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Abstract

In this short notes we will derive an inequality for scaled q−1-Hermite orthogonal polynomials of Ismail and Masson, an
inequality for scaled Stieltjes–Wigert, two inequalities for Ramanujan function and two definite integrals for Ramanujan function.
© 2007 Elsevier Inc. All rights reserved.

Keywords: q-Orthogonal polynomials; q-Airy function; Ramanujan’s entire function; q−1-Hermite polynomials; Stieltjes–Wigert polynomials;
Plancherel–Rotach asymptotics; Scaling; Inequalities; Definite integrals

1. Introduction

Ramanujan function Aq(z), which is also called q-Airy function in the literature, appears repeatedly in Ramanu-
jan’s work starting from the Rogers–Ramanujan identities, where Aq(−1) and Aq(−q) are expressed as infinite
products [1], to properties of and conjectures about its zeros [2,3,5,8]. It is called q-Airy function because it ap-
pears repeatedly in the Plancherel–Rotach type asymptotics [6,9,10] of q-orthogonal polynomials, just like classical
Airy function in the classical Plancherel–Rotach asymptotics of classical orthogonal polynomials [7,12]. In our joint
work [10], we derived Plancherel–Rotach asymptotic expansions for the q−1-Hermite of Ismail and Masson, q-
Laguerre and Stieltjes–Wigert polynomials using a discrete analogue of Laplace’s method. We found that when certain
variables are above some critical values, the main terms in the asymptotics in the bulk contain Ramanujan function
Aq(z), when the variables are below these critical values, however, the main terms in the asymptotics expansion in
the bulk involve theta functions.

In this paper we further investigate the properties of Ramanujan function Aq(z). In Section 2 we introduce
the notations and prove inequalities on Ismail–Masson polynomials {hn(x|q)}∞n=0 and Stieltjes–Wigert polynomi-
als {Sn(x;q)}∞n=0. In Section 3, we derive two inequalities for Ramanujan function Aq(z). We use the asymptotic
formulas in [10] to prove two definite integrals of Aq(z) in Section 4.
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2. Preliminaries

In this section and the next section we will tacitly assume that all the log and power functions are taken as their
principle branches, unless it is stated otherwise. As in our papers [9,10], we will follow the usual notations from
q-series [3,4,7]

(a;q)0 := 1, (a;q)n :=
n∏

k=0

(
1 − aqk

)
,

[
n

k

]
q

:= (q;q)n

(q;q)k(q;q)n−k

. (1)

Though out this paper, we shall always assume that

0 < q < 1, t > 0, (2)

hence n = ∞ is allowed in the above definitions. Then,

0 <
(q;q)n

(q;q)n−k

� 1 (3)

and

0 <

[
n

k

]
q

� 1

(q;q)k
(4)

for k = 0,1, . . . , n.
We will use the q-binomial theorem [3,4,7],

(az;q)∞
(z;q)∞

=
∞∑

k=0

(a;q)k

(q;q)k
zk (5)

and the following limiting cases, also known as Euler’s formulas,

(z;q)∞ =
∞∑

k=0

qk(k−1)/2

(q;q)k
(−z)k,

1

(z;q)∞
=

∞∑
k=0

zk

(q;q)k
. (6)

Ramanujan function Aq(z) is defined as [7,11]

Aq(z) :=
∞∑

k=0

qk2

(q;q)k
(−z)k. (7)

2.1. Ismail–Masson polynomials {hn(x|q)}∞n=0

Ismail–Masson polynomials {hn(x|q)}∞n=0 are defined as [7]

hn(sinh ξ |q) =
n∑

k=0

[
n

k

]
q

qk(k−n)(−1)ke(n−2k)ξ . (8)

Ismail–Masson polynomials satisfy
∞∫

−∞
hm(x|q)hn(x|q)wIM(x|q)dx = q−n(n+1)/2(q;q)nδm,n (9)

for n,m = 0,1, . . . , where

wIM(x|q) =
√

−2q1/4

π logq
exp

{
2

logq

[
log

(
x +

√
x2 + 1

)]2
}
. (10)

It is clear that their orthonormal polynomials are defined as

h̃n(x|q) = qn(n+1)/4

√ hn(x|q). (11)

(q;q)n
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Let

sinh ξn := q−ntu − qntu−1

2
, (12)

and assume that

u ∈ C\{0}. (13)

It is easy to see that

wIM(sinh ξn|q) = wIM(sinhu|q)u−4ntq2n2t2
. (14)

It is also clear from (8) and (12) that

hn(sinh ξn|q) = unq−n2t

n∑
k=0

[
n

k

]
q

qk2
(

−qn(2t−1)

u2

)k

. (15)

Thus

∣∣hn(sinh ξn|q)
∣∣ � |u|n

qn2t

n∑
k=0

qk2

(q;q)k

(
qn(2t−1)

|u|2
)k

� |u|n
qn2t

∞∑
k=0

qk2

(q;q)k

(
qn(2t−1)

|u|2
)k

,

or ∣∣hn(sinh ξn|q)
∣∣ � |u|n

qn2t
Aq

(
−qn(2t−1)

|u|2
)

. (16)

2.2. Stieltjes–Wigert polynomials {Sn(x;q)}∞n=0

Stieltjes–Wigert polynomials {Sn(x;q)}∞n=0 are defined as [7]

Sn(x;q) =
n∑

k=0

qk2
(−x)k

(q;q)k(q;q)n−k

. (17)

They are orthogonal respect to the weight function

wSW(x;q) =
√

−1

2π logq
exp

{
1

2 logq

[
log

(
x√
q

)]2}
, (18)

with
∞∫

0

Sn(x;q)Sm(x;q)wSW(x;q)dx = q−n

(q;q)n
δm,n (19)

for n,m = 0,1, . . . . The orthonormal Stieltjes–Wigert polynomials with positive leading coefficients are

s̃n(x;q) = (−1)n
√

qn(q;q)n Sn(x;q). (20)

In the case of the Stieltjes–Wigert polynomials the appropriate scaling is

xn(t, u) = q−ntu. (21)

A calculation gives

wSW
(
q−ntu;q) = wSW(u;q)u−ntq

(
n2t2+nt

)
/2. (22)

Set x = xn(t, u) in (17) then replace k by n − k to see that

Sn

(
xn(t, u);q) = unqn2(1−t)

n∑ qk2
(− qn(t−2)

u
)k

(q;q)k(q;q)n−k

. (23)

k=0
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Thus

∣∣Sn

(
xn(t, u);q)

(q;q)n
∣∣ � |u|n

qn2(t−1)

n∑
k=0

qk2

(q;q)k

(
qn(t−2)

|u|
)k

� |u|n
qn2(t−1)

∞∑
k=0

qk2

(q;q)k

(
qn(t−2)

|u|
)k

or

∣∣Sn

(
xn(t, u);q)∣∣ �

|u|nAq(− qn(t−2)

|u| )

(q;q)∞qn2(t−1)
. (24)

3. Some inequalities for Aq(z)

It is clear that

n � 1 − qn

1 − q
� nqn−1 (25)

for n ∈ N, then,∣∣∣∣ (1 − q)k

(q;q)k
qk2

(−z)k
∣∣∣∣ � (q|z|)k

k! (26)

for k = 0,1, . . . and for any complex number z. Applying Lebesgue’s dominated convergent theorem we have

lim
q→1

Aq

(
(1 − q)z

) = e−z (27)

for any z ∈ C, hence Aq(z) is really one of many q-analogues of the exponential function. From (26) we also have
obtained the inequality∣∣Aq

(
(1 − q)z

)∣∣ � eq|z| (28)

or ∣∣Aq(z)
∣∣ � eq|z|/(1−q) (29)

for any complex number z. For any nonzero complex number z, then

∣∣Aq(z)
∣∣ �

∞∑
k=0

qk

(q;q)k

(
qk−1|z|)k

. (30)

For k = 0,1, . . . , the terms qk(k−1)|z|k are bounded by( |z|√
q

)1/2

exp

{
− log2 |z|

4 logq

}
. (31)

Thus

∣∣Aq(z)
∣∣ �

( |z|√
q

)1/2

exp

{
− log2 |z|

4 logq

} ∞∑
k=0

qk

(q;q)k
�

(
|z|√
q
)1/2 exp{− log2 |z|

4 logq
}

(q;q)∞

or we have

∣∣Aq(z)
∣∣ �

(
|z|√
q
)1/2 exp{− log2 |z|

4 logq
}

(q;q)∞
(32)

for any nonzero complex number z.

Theorem 3.1. Assume that Aq(z) is Ramanujan function defined in (6), then, for any complex number z∣∣Aq(z)
∣∣ � eq|z|/(1−q), (33)
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and

∣∣Aq(z)
∣∣ �

(
|z|√
q
)1/2 exp{− log2 |z|

4 logq
}

(q;q)∞
, (34)

for any complex number z �= 0.

Remark 3.2. The trivial inequality (25) can be used to show that a basic hypergeometric series converges to its
hypergeometric series counter-part under suitable scaling and conditions. Also, using (34) the formulas (16) and (24)
could be recast into other forms.

4. Definite integrals for Aq(z)

Put t = 1
2 in formula (64) of [10], we have√

(q;q)nwH (sinh ξn|q)

qn/2wH (sinhu|q)
h̃n(sinh ξn|q) = Aq

(
u−2) + rIM (35)

with

|rIM| � 4(−q3;q)∞Aq(−|u|−2)

(q;q)2∞

(
qn/2 + qn2/4|u|−2�n/2�−2). (36)

Theorem 4.1. Assuming that Aq(z) and wIM(x|q) are defined as in (7) and (10). Then,

∞∫
0

A2
q

(
u−2)wIM(u|q)du = 2(q;q)∞. (37)

Proof. For the orthonormal Ismail–Masson polynomials h̃n(x|q) satisfy

∞∫
−∞

{
h̃n(x|q)

}2
wIM(x|q)dx = 1. (38)

Assume u > 0 and make the change of variable

x = sinh ξn = q−n/2u − qn/2u−1

2
(39)

in (38), we have

∞∫
0

{
h̃n(sinh ξn|q)

}2
wIM(sinh ξn|q)

(
q−n/2 + qn/2u−2)du = 2 (40)

or
∞∫

0

{√
(q;q)nwIM(sinh ξn|q)

qn/2wIM(sinhu|q)
h̃n(sinh ξn|q)

}2(
1 + qnu−2)wIM(sinhu|q)du = 2(q;q)n. (41)

Thus we have

lim
n→∞

∞∫ {√
(q;q)nwIM(sinh ξn|q)

qn/2wIM(sinhu|q)
h̃n(sinh ξn|q)

}2(
1 + qnu−2)wIM(sinhu|q)du = 2(q;q)∞. (42)
0
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From (11), (14) and (16) we have{√
(q;q)nwIM(sinh ξn|q)

qn/2wIM(sinhu|q)

∣∣h̃n(sinh ξn|q)
∣∣}2

� A2
q

(−u−2), (43)

and from (34) and (10) we know that

u−2wIM(sinhu|q)A2
q

(−u−2) (44)

is bounded for 0 < u � 1. From (33) we know that

A2
q

(−u−2) (45)

is bounded for u � 1. Lebesgue dominated convergence theorem allows us to take limit inside the integral. We use
(35) to get (37). �

Take t = 2 in the formula (69) of [10],√
q−nwSW(q−2nu;q)

(q;q)nwSW(u;q)
s̃n

(
q−2nu;q) = {Aq(u−1) + rSW(n)}

(q;q)∞
(46)

with

∣∣rSW(n)
∣∣ � 2(−q3;q)∞Aq(−|u|−1)

(q;q)∞

{
qn/2 + qn2/4

|u|1+�n/2�

}
. (47)

Theorem 4.2. Assuming that Aq(z), and wSW(x;q) are defined as in (7) and (18). Then we have

∞∫
0

A2
q

(
u−1)wSW(u;q)du = (q;q)∞. (48)

Proof. From the orthogonality of Stieltjes–Wigert polynomials, we know that the orthonormal polynomials s̃N (x;q)

satisfy

∞∫
0

s̃2
n(x;q)wSW(x;q)dx = 1. (49)

Let us make a change of variable

x = q−2nu (50)

in (49) with u > 0, then,

∞∫
0

[√
q−2nwSW(q−2nu;q)

(q;q)nwSW(u;q)
s̃n

(
q−2nu;q)]2

wSW(u;q)du = 1

(q;q)n
, (51)

therefore,

lim
n→∞

∞∫
0

[√
q−2nwSW(q−2nu;q)

(q;q)nwSW(u;q)
s̃n

(
q−2nu;q)]2

wSW(u;q)du = 1

(q;q)∞
. (52)

From (20), (22) and (24) we have{√
q−2nwSW(q−2nu;q)

(q;q) w (u;q)

∣∣s̃n(q−2nu;q)∣∣}2

�
A2

q(−u−1)

(q;q)2
,

n SW ∞
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and by (14) and (34)

A2
q

(−u−1)wSW(u;q)

is bounded for 0 < u � 1, by (33),

A2
q

(−u−2)
is bounded for u � 1. By Lebesgue dominated convergence theorem we interchange the orders of limit and integration,
then apply (46) to get (48). �
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