, t)

)
(4.6)

when μ(z, t) �= 0.

Theorem 4.1. Let f (z, t) be the solution of the system (4.1). If the Beltrami coefficient α(z, t) of
f (z, t) has the form

α(z, t) = tχE(z)μ(z) + t2χΔ−E(z)μ(z),

and satisfies ‖α(z, t)|E‖∞ < kt2, and E ⊂ Δ is a compact subset with positive measure, then for
each fixed t ∈ (0,1), f (z, t) is extremal if and only if F(w, t) is extremal.

Proof. Let t ∈ (0,1) be fixed, and E ⊂ Δ be a compact subset which has positive measure
and satisfies ‖α(z, t)|E‖∞ < kt2. Assume that f (z, t) with a Beltrami coefficient α(z, t) is the
solution of the system (4.1).

Suppose that f (z, t) is extremal. We are going to verify that F(w, t) is also extremal. By (4.5)

and (4.6) we have

∣∣∂̄F
(
f (z, t), t

)∣∣ =
⎧⎨
⎩

|μ(z)|
1−t2|μ(z)|2 , z ∈ E,

2t |μ(z)|
4 2 , z ∈ Δ − E

(4.7)

1−t |μ(z)|
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and

∂̄F (w, t) =
⎧⎨
⎩

− 1
t
· v(w,t)

1−|v(w,t)|2 , w ∈ f (., t)(E),

− 2
t
· v(w,t)

1−|v(w,t)|2 , w ∈ Δ − f (., t)(E).
(4.8)

When 0 < s < 1, the functions s/(1 − t2s2) and 2ts/(1 − t4s2) increase monotonically with
respect to s. Thus it follows that∥∥∂̄F

(
f (z, t), t

)|E∥∥∞ < kt/
(
1 − t4k2) < 2kt/

(
1 − t4k2)

= ∥∥∂̄F
(
f (z, t), t

)∣∣
Δ−E

∥∥∞ (4.9)

by (4.7) since ‖μ(z)|E‖∞ < kt and ‖μ(z)|Δ−E‖∞ = k. Hence∥∥∂̄F (w, t)|f (.,t)(E)

∥∥∞ <
∥∥∂̄F (w, t)|Δ−f (.,t)(E)

∥∥∞

= 2

t

∥∥∥∥ v(w, t)

1 − |v(w, t)|2
∣∣∣
Δ−f (.,t)(E)

∥∥∥∥∞
. (4.10)

If f (z, t) is extremal, then v(w, t) is extremal. Hence v(w, t)/(1−|v(w, t)|2) is extremal (see
[21]). Therefore − 2

t
v(w,t)

1−|v(w,t)|2 is extremal. So there exists a Hamilton sequence {ψn} ⊂ A1(Δ)

for − 2
t

v(w,t)

1−|v(w,t)|2 . By the relation ‖v(w, t)|f (.,t)(E)‖∞ = ‖α(z, t)|E‖∞ < kt2 = ‖α(z, t)‖∞ =
‖v(w, t)‖∞, it follows that∥∥∥∥ v(w, t)

1 − |v(w, t)|2
∣∣∣
f (.,t)(E)

∥∥∥∥∞
<

∥∥∥∥ v(w, t)

1 − |v(w, t)|2
∥∥∥∥∞

= kt2

1 − k4t4
.

Thus {ψn} can be assumed to be degenerating.
From (4.8) we get∣∣∣∣

∫ ∫
Δ

∂̄F (w, t)ψn

∣∣∣∣ =
∣∣∣∣

∫ ∫
Δ−f (.,t)(E)

∂̄F (w, t)ψn +
∫ ∫

f (.,t)(E)

∂̄F (w, t)ψn

∣∣∣∣
� 2

t

∣∣∣∣
∫ ∫
Δ

v(w, t)

1 − |v(w, t)|2 ψn

∣∣∣∣ − 1

t

∣∣∣∣
∫ ∫

f (.,t)(E)

v(w, t)

1 − |v(w, t)|2 ψn

∣∣∣∣. (4.11)

Since E is a compact subset of Δ and {ψn} is degenerating, we obtain∣∣∣∣
∫ ∫

f (.,t)(E)

v(w, t)

1 − |v(w, t)|2 ψn

∣∣∣∣ → 0, n → ∞. (4.12)

By (4.10), (4.11) and (4.12) we have∣∣∣∣
∫ ∫
Δ

∂̄F (w, t)ψn

∣∣∣∣ → 2

t

∥∥∥∥ v(w, t)

1 − |v(w, t)|2
∥∥∥∥∞

= ∥∥∂̄F (w, t)
∥∥∞, n → ∞.

Thus {ψn} is also a Hamilton sequence of ∂̄F (w, t). So F(w, t) is extremal by the Hamilton–
Krushkal condition.

Conversely, suppose that F(w, t) is extremal. We are going to prove that f (z, t) is also ex-
tremal under the condition that ‖α(z, t)|E‖ < kt2.
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F(w, t) is extremal, that is, ∂̄F (w, t) satisfies the Hamilton–Krushkal condition, namely,
there exists a Hamilton sequence {ψn} ⊂ A1(Δ) for ∂̄F (w, t). We can assume {ψn} is degen-
erating since the relation (4.10) holds.

By (4.8) we obtain∣∣∣∣
∫ ∫
Δ

v(w, t)

1 − |v(w, t)|2 ψn

∣∣∣∣ = t

2

∣∣∣∣
∫ ∫
Δ

−2

t

v(w, t)

1 − |v(w, t)|2 ψn

∣∣∣∣
= t

2

{∣∣∣∣
∫ ∫
Δ

∂̄F (w, t)ψn +
∫ ∫

f (.,t)(E)

−1

t

v(w, t)

1 − |v(w, t)|2 ψn

∣∣∣∣
}

� t

2

∣∣∣∣
∫ ∫
Δ

∂̄F (w, t)ψn

∣∣∣∣ − t

2

∣∣∣∣
∫ ∫

f (.,t)(E)

∂̄F (w, t)ψn

∣∣∣∣. (4.13)

Since {ψn} is degenerating, by (4.9), (4.10) and (4.13) we have∣∣∣∣
∫ ∫
Δ

v(w, t)

1 − |v(w, t)|2 ψn

∣∣∣∣ →
∥∥∥∥ v(w, t)

1 − |v(w, t)|2
∥∥∥∥∞

.

So {ψn} is a Hamilton sequence for v(w,t)

1−|v(w,t)|2 , that is, v(w,t)

1−|v(w,t)|2 satisfies Hamilton–Krushkal
condition. Thus v(w, t) is extremal. Therefore α(z, t) is extremal, namely, f (z, t) is ex-
tremal. �
Corollary 4.1. Suppose that μ is extremal. Then both f (z, t) and F(w, t) are extremal under the
assumptions of Theorem 4.1.

Proof. Let t ∈ (0,1) be fixed. Suppose that E ⊂ Δ is a compact subset with positive measure
and satisfying ‖α(z, t)|E‖∞ < kt2.

Write r = (1 − t)/t . Set

β(z, r) = χE(z)μ(z) + 1

1 + r
χΔ−E(z)μ(z).

Then β(z, r) is a truncation of μ decided by E and r , α(z, t) = tβ(z, r), and ‖β(z, r)|E‖∞ <

k/(1 + r).
By Theorem 2.2, β(z, r) is extremal when μ is extremal. It is easy to show that α(z, t) is

also extremal, that is, f (z, t) is extremal when ‖α(z, t)|E‖∞ < kt2. By Theorem 4.1, F(w, t) is
extremal, too. �
Remark 4.1. Suppose that μ is uniquely extremal and ‖α(z, t)|E‖∞ > kt2. Using the same
method as that in Theorem 2.1, one can verify that [α(z, t)] is a Strebel point in T .

5. Corresponding properties of the infinitesimally extremal case

Define ‖[μ]B‖ = inf{‖ν‖∞ | ν ∈ [μ]B}. If ν ∈ [μ]B and ‖ν‖∞ = ‖[μ]B‖, then we say that ν

is infinitesimally extremal. Moreover, if ‖η‖∞ > ‖μ‖ for each η ∈ [μ]B with η �= ν, then ν is
infinitesimally uniquely extremal.
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Similarly to the definition of the boundary dilatation of a Teichmüller equivalence class, we
define the boundary seminorm b([μ]B) of an infinitesimal equivalence class [μ]B by

b
([μ]B) = inf

{‖ν|R−E‖∞
∣∣ ν ∈ [μ]B, E ⊂ R is compact with positive measure

}
.

Clearly b([μ]B) � ‖[μ]B‖. If b([μ]B) < ‖[μ]B‖, then we say that [μ]B is an infinitesimal Strebel
point in B .

Zhu and Chen [33] also proved

Theorem D.

(1) If μ ∈ L∞(Δ) is infinitesimally extremal, and for every compact subset E of Δ and every
r > 0, [μχE + (1/(1 + r))μχΔ−E] is an infinitesimal Strebel point, then μ is infinitesimally
uniquely extremal.

(2) If μ ∈ L∞(Δ) is infinitesimally uniquely extremal, then for every compact subset E of Δ

and every r > 0, either [μχE + (1/(1 + r))μχΔ−E] is an infinitesimally Strebel point, or
μχE + (1/(1 + r))μχΔ−E is infinitesimally uniquely extremal.

In this section, corresponding to Sections 2 and 3, we will give some properties in the infini-
tesimally extremal case.

Suppose that μ ∈ L∞(R). If ‖μ‖∞ = M � 1, then we turn to consider v = μ/(1 + M). Then
v ∈ M(R) and the infinitesimal extremality of v is equivalent to that of μ. Thus we only consider
the case that μ ∈ M(R) in the following.

Theorem 5.1. Suppose that μ ∈ M(R) is infinitesimally uniquely extremal. Let α be a trunca-
tion of μ decided by a compact subset E of R with positive measure and r > 0. If ‖α|E‖∞ >

k/(1 + r), then the infinitesimal equivalence class [α]B is an infinitesimal Strebel point in B .

Proof. Suppose that μ ∈ M(R). Let α be a truncation of μ decided by a compact subset E of R

with positive measure and r > 0. If α satisfies that ‖α|E‖∞ > k/(1+ r), then ‖α‖∞ > k/(1+ r).
Now we will prove that [α]B is an infinitesimal Strebel point in B , that is, b([α]B) < ‖[α]B‖.

For convenience, set s = k/(1 + r). We have b([α]B) � s since α ∈ [α]B . Assume that the
result does not hold, namely, b([α]B) = ‖[α]B‖. Thus there at least exists a Beltrami coefficient
η ∈ [α]B such that ‖η‖∞ � s. Hence both μ and η + μ − α belong to [μ]B , and

μ − α =
{0, z ∈ E,

rμ
1+r

, z ∈ R − E.
(5.1)

So ‖μ − α‖∞ � rk/(1 + r). Since

‖η + μ − α‖∞ � ‖μ − α‖∞ + ‖η‖∞ � rk/(1 + r) + k/(1 + r) = k = ‖μ‖∞
and μ is infinitesimally uniquely extremal, it follows that η + μ − α = μ. Hence η = α. But this
contradicts the inequality ‖η‖∞ � s < ‖α‖∞. Therefore b([α]B) < ‖[α]B‖. Hence [α]B is an
infinitesimal Strebel point in B , namely, there exists sr > s and a unit vector ϕr ∈ A1(R) such
that α ∈ [srϕr/|ϕr |]B . We call ϕr the infinitesimal Strebel differential induced by α. �
Theorem 5.2. Suppose that μ ∈ M(R) is infinitesimally extremal, and a truncation α of μ is
decided by a compact subset E of R with positive measure and r > 0. If ‖α|E‖∞ � k/(1 + r),
then α is infinitesimally extremal, too.
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Proof. By the extremal equivalence theorem (see [6,9,21]) (a Beltrami coefficient μ ∈ M(R) is
extremal if and only if it is infinitesimally extremal), we know that μ is also extremal under the
assumptions of Theorem 5.2. By Theorem 2.2 we have that the truncation α decided by E and
r is extremal. Using the extremal equivalence theorem again we obtain that α is infinitesimally
extremal, too. �
Corollary 5.1. If μ is infinitesimally uniquely extremal, then α is also infinitesimally uniquely
extremal under all the assumptions of Theorem 5.2.

Proof. By the uniquely extremal equivalence theorem (see [2]) (a Beltrami coefficient μ is
uniquely extremal if and only if it is infinitesimally uniquely extremal), it follows that μ is also
uniquely extremal under the assumptions of Corollary 5.1. By Corollary 2.1 it is true that the
truncation α decided by r and E is uniquely extremal. Using the uniquely extremal equivalence
theorem again we obtain that α is infinitesimally uniquely extremal, too. �
Theorem 5.3. Suppose that μ is infinitesimally uniquely extremal. Let α be a truncation decided
by a compact subset E of R with positive measure and r > 0. Then the infinitesimally equivalent
class [α]B is a Strebel point in B if and only if ‖α|E‖∞ > k/(1 + r), α is infinitesimally uniquely
extremal if and only if ‖α|E‖∞ � k/(1 + r).

Proof. From Theorems 5.1, 5.2 and Corollary 5.1, Theorem 5.3 can be proved by the same
method as that in Theorem 2.3. �

In [14], Reich proved the following infinitesimal main inequality.

Lemma B. Suppose μ and ν are infinitesimally equivalent, for every ϕ ∈ A1(R) it is true that

∫ ∫
R

|ϕ|(1 − |μ|2) �
∫ ∫
R

|ϕ|
∣∣∣∣1 − μ

ϕ

|ϕ|
∣∣∣∣
2 |1 + ν

ϕ
|ϕ|

1−μ̄ϕ̄/|ϕ|
1−μϕ/|ϕ| |2

1 − |ν|2 . (5.2)

If there exists a unit vector ϕ ∈ A1(R) such that [μ]B = [kϕ̄/|ϕ|]B in B for some k ∈ (0,1),
then

1 + k

1 − k
�

∫ ∫
R

|ϕ| |1 + μϕ/|ϕ||2
1 − |μ|2 . (5.3)

Theorem 5.4. If there exists a sequence of truncations

αn =
{

μ(z), z ∈ En,

μ(z)/(1 + 1/n), z ∈ R − En,
(5.4)

satisfying all the assumptions of Theorem 5.1, where {En} is a sequence of compact subsets
of R with positive measure, then the infinitesimal Strebel differential sequence {ϕn} induced by
infinitesimal Strebel-point sequence {[αn]B} ⊂ B is a Hamilton sequence for μ.

Proof. Using Theorem 5.1 and Lemma B, Theorem 5.4 can be proved by the same method as
that in Theorem 3.1. �
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